JP3670432B2 - Solder for thermoelectric cooling device - Google Patents

Solder for thermoelectric cooling device Download PDF

Info

Publication number
JP3670432B2
JP3670432B2 JP04303697A JP4303697A JP3670432B2 JP 3670432 B2 JP3670432 B2 JP 3670432B2 JP 04303697 A JP04303697 A JP 04303697A JP 4303697 A JP4303697 A JP 4303697A JP 3670432 B2 JP3670432 B2 JP 3670432B2
Authority
JP
Japan
Prior art keywords
solder
thermoelectric cooling
weight
semiconductor
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04303697A
Other languages
Japanese (ja)
Other versions
JPH10225791A (en
Inventor
好人 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP04303697A priority Critical patent/JP3670432B2/en
Publication of JPH10225791A publication Critical patent/JPH10225791A/en
Application granted granted Critical
Publication of JP3670432B2 publication Critical patent/JP3670432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【0001】
【発明の属する技術分野】
本発明は、熱電冷却デバイス用はんだに関するものである。
【0002】
【従来の技術】
熱電冷却デバイスにおいては、図2に示すように、n型半導体とp型半導体をはんだ付けa’で導体1’を介して直列に接続し、直流電流Iを流し、ペルチエ効果によりA側で吸熱(冷却)させ、B側で放熱(発熱)させている。
この場合、半導体と導体との間のはんだ接合には、従来SnAg系はんだ、SnPb系はんだが用いられ、半導体には、テルル化ビスマス(Bi2Te3)やビスマス・アンチモン合金(Bi95Sb5)が用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の熱電冷却デバイスでは、内部抵抗の増加、冷却性能の低下がかなり顕著である。例えば、150℃×100時間の連続通電エ−ジング試験での抵抗増加率は6%以上である。
従来、はんだが半導体に及ぼす悪影響として、はんだ中に極く微量に含まれるUやTh等の放射性元素の不純物が放射するα線により電子−正孔対が発生してソフトエラ−が生じる、所謂α線障害が知られており、このα線障害を防止するための半導体装置用はんだとして、「Sbを1〜15重量%含有し、残りがPbと不可避不純物からなる組成を有し、かつ放射性α粒子のカウント数が0.5CPH/cm3以下であるはんだ」が提案されている(特開昭59−70490号)。
【0004】
而るに、熱電冷却用半導体は、ペルチエ効果を利用するものであり、ソフトエラ−の問題の対象にはならない。
本発明者は、通常の精錬法による鉛を用いた、特定の組成比のPbSb系はんだで上記熱電冷却デバイスのはんだ接合を行ったところ、前記150℃×100時間の連続通電エ−ジング試験による抵抗増加率を従来の6%以上から1%以下に抑えることを見出した。
かかる予想外の結果は、前記SnAg系やSnPb系はんだによる熱電冷却用半導体の内部抵抗の増加が、はんだ付け時及び使用中での発熱面側でのはんだと半導体の接触面からのSnの半導体内への拡散に起因するのであり、PbSb系はんだではかかる拡散がなく、しかも、特定の組成比のもとでは、加熱面側のはんだ付け部及び冷却面側のはんだ付け部をクラックの発生なく安定に保持し得ることによると推定される。
【0005】
本発明の目的は、上記検討結果に基づき、熱電冷却デバイスでの半導体と導体とのはんだ接合に用いるはんだ合金において、半導体の内部抵抗の増加を僅小に抑え得、高い冷却性能を保持できるはんだを提供することにある。
【0006】
【課題を解決するための手段】
本発明に係る熱電冷却デバイス用はんだは、テルル化ビスマスまたはビスマス・アンチモン合金のn型半導体とp型半導体とを導体を介して直列に接続するのに使用するはんだであり、Sbが5〜15重量%、残部がPbであることを特徴とする構成であり、Ag、Bi、Cuのうちの一種または二種以上のそれぞれを0.01〜5重量%含有させることができ、JIS Z 3282で規定されているSnPb系はんだのA級品と同等の不可避不純物が含まれていてもよい。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
本発明に係るはんだにおいては、(1)Sb5〜15重量%、残部Pbの主体部に不可避不純物が含まれた地金、または(2)Sb5〜15重量%、Ag、Bi、Cuのうちの一種または二種以上のそれぞれが0.01〜5重量%、残部Pbの主体部に不可避不純物が含まれた地金を得、これをリボン状、細線状または粉末状に加工して、熱電冷却デバイスでの半導体と導体とのはんだ接合に使用される。
【0008】
本発明に係るはんだおいて、鉛には、通常の製錬により粗鉛を得、この粗鉛を通常の精錬法により純度99.9%以上に精錬したものを使用し、UやTh等の放射性不純物の含有量は50ppb以上である。
上記不可避不純物の含有量は、JIS Z 3282で規定されているSnPb系はんだのA級品に準じ、上記主体部100部(重量部)に対し、Zn:0.003部以下、Fe:0.03部以下、Al:0.005部以下、As:0.03部以下、Cd:0.005部以下とされる。
【0009】
本発明に係るはんだにおいて、Sbを配合する理由は、優れた濡れ性や接着強度を保証しつつ融点を200℃〜300℃好ましくは、230℃〜260℃とするためであり、その配合量を5〜15重量%とした理由は、この範囲外では、融点を200℃〜300℃に維持し難いことによる。
本発明に係るはんだにおいて、Agを配合する理由は、Ag食われを防止するためであり、その配合量を0.01〜5重量%とした理由は、0.01重量%未満では、Ag食われを満足に防止し難く、5重量%を越えると、融点が高くなり、はんだの融点を300℃以下に設定し難くなることによる。
本発明に係るPbSb系はんだにおいては、Sbの添加量が15重量%に近づくと、柔軟性が後退し、これに応じ耐熱疲労性も後退する傾向がある。本発明において、BiやCuを配合する理由は、かかる耐熱疲労性の後退を補完するためであり、それぞれの配合量を0.01〜5重量%とした理由は、0.01重量%未満では効果が乏しく、5重量%を越えると、脆くなったり硬さが増し、反って、耐熱疲労性が低下することによる。このCuの配合量は、1.0重量%以下とすることが好ましい。
【0010】
図1の(イ)は本発明に係る熱電冷却デバイスを、図1の(ロ)は図1の(イ)における点線枠内の拡大図を示し、p型半導体とn型半導体とを4箇、交互に配し、導体1を印刷した熱良伝導性の絶縁基板2を半導体列の両側に配し、これらの半導体を導体1を介し、本発明に係るはんだを用いて直列に接続してある。
図1において、aははんだ接合部を示している。
上記半導体には、通常p−Bi2Te3とn−Bi2Te3とを使用するが、これらに限定されるものではなく、例えばp−Bi2Te3とn−Bi95Sb5等も使用でき、n型にするためのドナ−不純物は、銅、銀、セレン、テルル、ハロゲン等であり、p型にするためのアクセプタ−不純物は、鉛、リチウム、タリウム等である。
上記半導体の各電極10は、はんだ付けを容易にするために、例えば、ニッケル蒸着電極としてある。
上記熱良伝導性の導体印刷絶縁基板には、アルミナ等のセラミックス基板を使用でき、導体1には、はんだ付けし易い金属膜を被覆することが好ましく、例えば、図1の(ロ)に示すように、銅の蒸着層11、ニッケルメッキ層12、金蒸着層13の複合導体層を使用することができる。
【0011】
上記のはんだ接合は、リボン状はんだとフラックスとの積層品を所定形状に打ち抜き、これを接合界面に配して加熱溶融し、冷却凝固するか、または、粉末はんだとフラックスを混練したクリ−ムはんだの塗布層を接合界面に配して加熱溶融し、冷却凝固することにより行うことができ、リボン状はんだとフラックスとの積層品の厚みやクリ−ムはんだの塗布厚みは、通常30μm〜200μmとされる。
【0012】
図1の(ロ)に示すように、はんだのフィレット上端が半導体の合金に接触している。
而るに、はんだ付け時の加熱や熱電冷却デバイス使用中での発熱で、はんだ及び半導体が加熱されても、本発明に係るはんだでは、上記接触部位を経てのはんだ成分の半導体内への拡散があり得ず、半導体の内部抵抗の増大を排除できる。また、デバイスのオン・オフによりはんだ層に熱応力が発生しても、当該はんだの柔軟性のために、その熱応力をよく緩和でき、はんだのクラックの発生も防止できる。
従って、熱電冷却デバイスの抵抗変化をよく抑制でき、そのデバイスのジュ−ル発熱を初期の微小発熱に保持できる結果、デバイスの冷却性能を良好に発揮させることができる。
【0013】
図1に示す熱電冷却デバイスおいて、接合部aのはんだ層の厚みtが100μm以上であれば、材料力学上、発生する熱応力は小である。而るに、本発明に係るはんだによれば、接合部aのはんだ層の厚みtが100μm以下の場合でも、熱応力緩和効果によりクラックの発生を防止でき、本発明は接合部のはんだ層の厚みが100μ以下の場合に特に有益である。
【0014】
【実施例】
〔実施例1〜3〕
表1に示す組成の粉末はんだを得、粉末はんだ92重量部,フラックス8重量部の割合でクリームはんだを造った。フラックスの組成は、重合ロジン55重量部、カスターワックス3重量部、シクロヘキシルアミンのHBr1重量部、セバシン酸1重量部、ヘキシレングリコール残部とした。
これらの各クリームはんだを用い、図に示す熱電冷却デバイスのはんだ接合を行った。
使用した半導体は、p−BiTeとn−BiTeであり、電極は3〜4μm厚みのニッケル蒸着により設けてある。また、導体印刷基板には、長さ12mm、巾8mmの導体印刷アルミナ基板を使用し、導体表面には金を蒸着してある。クリームはんだの塗布厚みは接合後の厚みを約30μmとするように70μm程度とし、はんだ接合温度ははんだ融点よりも40℃高い温度とした。
【0015】
各実施例品に係るクリ−ムはんだで接合を行った各熱電冷却デバイスについて、抵抗変化率、クラック発生の有無を調べたところ、表1の通りであった。
ただし、抵抗変化率は、熱電冷却デバイスを50箇直列に接続し、150℃×100時間連続通電エ−ジングした時の抵抗変化率であり、クラック発生の有無は、−50℃30分・110℃30分を1サイクルとして200サイクル後でのクラック発生の有無とした。
【0016】
【表1】

Figure 0003670432
【0017】
〔比較例〕
Sn96.5重量%、Ag3.5重量%、融点221℃のSnAg系はんだを使用した以外、実施例と同じとした。
抵抗変化率、クラック発生の有無を調べたところ、表1の通りであり、抵抗変化率が6%以上と高く、半導体内にSnが拡散していることを確認した。
〔実施例4〕
表2の組成とした以外、上記実施例に同じとした。
抵抗変化率、クラック発生の有無は、表2の通りであり、Ag食われ防止のためにAgを添加したにもかかわらず、上記実施例と同様、抵抗変化率を1%以下にでき、クラック発生も防止できた。
〔実施例5及び6〕
表2の組成とした以外、上記実施例に同じとした。
抵抗変化率、クラック発生の有無は、表2の通りであり、耐熱性を補完するためにBiやCuを添加したにもかかわらず、上記実施例と同様、抵抗変化率を1%以下にできた。
【0018】
【表2】
Figure 0003670432
【0019】
上記何れの実施例においても、従来のSnAg系はんだに較べて遜色の無い優れた濡れ性を呈し、フィレット先端で半導体の電極が完全に包囲されていた。
【0020】
【発明の効果】
本発明に係る熱電冷却デバイス用はんだによれば、デバイスの抵抗変化を1%以下の低い変化率に抑えて熱電冷却用半導体と基板導体間とのはんだ接合を行い得、デバイスのジュ−ル発熱を初期の微小発熱のままにとどめることができ、熱電冷却デバイスのペルチエ効果による冷却性能を効率よく発揮させることができる。
而して、本発明に係る熱電冷却デバイスにおいては、優れた冷却性能を呈する。
【図面の簡単な説明】
【図1】図1の(イ)は本発明に係る熱電冷却デバイスを示す図面、図1の(ロ)は図1の(イ)における点線枠内の拡大図である。
【図2】従来の熱電冷却デバイスを示す図面である。
【符号の説明】
n n型半導体
p p型半導体
1 導体
2 絶縁基板
a はんだ接合部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solder for a thermoelectric cooling device.
[0002]
[Prior art]
In the thermoelectric cooling device, as shown in FIG. 2, an n-type semiconductor and a p-type semiconductor are connected in series via a conductor 1 ′ by soldering a ′, a direct current I is passed, and heat is absorbed on the A side by the Peltier effect. (Cooling) and radiating heat (generating heat) on the B side.
In this case, SnAg solder and SnPb solder are conventionally used for solder bonding between the semiconductor and the conductor, and bismuth telluride (Bi 2 Te 3 ) or bismuth antimony alloy (Bi 95 Sb 5 ) is used for the semiconductor. ) Is used.
[0003]
[Problems to be solved by the invention]
However, in the above-mentioned thermoelectric cooling device, the increase in internal resistance and the decrease in cooling performance are quite remarkable. For example, the resistance increase rate in a continuous energization aging test at 150 ° C. × 100 hours is 6% or more.
Conventionally, as an adverse effect of solder on a semiconductor, a so-called α, in which electron-hole pairs are generated due to α-rays emitted by impurities of radioactive elements such as U and Th contained in a very small amount in the solder, causing soft error. As a solder for a semiconductor device for preventing this α-ray interference, “the amount of Sb is 1 to 15% by weight, the remainder is composed of Pb and inevitable impurities, and the radioactive α A solder having a particle count of 0.5 CPH / cm 3 or less has been proposed (Japanese Patent Laid-Open No. 59-70490).
[0004]
Thus, the thermoelectric cooling semiconductor utilizes the Peltier effect and is not a subject of soft error.
The present inventor conducted solder joining of the thermoelectric cooling device with PbSb-based solder having a specific composition ratio using lead by an ordinary refining method, and then conducted the continuous energization aging test at 150 ° C. × 100 hours. It has been found that the resistance increase rate is suppressed from 6% or more to 1% or less.
Such an unexpected result is that the increase in the internal resistance of the thermoelectric cooling semiconductor by the SnAg-based or SnPb-based solder is caused by the Sn semiconductor from the contact surface between the solder and the semiconductor on the heating surface side during soldering and in use. PbSb solder does not cause such diffusion, and under a specific composition ratio, the heating surface side soldering portion and the cooling surface side soldering portion are free from cracks. It is presumed that it can be held stably.
[0005]
The object of the present invention is based on the above examination results, in a solder alloy used for solder bonding between a semiconductor and a conductor in a thermoelectric cooling device, a solder capable of suppressing an increase in the internal resistance of the semiconductor and maintaining high cooling performance. Is to provide.
[0006]
[Means for Solving the Problems]
The solder for a thermoelectric cooling device according to the present invention is a solder used to connect an n-type semiconductor and a p-type semiconductor of bismuth telluride or bismuth antimony alloy in series via a conductor, and Sb is 5 to 15 % By weight and the balance being Pb, each of one or more of Ag, Bi and Cu can be contained in an amount of 0.01 to 5% by weight, and JIS Z 3282 An unavoidable impurity equivalent to the defined SnPb-based solder class A product may be included.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
In the solder according to the present invention, (1) Sb of 5 to 15% by weight and the main part of the balance Pb contains inevitable impurities, or (2) Sb of 5 to 15% by weight of Ag, Bi, Cu One or two or more of each is 0.01 to 5% by weight, and a bare metal containing inevitable impurities in the main part of the balance Pb is obtained, and this is processed into a ribbon shape, a fine wire shape or a powder shape, and thermoelectric cooling Used for soldering of semiconductors and conductors in devices.
[0008]
In the solder according to the present invention, as lead, crude lead is obtained by ordinary smelting, and this crude lead is refined to a purity of 99.9% or more by a usual refining method, and U, Th, etc. are used. The content of radioactive impurities is 50 ppb or more.
The content of the unavoidable impurities is Zn: 0.003 part or less, Fe: 0.003 parts or less with respect to 100 parts (parts by weight) of the main part, in accordance with the SnPb solder class A product defined in JIS Z 3282. 03 parts or less, Al: 0.005 parts or less, As: 0.03 parts or less, and Cd: 0.005 parts or less.
[0009]
In the solder according to the present invention, the reason for blending Sb is that the melting point is 200 ° C to 300 ° C, preferably 230 ° C to 260 ° C, while ensuring excellent wettability and adhesive strength. The reason for setting it to 5 to 15% by weight is that it is difficult to maintain the melting point at 200 ° C. to 300 ° C. outside this range.
In the solder according to the present invention, the reason why Ag is added is to prevent Ag erosion, and the reason why the blending amount is 0.01 to 5% by weight is less than 0.01% by weight. This is because it is difficult to satisfactorily prevent cracking, and when it exceeds 5% by weight, the melting point becomes high and it becomes difficult to set the melting point of the solder to 300 ° C. or less.
In the PbSb solder according to the present invention, when the added amount of Sb approaches 15% by weight, the flexibility tends to recede, and the thermal fatigue resistance tends to recede accordingly. In the present invention, the reason why Bi or Cu is blended is to supplement the regression of the heat fatigue resistance. The reason why the blending amount is 0.01 to 5% by weight is less than 0.01% by weight. The effect is poor, and if it exceeds 5% by weight, it becomes brittle and the hardness increases, and on the other hand, the heat fatigue resistance decreases. The amount of Cu is preferably 1.0% by weight or less.
[0010]
FIG. 1 (a) shows a thermoelectric cooling device according to the present invention, FIG. 1 (b) shows an enlarged view within a dotted frame in FIG. 1 (a), and there are four types of p-type semiconductor and n-type semiconductor. The heat-conductive insulating substrates 2 with the conductors 1 printed alternately are arranged on both sides of the semiconductor array, and these semiconductors are connected in series with the solder according to the present invention via the conductors 1. is there.
In FIG. 1, a indicates a solder joint.
Usually, p-Bi 2 Te 3 and n-Bi 2 Te 3 are used as the semiconductor. However, the present invention is not limited to these, and examples include p-Bi 2 Te 3 and n-Bi 95 Sb 5. Donor impurities that can be used and are n-type are copper, silver, selenium, tellurium, halogen, and the like, and acceptor impurities that are p-type are lead, lithium, and thallium.
Each of the semiconductor electrodes 10 is, for example, a nickel vapor-deposited electrode in order to facilitate soldering.
A ceramic substrate made of alumina or the like can be used as the conductive printed insulating substrate with good thermal conductivity, and the conductor 1 is preferably coated with a metal film that can be easily soldered. For example, as shown in FIG. Thus, the composite conductor layer of the copper vapor deposition layer 11, the nickel plating layer 12, and the gold vapor deposition layer 13 can be used.
[0011]
In the above solder joint, a laminated product of ribbon-like solder and flux is punched into a predetermined shape, and this is arranged at the joint interface and heated and melted, cooled and solidified, or a cream in which powder solder and flux are kneaded. It can be performed by placing a solder coating layer on the bonding interface, heating and melting, and cooling and solidifying. The thickness of the laminated product of ribbon-like solder and flux and the coating thickness of the cream solder are usually 30 μm to 200 μm. It is said.
[0012]
As shown in FIG. 1B, the upper end of the solder fillet is in contact with the semiconductor alloy.
Thus, even when the solder and the semiconductor are heated by heating during soldering or heat generation during use of the thermoelectric cooling device, in the solder according to the present invention, the diffusion of the solder component into the semiconductor through the contact portion is performed. Therefore, an increase in the internal resistance of the semiconductor can be eliminated. Moreover, even if thermal stress is generated in the solder layer due to the on / off of the device, the thermal stress can be relieved well due to the flexibility of the solder, and the occurrence of cracks in the solder can also be prevented.
Accordingly, the resistance change of the thermoelectric cooling device can be well suppressed, and the juule heat generation of the device can be maintained at the initial minute heat generation, so that the cooling performance of the device can be exhibited well.
[0013]
In the thermoelectric cooling device shown in FIG. 1, if the thickness t of the solder layer of the joint portion a is 100 μm or more, the generated thermal stress is small in terms of material mechanics. Therefore, according to the solder according to the present invention, even when the thickness t of the solder layer of the joint portion a is 100 μm or less, the occurrence of cracks can be prevented by the thermal stress relaxation effect. it is particularly beneficial when the thickness is less than 100 microns m.
[0014]
【Example】
[Examples 1-3]
A powder solder having the composition shown in Table 1 was obtained, and cream solder was produced at a ratio of 92 parts by weight of powder solder and 8 parts by weight of flux. The composition of the flux was 55 parts by weight of polymerized rosin, 3 parts by weight of castor wax, 1 part by weight of HBr of cyclohexylamine, 1 part by weight of sebacic acid, and the balance of hexylene glycol.
Using each of these cream solders, the thermoelectric cooling device shown in the figure was soldered.
The used semiconductors are p-Bi 2 Te 3 and n-Bi 2 Te 3 , and the electrodes are provided by nickel deposition with a thickness of 3 to 4 μm. In addition, a conductor printed alumina substrate having a length of 12 mm and a width of 8 mm is used as the conductor printed board, and gold is vapor-deposited on the conductor surface. The application thickness of the cream solder was about 70 μm so that the thickness after bonding was about 30 μm, and the solder bonding temperature was 40 ° C. higher than the solder melting point.
[0015]
It was as Table 1 when the resistance change rate and the presence or absence of crack generation were investigated about each thermoelectric cooling device joined with the cream solder which concerns on each Example goods.
However, the rate of change in resistance is the rate of change in resistance when 50 thermoelectric cooling devices are connected in series and subjected to continuous energization at 150 ° C. for 100 hours. One cycle at 30 ° C. was defined as the presence or absence of cracks after 200 cycles.
[0016]
[Table 1]
Figure 0003670432
[0017]
[Comparative example]
The same as Example except that SnA6.5 type solder with Sn 96.5 wt%, Ag 3.5 wt% and melting point 221 ° C. was used.
The resistance change rate and the presence / absence of cracks were examined. As shown in Table 1, the resistance change rate was as high as 6% or more, and it was confirmed that Sn was diffused in the semiconductor.
Example 4
Except for the composition shown in Table 2, it was the same as the above examples.
The resistance change rate and the presence / absence of cracks are as shown in Table 2. Even though Ag was added to prevent Ag erosion, the resistance change rate could be reduced to 1% or less, as in the above example. Occurrence was also prevented.
[Examples 5 and 6]
Except for the composition shown in Table 2, it was the same as the above examples.
The resistance change rate and the presence / absence of cracks are as shown in Table 2. Even though Bi or Cu was added to supplement the heat resistance, the resistance change rate could be reduced to 1% or less as in the above example. It was.
[0018]
[Table 2]
Figure 0003670432
[0019]
In any of the above examples, excellent wettability comparable to that of the conventional SnAg solder was exhibited, and the semiconductor electrode was completely surrounded by the fillet tip.
[0020]
【The invention's effect】
According to the solder for a thermoelectric cooling device according to the present invention, the resistance change of the device can be suppressed to a low change rate of 1% or less, and the solder joint between the thermoelectric cooling semiconductor and the substrate conductor can be performed. Can be kept at the initial minute heat generation, and the cooling performance by the Peltier effect of the thermoelectric cooling device can be efficiently exhibited.
Thus, the thermoelectric cooling device according to the present invention exhibits excellent cooling performance.
[Brief description of the drawings]
FIG. 1 (a) is a drawing showing a thermoelectric cooling device according to the present invention, and FIG. 1 (b) is an enlarged view inside a dotted line frame in FIG. 1 (a).
FIG. 2 is a view showing a conventional thermoelectric cooling device.
[Explanation of symbols]
n n-type semiconductor p p-type semiconductor 1 conductor 2 insulating substrate a solder joint

Claims (3)

テルル化ビスマスまたはビスマス・アンチモン合金のn型半導体とp型半導体とを導体を介して直列に接続するのに使用するはんだであり、Sbが5〜15重量%、残部がPbであることを特徴とする熱電冷却デバイス用はんだ。 Solder used to connect n-type and p-type semiconductors of bismuth telluride or bismuth antimony alloy in series via a conductor, characterized in that Sb is 5 to 15% by weight and the balance is Pb. Solder for thermoelectric cooling devices. テルル化ビスマスまたはビスマス・アンチモン合金のn型半導体とp型半導体とを導体を介して直列に接続するのに使用するはんだであり、Sbが5〜15重量%、Ag、Bi、Cuのうちの一種または二種以上のそれぞれが0.01〜5重量%、残部がPbであることを特徴とする熱電冷却デバイス用はんだ。 It is a solder used to connect an n-type semiconductor and a p-type semiconductor of bismuth telluride or bismuth antimony alloy in series via a conductor, and Sb is 5 to 15% by weight of Ag, Bi, or Cu. One type or two or more types are each 0.01 to 5 weight%, and the remainder is Pb, The solder for thermoelectric cooling devices characterized by the above-mentioned. 融点が200℃〜300℃である請求項1または2記載の熱電冷却デバイス用はんだ。The solder for thermoelectric cooling devices according to claim 1, wherein the melting point is 200 ° C. to 300 ° C. 3.
JP04303697A 1997-02-12 1997-02-12 Solder for thermoelectric cooling device Expired - Fee Related JP3670432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04303697A JP3670432B2 (en) 1997-02-12 1997-02-12 Solder for thermoelectric cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04303697A JP3670432B2 (en) 1997-02-12 1997-02-12 Solder for thermoelectric cooling device

Publications (2)

Publication Number Publication Date
JPH10225791A JPH10225791A (en) 1998-08-25
JP3670432B2 true JP3670432B2 (en) 2005-07-13

Family

ID=12652699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04303697A Expired - Fee Related JP3670432B2 (en) 1997-02-12 1997-02-12 Solder for thermoelectric cooling device

Country Status (1)

Country Link
JP (1) JP3670432B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122319C (en) * 1997-12-27 2003-09-24 住友特殊金属株式会社 Thermoelectric conversion element
JP2001156342A (en) * 1999-11-30 2001-06-08 Aisin Seiki Co Ltd Thermoelectric device
JP5979883B2 (en) 2012-01-16 2016-08-31 株式会社Kelk Thermoelectric element and thermoelectric module having the same

Also Published As

Publication number Publication date
JPH10225791A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
US7148426B2 (en) Lead-free solder, and connection lead and electrical component using said lead-free solder
US4005454A (en) Semiconductor device having a solderable contacting coating on its opposite surfaces
EP0847828B1 (en) Solder material and electronic part using the same
US10157877B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR20000006412A (en) Improved thermoelectric module and method of manufacturing the same
JP2007152385A (en) High temperature solder, high temperature solder paste material and power semiconductor equipment using the same
JP4401754B2 (en) Method for manufacturing thermoelectric conversion module
US10224472B2 (en) Thermoelectric power module
JP2001520585A (en) Lead-free solder
JP6810915B2 (en) Solder material
CN102017107A (en) Joint structure and electronic component
JP2005503926A (en) Improved composition, method and device suitable for high temperature lead-free solders
JPS61238932A (en) Reduction of activity of electrophoresis
JP3670432B2 (en) Solder for thermoelectric cooling device
JP2003338641A (en) Thermoelectric element
JP2020061541A (en) Thermoelectric module
JPH09122967A (en) Composite solder material
JP4973109B2 (en) Manufacturing method of semiconductor device
CN112310027A (en) Welding a conductor to an aluminum layer
US3261725A (en) Device comprising a iii-v compound semiconductor body and at least one contact to said body
EP0507718A1 (en) Low lead content Pb-Sn-Ag-Sb solder alloy useful in an interconnect metallization structure
JP3552704B2 (en) Thermoelectric conversion module
JP3446829B2 (en) Semiconductor device
JP3592054B2 (en) Electronic circuit and manufacturing method thereof
US20090093109A1 (en) Method for producing a semiconductor device using a solder alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees