JP3683727B2 - How to close the penetration - Google Patents

How to close the penetration Download PDF

Info

Publication number
JP3683727B2
JP3683727B2 JP01182399A JP1182399A JP3683727B2 JP 3683727 B2 JP3683727 B2 JP 3683727B2 JP 01182399 A JP01182399 A JP 01182399A JP 1182399 A JP1182399 A JP 1182399A JP 3683727 B2 JP3683727 B2 JP 3683727B2
Authority
JP
Japan
Prior art keywords
cylinder
peripheral surface
hole
inorganic foam
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01182399A
Other languages
Japanese (ja)
Other versions
JP2000000326A (en
Inventor
昭八 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mirai Kogyo KK
Original Assignee
Mirai Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mirai Kogyo KK filed Critical Mirai Kogyo KK
Priority to JP01182399A priority Critical patent/JP3683727B2/en
Priority to KR1019990009975A priority patent/KR19990082762A/en
Priority to TW088105280A priority patent/TW508419B/en
Priority to US09/285,856 priority patent/US6530187B2/en
Priority to DE19917127A priority patent/DE19917127B4/en
Priority to FR9904742A priority patent/FR2777627B1/en
Publication of JP2000000326A publication Critical patent/JP2000000326A/en
Application granted granted Critical
Publication of JP3683727B2 publication Critical patent/JP3683727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/04Removing or cutting-off the supply of inflammable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • F16L5/04Sealing to form a firebreak device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing

Description

【0001】
【発明の属する技術分野】
この発明は、建築物の壁、床等の区画部に形成された貫通孔の内周面と、そこに貫通支持される配管や電気配線等の外周面との間に形成される隙間を充填閉鎖するための貫通部閉鎖方法に関するものである。
【0002】
【従来の技術】
図8に示すように、従来、貫通部閉鎖装置37は、区画部32に形成された貫通孔34に管33を貫通させ、その外周面と貫通孔34の内周面との隙間にモルタル、ロックウール等の不燃材料35を充填していた。そして、管33内に被貫通体としてケーブル36等を通していた。
【0003】
【発明が解決しようとする課題】
ところが、貫通孔34の内周面と、管33の外周面との間の隙間に不燃材料35を充填する作業は、管33等を所望位置となるように人手により保持しながら行わなければならず、非常に面倒かつ困難であった。さらに、不燃材料35が完全に硬化するのに2〜3日間必要とし、その間はケーブル36等を通すことができず、施工において時期的制約を受けるものであった。
【0004】
また、貫通孔34の内周面と、管33の外周面との間の隙間に不燃材料35を充填した後であっても、不燃材料35が硬化する前に、管33等の自重により不燃材料35が沈み込むおそれがあった。その場合には、管33と不燃材料35の間に新たに隙間が生じてしまうとともに、管33を貫通孔34に強固に固定することができないという問題があった。さらに、その隙間を埋めるために不燃材料35を再度充填する作業が必要となり、作業効率が低下するとともに、施工コストの上昇を招くという問題もあった。
【0005】
この発明は、このような従来技術に存在する問題に着目してなされたものである。その目的とするところは、区画部の貫通孔の内周面と、その内側に挿通される貫通筒体の外周面との間に形成される隙間を確実に充填閉鎖するとともに、貫通孔に貫通筒体を強固に貫通支持することができるようにすることにある。その他の目的は、作業効率を向上させることができるとともに、施工コストの低減を図ることができるようにすることにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に記載の貫通部閉鎖方法は、建築物の壁、床等の区画部に形成された貫通孔に貫通筒体を挿通し、前記貫通孔の内周面と貫通筒体の外周面との間に形成される隙間に設けられた耐火充填形成材を膨張させ、前記隙間を埋めて貫通筒体を貫通孔に貫通支持させるものである。
【0022】
請求項に記載の貫通部閉鎖方法は、請求項に記載の発明において、前記耐火充填形成材は、貫通筒体の外周面に予め被覆形成されるものである。
請求項に記載の貫通部閉鎖方法は、請求項又はに記載の発明において、耐火充填形成材として加熱により膨張する材料を使用するものである。
【0023】
請求項に記載の貫通部閉鎖方法は、請求項のいずれかに記載の発明において、前記貫通筒体を直接加熱して耐火充填形成材を膨張させるものである。
請求項に記載の貫通部閉鎖方法は、請求項に記載の発明において、耐火充填形成材の膨張は、前記貫通筒体の内側からの加熱によるものである。
【0025】
【発明の実施の形態】
(第1実施形態)
以下、この発明の第1実施形態について詳細に説明する。
【0026】
図1及び図2に示すように、区画部12は、建築物等の壁、床、天井等である。貫通孔13は、区画部12に貫通形成され、区画部12を施工する際、ボイド管14により形成される。前記ボイド管14は、紙により円筒状に形成され、その外周面には、断面山形状をなす金属リング15が複数個嵌着されている。
【0027】
そして、一対の型枠17が所定間隔をおいて配置され、その間にコンクリートが打設される。その際、ボイド管14が、型枠17間にセットされる。
コンクリート硬化後に、型枠17を取り外し、ボイド管14及び金属リング15を除去する又はボイド管14のみを除去することにより、区画部12に貫通孔13が形成されるとともに、金属リング15により貫通孔13の内周面に複数の環状凹部18が形成される。
【0028】
図3に示すように、貫通部閉鎖具19は、前記区画部12の貫通孔13に挿通される貫通筒体20と、貫通筒体20の外周面に付着され、膨張状態において前記貫通孔13の内周面と貫通筒体20の外周面との間に形成される隙間を充填する耐火充填形成材21とよりなる。貫通筒体20は、金属材料により円筒状に形成され、図1に示すように、その内側に被貫通体としてのケーブル22を通すことができる。
【0029】
耐火充填形成材としての無機発泡材21(株式会社常盤電機製 GRANDEX FJ515)は、貫通筒体20の中央部外周に付着されている。この無機発泡材21は、合成膨潤性雲母をアルカリ塩の水溶液に分散したものを主成分としたものである。前記合成膨潤性雲母は固相反応によって合成された微粉ナトリウム・フッ素雲母であり、平均粒径は1〜5μm、層厚さが10オングストローム(Å)のものである。そして、層間に無機・有機物をインターカレートして複合体を形成する特性を有する。アルカリ塩としては珪酸ソーダが使用される。
【0030】
次に、無機発泡材21の製造方法について説明する。合成膨潤性雲母を珪酸ソーダの水溶液に分散すると、合成膨潤性雲母は水分を層間に吸着して膨潤し、層間のナトリウムイオンあるいはリチウムイオンなどの陽イオンが水中に溶解して、微細にへき開し始める。このため、合成膨潤性雲母の結晶は層間部分が陰イオンに帯電し、鱗片の反対側の面が陽イオンに帯電する。この状態で、珪酸ソーダのナトリウムイオンが合成膨潤性雲母の陰イオンに帯電している層間に電気的に吸引されてインターカレートされ複合化し、液状の無機発泡材21が得られる。
【0031】
次に、合成膨潤性雲母と珪酸ソーダの混合液を乾燥して水分を蒸発させると、濃縮によって合成膨潤性雲母の結晶鱗片相互が水を内部に包含しながら接近し、ゲル化する。このとき、へき開した合成膨潤性雲母の結晶鱗片は層間部分が陰イオン、反対面が陽イオンに帯電しているので、相互が静電気的に引き寄せられ、結晶鱗片の平面部と端面部とがランダムに当接してカードハウス状に組み立てられた構造で結合し、ゲル状の無機発泡材21が得られる。
【0032】
そして、ゲル状の無機発泡材21を貫通筒体20の外周面に塗布した後、乾燥させて固化させることにより貫通部閉鎖具19を得ることができる。この無機発泡材21は、150℃〜200℃、必要であればそれ以上の温度に加熱することにより、その体積が加熱前の3〜5倍に発泡し、数十分後に硬化する。
【0033】
そのため、貫通筒体20を貫通孔13に強固に固定することができ、その抜け落ちを防止することができる。また、無機質材料により形成されているため、加熱等により炭化することはない。
【0034】
無機発泡材21と対応するように、貫通筒体20の外周面にはローレット等により凹凸(図示しない)が形成されている。貫通筒体20の両端には耐火材25が充填される。この耐火材25は、パテ等の難燃性材料よりなり、例えば、クロロプレンゴムに含水ケイ酸ソーダ(水ガラス)を含ませたものが使用される。
【0035】
さて、図3に示すように、貫通筒体20の外周面に予め無機発泡材21が付着された貫通部閉鎖具19を、貫通孔13に挿通し、無機発泡材21を貫通孔13の内周面に対応させる。そして、貫通筒体20の内側にバーナー29等を挿入して加熱する。その結果、熱が貫通筒体20の内側から貫通筒体20全体に伝達し、無機発泡材21が加熱される。
【0036】
このとき、無機発泡材21の結晶間に残留していた水分が完全に蒸発し、結晶間が急激に膨張して、水分の飛散後に連続的に連なる微細な空隙が残る。このような無機発泡材21の均等な連続発泡により、図4に示すように、貫通孔13の内周面及び複数の環状凹部18と貫通筒体20との間の隙間が無機発泡体により充填閉鎖され、数十分後に硬化して耐火充填材23となり、貫通部閉鎖装置11が構成される。そのため、少量の無機発泡材21により耐火充填材23を形成し、貫通孔13の内周面及び複数の環状凹部18と貫通筒体20との間の隙間を充填することができ、施工コストの低減を図ることができる。
【0037】
このとき、貫通孔13の内周面には、複数の環状凹部18が形成されているため、耐火充填材23の引き抜き強度を向上させることができる。また、貫通筒体20の外周面にも凹凸が形成されているため、貫通筒体20の引き抜き強度を向上させることができる。
【0038】
耐火充填材23の形成後、図1に示すように、貫通孔13に貫通支持された貫通筒体20の内側に被貫通体としてのケーブル22等を通す。そして、貫通筒体20の両端内側面とケーブル22との間に耐火材25を充填し、貫通筒体20の内周面とケーブル22の外周面との間の隙間を充填する。
【0039】
その結果、貫通孔13と貫通筒体20との間の隙間には耐火充填材23が、貫通筒体20とケーブル22との間の隙間には耐火材25が充填される。そのため、上記貫通部閉鎖装置11が設置された建築物に万一火災が発生した場合、貫通孔13や貫通筒体20が、延焼や煙の経路となるのを防止することができる。
【0040】
第1実施形態によれば、次のような効果が発揮される。
・ 区画部12の貫通孔13の内周面と、貫通筒体20の外周面との間の隙間は、耐火充填材23により充填閉鎖されている。そのため、前記隙間を確実に充填閉鎖することができる。
【0041】
・ 貫通孔13と、貫通筒体20との間の隙間に充填された無機発泡材21は加熱と同時に発泡し、それが急速に硬化する。そのため、作業効率を向上させることができるとともに、施工コストの低減を図ることができる。しかも、貫通筒体20の自重により、耐火充填材23と貫通筒体20の間に新たに隙間が生じるのを未然に防止することができる。その結果、再度隙間に無機発泡材21を充填する必要がなく、前記と同様に作業効率の向上及び施工コストの低減を図ることができる。
【0042】
・ 貫通筒体20は金属材料により形成されている。そのため、貫通筒体20をその内側から加熱したとき、熱が貫通筒体20を介して無機発泡材21に効率良く伝達される。その結果、無機発泡材21が効率良く発泡し、隙間を耐火充填材23により確実に充填閉鎖することができる。
【0043】
・ 貫通筒体20の両端内側とケーブル22との間の隙間には耐火材25が充填されている。そのため、貫通部閉鎖装置11が設置された建築物に万一火災が発生しても、延焼経路や煙の経路になるのを防止することができる。
【0044】
・ 無機発泡材21の連続発泡により無機発泡体を形成し、貫通孔13の内周面及び複数の環状凹部18と貫通筒体20との間の隙間が無機発泡体により充填閉鎖され、数十分後に硬化して耐火充填材23となる。そのため、少量の無機発泡材21により、耐火充填材23を形成して貫通孔13の内周面及び複数の環状凹部18と貫通筒体20との間の隙間を充填することができ、施工コストの低減を図ることができる。
【0045】
・ 無機発泡材21が発泡した無機発泡体により形成される耐火充填材23は、100%無機質材料により形成されている。そのため、貫通部閉鎖装置11が設置された建築物に万一火災が発生しても、耐火充填材23は炭化せず所要の防火機能を維持することができる。
【0046】
・ 無機発泡材21は、加熱したとき、貫通筒体20の全周にわたってほぼ均等に連続発泡するため、貫通筒体20は無機発泡材21の発泡により貫通孔13の中央に自然に配置される。そのため、貫通筒体20が貫通孔13の中央に位置するように人手で保持する手間を省くことができ、作業効率を向上させることができる。
【0047】
・ 無機発泡材21は合成膨潤性雲母を珪酸ソーダに分散してゲル化し、さらに乾燥して固化したものを主成分としているため、加熱により確実に発泡する。
・ 貫通部閉鎖具19は、貫通筒体20の外周面に無機発泡材21を付着して構成されている。そのため、貫通部閉鎖具19は部品点数が少なく、取り扱いが容易である。
【0048】
・ 無機発泡材21は、貫通筒体20の外周面に予め付着されている。そのため、無機発泡材21を、貫通孔13と貫通筒体20との間に充填する作業が不要となり、作業時間の短縮を図ることができる。
【0049】
・ 無機発泡材21は加熱されることにより、体積が約3〜5倍に、数十分後に硬化する。その結果、貫通筒体20内にケーブル22を通す作業を即座に行うことができ、作業時間の短縮を図ることができる。
【0050】
・ 貫通孔13の内周面には、複数の環状凹部18が形成されている。そのため、耐火充填材23の引き抜き強度が向上する。
・ 貫通筒体20の外周面には凹凸が形成されている。そのため、耐火充填材23の引き抜き強度が向上する。
【0051】
(第2実施形態)
以下の各実施形態では、前記第1実施形態と異なる部分を主に説明する。
図5に示すように、第2実施形態では、耐火充填形成材としての無機発泡材21が貫通筒体20の外周面に付着されていない状態で貫通孔13内に挿通される。その後、貫通孔13の内周面と貫通筒体20の外周面との間の隙間に、充填器26等によりゲル状又は液状の無機発泡材21が充填される。
【0052】
さらに、バーナー29等を貫通筒体20の内側に挿入し、貫通筒体20を加熱するとともに、無機発泡材21を加熱して発泡させる。このため、前記隙間が無機発泡材21が発泡して形成された無機発泡体により充填閉鎖され、数十分後に硬化して耐火充填材23になる。その結果、貫通筒体20を貫通孔13に貫通支持することができる。
【0053】
第2実施形態によれば、ゲル状又は液状の無機発泡材21が貫通孔13の内周面と貫通筒体20の外周面との間の隙間に充填される。そのため、前記隙間の大きさに対応させて充填される無機発泡材21の量を調節することができる。従って、貫通孔13の内周面と貫通筒体20の外周面との間の隙間を、耐火充填材23により確実に充填閉鎖することができる。また、無機発泡材21の浪費を防止して施工コストの低減を図ることができる。
【0054】
また、無機発泡材21が貫通筒体20の外周面に予め付着されていることに基づく効果を除いて、前記第1実施形態と同様な効果を発揮する。
(第3実施形態)
第3実施形態では、図6に示すように、貫通筒体20を貫通孔13内に挿通したとき、貫通孔13の両開口部に対応する貫通筒体20の外周面に2箇所に耐火充填形成材としての無機発泡材21を予め付着した。
【0055】
従って、第3実施形態によれば、無機発泡材21を節約して製造コストの低減を図ることができる。
(第4実施形態)
第4実施形態では、図7(a)、(b)に示すように、耐火充填形成材としてゴム等の軟質材料を含有する熱膨張材27を使用した。そして、筒状に形成された熱膨張材27を貫通筒体20の外周面に予め嵌着する若しくは施工時に熱膨張材27を貫通筒体20の外周に嵌着しても良く、又は施工時に板状の熱膨脹材27を貫通筒体20の外周面に巻装しても良い。熱膨張材27の両側において、貫通筒体20の外周面には、連結体としてのビス30により、断面L字状をなす金属製の固定筒体28が固定されている。
【0056】
そして、熱膨張材27を備えた貫通筒体20が貫通孔13に挿通される。次いで、固定筒体28をビス30により、区画部12に固定する。さらに、貫通筒体20及び固定筒体28を加熱し、熱膨張材27を膨張させて耐火充填材23を形成し、隙間を充填閉鎖させる。
【0057】
その結果、熱膨張材27及び固定筒体28の協働により、貫通筒体20を貫通孔13に強固に貫通支持させることができる。
尚、前記各実施形態を次のように変更して具体化することも可能である。
【0058】
・ 第1〜第3実施形態において、耐火充填形成材としての液状又はゲル状の無機発泡材21を、施工時に貫通筒体20の外周面に塗布した後、乾燥し、固化させて無機発泡材21を形成すること。
【0059】
このように構成した場合も、貫通筒体20の外周面に付着された耐火充填形成材としての無機発泡材21を発泡させて、貫通孔13の内周面と貫通筒体20の外周面との隙間を耐火充填材23により充填閉鎖することができる。
【0060】
・ 第2実施形態において、無機発泡材21を貫通孔13の内周面に塗布すること。このとき、無機発泡材21を直接加熱する。
・ 各実施形態において、ボイド管14の外周面の金属リング15を省略すること。
【0061】
・ 各実施形態において、無機発泡材21に対する加熱を、同発泡材21に対して直接行うこと。
・ 第1〜第3実施形態において、ゲル状又は液状の無機発泡材21を筒状に乾燥固化して形成された無機発泡材21を貫通筒体20の外周面に予め嵌着する若しくは施工時に前記無機発泡材21を貫通筒体20の外周に嵌着しても良い。又はゲル状又は液状の無機発泡材21を板状に乾燥固化して形成された無機発泡材21を貫通筒体20の外周面に巻装すること。
【0062】
・ 各実施形態において、耐火充填形成材21として、例えば気泡コンクリートのように化学反応により膨張、硬化する材料を使用すること。
まず、ポルトランド・セメント、生石灰、硅石、水、アルミニウム、泡安定剤及び屑を混合、攪拌する。そして、得られたスラリーを貫通筒体20の外周面と貫通孔13との間の隙間に充填する。
【0063】
このとき、スラリー中では、生石灰(CaO)の水和及びポルトランド・セメント中の硅酸三石灰(3CaO・SiO2)や硅酸二石灰(2CaO・SiO2 )の水和により消石灰{Ca(OH)2}が生成する。さらに、この消石灰、アルミニウム(2Al)及び水との反応又はアルミニウムと水との反応により水素ガス(H2 )が発生する。この水素ガスの発生により、スラリー中に気泡が生成され、所定の体積までスラリーが膨張する。
【0064】
また、発泡と同時に、ポルトランド・セメント中の硅酸三石灰や硅酸二石灰の水和により生成されるコロイド状鉱物質の膠(3CaO・2SiO2 ・3H2O)によりスラリーの硬化が生じる。
【0065】
その結果、貫通筒体20の外周面と貫通孔13との間の隙間を、化学反応により形成された気泡コンクリートにより充填閉鎖することができるとともに、貫通筒体20を貫通孔13に強固に貫通支持させることができる。
【0066】
・ 貫通筒体20を四角筒や三角筒状に変更すること。
・ 第1〜第3実施形態において、第4実施形態で用いた固定筒体28を、同様にして用いること。
【0067】
このように構成した場合、耐火充填材23及び固定筒体28の協働により、貫通筒体20を貫通孔13に強固に貫通支持させることができる。
さらに、前記実施形態より把握される技術的思想について以下に記載する。
【0068】
・ 前記耐火充填形成材は、化学反応により膨張する材料により構成されたものである請求項1に記載の貫通閉鎖方法
【0069】
【発明の効果】
この発明は、以上のように構成されているため、次のような効果を奏する。
請求項1に記載の発明の貫通部閉鎖方法によれば、貫通筒体を貫通孔に確実に貫通支持させることができるとともに、貫通部を容易に閉鎖することができる。
【0087】
請求項に記載の発明の貫通部閉鎖方法によれば、請求項に記載の発明の効果に加え、耐火充填形成材を、貫通孔と貫通筒体との間に充填する作業が不要となり、作業時間の短縮を図ることができる。
【0088】
請求項に記載の発明の貫通部閉鎖方法によれば、請求項又はに記載の発明の効果に加え、耐火充填形成材は加熱により、体積が約3〜5倍に、数十分後に硬化する。そのため、貫通筒体内にケーブルを通す作業を即座に行うことができ、作業時間の短縮を図ることができる。
【0089】
請求項に記載の発明の貫通部閉鎖方法によれば、請求項のいずれかに記載の発明の効果に加え、耐火充填形成材を均等に加熱することができ、形成された耐火充填材の大きさを均等にすることができる。
【図面の簡単な説明】
【図1】 第1実施形態の貫通部閉鎖装置を示す断面図。
【図2】 区画部にボイド管を貫通支持させた状態を示す断面図。
【図3】 貫通孔に貫通部閉鎖具を挿通した状態を示す断面図。
【図4】 無機発泡材を発泡させた状態を示す断面図。
【図5】 貫通孔に無機発泡材を充填した状態の断面図。
【図6】 第3実施形態の貫通部閉鎖具を示す断面図。
【図7】 (a)は区画部に固定筒体を取り付けた状態を示す断面図、(b)は、第4実施形態の貫通部閉鎖装置を示す断面図。
【図8】 従来の貫通部閉鎖装置を示す断面図。
【符号の説明】
11…貫通部閉鎖装置、12…区画部、13…貫通孔、18…凹凸を構成する環状凹部、19…貫通部閉鎖具、20…貫通筒体、21…耐火充填形成材としての無機発泡材、22…被貫通体としてのケーブル、23…耐火充填材、25…耐火材、27…耐火充填形成材としての熱膨張材、28…固定具としての固定筒体。
[0001]
BACKGROUND OF THE INVENTION
The present invention fills a gap formed between an inner peripheral surface of a through hole formed in a partition such as a wall or a floor of a building and an outer peripheral surface of a pipe or electric wiring that is penetrated and supported therein. it relates penetrating portion closed chain method for closing.
[0002]
[Prior art]
As shown in FIG. 8, conventionally, the penetrating portion closing device 37 has a through hole 34 formed in the partitioning portion 32 penetrating the tube 33, and a mortar in the gap between the outer peripheral surface and the inner peripheral surface of the through hole 34. Incombustible material 35 such as rock wool was filled. And the cable 36 etc. were passed through the pipe | tube 33 as to-be-penetrated body.
[0003]
[Problems to be solved by the invention]
However, the operation of filling the gap between the inner peripheral surface of the through hole 34 and the outer peripheral surface of the tube 33 with the non-combustible material 35 must be performed while manually holding the tube 33 and the like so as to be in a desired position. It was very troublesome and difficult. Furthermore, it took 2 to 3 days for the non-combustible material 35 to be completely cured, and during that time, the cable 36 and the like could not be passed, and the construction was subject to time restrictions.
[0004]
Even after the nonflammable material 35 is filled in the gap between the inner peripheral surface of the through hole 34 and the outer peripheral surface of the tube 33, the nonflammable material 35 is incombustible before the nonflammable material 35 is cured. There was a risk of the material 35 sinking. In that case, there is a problem that a new gap is generated between the tube 33 and the noncombustible material 35 and the tube 33 cannot be firmly fixed to the through hole 34. Furthermore, in order to fill the gap, the work of refilling the non-combustible material 35 is required, and there is a problem that the work efficiency is lowered and the construction cost is increased.
[0005]
The present invention has been made paying attention to such problems existing in the prior art. The purpose is to reliably fill and close the gap formed between the inner peripheral surface of the through hole in the partitioning portion and the outer peripheral surface of the through cylinder inserted through the inside of the partition portion, and to penetrate the through hole. The object is to enable the cylindrical body to be firmly penetrated and supported. Another object is to improve the work efficiency and to reduce the construction cost.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the through part closing method according to claim 1 is characterized in that a through cylinder is inserted into a through hole formed in a partition part such as a wall or a floor of a building , A refractory filling forming material provided in a gap formed between the peripheral surface and the outer peripheral surface of the through cylinder is expanded to fill the gap and support the through cylinder through the through hole .
[0022]
According to a second aspect of the present invention, the penetrating portion closing method according to the first aspect of the invention is such that the refractory filling forming material is previously coated on the outer peripheral surface of the penetrating cylinder.
According to a third aspect of the present invention, in the invention of the first or second aspect , a material that expands by heating is used as the fireproof filling material.
[0023]
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the through cylinder is directly heated to expand the refractory filling forming material.
According to a fifth aspect of the present invention, in the invention of the fourth aspect , the penetration portion closing method is such that the expansion of the refractory filling forming material is due to heating from the inside of the through cylinder.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail.
[0026]
As shown in FIG.1 and FIG.2, the division part 12 is walls, floors, ceilings, etc., such as a building. The through-hole 13 is formed through the partition portion 12 and is formed by the void tube 14 when the partition portion 12 is constructed. The void tube 14 is formed in a cylindrical shape from paper, and a plurality of metal rings 15 having a mountain-shaped cross section are fitted on the outer peripheral surface thereof.
[0027]
And a pair of formwork 17 is arrange | positioned at predetermined intervals, and concrete is laid in between. At that time, the void tube 14 is set between the molds 17.
After the concrete is hardened, the mold 17 is removed, and the void tube 14 and the metal ring 15 are removed, or only the void tube 14 is removed, whereby the through hole 13 is formed in the partition portion 12 and the through hole is formed by the metal ring 15. A plurality of annular recesses 18 are formed on the inner peripheral surface of 13.
[0028]
As shown in FIG. 3, the through-hole closing tool 19 is attached to the through cylinder 20 inserted through the through hole 13 of the partition section 12 and the outer peripheral surface of the through cylinder 20, and in the expanded state, the through hole 13. And a refractory filling forming material 21 that fills a gap formed between the inner circumferential surface and the outer circumferential surface of the through cylinder 20. The through cylinder 20 is formed in a cylindrical shape from a metal material, and as shown in FIG. 1, the cable 22 as the through body can be passed through the inside.
[0029]
An inorganic foam material 21 (GRANDEX FJ515, manufactured by Tokiwa Electric Co., Ltd.) as a fireproof filling material is attached to the outer periphery of the central portion of the through cylinder 20. The inorganic foam material 21 is mainly composed of a synthetic swellable mica dispersed in an alkali salt aqueous solution. The synthetic swellable mica is finely powdered sodium / fluorine mica synthesized by solid phase reaction, having an average particle diameter of 1 to 5 μm and a layer thickness of 10 angstroms (Å). And it has the characteristic of forming a complex by intercalating inorganic / organic matter between layers. Sodium silicate is used as the alkali salt.
[0030]
Next, the manufacturing method of the inorganic foam material 21 is demonstrated. When the synthetic swellable mica is dispersed in an aqueous solution of sodium silicate, the synthetic swellable mica swells by adsorbing moisture between the layers, and cations such as sodium ions or lithium ions between the layers dissolve in the water and cleave finely. start. For this reason, in the synthetic swelling mica crystal, the interlayer portion is charged with an anion and the opposite surface of the scale is charged with a cation. In this state, sodium ions of sodium silicate are electrically attracted and intercalated between the layers charged with the anions of the synthetic swellable mica to form a liquid inorganic foam 21.
[0031]
Next, when the mixed liquid of the synthetic swellable mica and sodium silicate is dried to evaporate the water, the crystal scales of the synthetic swellable mica come close to each other while containing water inside and gelate. At this time, the cleaved synthetic swelling mica crystal scales are charged with anions on the interlayer and cations on the opposite side, so they are attracted electrostatically, and the plane part and end face part of the crystal scales are random. The gel-like inorganic foamed material 21 is obtained by bonding with a structure assembled in a card house shape.
[0032]
And after apply | coating the gel-like inorganic foam material 21 to the outer peripheral surface of the penetration cylinder 20, the penetration part closure tool 19 can be obtained by making it dry and solidify. The inorganic foamed material 21 is heated to 150 ° C. to 200 ° C., and if necessary, to a temperature higher than that, the volume is expanded to 3 to 5 times that before heating, and is cured after several tens of minutes.
[0033]
Therefore, the through cylinder 20 can be firmly fixed to the through hole 13 and can be prevented from falling off. Moreover, since it is formed of an inorganic material, it is not carbonized by heating or the like.
[0034]
Concavities and convexities (not shown) are formed on the outer peripheral surface of the through cylinder 20 by knurling or the like so as to correspond to the inorganic foam material 21. Both ends of the through cylinder 20 are filled with a refractory material 25. The refractory material 25 is made of a flame-retardant material such as putty, and for example, chloroprene rubber containing hydrated sodium silicate (water glass) is used.
[0035]
Now, as shown in FIG. 3, a penetration part closure 19 having an inorganic foam material 21 attached in advance to the outer peripheral surface of the through cylinder 20 is inserted into the through hole 13, and the inorganic foam material 21 is inserted into the through hole 13. Correspond to the peripheral surface. And the burner 29 grade | etc., Is inserted inside the penetration cylinder 20, and it heats. As a result, heat is transmitted from the inside of the through cylinder 20 to the entire through cylinder 20 and the inorganic foam material 21 is heated.
[0036]
At this time, the water remaining between the crystals of the inorganic foam 21 is completely evaporated, and the space between the crystals expands abruptly, leaving fine voids continuously connected after the water is scattered. Due to the uniform continuous foaming of the inorganic foam material 21, as shown in FIG. 4, the inner peripheral surface of the through hole 13 and the gaps between the plurality of annular recesses 18 and the through cylinder 20 are filled with the inorganic foam. It is closed and cured after several tens of minutes to become a refractory filler 23, and the penetrating portion closing device 11 is configured. Therefore, the fireproof filler 23 can be formed with a small amount of the inorganic foam material 21, and the gap between the inner peripheral surface of the through hole 13 and the plurality of annular recesses 18 and the through cylinder 20 can be filled. Reduction can be achieved.
[0037]
At this time, since the plurality of annular recesses 18 are formed on the inner peripheral surface of the through-hole 13, the pull-out strength of the refractory filler 23 can be improved. Moreover, since the unevenness | corrugation is formed also in the outer peripheral surface of the penetration cylinder 20, the extraction strength of the penetration cylinder 20 can be improved.
[0038]
After the formation of the refractory filler 23, as shown in FIG. 1, a cable 22 or the like as a through body is passed through the inside of the through cylinder 20 that is supported by the through hole 13. Then, a refractory material 25 is filled between the inner side surfaces of both ends of the through cylinder 20 and the cable 22, and a gap between the inner circumference surface of the through cylinder 20 and the outer circumference surface of the cable 22 is filled.
[0039]
As a result, the gap between the through hole 13 and the through cylinder 20 is filled with the refractory filler 23, and the gap between the through cylinder 20 and the cable 22 is filled with the refractory material 25. Therefore, in the unlikely event that a fire occurs in the building where the penetrating part closing device 11 is installed, it is possible to prevent the through-hole 13 and the penetrating cylindrical body 20 from becoming a fire and smoke path.
[0040]
According to the first embodiment, the following effects are exhibited.
The gap between the inner peripheral surface of the through hole 13 of the partition 12 and the outer peripheral surface of the through cylinder 20 is filled and closed with a fireproof filler 23. Therefore, the gap can be reliably filled and closed.
[0041]
The inorganic foam material 21 filled in the gap between the through hole 13 and the through cylinder 20 is foamed simultaneously with heating, and is rapidly cured. Therefore, work efficiency can be improved and construction cost can be reduced. In addition, it is possible to prevent a new gap from being generated between the refractory filler 23 and the through cylinder 20 due to the weight of the through cylinder 20. As a result, it is not necessary to fill the gap with the inorganic foam material 21 again, and the work efficiency can be improved and the construction cost can be reduced as described above.
[0042]
The through cylinder 20 is made of a metal material. Therefore, when the through cylinder 20 is heated from the inside, the heat is efficiently transmitted to the inorganic foam material 21 through the through cylinder 20. As a result, the inorganic foam material 21 is efficiently foamed, and the gap can be reliably filled and closed by the fireproof filler 23.
[0043]
A refractory material 25 is filled in the gap between the inner ends of the through cylinder 20 and the cable 22. Therefore, even if a fire should occur in the building where the penetrating part closing device 11 is installed, it can be prevented that it becomes a fire spread route or a smoke route.
[0044]
An inorganic foam is formed by continuous foaming of the inorganic foam material 21, and the inner peripheral surface of the through hole 13 and the gaps between the plurality of annular recesses 18 and the through cylinder 20 are filled and closed by the inorganic foam. It hardens after a minute and becomes a refractory filler 23. Therefore, with a small amount of the inorganic foam material 21, the fireproof filler 23 can be formed to fill the inner peripheral surface of the through hole 13 and the gaps between the plurality of annular recesses 18 and the through cylindrical body 20. Can be reduced.
[0045]
The refractory filler 23 formed of an inorganic foam obtained by foaming the inorganic foam 21 is made of 100% inorganic material. Therefore, even if a fire occurs in the building where the penetrating part closing device 11 is installed, the fireproof filler 23 is not carbonized and can maintain the required fireproof function.
[0046]
When the inorganic foam material 21 is heated, it continuously foams almost uniformly over the entire circumference of the through cylinder 20, so that the through cylinder 20 is naturally disposed in the center of the through hole 13 by the foaming of the inorganic foam material 21. . Therefore, it is possible to save the labor of manually holding the through cylinder 20 so as to be positioned at the center of the through hole 13 and to improve the working efficiency.
[0047]
The inorganic foam material 21 is foamed surely by heating because it is composed mainly of a material obtained by dispersing synthetic swelling mica in sodium silicate, gelling, and drying and solidifying.
The penetrating part closing tool 19 is configured by attaching an inorganic foam material 21 to the outer peripheral surface of the penetrating cylindrical body 20. Therefore, the penetrating part closure 19 has a small number of parts and is easy to handle.
[0048]
The inorganic foam material 21 is attached in advance to the outer peripheral surface of the through cylinder 20. Therefore, the work of filling the inorganic foam material 21 between the through hole 13 and the through cylinder 20 is not necessary, and the working time can be shortened.
[0049]
The inorganic foam material 21 is heated to be about 3 to 5 times the volume, and is cured after several tens of minutes. As a result, the operation of passing the cable 22 into the through cylinder 20 can be performed immediately, and the operation time can be shortened.
[0050]
A plurality of annular recesses 18 are formed on the inner peripheral surface of the through hole 13. Therefore, the pulling strength of the refractory filler 23 is improved.
An unevenness is formed on the outer peripheral surface of the through cylinder 20. Therefore, the pulling strength of the refractory filler 23 is improved.
[0051]
(Second Embodiment)
In the following embodiments, portions different from the first embodiment will be mainly described.
As shown in FIG. 5, in the second embodiment, the inorganic foam material 21 as the refractory filling forming material is inserted into the through hole 13 without being attached to the outer peripheral surface of the through cylinder 20. Thereafter, the gap between the inner peripheral surface of the through hole 13 and the outer peripheral surface of the through cylinder 20 is filled with a gel-like or liquid inorganic foam material 21 by the filler 26 or the like.
[0052]
Furthermore, a burner 29 or the like is inserted inside the through cylinder 20 to heat the through cylinder 20 and to heat and foam the inorganic foam material 21. For this reason, the gap is filled and closed by the inorganic foam formed by foaming the inorganic foam material 21, and cured after several tens of minutes to become the fireproof filler 23. As a result, the through cylinder 20 can be supported through the through hole 13.
[0053]
According to the second embodiment, the gel-like or liquid inorganic foam material 21 is filled in the gap between the inner peripheral surface of the through-hole 13 and the outer peripheral surface of the through-cylinder 20. Therefore, the amount of the inorganic foam material 21 to be filled can be adjusted according to the size of the gap. Therefore, the gap between the inner peripheral surface of the through hole 13 and the outer peripheral surface of the through cylinder 20 can be reliably filled and closed by the fireproof filler 23. Moreover, the waste of the inorganic foam material 21 can be prevented and construction cost can be reduced.
[0054]
Moreover, the same effects as those of the first embodiment are exhibited except for the effect based on the fact that the inorganic foam material 21 is attached to the outer peripheral surface of the through cylinder 20 in advance.
(Third embodiment)
In the third embodiment, as shown in FIG. 6, when the through cylinder 20 is inserted into the through hole 13, the outer peripheral surface of the through cylinder 20 corresponding to both openings of the through hole 13 is fire-proof filled in two places. An inorganic foam material 21 as a forming material was attached in advance.
[0055]
Therefore, according to the third embodiment, the inorganic foam material 21 can be saved and the manufacturing cost can be reduced.
(Fourth embodiment)
In 4th Embodiment, as shown to Fig.7 (a), (b), the thermal expansion material 27 containing soft materials, such as rubber | gum, was used as a fireproof filling formation material. And the thermal expansion material 27 formed in the cylindrical shape may be fitted in advance to the outer peripheral surface of the through cylinder 20 or the thermal expansion material 27 may be fitted to the outer circumference of the through cylinder 20 at the time of construction, or at the time of construction The plate-shaped thermal expansion material 27 may be wound around the outer peripheral surface of the through cylinder 20. On both sides of the thermal expansion material 27, a metal fixed cylinder 28 having an L-shaped cross section is fixed to the outer peripheral surface of the through cylinder 20 by a screw 30 as a connecting body.
[0056]
Then, the through cylinder 20 including the thermal expansion material 27 is inserted through the through hole 13. Next, the fixed cylinder 28 is fixed to the partition portion 12 with screws 30. Further, the through cylinder 20 and the fixed cylinder 28 are heated, the thermal expansion material 27 is expanded to form the refractory filler 23, and the gap is filled and closed.
[0057]
As a result, the through cylinder 20 can be firmly penetrated and supported in the through hole 13 by the cooperation of the thermal expansion material 27 and the fixed cylinder 28.
It should be noted that the embodiments described above can be modified and embodied as follows.
[0058]
-In 1st-3rd embodiment, after apply | coating the liquid or gel-like inorganic foam material 21 as a refractory filling formation material to the outer peripheral surface of the penetration cylinder 20 at the time of construction, it is dried and solidified, and an inorganic foam material 21 is formed.
[0059]
Also when comprised in this way, the inorganic foam material 21 as a fireproof filling forming material attached to the outer peripheral surface of the through cylinder 20 is foamed, and the inner peripheral surface of the through hole 13 and the outer peripheral surface of the through cylinder 20 These gaps can be filled and closed by the refractory filler 23.
[0060]
In the second embodiment, the inorganic foam material 21 is applied to the inner peripheral surface of the through hole 13. At this time, the inorganic foam material 21 is directly heated.
In each embodiment, the metal ring 15 on the outer peripheral surface of the void tube 14 is omitted.
[0061]
In each embodiment, heating the inorganic foam material 21 is performed directly on the foam material 21.
In the first to third embodiments, the inorganic foamed material 21 formed by drying and solidifying the gel-like or liquid inorganic foamed material 21 into a cylindrical shape is fitted in advance on the outer peripheral surface of the penetrating cylinder 20 or at the time of construction. The inorganic foam material 21 may be fitted to the outer periphery of the through cylinder 20. Alternatively, the inorganic foamed material 21 formed by drying and solidifying the gel-like or liquid inorganic foamed material 21 into a plate shape is wound around the outer peripheral surface of the penetrating cylinder 20.
[0062]
In each embodiment, a material that expands and hardens by a chemical reaction such as cellular concrete is used as the fireproof filling material 21.
First, Portland cement, quicklime, meteorite, water, aluminum, foam stabilizer and waste are mixed and stirred. Then, the obtained slurry is filled in the gap between the outer peripheral surface of the through cylinder 20 and the through hole 13.
[0063]
At this time, the slurry, hydration of quicklime silicate tricalcium hydration and Portland cement in (CaO) (3CaO · SiO 2 ) or silicate dicalcium (2CaO · SiO 2) slaked lime {Ca ( OH) 2 } is produced. Further, hydrogen gas (H 2 ) is generated by the reaction between the slaked lime, aluminum (2Al) and water, or the reaction between aluminum and water. Due to the generation of hydrogen gas, bubbles are generated in the slurry, and the slurry expands to a predetermined volume.
[0064]
Simultaneously with foaming, the slurry is hardened by the colloidal mineral glue (3CaO · 2SiO 2 · 3H 2 O) produced by hydration of trilime oxalate and dilime oxalate in Portland cement. .
[0065]
As a result, the gap between the outer peripheral surface of the through cylinder 20 and the through hole 13 can be filled and closed with cellular concrete formed by a chemical reaction, and the through cylinder 20 penetrates the through hole 13 firmly. Can be supported.
[0066]
-Changing the through cylinder 20 into a square cylinder or a triangular cylinder.
In the first to third embodiments, the fixed cylinder body 28 used in the fourth embodiment is used in the same manner.
[0067]
When configured in this way, the through cylinder 20 can be firmly penetrated and supported in the through hole 13 by the cooperation of the refractory filler 23 and the fixed cylinder 28.
Furthermore, the technical idea grasped from the embodiment will be described below.
[0068]
The penetrating portion closing method according to claim 1, wherein the refractory filling forming material is made of a material that expands by a chemical reaction.
[0069]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
According to the penetrating portion closing method of the first aspect of the invention, the penetrating cylindrical body can be surely supported by penetrating through the through hole, and the penetrating portion can be easily closed.
[0087]
According to the penetrating portion closing method of the invention described in claim 2 , in addition to the effect of the invention described in claim 1 , the work of filling the fireproof filling forming material between the through hole and the penetrating cylindrical body becomes unnecessary. The working time can be shortened.
[0088]
According to the penetration part closing method of the invention described in claim 3 , in addition to the effect of the invention described in claim 1 or 2 , the volume of the refractory filling forming material is approximately 3 to 5 times, several tens of minutes by heating. It hardens later. Therefore, the operation of passing the cable through the through cylinder can be performed immediately, and the operation time can be shortened.
[0089]
According to the penetrating portion closing method of the invention described in claim 4 , in addition to the effect of the invention of any one of claims 1 to 3 , the fireproof filling material can be heated evenly, and the formed fireproof The size of the filler can be made uniform.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a penetration portion closing apparatus according to a first embodiment.
FIG. 2 is a cross-sectional view showing a state where a void tube is penetrated and supported in a partition part.
FIG. 3 is a cross-sectional view showing a state where a penetrating part closing tool is inserted into a through hole.
FIG. 4 is a cross-sectional view showing a state where an inorganic foam material is foamed.
FIG. 5 is a cross-sectional view of a state in which an inorganic foam material is filled in a through hole.
FIG. 6 is a cross-sectional view showing a penetrating portion closure according to a third embodiment.
FIG. 7A is a cross-sectional view showing a state where a fixed cylinder is attached to a partition portion, and FIG. 7B is a cross-sectional view showing a penetrating portion closing device according to a fourth embodiment.
FIG. 8 is a cross-sectional view showing a conventional penetration portion closing device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Through-part closure apparatus, 12 ... Partition part, 13 ... Through-hole, 18 ... Ring-shaped recessed part which comprises unevenness, 19 ... Through-part closure tool, 20 ... Through-tube body, 21 ... Inorganic foam as fireproof filling formation material , 22 ... cable as a penetration body, 23 ... fireproof filler, 25 ... fireproof material, 27 ... thermal expansion material as fireproof filler forming material, 28 ... fixed cylinder as a fixture.

Claims (5)

建築物の壁、床等の区画部に形成された貫通孔に貫通筒体を挿通し、前記貫通孔の内周面と貫通筒体の外周面との間に形成される隙間に設けられた耐火充填形成材を膨張させ、前記隙間を埋めて貫通筒体を貫通孔に貫通支持させる貫通部閉鎖方法。 A through cylinder is inserted into a through hole formed in a partition such as a wall or floor of a building, and provided in a gap formed between the inner peripheral surface of the through hole and the outer peripheral surface of the through cylinder. A penetrating portion closing method in which a fireproof filling material is expanded to fill the gap and support the penetrating cylinder through the through hole . 前記耐火充填形成材は、貫通筒体の外周面に予め被覆形成される請求項1に記載の貫通部閉鎖方法。 The penetrating portion closing method according to claim 1, wherein the fireproof filling forming material is previously coated on the outer peripheral surface of the penetrating cylinder . 耐火充填形成材として加熱により膨張する材料を使用するものである請求項1又は請求項2に記載の貫通部閉鎖方法The penetration part closing method according to claim 1 or 2, wherein a material that expands by heating is used as the refractory filling forming material . 前記貫通筒体を直接加熱して耐火充填形成材を膨張させる請求項1〜3のいずれかに記載の貫通部閉鎖方法The penetration part closing method according to any one of claims 1 to 3, wherein the penetration cylinder is directly heated to expand the fireproof filling material . 耐火充填形成材の膨張は、前記貫通筒体の内側からの加熱によるものである請求項4に記載の貫通部閉鎖方法The penetration part closing method according to claim 4 , wherein the expansion of the refractory filling forming material is caused by heating from the inside of the through cylinder .
JP01182399A 1998-04-17 1999-01-20 How to close the penetration Expired - Fee Related JP3683727B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP01182399A JP3683727B2 (en) 1998-04-17 1999-01-20 How to close the penetration
KR1019990009975A KR19990082762A (en) 1998-04-17 1999-03-24 An apparatus, structure and method for closing a through opening
TW088105280A TW508419B (en) 1998-04-17 1999-04-02 Partition passage and sealing method thereof
US09/285,856 US6530187B2 (en) 1998-04-17 1999-04-02 Partition passage and method of installing
DE19917127A DE19917127B4 (en) 1998-04-17 1999-04-15 Fireproof seal for a pipe passed through a through hole in a partition
FR9904742A FR2777627B1 (en) 1998-04-17 1999-04-15 PASSAGE STRUCTURE IN A PARTITION AND ITS INSTALLATION METHOD

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-124076 1998-04-17
JP12407698 1998-04-17
JP01182399A JP3683727B2 (en) 1998-04-17 1999-01-20 How to close the penetration

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005014368A Division JP4287384B2 (en) 1998-04-17 2005-01-21 Penetration closure

Publications (2)

Publication Number Publication Date
JP2000000326A JP2000000326A (en) 2000-01-07
JP3683727B2 true JP3683727B2 (en) 2005-08-17

Family

ID=26347337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01182399A Expired - Fee Related JP3683727B2 (en) 1998-04-17 1999-01-20 How to close the penetration

Country Status (6)

Country Link
US (1) US6530187B2 (en)
JP (1) JP3683727B2 (en)
KR (1) KR19990082762A (en)
DE (1) DE19917127B4 (en)
FR (1) FR2777627B1 (en)
TW (1) TW508419B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955763B4 (en) * 1999-11-19 2004-04-29 Hilti Ag Method for sealing a gap between a bushing present in a component and at least one object projecting through the bushing, and sealing therefor
DE10150075A1 (en) * 2001-10-10 2003-04-17 Roxtec Ingenieur Gmbh Module for a sealed passage for cables/pipes, through constructions, has a lateral recess around its outer sealing surfaces with at least one drilling to the interior to test the hermetic sealing
US6810568B1 (en) 2003-07-14 2004-11-02 Marvin Lacoste Refrigerant copper line protector and method of repairing
US7045479B2 (en) * 2003-07-14 2006-05-16 Headwaters Nanokinetix, Inc. Intermediate precursor compositions used to make supported catalysts having a controlled coordination structure and methods for preparing such compositions
EP1685634A1 (en) * 2003-11-07 2006-08-02 Georg Wichmann Fire-prevention device, assembly for installing a fire-prevention device, method for producing said assembly and fire-prevention cable duct
US20060070319A1 (en) * 2004-10-01 2006-04-06 Flynn Matthew J Devices and systems for preventing the propagation of fire along cables and methods of preventing same
DE102005007948B4 (en) * 2005-02-22 2007-01-18 Warema Renkhoff Gmbh Thermally insulated feedthrough for movable drive elements through external building envelopes and method for their production
US7494179B2 (en) * 2005-04-26 2009-02-24 Zephyros, Inc. Member for baffling, reinforcement or sealing
US8381403B2 (en) 2005-05-25 2013-02-26 Zephyros, Inc. Baffle for an automotive vehicle and method of use therefor
US8051614B1 (en) * 2005-06-21 2011-11-08 Sprint Communications Company L.P. Intumescent structure for ducting carrying communications cabling
US20070152440A1 (en) * 2005-12-30 2007-07-05 Keyes Thomas J Pipe sealing system
DE102006000184A1 (en) * 2006-04-19 2007-10-25 Hilti Ag Performance implementation
DE202006011374U1 (en) * 2006-07-25 2006-09-21 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Device for leading a pipe through a wall opening comprises a hollow insulating element with an insulating shell made of mineral fibers
US20080022612A1 (en) * 2006-07-31 2008-01-31 Jones Thomas P Apparatus for maintaining the structural integrity of a pipe passing through a building partition
DE102006035474B4 (en) * 2006-12-01 2008-12-11 Hilti Aktiengesellschaft Cable bushing
GB0712271D0 (en) * 2007-06-22 2007-08-01 Beele Eng Bv Method and sealing system for sealing an annular space between a rigid conduit and a pipe, tube or duct extending through the conduit
DE102011004646A1 (en) * 2011-02-24 2012-08-30 Robert Bosch Gmbh Wiper blade for cleaning windows, especially of motor vehicles
EP2554886A3 (en) * 2011-08-03 2017-10-11 HILTI Aktiengesellschaft Use of a passive fire alarm system for conduits and corresponding method.
DE102011082911A1 (en) * 2011-09-19 2013-03-21 Hilti Aktiengesellschaft Fire protection element
DE102012212832A1 (en) * 2012-07-23 2014-01-23 Hilti Aktiengesellschaft Assembly for a cable feedthrough
JP5996522B2 (en) * 2013-12-25 2016-09-21 エスペック株式会社 Wiring attachment device for box-shaped device
FR3017920B1 (en) * 2014-02-24 2016-09-30 Grtgaz SHUTTER FOR OPENING A SAIL
ES2572150B1 (en) * 2014-11-28 2017-03-13 Universidad De Valladolid Procedure and device against air permeability of cable ducts
JP6533404B2 (en) * 2015-03-27 2019-06-19 積水化学工業株式会社 Fire protection device and fire protection structure of building
WO2016167938A1 (en) * 2015-04-17 2016-10-20 3M Innovative Properties Company A smoke and sound barrier for a building penetration
CN107466243B (en) * 2015-04-17 2021-06-04 3M创新有限公司 Penetration fire-retardant system
EP3150891A1 (en) * 2015-09-29 2017-04-05 HILTI Aktiengesellschaft Conduit feed-through for feeding conduits through a component
EP3386597A4 (en) * 2015-11-25 2019-10-02 3M Innovative Properties Company Firestop system for marine or off-shore applications
US11283252B2 (en) 2016-04-25 2022-03-22 Ez Electrical System Solutions, Llc Wire protector system and method
US11165231B2 (en) 2016-04-25 2021-11-02 Glenn Liubakka Apparatus for different sized boxes
US11362498B2 (en) 2016-04-25 2022-06-14 Glenn Liubakka Apparatus for producing different sized boxes
US10840683B1 (en) * 2016-04-25 2020-11-17 Northeast Entrepreneur Fund, Inc. Electrical conduit coupling system
CN105790183B (en) * 2016-05-05 2018-02-13 温州圆立电力科技有限公司 Cable cavern high temperature resistant waterproof plugging device
JP6388022B2 (en) * 2016-12-27 2018-09-12 積水ハウス株式会社 Penetration fireproof member and fireproof construction
CN107202202B (en) * 2017-06-29 2019-05-07 广船国际有限公司 A kind of freezer bulkhead cable sealing assembly
JP6853776B2 (en) * 2017-12-21 2021-03-31 住友林業株式会社 Fireproof coating structure of penetration
KR102016345B1 (en) * 2018-12-21 2019-08-30 선진피앤에프 Structure module for diffusion prevention of flame and harmful gas using expandable sleeve
US11560726B2 (en) * 2019-09-20 2023-01-24 Tommaso Conti Method and device for pre-casting conduit holes in building foundations
CN113944827A (en) * 2021-12-22 2022-01-18 中国飞机强度研究所 Airplane design test heat preservation sealing system and parameter optimization method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE285393C (en) * 1914-01-01
FR2485677B1 (en) 1980-06-27 1985-09-20 Poujaud Edouard FLEXIBLE AND ELASTIC PRODUCT FOR MAKING PROTECTIVE SEALS AND TRIMS
DE8034605U1 (en) * 1980-12-24 1981-06-19 Ellrott, Egon, 2800 Bremen DEVICE FOR THE INTRODUCTION OF INSTALLATION PIPES AND CABLES IN A BASEMENT BUILDING
US4424867A (en) * 1981-03-31 1984-01-10 Fiberglas Canada Inc. Heat hardening sealant-gel for flexible couplings
US4607469A (en) * 1984-01-03 1986-08-26 Team, Inc. Seal for water proofing a utility line conduit and a method of forming the seal
NL8601145A (en) * 1986-05-05 1987-12-01 Filoform Chem Ind Bv METHOD AND APPARATUS FOR WATERPROOF SEALING OF A CABLE AND / OR PIPE TRANSIT OPERATION IN A WALL OR THE LIKE, USING A FOAMABLE RESIN
DE3804927A1 (en) 1988-02-17 1989-08-31 Rxs Schrumpftech Garnituren Tubular device for leading-through elongate objects, and process for producing such a device
DE3821969C1 (en) * 1988-06-29 1990-02-01 Michael Dr. 8000 Muenchen De Spaeth
US4848043A (en) 1988-09-14 1989-07-18 Harbeke Gerold J Under floor fire stop coupling and method
DE3918892C1 (en) * 1989-06-09 1990-11-29 Schaum-Chemie Wilhelm Bauer Gmbh & Co Kg, 4300 Essen, De Fire-resistant closure in wall - fits closely round pips and cables and incorporates inorganic foam layer
DE4008032A1 (en) * 1990-03-14 1991-09-19 Helmut Stoeger Cable wall guide hole - has foam insert of porous material located around cable
US5174077A (en) * 1990-04-24 1992-12-29 The Furukawa Electric Co., Ltd. Fire protecting structure of channel portion of plastic piping in a fire partition
DE4109614C2 (en) 1991-03-23 2000-11-02 Multica Verpackungen Gmbh House entry for supply lines, especially for gas lines
US5347767A (en) * 1992-01-29 1994-09-20 Rudolf Roth Fire retardant sleeve
DE4234374A1 (en) 1992-10-12 1994-04-14 Mueller Michaela Fireproof material for sealing cable ducts in walls etc. - comprises 2-component polyurethane compsn. with intumescent additives, which produces a sec. protective foam in case of fire.
US5351448A (en) * 1993-04-19 1994-10-04 Balco, Inc. Fire barrier
US5456050A (en) * 1993-12-09 1995-10-10 Construction Consultants & Contractors, Inc. System to prevent spread of fire and smoke through wall-breaching utility holes
US5548934A (en) * 1994-09-06 1996-08-27 Minnesota Mining And Manufacturing Company Firestop apparatus for allowing pipe movement
DE29600856U1 (en) * 1996-01-19 1996-03-07 Promat Gmbh Pipe insulation through wall or ceiling

Also Published As

Publication number Publication date
FR2777627B1 (en) 2004-06-04
TW508419B (en) 2002-11-01
US20010001355A1 (en) 2001-05-24
KR19990082762A (en) 1999-11-25
DE19917127B4 (en) 2004-05-06
JP2000000326A (en) 2000-01-07
FR2777627A1 (en) 1999-10-22
US6530187B2 (en) 2003-03-11
DE19917127A1 (en) 1999-10-21

Similar Documents

Publication Publication Date Title
JP3683727B2 (en) How to close the penetration
JP3824803B2 (en) Penetration cylinder, method of using the same, and penetration structure
US4424867A (en) Heat hardening sealant-gel for flexible couplings
JP4287384B2 (en) Penetration closure
JPH11513434A (en) Fire barrier felt
KR20140004083A (en) Method of firestopping a through-penetration using a fusible inorganic blended-fiber web
CN101734938A (en) Fireproof and waterproof coating for tunnel
CA2908961A1 (en) Porous masses or shaped bodies of inorganic polymers and production thereof
JP4230725B2 (en) Insulating refractory material composition and insulating refractory material using the same
Nicoară et al. Intumescent coatings based on alkali-activated borosilicate inorganic polymers
JP4632507B2 (en) Latent heat storage cement building material
JPH1119242A (en) Fireproof pipe of block piercing part, fireproof structure of block piercing part and fireproof construction method for block piercing part
JP3836297B2 (en) Penetration cylinder for fire protection compartment and its fixing method to fire protection compartment
JP2001252367A (en) Dividing wall penetration duct and method of using the same
JPH087779Y2 (en) Fireproof structure for penetration of building fireproof slab
JPH0538757Y2 (en)
JPH07259211A (en) Blocking type fire-proof construction and its work method
CN110607839A (en) Building, composite body for building and construction method using composite body
JPH05276635A (en) Fire prevention construction at through-hole portion of fire-resistant slab of building
JPS5947984B2 (en) Fire-resistant, heat-resistant fiber laminate
KR920000202Y1 (en) Installation structure of cable tube
JPH05117658A (en) Granular refractory filler
JP2004312861A (en) Method of preventing fire spread in laid electric cable
EP3994107A1 (en) Insulating material and method for its production
AU2020312065A1 (en) Insulating material and method for its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees