JP4632507B2 - Latent heat storage cement building material - Google Patents

Latent heat storage cement building material Download PDF

Info

Publication number
JP4632507B2
JP4632507B2 JP2000305872A JP2000305872A JP4632507B2 JP 4632507 B2 JP4632507 B2 JP 4632507B2 JP 2000305872 A JP2000305872 A JP 2000305872A JP 2000305872 A JP2000305872 A JP 2000305872A JP 4632507 B2 JP4632507 B2 JP 4632507B2
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
cement
building material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000305872A
Other languages
Japanese (ja)
Other versions
JP2002114553A (en
Inventor
晋一 松下
謙介 青木
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Asahi Kasei Construction Materials Corp
Original Assignee
Mitsubishi Paper Mills Ltd
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd, Asahi Kasei Construction Materials Corp filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2000305872A priority Critical patent/JP4632507B2/en
Publication of JP2002114553A publication Critical patent/JP2002114553A/en
Application granted granted Critical
Publication of JP4632507B2 publication Critical patent/JP4632507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • C04B20/008Micro- or nanosized fillers, e.g. micronised fillers with particle size smaller than that of the hydraulic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1037Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、壁、床、天井等に使用され、一般建築物、住宅等の蓄熱構造に用いられるセメント系建材に関するものである。
【0002】
【従来の技術】
近年、住宅等の建築においては、ボード建材を構造躯体に取り付ける工法が多用されている。ボード建材自体には躯体としての強度を持たせずに済むので、軽量、薄型の部材で住宅を構成でき、施工の簡略化や工期短縮に著しく寄与している。
【0003】
しかし、このような住宅では建物の熱容量が極めて小さくなることが多い。そのため、室内温度や壁面温度が外界の環境温度に対して敏感に連動し、室内の温度変化が大きくなる傾向がある。したがって、断熱性能を高めるとともに、電力やガスなどのエネルギーを大量に消費する空調設備を使用して快適温度を維持しているのが現状である。
【0004】
一方、太陽熱や空調の熱などを蓄え、必要な時にそれを取り出すようにする所謂、蓄熱技術を住宅に応用することによって、快適性や省エネルギー性を向上させようとする試みも行われている。しかし、十分な蓄熱容量を確保するためには、相応の容積が必要であり、躯体自体がコンクリートなどで構成されている建物以外においては、新たに蓄熱部材を設けるために相応するスペースを確保する必要が生じていた。
【0005】
蓄熱機能を付与するためにコンクリートを打設したり、煉瓦や砂を敷き詰めたりする等の方法が用いられているが、施工管理が煩雑になる上、重量物であるために、その設置部位は一階床部分などに限られていた。
【0006】
住宅に用いられるボード部材には様々な種類があるが、それぞれの材料の特性を考慮して、適した部位に施工されている。セメントを結合材としたボード材料は比較的高い強度を持ち、耐水性に優れるという特徴を有するため、住宅用ボード材料として極めて有用である。
【0007】
そのまま蓄熱部材として利用することも考えられるが、板厚を厚くしなければ十分な蓄熱容量を確保出来ず、そうすると重量が大きくなってしまうという問題を有していた。そこで、セメント系材料に潜熱蓄熱機能を付与し、ボード状で軽量でありながら、蓄熱材として利用出来る新規建材の出現が望まれている。
【0008】
一般に、セメント材料は、水和反応によって生成した水和物が、組成物内の粒子間空隙に析出し、これを充填していくことによって硬化し、強度が出現する。水和反応に影響する要因は極めて多く、潜熱蓄熱効果を有する材料をそのまま混ぜ込んでも、十分な固定化効果が得られず、水和の進行阻害による硬化不良や、内容物の漏出が発生し易かった。
【0009】
その対策として、マイクロカプセル化等の手段によって水和反応相と隔離する手法が考えられるが、マイクロカプセルが破壊することなく原料組成物中に分散したり、成形工程において良好な流動特性を維持することは困難であった。
【0010】
また、潜熱蓄熱材は、相転移点で不連続な体積変化をするため、マイクロカプセル化されていても、その大きさは変化する。そのため、相変化に伴う体積変化が直接的にセメント基材に伝わり、材料の変形や、亀裂発生原因の一つになってしまうという問題があった。
【0011】
潜熱蓄熱材と建材を融合させた複合建材を実現するためには、建材内に内蔵された相変化材料の融解時の流出を防ぐ必要がある。例えば、特開平2-298759号公報(公知例1)のように樹脂製容器で封入したり、特開平5-1281号公報(公知例2)のように樹脂材料へ含浸一体化したり、特開平8-219673号公報(公知例3)のようにアルミラミネートフィルムで密封する等の手段が開示されている。
【0012】
また、特開昭61-235485号公報(公知例4)では、潜熱蓄熱材を有機質被膜により被覆して粒径50μm〜2mm程度の微小粒状とし、コンクリート等の母材内に分散させている。
【0013】
【発明が解決しようとする課題】
しかしながら、前述の従来例において、前述の公知例1〜3のように容器への封入や、表面を被覆する方法では、蓄熱材の切断や孔あけ等の加工が不可能である。また、相変化材料と親和性が高い樹脂材料に含浸させたり、練り込んだりした場合であっても、蓄熱材の漏出を防止するには不十分であった。
【0014】
また、前述の公知例4では、混練時に強い撹拌を与えると有機質被膜が破壊して潜熱蓄熱材の漏出が起こり、反対に有機質被膜の破壊を避けるために混練が不足すると、材料の均一性が損なわれて材料強度が低下する等の問題があった。
【0015】
本発明は前記課題を解決するものであり、その目的とするところは、通常のセメント系ボード材料と同様に、切断や孔あけ加工を行っても性能低下が起こることがなく、特殊な施工方法を必要としない潜熱蓄熱セメント系建材、及び潜熱蓄熱材の相転移に伴う体積変化の影響が極めて小さく、安定した部材寸法を保持出来る潜熱蓄熱セメント系建材を提供するものである。
【0016】
【課題を解決するための手段】
発明者らは、上記課題を解決すべく鋭意検討した結果、体積平均粒子径0.5μm以上、且つ50μm以下のマイクロカプセル化潜熱蓄熱材をセメント系基材に分散一体化させるにあたり、多孔質珪酸カルシウム粉体を一定量以上共存させることによって、相転移点での体積変化の影響が極めて少ない材料が得られることを見出した。
【0017】
そこで、前記目的を達成するための本発明に係る代表的な構成は、セメント100重量部に対して50重量部以上、且つ500重量部以下の多孔質珪酸カルシウム粉体と、体積平均粒子径が0.5μm以上、且つ50μm以下の潜熱蓄熱材のマイクロカプセルがセメントと多孔質珪酸カルシウム粉体の混合物100重量部に対して1重量部以上、且つ200重量部以下の範囲で混合されたことを特徴とする潜熱蓄熱セメント系建材である。
【0018】
【発明の実施の形態】
以下に、本発明に係る潜熱蓄熱セメント系建材について、詳細に説明する。一般に潜熱蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62-1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(特開昭62-45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(特開昭62-149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(特開昭62-225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2-258052号公報)等に記載されている方法を用いることが出来るため、ここでは説明を省略する。
【0019】
マイクロカプセルの膜材としては、界面重合法、インサイチュー(in-situ)法等の手法で得られるポリスチレン、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またはゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられるが、本発明のように、マイクロカプセルを破壊させずに母材中に分散させることを考慮すれば、物理的、化学的に安定なインサイチュー法によるメラミンホルマリン樹脂皮膜、尿素ホルマリン樹脂皮膜を用いたマイクロカプセルを使用することが特に好ましい。
【0020】
一般に体積平均粒子径が大きいマイクロカプセルは、撹拌や成形時に生じる剪断力などによりカプセルが破壊し易くなる。粒子径の大きいカプセルでは、基材中に均一に分散させても、母材とカプセルとの界面が欠陥になりやすく、曲げ強度等の機械的性質が低下する。加えて、母材との比重差による材料の分離が発生し易くなる等の問題がある。
【0021】
また、原料粉体の粒子径よりも著しく大きいカプセルを混入すると、カプセルの存在によって組成物の流動特性が著しく悪化し、製造上好ましくないため潜熱蓄熱材のマイクロカプセルの体積平均粒子径は0.5μm以上、且つ50μm以下の範囲にすることが好ましい。
【0022】
この粒子径の範囲より小さいマイクロカプセルは、安定して製造することが技術的に難しく、製造コストが高くなるばかりでなく、カプセルの表面積が著しく大きくなるので撹拌時に必要な水量がかえって多くなり、ボードの機械的強度を低下させる傾向があるので、好ましくない。
【0023】
尚、本発明のマイクロカプセル粒子径は、米国コールター社製粒度測定装置「コールターカウンターマルチサイザー」を用いて得られた体積平均粒子径を示す。マイクロカプセルの粒子径は、乳化剤の種類と濃度、乳化時の乳化液の温度、乳化比(水相と油相の体積比率)、乳化機、分散機等と称される微粒化装置の運転条件(撹拌回転数、時間等)等を適宜調節して所望の粒子径に設定される。
【0024】
相変化を利用した潜熱蓄熱材においては、相転移点における体積変化がおこり、マイクロカプセルの体積も変動する。マイクロカプセルが基材中に隙間なく埋め込まれている場合、カプセル自体の体積変化が直接的に基材に伝わるため、部材寸法の変化が比較的大きくなる。
【0025】
本発明では、多孔質珪酸カルシウム粉体を組成物中に一定量以上含有させることを特徴としており、これによって、潜熱蓄熱マイクロカプセルの体積変化に起因する材料の寸法変化を極めて小さくすることが可能になる。
【0026】
珪酸カルシウムは化学的に極めて安定であるため、セメントの水和や強度発現に殆ど影響を与えない。また、多孔質体であることによって、極めて粒径の小さいマイクロカプセルは粉体細孔内や表面の凹部などにおいて周囲を強く拘束されない状態で存在することができ、カプセルの体積変化に伴う部材の寸法変化を緩和する。また多孔質であるためマイクロカプセルが破壊した場合、潜熱蓄熱材を細孔内に保持し、漏出を防止する。
【0027】
多孔質珪酸カルシウム粉体としては、例えば珪石のような珪酸質材料とセメント、生石灰のような石灰質原料とを混合したスラリー状物に発泡剤、気泡剤等の気泡生成剤を添加混合した後発泡、硬化させ、高温高圧水蒸気養生して得られる人工鉱物等を粉砕したものを挙げることが出来る。また、軽量気泡コンクリートでもある多孔質珪酸カルシウムを使用して、それを粉砕して粉体としたものでもよい。
【0028】
多孔質珪酸カルシウム粉体のセメントに対する含有量はセメント100重量部に対して50重量部以上が好ましい。より好ましくは100重量部以上、且つ500重量部以下の範囲が好ましい。
【0029】
この範囲以上であると建材の機械強度が著しく低下し好ましくなく、逆に含有量が少ないと本発明で述べる潜熱蓄熱材の相変化時の製品寸法変化率が大きくなり好ましくない。
【0030】
また、多孔質珪酸カルシウム粉体の体積平均粒子径は5μm以上、且つ100μm以下のものが好適に用いられる。この範囲より大きいと粉体の粗大な細孔が残存しているため、欠陥となり強度低下の原因となる。
【0031】
体積平均粒子径が5μmよりも小さいと、粉砕に非常にエネルギーと時間が必要であり生産性が低下する。尚、本発明の多孔質珪酸カルシウム粉体の粒子径はレーザー回折、散乱式粒度測定装置「マイクロトラックエイチアールエー粒度分布測定装置」を用い水を分散媒とした湿式測定で得られた体積平均粒子径を示す。
【0032】
潜熱蓄熱材の相転移温度は特に限定されないが、快適な温度環境維持を目的とする場合には、潜熱蓄熱材の融点が5℃以上、且つ50℃以下が望ましい。
【0033】
しかしながら、とりわけ日本の様な夏場と冬場の温度差が大きい気候風土においては、潜熱蓄熱材の融点を一定にしてしまうことは、いずれかの季節においては、その潜熱が全く機能していないということになるため、その土地の環境に応じた融点設定又は、少なくとも2種類以上の融点を有する潜熱蓄熱材を別々に内包したマイクロカプセルを組み合わせることが効果的である。
【0034】
具体的には、夏場の室内の温度上昇を抑えるためには約25℃以上、且つ30℃以下に融点を有する潜熱蓄熱材のマイクロカプセルを用い、冬場の室温の低下を抑えるために10℃以上、且つ20℃以下に融点を有する潜熱蓄熱材のマイクロカプセルの2種類を含む建材を用いることにより年間を通してより快適な室内環境を提供し得ることが期待出来る。
【0035】
また、25℃以上、且つ50℃以下の比較的高い相転移温度の潜熱蓄熱材を使用することによって、床暖房システムの一部を構成させたり、5℃以上、且つ25℃以下の比較的低い相転移温度の潜熱蓄熱材を使用することによって、冷房システムの一部を構成させたりすることも可能である。
【0036】
本発明の建材は、顕熱蓄熱材に比べて蓄熱量付与のために大きなスペースを必要としないから、従来の住宅設計を変えることなく、躯体構造に取り付けるだけで、蓄熱機能を付与することが出来る。もちろん、本発明による建材の使用目的および用途は、これらに限定されるものではない。
【0037】
本発明で使用出来る潜熱蓄熱材としては、テトラデカン(C14)、ペンタデカン(C15)、ヘキサデカン(C16)、オクタデカン(C18)等のノルマルパラフィン類や、無機系共晶物および無機系水和物、酢酸、カプリル酸等の脂肪酸類、ベンゼン、p−キシレン等の芳香族炭化水素化合物、パルミチン酸イソプロピル、ステアリン酸ブチル、デシルアルコール等のアルコール類等の化合物が挙げられ、好ましくは融解熱量が80kJ/kg以上の化合物で、化学的、物理的に安定でしかも安価なものが用いられる。これらは混合して用いても良いし、必要に応じ過冷却防止剤、比重調節剤、劣化防止剤等を添加することが出来る。
【0038】
マイクロカプセル化潜熱蓄熱材は、水に均一に分散させたスラリーで添加することが好ましい。スラリーとして添加することにより、マイクロカプセル化潜熱蓄熱材が均一に分散した基材が容易に得られるだけでなく、混練、撹拌時などに、カプセル同士、あるいはカプセルと石膏粉体粒子との衝突や摩擦によるカプセルの破損を低減出来る。また、セメントの水和に必要な水分をスラリーから供給することにより、製造設備が簡略化される。
【0039】
本発明の潜熱蓄熱建材中に占めるマイクロカプセルの含有量は、セメントと多孔質珪酸カルシウム粉体の混合物100重量部に対して1重量部以上、且つ200重量部以下の範囲、好ましくは10重量部以上、且つ150重量部以下の範囲であることが好ましい。
【0040】
この範囲以上であると潜熱蓄熱性に富み好ましいが、完成した建材の物理的強度が著しく低下し好ましくなく、逆に含有量が少ないと本発明で述べる蓄熱効果に乏しくなり好ましくない。
【0041】
マイクロカプセル化潜熱蓄熱材スラリーの固形分濃度は、5%以上、且つ70%以下であり、さらに好ましくは30%以上、且つ50%以下である。固形分濃度が高すぎる場合には水を添加して調節可能であるが固形分濃度が低すぎると、十分な量の蓄熱カプセルを混入できず、潜熱蓄熱材としての機能が十分発揮できないか、セメントとしての硬化に悪影響を与えるので好ましくない。
【0042】
本発明において使用されるセメントとしては、普通、早強、中庸熱ポルトランドセメント、高炉、シリカ、フライアッシュセメントなどの混合セメント等、及びアルミナセメントなどが挙げられる。
【0043】
これらは単独で用いても混合して用いてもよい。混練に必要な水分が不足すると、混練物の流動性が著しく悪くなり、均一な組成物が得られにくくなるばかりでなく、混練後の成形や施工が難しくなるため、あらかじめ潜熱蓄熱材スラリーに必要量の水を添加しておくことが好ましい。
【0044】
また、分散材や補強繊維材料など、通常ボード状建材を製造する際に使用される各種材料を添加することが可能である。配合物の混練機は特に限定しないが、2軸強制攪拌ミキサー、アイリッヒミキサー、オムニミキサーなどを用いることが出来る。成型方法、及び養生方法としては通常セメント系建材の製造の用いられる方法が使用出来る。
【0045】
【実施例1】
次に本発明に係る潜熱蓄熱セメント系建材の具体的な実施例を示す。
【0046】
メラミン粉末6.2gに37%ホルムアルデヒド水溶液12gと水40gを加え、pHを8に調整した後、約70℃まで加熱してメラミンホルムアルデヒド初期縮合物水溶液を得た。pHを4.5に調整した10%スチレン無水マレイン酸共重合体のナトリウム塩水溶液100g中に、潜熱蓄熱材としてn-オクタデカン(融点27℃)8g部を激しく撹拌しながら添加し、平均粒子径が3.5μmになるまで乳化を行なった。
【0047】
この乳化液に上記メラミン−ホルムアルデヒド初期縮合物水溶液全量を添加し70℃で2時間撹拌を施した後、pHを9に調製して固形分濃度45%の潜熱蓄熱材のマイクロカプセル分散液を得た。
【0048】
珪酸質原料65%と石灰質原料35%とを主原料する混合スラリーにアルミニウム粉末を添加して発泡硬化させた後、高温高圧水蒸気養生により水熱反応処理し、多孔質珪酸カルシウムを得た。
【0049】
得られた多孔質珪酸カルシウムを体積平均粒子径30μmに粉砕した。多孔質珪酸カルシウム粉体の体積平均粒子径はレーザー回折、散乱式マイクロトラック−エイチアールエー粒度分布測定装置を用い、水を分散媒とした湿式測定法で測定した。
【0050】
普通ポルトランドセメント430gと前記多孔質珪酸カルシウム粉体1000g、およびビニロン繊維7gとを5リットルオムニミキサーにて2分間混合した後、前記蓄熱スラリーを1300g添加し、2分間混練した。得られたモルタルを、脱水プレス機によって300mm×400mmの金型を用いて脱水プレス成形し、約10mm厚の板状成形体を得た。成形体は60℃で12時間蒸気養生した。
【0051】
溶剤抽出によってマイクロカプセルの破損に起因する潜熱蓄熱材の漏出量を測定し、カプセルの損傷状態を調べた結果、混入したマイクロカプセルのほとんどが破損せずに分散内在していることが明らかとなった。
【0052】
得られた蓄熱ボードを環境温度が0℃以上、且つ50℃以下の変温試験槽の中に置き、蓄熱ボード中心部分の温度を測定したところ、27℃付近に温度の緩衝性が観測され、その付近の温度から容易に変化しにくい性質の建材が得られた。また、蓄熱ボードの24℃から30℃での長さ変化率は200μm/mであった。
【0053】
【比較例1】
普通ポルトランドセメント1430gとビニロン繊維7gとを5リットルオムニミキサーにて2分間混合した後、前記蓄熱スラリーを1300g添加し、2分間混練した。得られたモルタルを、アタゴエンジニアリング製脱水プレス機によって300mm×400mmの金型を用いて脱水プレス成形し、約10mm厚の板状成形体を得た。成形体は60℃で12時間蒸気養生した。
【0054】
得られた蓄熱ボードを環境温度が0℃以上、且つ50℃以下の変温試験槽の中に置き、蓄熱ボード中心部分の温度を測定したところ、27℃付近に温度の緩衝性が観測され、その付近の温度から容易に変化しにくい性質の建材が得られた。得られた蓄熱ボードの24℃から30℃での長さ変化率は1000μm/mであった。
【0055】
【比較例2】
マイクロカプセルの平均粒子系を200μmとした以外は前記実施例1と同様にマイクロカプセルを調製し、尚かつ実施例1と同様の操作で蓄熱ボードを作製し、溶剤抽出法で破壊したマイクロカプセルの比率を測定したところ約80%以上の破壊が見られた。
【0056】
【発明の効果】
本発明は、上述の如き構成と作用とを有するので、潜熱蓄熱建材およびその製造において、潜熱蓄熱材の相転移温度付近での長さ変化率が少なく、しかも混入した潜熱蓄熱材マイクロカプセルのほとんどが破損せずに分散内在出来る潜熱蓄熱セメント系建材の製造が可能となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cement-based building material that is used for walls, floors, ceilings, and the like and used for heat storage structures such as general buildings and houses.
[0002]
[Prior art]
In recent years, in construction such as a house, a method of attaching a board building material to a structural frame is frequently used. Since the board building material itself does not need to have strength as a casing, it is possible to construct a house with light and thin members, which greatly contributes to simplification of construction and shortening the construction period.
[0003]
However, in such houses, the heat capacity of the building is often extremely small. For this reason, the indoor temperature and the wall surface temperature are sensitively linked to the ambient environmental temperature, and the temperature change in the room tends to increase. Therefore, the present situation is that a comfortable temperature is maintained by using air conditioning equipment that enhances heat insulation performance and consumes a large amount of energy such as electric power and gas.
[0004]
On the other hand, attempts have been made to improve comfort and energy saving by applying so-called heat storage technology, which stores solar heat, heat from air conditioning, etc., and takes it out when necessary. However, in order to secure a sufficient heat storage capacity, a corresponding volume is required, and in a building other than a building whose structure itself is made of concrete, a corresponding space is provided for newly installing a heat storage member. There was a need.
[0005]
Methods such as placing concrete or laying bricks or sand are used to provide heat storage functions, but the construction management is complicated and the installation site is heavy. It was limited to the first floor.
[0006]
There are various types of board members used in homes, but they are constructed at suitable sites in consideration of the characteristics of each material. A board material using cement as a binder has a relatively high strength and is excellent in water resistance, and thus is extremely useful as a board material for housing.
[0007]
Although it is conceivable to use it as a heat storage member as it is, if the plate thickness is not increased, a sufficient heat storage capacity cannot be secured, which causes a problem that the weight increases. Therefore, it is desired to provide a new building material that can be used as a heat storage material while giving a latent heat storage function to a cement-based material and being board-like and lightweight.
[0008]
In general, the cement material is hardened when the hydrate produced by the hydration reaction precipitates in the interparticle voids in the composition and fills it, and the strength appears. There are many factors that affect the hydration reaction, and even if materials with latent heat storage effect are mixed as they are, sufficient immobilization effect cannot be obtained, resulting in poor curing due to inhibition of hydration progress and leakage of contents. It was easy.
[0009]
As a countermeasure, a method of separating from the hydration reaction phase by means such as microencapsulation is conceivable, but the microcapsule is dispersed in the raw material composition without breaking or maintains good flow characteristics in the molding process. It was difficult.
[0010]
In addition, since the latent heat storage material undergoes a discontinuous volume change at the phase transition point, its size changes even if it is microencapsulated. Therefore, there has been a problem that the volume change accompanying the phase change is directly transmitted to the cement base material, which becomes one of the causes of material deformation and crack generation.
[0011]
In order to realize a composite building material in which the latent heat storage material and the building material are fused, it is necessary to prevent the phase change material incorporated in the building material from flowing out during melting. For example, it is sealed in a resin container as in JP-A-2-98759 (Known Example 1), impregnated into a resin material as in JP-A-5-281 (Known Example 2), As disclosed in Japanese Patent Application Laid-Open No. 8-219673 (Known Example 3), a means such as sealing with an aluminum laminate film is disclosed.
[0012]
In JP-A-61-235485 (Known Example 4), the latent heat storage material is coated with an organic coating to form fine particles having a particle size of about 50 μm to 2 mm and dispersed in a base material such as concrete.
[0013]
[Problems to be solved by the invention]
However, in the above-described conventional example, it is impossible to cut or punch the heat storage material by the method of enclosing in the container or covering the surface as in the above-described known examples 1 to 3. Further, even when impregnated or kneaded into a resin material having high affinity with the phase change material, it was insufficient to prevent leakage of the heat storage material.
[0014]
In addition, in the above-mentioned known example 4, when strong stirring is applied during kneading, the organic coating is destroyed and leakage of the latent heat storage material occurs. On the contrary, if kneading is insufficient to avoid destruction of the organic coating, the material uniformity is reduced. There was a problem that the material strength was reduced due to damage.
[0015]
The present invention solves the above-mentioned problems, and its object is to provide a special construction method that does not cause performance degradation even if cutting or drilling is performed in the same manner as ordinary cement-based board materials. It is intended to provide a latent heat storage cement-based building material that does not require heat and a latent heat storage cement-based building material that is extremely less affected by volume change due to the phase transition of the latent heat storage material and that can maintain stable member dimensions.
[0016]
[Means for Solving the Problems]
As a result of diligent studies to solve the above problems, the inventors have determined that porous silicic acid is used for dispersing and integrating a microencapsulated latent heat storage material having a volume average particle size of 0.5 μm or more and 50 μm or less into a cement-based substrate. It has been found that by coexisting a certain amount or more of calcium powder, a material having a very small volume change at the phase transition point can be obtained.
[0017]
Therefore, a typical configuration according to the present invention for achieving the above object is that the porous calcium silicate powder is 50 parts by weight or more and 500 parts by weight or less with respect to 100 parts by weight of cement , and the volume average particle size is The microcapsules of the latent heat storage material of 0.5 μm or more and 50 μm or less were mixed in the range of 1 part by weight or more and 200 parts by weight or less with respect to 100 parts by weight of the mixture of cement and porous calcium silicate powder. It is a latent heat storage cement building material.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Below, the latent heat storage cement-type building material which concerns on this invention is demonstrated in detail. In general, as a method for microencapsulating a latent heat storage material, an encapsulation method by a composite emulsion method (Japanese Patent Laid-Open No. 62-1452), a method of spraying a thermoplastic resin on the surface of a heat storage material particle (Japanese Patent Laid-Open No. 62-62). No. 45680), a method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (Japanese Patent Laid-Open No. 62-149334), and a method of polymerizing and coating a monomer on the surface of the heat storage material particles (Japanese Patent Laid-Open No. 62). No. 225241), a method for producing a polyamide-coated microcapsule by interfacial polycondensation reaction (Japanese Patent Laid-Open No. 2-258052) and the like can be used, and the description is omitted here.
[0019]
As the membrane material of the microcapsule, polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethyl cellulose, polyurethane, aminoplast resin, gelatin and carboxymethyl cellulose obtained by a method such as an interfacial polymerization method, an in-situ method, or the like Synthetic or natural resins using the coacervation method with gum arabic are used, but as in the present invention, considering that the microcapsules are dispersed in the base material without being destroyed, physical and chemical It is particularly preferable to use a microcapsule using a melamine formalin resin film or a urea formalin resin film obtained by a stable in situ method.
[0020]
In general, a microcapsule having a large volume average particle diameter is easily broken by shearing force generated during stirring or molding. In a capsule having a large particle size, even if it is uniformly dispersed in the base material, the interface between the base material and the capsule tends to be defective, and mechanical properties such as bending strength are lowered. In addition, there is a problem that the material is easily separated due to a difference in specific gravity from the base material.
[0021]
Further, when a capsule remarkably larger than the particle size of the raw material powder is mixed, the flow characteristics of the composition are remarkably deteriorated due to the presence of the capsule, which is not preferable in production, so the volume average particle size of the microcapsule of the latent heat storage material is 0.00. It is preferable to be in the range of 5 μm or more and 50 μm or less.
[0022]
Microcapsules smaller than this particle size range are technically difficult to produce stably, which not only increases the production cost, but also increases the surface area of the capsules, so that the amount of water required during stirring increases. This is not preferred because it tends to reduce the mechanical strength of the board.
[0023]
The microcapsule particle diameter of the present invention indicates a volume average particle diameter obtained using a particle size measuring apparatus “Coulter Counter Multisizer” manufactured by Coulter USA. The particle size of the microcapsule is the type and concentration of the emulsifier, the temperature of the emulsified liquid during emulsification, the emulsification ratio (volume ratio of the aqueous phase to the oil phase), the operating conditions of the atomizer called emulsifier, disperser, etc. (Agitating speed, time, etc.) and the like are appropriately adjusted to set the desired particle size.
[0024]
In the latent heat storage material using the phase change, the volume change occurs at the phase transition point, and the volume of the microcapsule also changes. When the microcapsule is embedded in the base material without a gap, the volume change of the capsule itself is directly transmitted to the base material, so that the change in the member size is relatively large.
[0025]
The present invention is characterized in that a certain amount or more of porous calcium silicate powder is contained in the composition, which makes it possible to extremely reduce the dimensional change of the material due to the volume change of the latent heat storage microcapsules. become.
[0026]
Since calcium silicate is chemically very stable, it hardly affects the hydration and strength development of cement. In addition, by being a porous body, microcapsules having a very small particle diameter can exist in a state where the surroundings are not strongly constrained in the fine pores of the powder or in the concave portions of the surface, and the members of the capsule accompanying the volume change of the capsules are present. Mitigates dimensional changes. In addition, when the microcapsules are broken due to the porous structure, the latent heat storage material is held in the pores to prevent leakage.
[0027]
As the porous calcium silicate powder, for example, a foaming agent such as a foaming agent or a foaming agent is added to and mixed with a slurry-like material obtained by mixing a siliceous material such as silica and cement, and a calcareous raw material such as quicklime. And an artificial mineral obtained by curing and curing at high temperature and high pressure steam. Alternatively, porous calcium silicate, which is a lightweight cellular concrete, may be used and pulverized to form a powder.
[0028]
The content of the porous calcium silicate powder with respect to the cement is preferably 50 parts by weight or more with respect to 100 parts by weight of the cement. More preferably, the range is 100 parts by weight or more and 500 parts by weight or less.
[0029]
If it is more than this range, the mechanical strength of the building material is remarkably lowered, which is not preferable. Conversely, if the content is small, the product dimensional change rate at the phase change of the latent heat storage material described in the present invention is not preferable.
[0030]
Moreover, the volume average particle diameter of the porous calcium silicate powder is preferably 5 μm or more and 100 μm or less. If it is larger than this range, coarse pores of the powder remain, resulting in defects and a decrease in strength.
[0031]
When the volume average particle diameter is smaller than 5 μm, very much energy and time are required for pulverization, and productivity is lowered. The particle diameter of the porous calcium silicate powder of the present invention is a volume average obtained by wet measurement using a laser diffraction, scattering type particle size measuring device “Microtrack HA particle size distribution measuring device” using water as a dispersion medium. The particle diameter is shown.
[0032]
The phase transition temperature of the latent heat storage material is not particularly limited, but when the purpose is to maintain a comfortable temperature environment, the melting point of the latent heat storage material is preferably 5 ° C. or more and 50 ° C. or less.
[0033]
However, in particular, in a climate where the temperature difference between summer and winter is large, such as in Japan, making the melting point of the latent heat storage material constant means that the latent heat does not function at all in any season. Therefore, it is effective to set a melting point according to the environment of the land, or to combine microcapsules separately containing latent heat storage materials having at least two types of melting points.
[0034]
Specifically, a microcapsule of a latent heat storage material having a melting point of about 25 ° C. or higher and 30 ° C. or lower is used to suppress temperature rise in summer, and 10 ° C. or higher is used to suppress a decrease in room temperature in winter. Moreover, it can be expected that a more comfortable indoor environment can be provided throughout the year by using building materials including two types of microcapsules of latent heat storage materials having a melting point of 20 ° C. or lower.
[0035]
Further, by using a latent heat storage material having a relatively high phase transition temperature of 25 ° C. or more and 50 ° C. or less, a part of the floor heating system can be configured, or 5 ° C. or more and 25 ° C. or less. It is also possible to configure a part of the cooling system by using a latent heat storage material having a phase transition temperature.
[0036]
Since the building material of the present invention does not require a large space for providing heat storage compared to the sensible heat storage material, it can be provided with a heat storage function simply by attaching it to the frame structure without changing the conventional housing design. I can do it. Of course, the purpose and application of the building material according to the present invention are not limited to these.
[0037]
Examples of latent heat storage materials that can be used in the present invention include normal paraffins such as tetradecane (C14), pentadecane (C15), hexadecane (C16), and octadecane (C18), inorganic eutectics and inorganic hydrates, and acetic acid. , Fatty acids such as caprylic acid, aromatic hydrocarbon compounds such as benzene and p-xylene, and compounds such as alcohols such as isopropyl palmitate, butyl stearate and decyl alcohol, and preferably have a heat of fusion of 80 kJ / kg. Of these compounds, chemically and physically stable and inexpensive compounds are used. These may be used as a mixture, and a supercooling inhibitor, a specific gravity adjuster, a deterioration inhibitor and the like may be added as necessary.
[0038]
The microencapsulated latent heat storage material is preferably added as a slurry uniformly dispersed in water. By adding it as a slurry, not only can the base material in which the microencapsulated latent heat storage material is uniformly dispersed be easily obtained, but also during kneading and stirring, the capsules or between the capsule and the gypsum powder particles Capsule damage due to friction can be reduced. In addition, the manufacturing equipment can be simplified by supplying the water necessary for cement hydration from the slurry.
[0039]
The content of the microcapsule in the latent heat storage building material of the present invention is 1 part by weight or more and 200 parts by weight or less, preferably 10 parts by weight with respect to 100 parts by weight of the mixture of cement and porous calcium silicate powder. The content is preferably in the range of 150 parts by weight or less.
[0040]
If it is above this range, the latent heat storage property is high, which is preferable. However, the physical strength of the finished building material is remarkably lowered, and conversely, if the content is small, the heat storage effect described in the present invention is poor, which is not preferable.
[0041]
The solid content concentration of the microencapsulated latent heat storage material slurry is 5% or more and 70% or less, more preferably 30% or more and 50% or less. If the solid content concentration is too high, it can be adjusted by adding water, but if the solid content concentration is too low, a sufficient amount of the heat storage capsule cannot be mixed, and the function as a latent heat storage material can not be fully demonstrated, This is not preferable because it adversely affects the hardening of the cement.
[0042]
Examples of the cement used in the present invention include usually high strength, moderately hot Portland cement, mixed cement such as blast furnace, silica, fly ash cement, and alumina cement.
[0043]
These may be used alone or in combination. If the moisture required for kneading is insufficient, the fluidity of the kneaded material will be significantly deteriorated, and it will be difficult to obtain a uniform composition, and it will be difficult to form and install after kneading. It is preferable to add an amount of water.
[0044]
Moreover, it is possible to add various materials normally used when manufacturing a board-shaped building material, such as a dispersion material and a reinforcing fiber material. The kneading machine for the blend is not particularly limited, and a biaxial forced stirring mixer, an Eirich mixer, an omni mixer and the like can be used. As a molding method and a curing method, methods usually used for producing cement-based building materials can be used.
[0045]
[Example 1]
Next, specific examples of the latent heat storage cement-based building material according to the present invention will be shown.
[0046]
After adding 12 g of 37% formaldehyde aqueous solution and 40 g of water to 6.2 g of melamine powder and adjusting the pH to 8, the mixture was heated to about 70 ° C. to obtain a melamine formaldehyde initial condensate aqueous solution. To 100 g of sodium salt aqueous solution of 10% styrene maleic anhydride copolymer adjusted to pH 4.5, 8 g part of n-octadecane (melting point 27 ° C.) as a latent heat storage material was added with vigorous stirring, and the average particle size The emulsion was emulsified until 3.5 μm.
[0047]
After adding the total amount of the melamine-formaldehyde initial condensate aqueous solution to this emulsion and stirring at 70 ° C. for 2 hours, the pH was adjusted to 9 to obtain a microcapsule dispersion of a latent heat storage material having a solid content concentration of 45%. It was.
[0048]
Aluminum powder was added to a mixed slurry containing 65% siliceous raw material and 35% calcareous raw material and foamed and cured, and then hydrothermal reaction treatment was performed by high-temperature and high-pressure steam curing to obtain porous calcium silicate.
[0049]
The obtained porous calcium silicate was pulverized to a volume average particle size of 30 μm. The volume average particle diameter of the porous calcium silicate powder was measured by a wet measurement method using water as a dispersion medium using a laser diffraction, scattering type microtrack-HIR size distribution measuring device.
[0050]
After mixing 430 g of ordinary Portland cement, 1000 g of the porous calcium silicate powder, and 7 g of vinylon fibers with a 5 liter omni mixer for 2 minutes, 1300 g of the heat storage slurry was added and kneaded for 2 minutes. The obtained mortar was subjected to dehydration press molding using a 300 mm × 400 mm mold by a dehydration press machine to obtain a plate-shaped molded body having a thickness of about 10 mm. The molded body was steam-cured at 60 ° C. for 12 hours.
[0051]
As a result of measuring the leakage amount of the latent heat storage material due to the microcapsule breakage by solvent extraction and examining the damage state of the capsule, it became clear that most of the mixed microcapsules were dispersed without being broken. It was.
[0052]
The obtained heat storage board was placed in a temperature change test tank having an environmental temperature of 0 ° C. or higher and 50 ° C. or lower, and when the temperature of the central portion of the heat storage board was measured, a buffering property of temperature was observed around 27 ° C., Building materials with properties that are not easily changed from the temperature in the vicinity were obtained. The length change rate of the heat storage board from 24 ° C. to 30 ° C. was 200 μm / m.
[0053]
[Comparative Example 1]
After mixing 1430 g of ordinary Portland cement and 7 g of vinylon fiber with a 5 liter omni mixer for 2 minutes, 1300 g of the heat storage slurry was added and kneaded for 2 minutes. The obtained mortar was subjected to dehydration press molding using a 300 mm × 400 mm mold by an Atago Engineering dehydration press machine to obtain a plate-like molded body having a thickness of about 10 mm. The molded body was steam-cured at 60 ° C. for 12 hours.
[0054]
The obtained heat storage board was placed in a temperature change test tank having an environmental temperature of 0 ° C. or higher and 50 ° C. or lower, and when the temperature of the central portion of the heat storage board was measured, a buffering property of temperature was observed around 27 ° C., Building materials with properties that are not easily changed from the temperature in the vicinity were obtained. The length change rate from 24 ° C. to 30 ° C. of the obtained heat storage board was 1000 μm / m.
[0055]
[Comparative Example 2]
A microcapsule was prepared in the same manner as in Example 1 except that the average particle size of the microcapsule was changed to 200 μm, and a heat storage board was prepared in the same manner as in Example 1, and the microcapsule was destroyed by the solvent extraction method. When the ratio was measured, destruction of about 80% or more was observed.
[0056]
【The invention's effect】
Since the present invention has the above-described configuration and operation, in the latent heat storage building material and its production, the length change rate in the vicinity of the phase transition temperature of the latent heat storage material is small, and most of the mixed latent heat storage material microcapsules are mixed. It is possible to manufacture a latent heat storage cement-based building material that can be dispersed without being damaged.

Claims (5)

セメント100重量部に対して50重量部以上、且つ500重量部以下の多孔質珪酸カルシウム粉体と、体積平均粒子径が0.5μm以上、且つ50μm以下の潜熱蓄熱材のマイクロカプセルがセメントと多孔質珪酸カルシウム粉体の混合物100重量部に対して1重量部以上、且つ200重量部以下の範囲で混合されたことを特徴とする潜熱蓄熱セメント系建材。  Porous calcium silicate powder of 50 parts by weight or more and 500 parts by weight or less with respect to 100 parts by weight of cement, and a microcapsule of a latent heat storage material having a volume average particle diameter of 0.5 μm or more and 50 μm or less is porous with cement. A latent heat storage cement-based building material, which is mixed in an amount of 1 part by weight or more and 200 parts by weight or less based on 100 parts by weight of a mixture of porous calcium silicate powder. 前記マイクロカプセルの皮膜がメラミンホルマリン樹脂、尿素ホルマリン樹脂の何れか1つからなることを特徴とする請求項1に記載の潜熱蓄熱セメント系建材。The latent heat storage cement-based building material according to claim 1, wherein the film of the microcapsule comprises any one of a melamine formalin resin and a urea formalin resin. 前記多孔質珪酸カルシウム粉体の体積平均粒子径が5μm以上、且つ100μm以下であることを特徴とする請求項に記載の潜熱蓄熱セメント系建材。The latent heat storage cement-based building material according to claim 1 , wherein the porous calcium silicate powder has a volume average particle diameter of 5 μm or more and 100 μm or less. 前記潜熱蓄熱材の融点が5℃以上、且つ50℃以下であることを特徴とする請求項1〜のいずれか1項に記載の潜熱蓄熱セメント系建材。The latent melting heat storage material is 5 ° C. or higher, and 50 ° C. claim 1-3 latent heat storage cementitious building material as claimed in any one of which being not more than. 少なくとも2種類以上の融点を有する潜熱蓄熱材を別々に内包したマイクロカプセルを含有することを特徴とする請求項1〜のいずれか1項に記載の潜熱蓄熱セメント系建材。The latent heat storage cement building material according to any one of claims 1 to 4 , further comprising a microcapsule in which latent heat storage materials having at least two types of melting points are separately encapsulated.
JP2000305872A 2000-10-05 2000-10-05 Latent heat storage cement building material Expired - Fee Related JP4632507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305872A JP4632507B2 (en) 2000-10-05 2000-10-05 Latent heat storage cement building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305872A JP4632507B2 (en) 2000-10-05 2000-10-05 Latent heat storage cement building material

Publications (2)

Publication Number Publication Date
JP2002114553A JP2002114553A (en) 2002-04-16
JP4632507B2 true JP4632507B2 (en) 2011-02-16

Family

ID=18786657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305872A Expired - Fee Related JP4632507B2 (en) 2000-10-05 2000-10-05 Latent heat storage cement building material

Country Status (1)

Country Link
JP (1) JP4632507B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106477967A (en) * 2016-10-11 2017-03-08 江西纳宇纳米新材料有限公司 A kind of high-heat energy-saving heat preserving building coating and preparation method thereof
CN110451895A (en) * 2019-09-12 2019-11-15 深圳市奇信集团股份有限公司 A kind of phase-changing wall slurry and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10338327B3 (en) * 2003-08-21 2005-01-27 Heraklith Ag Wood-wool building product comprises an encapsulated latent heat storage medium distributed in an open-pore matrix comprising wood shavings and a binder
KR101192718B1 (en) * 2012-01-31 2012-10-18 이원목 A materials construction with PCM micro capsule and method for manufacturing same
WO2013123428A1 (en) * 2012-02-17 2013-08-22 The Regents Of The University Of California Compositions comprising phase change material and concrete and uses thereof
CN113201314B (en) * 2021-04-22 2022-02-11 东南大学 Preparation method and application of C-S-H/PEG1000 phase-change composite material
CN113773809B (en) * 2021-09-17 2022-10-11 广州市香港科大***研究院 Double-layer urea-formaldehyde shell phase-change microcapsule and preparation method and application thereof
CN115594523B (en) * 2022-10-21 2023-11-24 华南理工大学 High-toughness cement-based composite material and preparation method thereof
CN116083055A (en) * 2022-12-07 2023-05-09 北京科技大学 Heat-storage energy-storage phase-change filler and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219399A (en) * 1982-06-15 1983-12-20 Asahi Glass Co Ltd Heat accumulating material
JPS6245849A (en) * 1985-08-23 1987-02-27 松下電工株式会社 Heat accumulating building material
JPS6252153A (en) * 1985-08-27 1987-03-06 松下電工株式会社 Regenerative capsule
JPH10297950A (en) * 1997-04-25 1998-11-10 Mitsubishi Paper Mills Ltd Concrete for accumulating cold heat
WO1999024525A1 (en) * 1997-11-11 1999-05-20 Basf Aktiengesellschaft Application of microcapsules as latent heat accumulators
JPH11264561A (en) * 1998-03-18 1999-09-28 Mitsubishi Paper Mills Ltd Heat storage building material and method of heat storage
JP2001348566A (en) * 2000-06-06 2001-12-18 Sekisui Chem Co Ltd Heat storage material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219399A (en) * 1982-06-15 1983-12-20 Asahi Glass Co Ltd Heat accumulating material
JPS6245849A (en) * 1985-08-23 1987-02-27 松下電工株式会社 Heat accumulating building material
JPS6252153A (en) * 1985-08-27 1987-03-06 松下電工株式会社 Regenerative capsule
JPH10297950A (en) * 1997-04-25 1998-11-10 Mitsubishi Paper Mills Ltd Concrete for accumulating cold heat
WO1999024525A1 (en) * 1997-11-11 1999-05-20 Basf Aktiengesellschaft Application of microcapsules as latent heat accumulators
JPH11264561A (en) * 1998-03-18 1999-09-28 Mitsubishi Paper Mills Ltd Heat storage building material and method of heat storage
JP2001348566A (en) * 2000-06-06 2001-12-18 Sekisui Chem Co Ltd Heat storage material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106477967A (en) * 2016-10-11 2017-03-08 江西纳宇纳米新材料有限公司 A kind of high-heat energy-saving heat preserving building coating and preparation method thereof
CN106477967B (en) * 2016-10-11 2019-07-05 江西纳宇纳米新材料有限公司 A kind of high-heat energy-saving heat preserving building coating and preparation method thereof
CN110451895A (en) * 2019-09-12 2019-11-15 深圳市奇信集团股份有限公司 A kind of phase-changing wall slurry and preparation method thereof

Also Published As

Publication number Publication date
JP2002114553A (en) 2002-04-16

Similar Documents

Publication Publication Date Title
Liu et al. Integrating phase change materials into concrete through microencapsulation using cenospheres
Kastiukas et al. Development and optimisation of phase change material-impregnated lightweight aggregates for geopolymer composites made from aluminosilicate rich mud and milled glass powder
RU2161143C2 (en) Composite material comprising aerogel, method of preparation thereof and also use thereof
Hassan et al. Thermal and structural performance of geopolymer concrete containing phase change material encapsulated in expanded clay
CN107265962A (en) A kind of superthermal insulation aerogel foam concrete and preparation method thereof
CN105294141A (en) Nano porous concrete taking thixotropic colloid as template agent and preparation method
US20120073226A1 (en) Wall form units and systems
CN107265965A (en) A kind of aerogel foam concrete segment and preparation method thereof
JP4632507B2 (en) Latent heat storage cement building material
CN107266122A (en) A kind of fibrofelt enhancing aerogel foam concrete and preparation method thereof
Ismail et al. Microencapsulation of bio-based phase change materials with silica coated inorganic shell for thermal energy storage
KR100981136B1 (en) Thermal storage building material for energy saving and its production method
WO2017043983A1 (en) Insulating and accumulation construction partition and a method for its production
CN107265964A (en) A kind of superthermal insulation aeroge foamed concrete and preparation method thereof
Richardson et al. Optimal performance characteristics of mortar incorporating phase change materials and silica fume
CN108249843A (en) The cement-base composite material and manufacturing method that a kind of nanometer titanium dioxide silica aerogel assorted fibre is modified
CN113754376B (en) Building heat-preservation moisture-permeable plastering mortar and preparation method thereof
CN114524635A (en) Road composite phase change material for asphalt pavement and preparation method thereof
CN101024564A (en) Additive building material mixtures comprising ionic emulsifiers
JP2006263681A (en) Microcapsule granule and its usage
CN109516754B (en) Lightweight phase-change aerated concrete, masonry wall and construction method thereof
CN114436584B (en) Inorganic modified graphite polystyrene non-combustible insulation board and preparation method thereof
JPH10297950A (en) Concrete for accumulating cold heat
JP2003313062A (en) Hydraulic composition
JP2002114560A (en) Latent heat storage type gypsum-base building material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees