JP3677639B2 - フィラメントの場所をモニタおよび制御する方法および1つの表面までの距離を測定する装置 - Google Patents

フィラメントの場所をモニタおよび制御する方法および1つの表面までの距離を測定する装置 Download PDF

Info

Publication number
JP3677639B2
JP3677639B2 JP35001895A JP35001895A JP3677639B2 JP 3677639 B2 JP3677639 B2 JP 3677639B2 JP 35001895 A JP35001895 A JP 35001895A JP 35001895 A JP35001895 A JP 35001895A JP 3677639 B2 JP3677639 B2 JP 3677639B2
Authority
JP
Japan
Prior art keywords
filament
spatial frequency
location
light
spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35001895A
Other languages
English (en)
Other versions
JPH08247711A (ja
Inventor
ジョセフ アトウッド トマス
アンドル− パステル デイビッド
ワ−レン レディング ブル−ス
Original Assignee
コーニング・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コーニング・インコーポレーテッド filed Critical コーニング・インコーポレーテッド
Publication of JPH08247711A publication Critical patent/JPH08247711A/ja
Application granted granted Critical
Publication of JP3677639B2 publication Critical patent/JP3677639B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は光導波路ファイバまたは他の透明なフィラメントの位置をモニタする方法および装置に関する。より一般的には、本発明は物体までのまたは物体の表面の一部分までの距離を測定する方法および装置に関する。
【0002】
【従来の技術】
米国特許第5185636号、第5283628号、第5309221号、第3982816号、第4067651号、第4280827号、Applied Optics., Vo. 19, p.2031-2033 (1980)、およびヨ−ロパ特許公報第608528号は、プリフォ−ムからファイバを線引きしていいるときに、光導波路ファイバ、および非円形ファイバの欠陥モニタを含めて、種々の特性をモニタするための技術について記述している。
【0003】
この公知技術の幾つかが図1〜3に概略的に示されている。
【0004】
【本発明が解決しようとする課題】
本発明は上述したタイプのファイバ・モニタ・システムに他の機能、すなわちファイバが線引きされている時にそのファイバの位置をモニタしかつコントロ−ルする能力を与える。このような位置情報は、ファイバを中心位置決めした状態に保持するためにおよびファイバの長さに沿った定在波の時間的周波数の測定によってファイバ中のテンションを測定するために必要とされる。
【0005】
現在のファイバ位置モニタはファイバを検知器に結像させることおよび/またはファイバのエッジを検知することを含む。線引き牽引装置ではファイバ・モニタリングに利用できるスペ−スが限られているから、公知のタイプの直径・欠陥・被覆モニタに加えて別個の位置モニタを用いることは望ましくない。
【0006】
また、既存の位置モニタは非常に小さい振動を検知することができず、したがってファイバ上の定在波が非常に小さくなるとファイバのテンション情報が失われてしまうおそれがある。さらに、ファイバを検知器上に結像させる現在のモニタは、ファイバが検知器で焦点がずれた状態となるファイバの前後移動に感応する。すなわち、ファイバがそれの焦点が合った位置から前方または後方に移動すると、検知器における側方向の移動をモニタする能力が低下する。この焦点の喪失によって精度が失われることが、ファイバ・テンションを決定する場合の現在のモニタの有用性を制限している。
【0007】
上述したことに鑑みて、本発明の1つの目的は、光導波路ファイバのような物体までの距離をモニタ(測定)するための改良された方法および装置を提供することである。さらに、本発明の特定の目的は、ハ−ドウエアの付加を最少限に抑えて、上述したタイプの直径・欠陥・被覆モニタと組合せることができる位置モニタを提供することである。
【0008】
【課題を解決するための手段】
これらの目的および他の目的を実現するために、本発明は、それの態様のあるものによれば、表面までの距離を決定する装置であって、
複数の空間的に分布された場所(L1、L2)において光(68、69)を検知するための手段(29、31、131)と、
表面(17、113)に光のビ−ム(25、125)を送って、そのビ−ムの少なくとも一部分が表面(17、113)から検知手段に散乱される、例えば拡散状態で反射されるようにする照明手段(23、123)(散乱光)と、
表面(17、113)と検知手段(29、31、131)の間にあって散乱光を空間的に変調し、その散乱光の空間的変調が空間周波数ωMを有するようにする空間的変調手段(50、150)と、
検知手段(29、31、131)において空間的に変調された散乱光の空間的周波数ωDを決定する手段(201、202、203、204、205、206)を具備しており、空間的変調手段(50、150)と表面(17、113)の間の距離がωDの関数であるようになされた、表面までの距離を決定する装置を提供する。
【0009】
検知手段において空間的に変調された散乱光の空間的周波数ωDを決定する手段は種々の形態を採ることができる。例えば、この手段はピ−ク(peaks)、バレ−(valleys)、および/またはゼロ交差(zero crossings)に基づいて縞計数(fringe counting)を行うことができるものであり、その縞計数は検知手段によって発生された空間的デ−タに対してあるいは数値的に平滑化または濾波された空間的デ−タに対して直接行なわれる。縞計測のためには、空間的周波数ωDは係数された縞の数を検知手段の特性寸法、例えば検知手段の長さで割ったものである。本発明の好ましい実施例では、空間的周波数ωDは、検知手段によって発生された空間的デ−タの変換、好ましくはフ−リエ変換を行うことによって空間的周波数領域で決定される。もし所望されれば、さざ波手法(wavelet approach)のような他の空間的周波数領域手法を用いることもできる。
【0010】
【発明の実施の形態】
本発明のある好ましい実施例では、この装置は、表面(17、113)と空間的変調手段(50、150)との間にあり、正の光パワ−を有するレンズ系(26、27、127)を具備している。このレンズ系の後部焦点面内に検知手段(29、31、131)を配置することによって、空間的変調手段(50、150)と表面(17、113)の間の距離がωDの線形関数となる。
【0011】
本発明の他の好ましい実施例では、測定される距離が光導波路ファイバまでの距離であり、そしてその測定がプリフォ−ムからのファイバの線引きを制御するための制御系統の一部分として用いられる。その制御系統はまた、ファイバの直径および気密被覆の厚さをコントロ−ルし、かつファイバの欠陥をモニタすることが好ましい。
【0012】
【実施例】
図4は本発明に従って構成されたファイバ位置モニタ装置の構成要素を示している。ファイバ13は図4においてAおよびBで示された2つの位置で示されている。ファイバからの光は空間的変調手段50と、レンズ系27を通り、検知器31によって検知される。検知器31は前述の米国特許第5309221号に記載されているタイプのものでありうる。
【0013】
空間的変調手段50は空間的周波数ωMを有しており、それを通る光をその空間的周波数で空間的に変調する。この空間的変調手段は、伝送、位相、あるいは他の光学的特性が周期的に変化するマスクまたは同様の装置であるうる。
【0014】
空間的変調手段50の好ましい形式はロンキ・ル−リング(Ronchi ruling)である。したがって、下記の説明はそのようなル−リングについてなされるが、もし所望されれば、他の空間的変調手段を用いてもよいことが理解されるであろう。
【0015】
技術的に公知なように、ロンキ・ル−リングは不透明なスリットと透明なスリットの交互の配列よりなり、それは例えばクロム・ストリップをガラス板上に配置することによって形成され得る。その不透明なスリットはすべて同一の幅を有し、かつ透明なスリットもすべて同一の幅を有しているが、不透明なスリットと透明なスリットの幅は同一である必要はない。したがって、リンキ・ル−リングは、それの空間的周波数ωM(例えば透明なスリット間の間隔上の空間的周波数で与えられる)のほかに、それのデュ−ティサイクル、すなわち不透明なスリットの幅と、不透明なスリットの幅および透明なスリットの幅の和との比によって特徴づけられる。
【0016】
本発明の実施に使用するためのロンキ・ル−リングに対する好ましいデュ−ティサイクルは約0.15である。すなわち、ロンキ・ル−リングの面積の約15%が不透明である。このデュ−ティサイクルは、検知器31において比較的高いレベルの照明を与えるので、すなわち検知器における光欠乏の問題を回避するので、好ましい。もちろん、もし所望されれば、本発明の実施には他のデュ−ティサイクルを用いてもよい。
【0017】
ロンキ・ル−リングは、各レンズ系26および27のファイバ側にル−リングを取り付けるだけで、図2に示されたタイプの直径・欠陥・被覆モニタに容易に付加され得る。ロンキ・ル−リングは手頃な値段で市販されている。
【0018】
レンズ系27は、下記のように距離モニタ装置の出力を直線化する装置の任意の構成要素である。前述の米国特許第5309221号に記載されているタイプのレンズ系が本発明の実施に使用され得る。
【0019】
レンズ系27は正の光パワ−を有し、ロンキ・ル−リングと検知器の間に配置されることが好ましく、かつレンズ系の焦点距離fだけ検知器から離間されている。すなわち、検知器はレンズ系の焦点面内、特にそれの後部焦点面内にある。レンズ系の焦点面は対象空間内の平行光線がその系の光軸から共通の半径距離における焦点面と交差するという重要な特性を有する。
【0020】
この特性が図5に概略的に示されており、51は系の光軸であり、そしてLはその光軸からの半径方向の距離である。直線検知器31では、その検知器が光学軸上に中心位置決めされているとすると、Lはその検知器の中心からの距離にすぎない。この図に示されているように、平行光線61および62はすべて、距離Lで検知器31に当るようにレンズ系27によって屈折される。
【0021】
光線61ははレンズ系の前方焦点63から出る。したがって、この光線は、レンズ系によって屈折された後で、図5において64で示されているように光軸と平行に進行する。この光線を使って、光軸と角度Θで交差するすべての光線に対応した検知器における距離Lが容易に決定され得る。具体的には、図5に示されているように、Lは
L = f ・ tan Θ (1)
で与えられる。ただし、上述のように、fはレンズ系の焦点距離である。
【0022】
式1および図5は、正のレンズ系の後方焦点面内の所定の長さの検知器が、その検知器からのファイバの距離に関係なく、ファイバから来た光の同じ角度的広がりを見ることを示すものと解釈され得る。この効果は、長さがレンズ系の光軸のまわりにおける16oの角度的広がりに相当する検知器について概略的に示されている。この図に示されているように、検知器31は、ファイバ13が位置Aにあるか位置Bにあるかに関係なく、±8oの範囲内の光を見る。
【0023】
本発明の距離測定装置の動作が図6に概略的に示されており、50はこの図の紙面に直交関係に配向された不透明スリット55および透明スリット56を有するロンキ・ル−リングである。透明スリット56は、1/ωMに等しい距離dだけ互いに離間されている。ロンキ・ル−リングは検知器31から距離Sだけ離間されている。
【0024】
ロンキ・ル−リングから距離Dに配置されたファイバを考えよう。このファイバからの光線68および69はそれぞれ
tan θ1 = L1/(D + S)
tan θ2 = L2/(D + S)
によって定義される高さL1およびL2において検知器31に当る。
【0025】
θ1およびθ2の正接は下記の関係式をも満足しなければならない。
tan θ1 = d/D
tan θ2 = 2d/D (2)
【0026】
ここで下記の関係式が成立する。
L1/(D + S) = d/D
L2/(D + S) = 2d/D
【0027】
これら関係式から、第n番目の透明スリットを通る光線に対して下記の式が得られる。
Ln/(D + S) = nd/D
【0028】
検知器31における第(n + 1)番目と第n番目の被照明領域間の距離は
Ln+1 - Ln = d(D + S)/D
であり、これは、ωDおよびωMについて、
1/ωD = (D + S)/(ωM・D)
となる。
【0029】
Dについて解くと、
D = S・ωD/(ωM - ωD) (3)
が得られる。これは、DがωDの関数であり、したがってロンキ・ル−リング50によって空間的に変調された後で検知器31に到達するファイバからの光についてωDを決定することによって、モニタ(測定)され得ることを示している。
【0030】
重要なことには、Dのこの測定値は、少なくとも一次までは、ファイバの横方向位置には依存しない。他の方法と同様に、これは、ル−リング50が図6において距離dだけ上方に移動されるように結像することによって見ることができる。平たく言えば、光線68および69はそれぞれL1およびL2で依然として検知器31に当るので、上記の分析は変らない。もちろん、ファイバが軸から十分離れるように移動されれば、検知器31における被照明領域の数が減少するにつれて、装置の性能が低下しはじめるであろう。事実、この装置は、ファイバが装置の視界から完全に外にでると、機能を停止することになる。
【0031】
式(3)では、ωDに対するDの従属性は直線的ではない。ロンキ・ル−リングと検知器との間にレンズ系を設け、検知器をレンズ系の後部焦点面内に配置することによって、下記のようにして直線性が与えられる。
【0032】
前記関係式(2)から、第n番目の透明スリットに対するθn
tan θn = nd/D
によって与えられる。
【0033】
前記関係式(1)から、θnは下記の関係式をも満足する。
tan θn = Ln/f
【0034】
したがって、Ln
Ln = nfd/D
と表わすことができ、Ln+1 - Ln
Ln+1 - Ln = fd/D
で与えられ、そしてこれはωDおよびωMで、Dに対して下記の関係式をあたえる。 D = f・ωDM (4)
【0035】
すなわち、レンズ系が検知器の前方の距離fに配置され、かつロンキ・ル−リングがレンズ系の正面に配置された場合には、ファイバのロンキ・ル−リングからの距離はωDの直線関数となる。ロンキ・ル−リングはレンズ系の背後に配置されてもよく、それでもその系は働くが、DとωDの関係はもはや一般的に直線性ではないことに注目されたい。したがって、ロンキ・ル−リングをレンズ系の前に配置することが好ましい。式(1)は平行光線に対してのみ精密に該当し、また式(4)もそのような光線に対してのみ精密に該当するものであることにも注目すべきである。
【0036】
図7は、約125ミクロンの直径を有するファイバ、約4.0サイクル/mmのωM値を有するロンキ・ル−リング、およびレンズ系27の焦点距離fにほぼ等しいロンキ・ル−リングとファイバとの距離Dについて図4に示されたタイプの装置の空間的スペクトルを示している。この図に示されているように、このスペクトルは、空間的周波数ωODが約3.1サイクル/度であるO.D.成分および空間的周波数ωDが約4.3サイクル/度である位置成分を含んでいる。
【0037】
このスペクトルは図7において70および71で示された他の2つの成分をも含んでいる。これらの成分は位置成分とO.D.成分との間のヘテロダイニング(heterodyning)の結果であり、位置成分とO.D.成分との和および差に相当する空間的周波数で、すなわち図7において約7.4サイクル/度(4.3 + 3.1)および約1.2サイクル/度(4.3 - 3.1)で現れる。
【0038】
これらのヘテロダイン成分が存在するために、ヘテロダイン成分をO.D.成分または欠陥成分として誤って識別することにより直径の誤測定および誤った穴検知の可能性を生ずる。本発明の好ましい実施例によれば、これらの問題は、ωODがファイバの予測位置および直径に対して(i)ωDおよび(ii)ωD - ωODより実質的に小さくなるようにωMを選択することによって回避することができる。
【0039】
例えば、レンズ系27の焦点距離にほぼ等しい予測されたロンキ・ル−リングとファイバとの距離に対しておよび約200ミクロンより小さい予測直径を有するファイバに対しては、12.3サイクル/mmの空間的周波数を有するロンキ・ル−リングが好ましい。図8に示されているように、このようなル−リングに対するヘテロダイン、特に、低い周波数のヘテロダインはO.D.成分よりも十分に高い。
【0040】
このような高いωM値を選択する場合には、ファイバのある位置で位置成分が消える(ドロップアウトする)ことがありうることに注目すべきである。いかなる特定の動作原理にも拘束されることは望まないが、このようなドロップアウトは、空間的周波の増加に伴ってロンキ・ル−リングの透明および不透明スリットの幅が減少する回折効果から生ずるものと考えられている。また、低いデュ−ティサイクルを用いるとこの問題を悪化させると考えられている。
【0041】
上述した12.3サイクル/mmという好ましいωM値は、線引き時におけるファイバの位置のモニタリングに干渉しないドロップアウト位置を有することが認められた。もちろん、本発明の実施には12.3サイクル/mm以外のωMの値を用いてもよい。任意の距離測定装置に使用されるべきωMの特定の値が本明細書の開示から等業者によって容易に決定され得る。
【0042】
図7および8の空間的周波数スペクトルは前述の米国特許第5309221号に開示された分離シ−ケンス・フ−リエ変換(discrete sequence Fourier transforms)を用いて計算することができ、高い精度が要求される場合には、その手法が好ましい。精度は幾分低いが計算時間が短い他の手法が図9に示されている。この手法は、2048のピクセルを有する検知器に関して論述されるであろうが、この手法はそれとは異なる数のピクセルを有する検知器にも当業者によって容易に適合され得ることが理解されるであろう。
【0043】
この手法における最初のステップは、十分な解像度を与えた状態で、計算時間を短縮するために生デ−タの2048のピクセルから中央の1024のピクセルを選択することである。つぎに、図9のブロック201に示されているように、1024の中央ピクセルのデ−タ値のそれぞれに下記の形式の複合変調が掛け算される。
exp(-i・n・x・2・π/2048)
ただし、iは-1の平方根、nはピクセルの数、そしてxは位置ピ−クの偏位された空間的周波数がゼロに近いがゼロより大きくなるように選択された所望の変調値である。例えば、最小ωDが12.0サイクル/度より大きいことが予測される場合には、16o検知器の場合のxの好ましい値は192であり、それが12サイクル/度をゼロに偏位させるであろう。一般に、4で割切れるxの値を用いるのが好ましい。
【0044】
ブロック202に示されているように、この手法におけるつぎのステップは、変調されたデ−タ値を26タップ・ロ−パスFIRフィルタで濾波することである。このフィルタは、デシメ−ション・ステップ(decimation step)で発生される偽信号を除去するために適用される。このフィルタは、変調ステップ201によって偏位される直流成分の周波数でノッチを有する。このフィルタの好ましい係数が下記の表1に示されている。これらの係数では、このフィルタの平均減衰は-30dBである。
表1
26タップFIRフィルタに対する係数
H(1) = H(26) = 0.01424
H(2) = H(25) = 0.008238
H(3) = H(24) = 0.01194
H(4) = H(23) = 0.01714
H(5) = H(22) = 0.02362
H(6) = H(21) = 0.03097
H(7) = H(20) = 0.03865
H(8) = H(19) = 0.04614
H(9) = H(18) = 0.05295
H(10) = H(17) = 0.05874
H(11) = H(16) = 0.06324
H(12) = H(15) = 0.06631
H(13) = H(14) = 0.06786
【0045】
ブロック203に示されているように、次のステップは、1024のピクセルを16対1でデシメ−ト(decimate)することである。このステップは、十分な解像度を保持しながら、複素高速フ−リエ変換の計算時間を短縮するために行なわれる。このステップによって1024のピクセルが64の擬似ピクセルとなされる。
【0046】
これらの擬似ピクセルは、信号漏洩とリンギングを軽減し、かつ位置ピ−クの空間周波数を十分な解像度をもって決定できるゆにするためにステップ204でウインド−化される。擬似ピクセルは、下記の形式のブラックマン・ハリス・ウインド−でもってウインド−化されるのが好ましい。
0.35875 - 0.48829・cos(2・π・n/63) +
0.14128・cos(4・π・n/63) - 0.01168・cos(6・π・n/63)
ただし、nは0〜63の範囲の擬似ピクセル指数である。
【0047】
ブロック205に示されているように、次のステップは、擬似ピクセル値を空間的周波数値に変換するために64ポイント複素FFTを行うことである。この複素FFTは、IBM Research Paper RC 1743, February 9, 1967に掲載された"The Fast Fourier Transform and its Applications"という表題の論文に記載されたク−リ−、ルイスおよびウエルチの技法を用いて行うことができる。また、Rabiner and Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, New York, 1975, page 367、およびcooley et aol., IEEE Transactions in Education, March 1969, pages 27-34も参照されたい。もし所望されれば、他の技法を用いてもよい。時間を節約するために、この複素FFTによって発生された周波数係数は大きさを二乗した形のままになされる。
【0048】
複素FFTは64の擬似ピクセルから64の周波数係数を発生するので用いられる。また、ヘテロダイン・ピ−ク(heterodyne peaks)はゼロ周波数を反射させる代りに0から63までラップアラウンド(wrap around)するであろう。このようなラップアラウンドの値は下記のようにして得ることができる。
【0049】
直径成分が存在するがために、位置成分は、125ミクロン・ファイバでは位置成分の両側で約3.1サイクル/度だけ離間される2つのヘテロダインを有する(上記を参照されたい)。ステップ202から204までが実施された後で、位置成分が約13.7サイクル/度から約1.7サイクル/度まで偏位された場合には、ヘテロダインは約-1.4サイクル/度および約4.8サイクル/度となる。
【0050】
複素FFTの場合には、下方のヘテロダインは約6.6サイクル/度にラップアラウンドされる。FFTが用いられた場合には、その下方ヘテロダインが約1.4サイクル/度に反射されて、約1.7サイクル/度で位置成分と干渉するであろう。
【0051】
ブロック206に示されているように、この手法における最後のステップは、ωDの値を決定することである。非気密的に被覆されたファイバの場合には、上述したドロップアウト領域の外側で、位置ピ−クが最も大きいピ−クとなる。したがって、位置ピ−クの場所は最大の周波数空間ピ−クをまず見出すことによって決定される。その後で、この最大ピ−クの大きさおよび最大ピ−クの両側におけるピ−クの大きさに対して放物線適合(parabolic fit)が行なわれる。位置ピ−クの場所は、この放物線曲線がそれの最大値を有する空間的周波数となる。
【0052】
気密被覆ファイバおよび偏波照明では、ヘテロダインのうちの1つが、あるファイバ位置では、位置ピ−クよりも大きくなりうる。したがって、位置ピ−クは、ヘテロダインを排除するために最大ピ−クの探索領域を限定することによって見出される。例えば、上述した数値の場合には。最大ピ−クの探索は約2.3サイクル/度より下に限定されるであろう。
【0053】
図10および11は、光導波路ファイバの位置を決定する問題に図9の手法を適用した結果を示している。これらの図に示されているデ−タは図4の装置を用いて得られたものである。使用されたロンキ・ル−リングは12.3サイクル/度のωM値および15%のデュ−ティサイクルを有していた。長期にわたる使用でも、この装置にはドリフトは観察されなかった。
【0054】
図10の垂直軸は図9の手法を用いて決定された検知器31におけるωD値を示しており、そして水平軸は、ファイバのセグメントを数ミクロン以内に位置決めできるようにするテスト用器具を用いて測定されたファイバの実際の位置を示している。図11の垂直軸は、実際の位置とωD位置との差(残差)を示しており、そして水平軸は実際の位置を示している。(この装置は通常図10のもののような曲線を用いて較正されるであろう。)
【0055】
ωD手法の直線性は図10および11から明白である。ファイバが検知器に接近するにつれて、すなわち図10の右側に向って移動するにつれて、ωDの値は直線的に減少する。図11に示されているように、±150ミル(±3.8mm)における点別誤差は50ミクロンより小さい。この装置の解像度の測定は局部傾斜を決定するために3デ−タ点を用いてなされ、そしてその局部傾斜は解像度の推定として用いられた。この解像度は±150ミル(±3.8mm)の範囲にわたって幾分変化することが認められたが、10ミクロンより悪くなると推定される点は存在しなかった。これらの誤差および解像度値は、線引き時におけるファイバの位置をモニタしかつコントロ−ルするためおよびそのモニタされた位置からファイバ中のテンションを決定しかつコントロ−ルするのに十分以上である。もし所望されれば、上述のように、前記の米国特許第5309221号の解析技術を用いて、より高い精度を実現することができる。
【0056】
ファイバの位置をモニタするための前記の手法は、前記ヨ−ロッパ特許公報第608538号、米国特許第5185636号および第5309221号のファイバ直径測定、欠陥検知、および気密被覆モニタ手法と組合されることが好ましい。それらの手法はまた、米国特許第5283628号に記載されている非円形ファイバの直径を測定するための技法と組合されることが好ましい。図2に示されているように、これらの技法では2つの検知器を用いて、各検知器に対して本発明の方法と装置が用いられた場合に、ファイバの位置について2つの測定値を与えるようにすることが好ましい。これら2つの測定値を用いれば、レ−ザビ−ム25によって画定された平面内におけるファイバの正確な位置が、このような総合的なコントロ−ル装置においてレンズ系26、27の前に配置されたロンキ・ル−リングの既知の位置を用いることによってかつ/または較正によって容易に決定され得る。
【0057】
本発明の方法および装置のより一般的な適用が図12に示されている。この図は、ロンキ・ル−リング150から散乱させる、例えば拡散的に反射させる表面113までの距離Dを決定するための装置を示している。この装置はレンズ系27と、このレンズ系の後部焦点面内に配置された検知器131を具備している。上述のように、このレンズ系は任意であり、もし所望されれば省略してもよい。また、表面113上の点141は、光線143〜146の図示を容易にするために、レンズ系の前方焦点面内に位置づけられて示されている。距離を決定されるべき表面上の点はもちろんこの位置にある必要はない。
【0058】
光源123は、検知器131の開孔147、レンズ系127、そしてロンキ・ル−リング150の透明スリット148を通る光ビ−ム125を生ずる。もし所望されれば、この光源は検知器の上方または下方に配置されてもよく、その場合には、検知器は開孔を具備する必要はない。光源はコヒレントな単色光ビ−ムを発生するひつようはないが、もし所望されれば、そのようなビ−ムを用いることができ、例えば、光源としてレ−ザを用いてもよい。と言うより、ロンキ・ル−リング150のシャドウが検知器131において十分なコントラストを有するように表面113において小さい光のスポットを生ずるかぎり、任意のタイプの光源を用いることができる。
【0059】
図12の装置は上述の原理に従って動作し、したがって距離Dは式(4)によって与えられる。この装置は、1つの表面までの距離を高精度をもって決定するための既存の装置と比較して多くの利点を有している。特に、この装置は、このような測定を行うために過去に用いられたレ−ザ三角測定装置と比較して多くの利点を有している。
【0060】
これらの利点は、(1)表面が幾分反射性であり限り、カラ−とテクスチャ−のような表面の特徴に対して本質的に感応しないこと、(2)ロンキ・ル−リングによって導入された変調が検知器において周囲光によって完全に消されない限り、周囲光に対して本質的に感応しないこと、(3)位置の決定がアナログ測定値に依存していないので本質的に安定であること、および(4)入射ビ−ムと被検知光との間の内抱角が小さいことを含む。
【0061】
レ−ザ−三角測定装置は(1)〜(3)の特徴を与えるように設計され得るが、これらの特徴を本質的には有しておらず、それらの特徴を与えるためには、一般に装置のコストと複雑性が増すことになる。特徴(4)はレ−ザ−三角測定装置には組込むことはできない。なぜなら、その装置は表面に当るビ−ムと検知器との間に、例えば少なくとも約15oの角度のような大きな内抱角を必要とするからである。事実、レ−ザ−三角測定装置の感度はその内抱角が大きくなるにつれて上昇することになる。
【0062】
このように大きな内抱角が必要とされることは、特に穴のようなくっきりとした凹状の面をトレ−スする場合に、レ−ザ−三角測定装置の重大な欠点となる。然るに、本発明では、ビ−ムと検知器と間の内抱角を±4o以下のように小さくできるので、このような欠点はない。
【0063】
上述した本発明の方法は、種々の計算および識別ステップを実行するための適当なプログラミングによって構成されたディジタルコンピュ−タシステムで実施されるのが好ましい。そのプログラミングは公知の種々のプログラミング言語で行うことができる。好ましいプログラミング言語は、科学計算を行うのに特に適したC言語である。使用可能な他の言語としては、FORTRAN、BASIC、PASCAL、C++等がある。
【0064】
コンピュ−タシステムは、ディジタル・イクイップメント・コ−ポレイション、IBM、ヒュ−レット・パッカ−ド等で現在製作されているコンピュ−タおよび周辺機器のような汎用の科学用コンピュ−タおよびその周辺機器で構成され得る。あるいは、本発明を実施するには、多数のディジタル信号処理チップを用いたシステムのような指定されたシステムを用いることもできる。
【0065】
このコンピュ−タシステムの処理部分はつぎのような特徴、すなわち、毎秒5億回の浮動小数点演算の処理速度、32ビット浮動小数点のワ−ド長、少なくとも4メガバイトのメモリ、および少なくとも40メガバイトのディスク記憶容量を有することが好ましい。このシステムは、光検知器アレイからのデ−タを入力する手段と、処理制御で使用するための電気形式とシステムオペレ−タ、メンテナンス要員等による観察のためのビジュアル形式の両方の形式で位置決定の結果を出力するための手段を具備していなければならない。また、その出力は、爾後の分析および/または表示のために、ディスクドライブ、テ−プドライブ等に記憶され得る。
【図面の簡単な説明】
【図1】遠視野干渉じまを用いてファイバ直径を測定するワトキンス型装置の基本的な要素を示す概略図である。
【図2】本発明を用いることができるファイバ・モニタおよび制御装置の構成要素を示す概略図である。
【図3】 5ミクロンの中心上穴を有する125ミクロンのコア無しファイバの計算された遠視野干渉じまの周波数スペクトルを示している。
【図4】本発明を実施するための装置の概略図である。
【図5】レンズ系27の後方焦点面内に検知器31を位置決めすることの効果を示す概略図である。
【図6】ロンキ・ル−リング50におけるωMと検知器31におけるωDの間の関係を決定する場合に用いられる幾何学的形状寸法関係を示す概略図である。
【図7】図4の装置を用いて位置と直径をモニタされる欠陥の無い光導波路ファイバの場合の空間的周波数スペクトルを示す図である。
【図8】図4の装置を用いて位置と直径をモニタされる欠陥の無い光導波路ファイバの場合の空間的周波数スペクトルを示す図である。
【図9】本発明の実施に使用するための空間的周波数スペクトルを発生する好ましい手法を示すブロック図である。
【図10】本発明の好ましい実施例の直線性を示している。
【図11】本発明の好ましい実施例の精度を示している。
【図12】拡散的に反射する表面113までの距離Dを決定するために本発明を用いた場合を示している。
【符号の説明】
13 ファイバ
17 表面
26 レンズ系
27 レンズ系
31 検知器
50 ロンキ・ル−リング
51 光軸
55 不透明スリット55
56 透明スリット
113 表面
131 検知器
123 光源
127 レンズ系
147 開孔1
148 透明スリット
150 ロンキ・ル−リング

Claims (13)

  1. フィラメントの場所をモニタする方法であって、
    (a)前記フィラメントの一部分が散乱光源となるように前記フィラメントに放射線のビームを送り、
    (b)前記散乱光源からの光を空間的に変調し、この場合の空間的変調が空間的周波数ωを有し、
    (c)前記空間的に変調された光を検知し、
    (d)前記検知された空間的に変調された光に対して空間的周波数ωを決定し、前記空間的周波数が前記フィラメントの場所を表わし、
    (e)必要に応じて、前記空間的周波数ωの値から前記フィラメントの場所に対する制御信号を発生する工程よりなる、フィラメントの場所をモニタする方法。
  2. 前記工程(d)は、
    前記検知された空間的に変調された光に対する空間的周波数スペクトルを発生し、
    前記フィラメントの場所を表わす前記空間的周波数ωを有する前記空間的周波数スペクトルの1つの成分を識別することによって行われる、請求項1の方法。
  3. 前記工程(b)を行うためにロンキ・ルーリングが用いられる、請求項1の方法。
  4. 前記工程(b)と(c)の間で、前記空間的に変調された光がレンズ系によって変換されて、前記フィラメントの場所が前記空間的周波数ωの線形関数となる、請求項1の方法。
  5. 前記フィラメントが透明であり、かつ前記放射線のビームが前記工程(c)で検知される干渉じまを生ずる、請求項2の方法。
  6. 前記空間的周波数スペクトルが前記フィラメントの直径をモニタするために用いられる外径成分を含んでいる、請求項5の方法。
  7. 前記直径成分が空間的周波数ωODを有し、かつωODが前記フィラメントの予測場所および直径に対して(i)ωおよび(ii)ω−ωODより実質的に小さくなるように前記空間的周波数ωが選択される、請求項6の方法。
  8. 前記空間的周波数スペクトルが前記フィラメントの欠陥を検知するためおよび/または前記フィラメント上の気密被覆の厚さをモニタするために用いられる、請求項5の方法。
  9. 前記工程(b)は、2つの空間的に離れた場所において前記散乱光源からの光を変調して、2つの空間的に変調された光を形成する工程よりなり、前記工程(c)は、前記2つの空間的に変調された光のそれぞれを検知する工程よりなり、前記工程(d)は、前記2つの空間的に変調された光のそれぞれに対する空間的周波数ω を決定する工程よりなる、請求項1の方法。
  10. フィラメントの場所を制御する方法であって、
    (a)前記フィラメントの一部分が散乱光源となるように前記フィラメントに放射線のビームを送り、
    (b)前記散乱光源からの光を空間的に変調し、この場合の空間的変調が空間的周波数ωを有し、
    (c)前記空間的に変調された光を検知し、
    (d)前記検知された空間的に変調された光に対して空間的周波数ωを決定し、前記空間的周波数が前記フィラメントの場所を表わし、
    (e)前記空間的周波数ωの値から前記フィラメントの場所に対する制御信号を発生する工程よりなる、フィラメントの場所を制御する方法。
  11. 1つの表面までの距離を測定する装置であっ
    複数の空間的に分布された場所において光を検知する検知手段と、
    前記表面に光のビームを送って、前記ビームの少なくとも一部分が前記表面から前記検知手段に散乱される(散乱光となる)ようにする照明手段と、
    前記表面と前記検知手段の間にあって、前記散乱光を空間的に変調し、前記散乱光の空間的変調が空間的周波数ωを有するようにする空間的変調手段と、
    前記検知手段において前記空間的に変調された散乱光の空間的周波数ωを決定する手段とよりなり、前記空間的変調手段と前記表面との間の距離がωの関数であるようになされた、1つの表面までの距離を測定する装置。
  12. 前記空間的変調手段がロンキ・ルーリングである、請求項11の装置。
  13. 前記空間的変調手段と前記検知手段の間にレンズ系をさらに具備しており、前記レンズ系は正のパワーを有し、かつ前記検知手段が前記レンズ系の後部焦点面内にあり、それによって前記空間変調手段と前記表面との間の距離Dがωの線形関数となる、請求項11または12の装置。
JP35001895A 1994-12-30 1995-12-25 フィラメントの場所をモニタおよび制御する方法および1つの表面までの距離を測定する装置 Expired - Fee Related JP3677639B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/368,311 US5519487A (en) 1994-12-30 1994-12-30 Method for monitoring the position of a fiber
US368311 1994-12-30

Publications (2)

Publication Number Publication Date
JPH08247711A JPH08247711A (ja) 1996-09-27
JP3677639B2 true JP3677639B2 (ja) 2005-08-03

Family

ID=23450711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35001895A Expired - Fee Related JP3677639B2 (ja) 1994-12-30 1995-12-25 フィラメントの場所をモニタおよび制御する方法および1つの表面までの距離を測定する装置

Country Status (12)

Country Link
US (1) US5519487A (ja)
EP (1) EP0720001B1 (ja)
JP (1) JP3677639B2 (ja)
KR (1) KR960024248A (ja)
AU (1) AU686910B2 (ja)
BR (1) BR9506096A (ja)
CA (1) CA2163161A1 (ja)
DE (1) DE69526321T2 (ja)
DK (1) DK0720001T3 (ja)
RU (1) RU2152589C1 (ja)
TW (1) TW302433B (ja)
UA (1) UA32584C2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053305A1 (en) 1997-05-22 1998-11-26 Corning Incorporated Methods and apparatus for detecting surface defects of an optical fiber
JP2004522986A (ja) * 2000-10-30 2004-07-29 サンター コーポレイション チューニング可能な制御されるレーザー・アレー
WO2002037069A1 (en) * 2000-10-30 2002-05-10 Santur Corporation Laser and fiber coupling control
WO2002080317A1 (en) 2001-03-30 2002-10-10 Santur Corporation Alignment of an on chip modulator
WO2002079864A1 (en) 2001-03-30 2002-10-10 Santur Corporation Modulator alignment for laser
US6922278B2 (en) 2001-03-30 2005-07-26 Santur Corporation Switched laser array modulation with integral electroabsorption modulator
WO2003015226A2 (en) * 2001-08-08 2003-02-20 Santur Corporation Method and system for selecting an output of a vcsel array
DK1459044T3 (da) * 2001-12-27 2011-12-05 Prysmian Spa Online-spændingsmåling i en optisk fiber
US6910780B2 (en) * 2002-04-01 2005-06-28 Santur Corporation Laser and laser signal combiner
JP2008145290A (ja) * 2006-12-11 2008-06-26 Seiko Precision Inc 測距装置
EP2418469B1 (en) * 2009-04-09 2018-11-28 Fujikura Ltd. Hole diameter measuring method and device for holey optical fiber, and manufacturing method and device for holey optical fiber
CN104537414B (zh) * 2015-01-08 2017-09-12 山东师范大学 基于光纤的光学条纹自动计数装置及计数方法
WO2021257284A1 (en) * 2020-06-19 2021-12-23 Ipg Photonics Corporation System and method for vertically aligning optical fiber to photonic wafers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067651A (en) * 1974-06-21 1978-01-10 Western Electric Company, Inc. Method for measuring the parameters of optical fibers
US3982816A (en) * 1974-06-21 1976-09-28 Western Electric Company, Inc. Method for measuring the parameters of optical fibers
US4280827A (en) * 1979-09-04 1981-07-28 Corning Glass Works System for measuring optical waveguide fiber diameter
FR2647912B1 (fr) * 1989-06-05 1991-09-13 Essilor Int Dispositif optique a reseau pour le controle, en transmission, par detection de phase, d'un quelconque systeme optique, en particulier d'une lentille ophtalmique
US5283628A (en) * 1991-12-31 1994-02-01 Corning Incorporated Method for measuring diameters of non-circular fibers
US5309221A (en) * 1991-12-31 1994-05-03 Corning Incorporated Measurement of fiber diameters with high precision
US5185636A (en) * 1991-12-31 1993-02-09 Corning Incorporated Method for detecting defects in fibers
CA2083969A1 (en) * 1991-12-31 1993-07-01 Leslie James Button Measurement of fiber diameters and detection of defects
US5408308A (en) * 1993-01-29 1995-04-18 Corning Incorporated Method for monitoring hermetically-coated fibers

Also Published As

Publication number Publication date
AU686910B2 (en) 1998-02-12
TW302433B (ja) 1997-04-11
DE69526321D1 (de) 2002-05-16
EP0720001A3 (en) 1997-04-23
DK0720001T3 (da) 2002-07-29
KR960024248A (ko) 1996-07-20
DE69526321T2 (de) 2002-09-05
CA2163161A1 (en) 1996-07-01
JPH08247711A (ja) 1996-09-27
UA32584C2 (uk) 2001-02-15
US5519487A (en) 1996-05-21
EP0720001A2 (en) 1996-07-03
BR9506096A (pt) 1997-12-23
EP0720001B1 (en) 2002-04-10
AU4054295A (en) 1996-07-11
RU2152589C1 (ru) 2000-07-10

Similar Documents

Publication Publication Date Title
JP3677639B2 (ja) フィラメントの場所をモニタおよび制御する方法および1つの表面までの距離を測定する装置
US5309221A (en) Measurement of fiber diameters with high precision
EP0028774B1 (en) Apparatus for detecting defects in a periodic pattern
US7542144B2 (en) Spatial and spectral wavefront analysis and measurement
EP0017371B1 (en) Apparatus for inspecting defects in a periodic pattern
US5185636A (en) Method for detecting defects in fibers
EP1336095B1 (en) Measurement of surface defects
US4350443A (en) Optical fringe analysis
JP3433238B2 (ja) 透明なフィラメントの直径を測定する方法
JP3486677B2 (ja) ハーメチック膜を有する透明なフィラメントの被覆をモニタするためのまたはモニタしかつ制御するための方法
US5239364A (en) Light phase difference measuring method using an interferometer
US20030210402A1 (en) Apparatus and method for dual spot inspection of repetitive patterns
JP3423486B2 (ja) 光学素子の屈折率分布の測定方法および装置
HU203595B (en) Process and apparatus for contactless definition of diameter of thin wires
JPH0599659A (ja) 光ビーム入射角の測定方法、測定装置及び距離測定装置の使用
JPS6271804A (ja) 膜厚測定装置
US5327220A (en) IR interferometric apparatus and method for determining the thickness variation of an optical part wherein said optical part defines Newton interference fringe patterns
WO1996000887A1 (en) An improved optical sensor and method
Ohlídal et al. A method of shearing interferometry for determining the statistical quantities of randomly rough surfaces of solids
US20010021024A1 (en) Method and apparatus for fourier transform spectrometry
CN116183012A (zh) 一种激光非接触式物体振动检测及监测方法
JPH07301509A (ja) 干渉縞間隔の測定方法
HU187168B (en) Method and apparatus for heterodyn detecting laser light scattered back
JPH05256616A (ja) 非接触式すきま測定装置
HU185592B (en) Apparatus for detecting deformations

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees