JP3552704B2 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP3552704B2
JP3552704B2 JP2002042297A JP2002042297A JP3552704B2 JP 3552704 B2 JP3552704 B2 JP 3552704B2 JP 2002042297 A JP2002042297 A JP 2002042297A JP 2002042297 A JP2002042297 A JP 2002042297A JP 3552704 B2 JP3552704 B2 JP 3552704B2
Authority
JP
Japan
Prior art keywords
conversion module
thermoelectric conversion
thermoelectric
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002042297A
Other languages
Japanese (ja)
Other versions
JP2003243728A (en
Inventor
延明 富田
直樹 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2002042297A priority Critical patent/JP3552704B2/en
Publication of JP2003243728A publication Critical patent/JP2003243728A/en
Application granted granted Critical
Publication of JP3552704B2 publication Critical patent/JP3552704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は熱電変換モジュールに関し、特に、Au−Sn系はんだを使用した鉛フリーの熱電変換モジュールに関する。
【0002】
【従来の技術】
熱電変換モジュールは、図2に示すように、下基板1と、この下基板1に対向する上基板2との間に、複数個の熱電素子3を配置して構成されている。そして、下基板1及び上基板2の各対向面に形成された下部電極4及び上部電極5に、例えば、1個の下部電極4上に2個の熱電素子3を配置し、隣接する2個の下部電極4上の隣接する2個の熱電素子同士を1個の上部電極5により接続するというようにして、複数個の熱電素子3を、下部電極4と上部電極5とで交互に接続することにより直列接続している。なお、これらの複数個の熱電素子の全部又は一部を並列接続する場合もある。また、熱電変換モジュールの下基板には、直列又は並列に接続された熱電素子群の両端部に夫々接続された端子(図示せず)が設けられており、この端子に外部リード線(図示せず)が接続されて、熱電素子が外部に引き出されている。
【0003】
この熱電変換モジュールにおいて、各熱電素子と下部電極及び上部電極とは、従来、Sn−5質量%Sbはんだにより接合されている。これは、この熱電変換モジュールをパッケージ6に搭載する際に、熱電変換モジュールの下基板とパッケージ内面とを、Sn−37質量%Pbはんだ8により接合していたからである。このSn−37質量%Pbはんだは融点が183℃であり、熱電変換モジュールとしては、このパッケージ側のはんだ種よりも高温の融点を有するはんだを使用する必要があり、Sn−5質量%はんだは、融点が240℃であり、適度の融点を有しているからである。ちなみに、熱電変換モジュールが冷却しようとする対象物として、LD(レーザダイオード)7があり、このLDと熱電変換モジュールの上基板2との間は、In−Sn系はんだ9(融点131℃)等により接合されている。
【0004】
しかし、近時、鉛公害の防止のための鉛フリー化に際し、Sn−37質量%Pbはんだに代わるはんだ種の使用が要望されている。また、熱電変換モジュールの接合ではないが、半導体装置又は光ファイバの接合に、Au−Sn系はんだを使用することが提案されている(特開平11−307585号公報、特開平9−102514号公報、特開平8−250851号公報)。一方、熱電変換モジュールの各部材の接合の場合には、融点が280℃のAu−20質量%SnはんだのようなAu−Sn系はんだの使用が考えられる。
【0005】
【発明が解決しようとする課題】
しかし、熱電変換モジュールにおいては、基板上の端子と外部リード線とを接続するはんだ種として、同様にAu−Sn系はんだを使用すると、リード線として、従来使用されているSnめっき銅線を組み合わせた場合に、Snの融点が232℃であり、Au−Sn系はんだの融点280℃と大きく離れているため、はんだ付け時にSnが先に溶け始め、はんだ付け部との境界部近傍でSnが溶けるという問題点がある。これにより、図3に示すように、Snメッキが剥がれてしまい(Snメッキ剥がれ20)、接続強度の信頼性が劣化してしまう。
【0006】
また、図3に示すように、SnめっきとAu−Snはんだとの反応層にSnリッチのSn−10質量%Au層21が発生し、この合金の融点は217℃と極めて低いため、接続信頼性を著しく劣化させてしまう。
【0007】
本発明はかかる問題点に鑑みてなされたものであって、鉛フリー化のために、熱電変換モジュールの組み立てにAu−Sn系はんだを使用した場合に、熱電変換モジュールの端子とリード線との間の接続信頼性を向上させることができる熱電変換モジュールを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る熱電変換モジュールは、下基板と、前記下基板に対向する上基板と、前記下基板及び上基板の各対向面に夫々形成された複数個の下部電極及び上部電極と、前記下部電極と上部電極との間に設けられ前記下部電極及び上部電極により直列及び/又は並列に接続された複数個の熱電素子と、前記直列及び/又は並列に接続された熱電素子群の両端部の熱電素子に接続され前記下基板上に形成された少なくとも1対の端子部と、この端子部に接続されたリード線と、を有し、前記熱電素子と前記下部電極及び上部電極と、並びに、前記リード線と前記端子部とは、Au−Sn系合金(Auが50質量%以上)からなるはんだにより接合されており、前記リード線は、Au線又はAu、Pd、Pt、Ni、Ag、Cr、Co、Ti、Ru及びRhからなる群から選択された材料で被覆された軟銅線であることを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施例について添付の図面を参照して具体的に説明する。図1は本発明の実施例に係る熱電変換モジュールを示す図である。図1において、図2と同一構成物には同一符号を付す。即ち、下基板1と、下基板1に対向する上基板2と、下基板1及び上基板2の各対向面に夫々形成された複数個の下部電極4及び上部電極5と、下部電極4と上部電極5との間に設けられた熱電素子3とから熱電変換モジュールが構成されている。この熱電素子3は、下部電極4及び上部電極5により直列及び/又は並列に接続されている。図示例は、隣接する2個の下部電極4上に搭載された隣接する2個の熱電素子(N型及びP型)3は、1個の上部電極3に接続されて、各熱電素子3が直列接続されている。なお、これらの熱電素子3は下部電極4及び上部電極5により並列接続される場合もある。
【0010】
そして、これらの直列接続された熱電素子群の両端部に位置する熱電素子3が搭載された下部電極4には、夫々端子部12が接続されている。これらの端子部12は下部基板1上に形成されている。
【0011】
而して、各熱電素子3と下部電極4及び上部電極5とはAu−Sn系(Auが50質量%以上)はんだにより接合されていると共に、端子部12には、リード線10が、同様にAu−Sn系(Auが50質量%以上)はんだにより接合されている。
【0012】
このリード線10は、Au被覆軟銅線である。しかし、リード線10は、これに限らず、例えば、Pd、Pt、Ni、Ag、Cr、Co、Ti、Ru及びRhからなる群から選択された材料で被覆された軟銅線を使用してもよいし、Au線を使用してもよい。
【0013】
次に、本実施例の動作について説明する。リード線10として、Au被覆軟銅線を使用した場合、熱電変換モジュールの組み立て時に、Au−Sn系はんだを溶融させても、被覆されたAu膜の融点が高いために、Au−Sn系はんだの融点(280℃)又はそれより若干高い温度でもAu膜が溶融したり、Au膜が剥がれたりすることはない。
【0014】
また、Au−SnはんだとAu膜とが反応しても、反応生成物はAuリッチになり、低融点のSn−10質量%Au層は生成しない。
【0015】
なお、Pd、Pt、Ni、Ag、Cr、Co、Ti、Ru又はRhで被覆された軟銅線を使用しても、同様に、メッキ剥がれ及び低融点のSn−10質量%Au層の生成を防止することができる。即ち、はんだのSnとリード線の各被覆金属とが反応しても、Au−Sn系はんだの融点を下げることはない。
【0016】
【実施例】
次に、本発明の実施例について、本発明の範囲から外れる比較例と比較して説明する。下記表1及び表2は、実施例及び比較例の接合強度(kg/mm)及び信頼性試験の結果(%)を示す。比較例は、従来のSn被覆リード線を使用した場合のものである。
【0017】
【表1】

Figure 0003552704
【0018】
【表2】
Figure 0003552704
【0019】
この信頼性試験は、各実施例及び比較例について、夫々20個の試験材(熱電変換モジュール)について、パワーサイクル試験を実施し、このパワーサイクル試験の前後のACRの変化率の平均値により評価した。パワーサイクル試験は熱電変換モジュール試験材に1.5分間にわたり2アンペアを通電し、4.5分間電流を停止し、これを5000回繰り返した。ACRとは、交流で測定した熱電素子の抵抗値(Alternative Current of Resistance)のことである。このACRは、27℃で、1kHzの周波数の交流(0.1mA)で測定したものである。パワーサイクル試験によるACRの変化率が大きいほど、熱電素子の劣化が激しい。また、接合強度は電極端子部に所定のはんだでリード線をはんだ付けした後、電極端子部を固定し、リード線をリード線の長手方向(基板と平行)に引っ張ることにより、リード線が剥離するときの強度として測定した。
【0020】
表1に示すように、比較例は接合強度が5.5kg/mmと低く、信頼性試験においても、ACRの変化率が1.2%と高く、熱冷サイクルより熱電変換モジュールの劣化が激しかったことを示している。これに対し、本発明の実施例1乃至4はいずれも接合強度が7.0kg/mm以上と高く、信頼性試験においても、ACRの変化率が0.31%以下と低く、熱電変換モジュールの劣化が少ないことがわかる。また、表2に示すように、本発明の実施例5乃至10も、接合強度が5.6kg/mm以上であり、信頼性試験においてACRの変化率が0.97%以下であり、熱電変換モジュールの劣化が少ないものである。
【0021】
【発明の効果】
以上説明したように、本発明によれば、熱電変換モジュールのリード線の接続信頼性が極めて高いという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施例に係る熱電変換モジュールを示す図である。
【図2】従来の熱電変換モジュールを示す図である。
【図3】同じく、従来の熱電変換モジュールを示す図である。
【符号の説明】
1:下基板、2:上基板、3:熱電素子、4:下部電極、5:上部電極、10:リード線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric conversion module, and more particularly to a lead-free thermoelectric conversion module using an Au—Sn-based solder.
[0002]
[Prior art]
As shown in FIG. 2, the thermoelectric conversion module includes a plurality of thermoelectric elements 3 arranged between a lower substrate 1 and an upper substrate 2 facing the lower substrate 1. Then, for example, two thermoelectric elements 3 are arranged on one lower electrode 4 on the lower electrode 4 and the upper electrode 5 formed on the opposing surfaces of the lower substrate 1 and the upper substrate 2, respectively. A plurality of thermoelectric elements 3 are connected alternately by the lower electrode 4 and the upper electrode 5 such that two adjacent thermoelectric elements on the lower electrode 4 are connected by one upper electrode 5. They are connected in series. In some cases, all or some of the plurality of thermoelectric elements may be connected in parallel. Further, terminals (not shown) connected to both ends of the thermoelectric element group connected in series or in parallel are provided on the lower substrate of the thermoelectric conversion module, and these terminals are connected to external lead wires (not shown). Is connected, and the thermoelectric element is drawn out.
[0003]
In this thermoelectric conversion module, each thermoelectric element, the lower electrode and the upper electrode are conventionally joined by Sn-5 mass% Sb solder. This is because the lower substrate of the thermoelectric conversion module and the inner surface of the package were joined by the Sn-37 mass% Pb solder 8 when the thermoelectric conversion module was mounted on the package 6. This Sn-37% by mass Pb solder has a melting point of 183 ° C., and as the thermoelectric conversion module, it is necessary to use a solder having a higher melting point than the solder type on the package side. This is because the melting point is 240 ° C. and the melting point is moderate. Incidentally, there is an LD (laser diode) 7 as an object to be cooled by the thermoelectric conversion module, and an In-Sn based solder 9 (melting point 131 ° C.) or the like is provided between the LD and the upper substrate 2 of the thermoelectric conversion module. Are joined.
[0004]
However, recently, there has been a demand for the use of a solder type in place of Sn-37 mass% Pb solder in order to prevent lead pollution from becoming lead-free. Also, it is proposed to use Au-Sn-based solder for joining a semiconductor device or an optical fiber, not for joining a thermoelectric conversion module (JP-A-11-307585 and JP-A-9-102514). And JP-A-8-250851. On the other hand, in the case of joining each member of the thermoelectric conversion module, use of an Au-Sn-based solder such as an Au-20 mass% Sn solder having a melting point of 280 ° C can be considered.
[0005]
[Problems to be solved by the invention]
However, in the thermoelectric conversion module, when an Au-Sn-based solder is similarly used as a solder type for connecting a terminal on a substrate and an external lead wire, a conventional Sn-plated copper wire is used as a lead wire. In this case, the melting point of Sn is 232 ° C., which is far away from the melting point of Au—Sn-based solder at 280 ° C., so that Sn begins to melt at the time of soldering and Sn near the boundary with the soldered portion. There is a problem of melting. As a result, as shown in FIG. 3, the Sn plating peels off (Sn plating peeling 20), and the reliability of the connection strength deteriorates.
[0006]
Further, as shown in FIG. 3, a Sn-rich Sn-10 mass% Au layer 21 is generated in a reaction layer between the Sn plating and the Au—Sn solder, and the melting point of this alloy is extremely low at 217 ° C .; Properties will be significantly degraded.
[0007]
The present invention has been made in view of such a problem, and when Au-Sn-based solder is used for assembling a thermoelectric conversion module in order to make it lead-free, a terminal of the thermoelectric conversion module and a lead wire are connected. It is an object of the present invention to provide a thermoelectric conversion module capable of improving connection reliability between them.
[0008]
[Means for Solving the Problems]
The thermoelectric conversion module according to the present invention includes a lower substrate, an upper substrate facing the lower substrate, a plurality of lower electrodes and upper electrodes respectively formed on respective opposing surfaces of the lower substrate and the upper substrate; A plurality of thermoelectric elements provided between an electrode and an upper electrode and connected in series and / or parallel by the lower electrode and the upper electrode; and a plurality of thermoelectric elements connected in series and / or in parallel. At least one pair of terminal portions connected to the thermoelectric element and formed on the lower substrate, and a lead wire connected to the terminal portion, the thermoelectric element, the lower electrode and the upper electrode, and The lead wire and the terminal portion are joined by a solder made of an Au-Sn-based alloy (Au is 50% by mass or more), and the lead wire is made of an Au wire or Au, Pd, Pt, Ni, Ag, Cr, Co, Ti, R And characterized in that from the group consisting of Rh is a soft copper wire coated with a selected material.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a diagram showing a thermoelectric conversion module according to an embodiment of the present invention. 1, the same components as those in FIG. 2 are denoted by the same reference numerals. That is, the lower substrate 1, the upper substrate 2 facing the lower substrate 1, the plurality of lower electrodes 4 and the upper electrodes 5 formed on the respective opposing surfaces of the lower substrate 1 and the upper substrate 2, A thermoelectric conversion module is configured by the thermoelectric element 3 provided between the thermoelectric element 3 and the upper electrode 5. The thermoelectric elements 3 are connected in series and / or parallel by a lower electrode 4 and an upper electrode 5. In the illustrated example, two adjacent thermoelectric elements (N-type and P-type) 3 mounted on two adjacent lower electrodes 4 are connected to one upper electrode 3, and each thermoelectric element 3 They are connected in series. These thermoelectric elements 3 may be connected in parallel by the lower electrode 4 and the upper electrode 5.
[0010]
Terminal portions 12 are respectively connected to the lower electrodes 4 on which the thermoelectric elements 3 are located at both ends of the group of thermoelectric elements connected in series. These terminals 12 are formed on the lower substrate 1.
[0011]
Thus, each thermoelectric element 3 and the lower electrode 4 and the upper electrode 5 are joined by an Au—Sn-based (Au is 50% by mass or more) solder, and the lead wire 10 is similarly connected to the terminal portion 12. Are joined by Au-Sn-based (Au is 50% by mass or more) solder.
[0012]
The lead wire 10 is an Au-coated soft copper wire. However, the lead wire 10 is not limited to this. For example, a soft copper wire coated with a material selected from the group consisting of Pd, Pt, Ni, Ag, Cr, Co, Ti, Ru and Rh may be used. Alternatively, an Au wire may be used.
[0013]
Next, the operation of the present embodiment will be described. When an Au-coated soft copper wire is used as the lead wire 10, even when the Au-Sn-based solder is melted at the time of assembling the thermoelectric conversion module, the Au-Sn-based solder has a high melting point because the coated Au film has a high melting point. Even at a melting point (280 ° C.) or a temperature slightly higher than the melting point, the Au film does not melt or the Au film does not peel off.
[0014]
Further, even if the Au—Sn solder reacts with the Au film, the reaction product becomes Au-rich, and a low melting point Sn-10 mass% Au layer is not generated.
[0015]
In addition, even if the soft copper wire coated with Pd, Pt, Ni, Ag, Cr, Co, Ti, Ru or Rh is used, the peeling of the plating and the formation of the low melting point Sn-10 mass% Au layer are similarly caused. Can be prevented. That is, even if Sn of the solder reacts with each coating metal of the lead wire, the melting point of the Au—Sn based solder is not reduced.
[0016]
【Example】
Next, examples of the present invention will be described in comparison with comparative examples that fall outside the scope of the present invention. Tables 1 and 2 below show the bonding strength (kg / mm 2 ) and the results (%) of the reliability tests of the examples and comparative examples. The comparative example is a case where a conventional Sn-coated lead wire is used.
[0017]
[Table 1]
Figure 0003552704
[0018]
[Table 2]
Figure 0003552704
[0019]
In this reliability test, a power cycle test was performed on each of the 20 test materials (thermoelectric conversion modules) for each of the examples and the comparative examples, and evaluation was performed based on the average value of the change rate of the ACR before and after the power cycle test. did. In the power cycle test, 2 amps were passed through the thermoelectric conversion module test material for 1.5 minutes, the current was stopped for 4.5 minutes, and this was repeated 5000 times. The ACR is a resistance value (Alternative Current of Resistance) of the thermoelectric element measured by alternating current. This ACR was measured at 27 ° C. with an alternating current (0.1 mA) at a frequency of 1 kHz. The larger the rate of change of the ACR in the power cycle test, the more severe the deterioration of the thermoelectric element. Also, the bonding strength is determined by soldering the lead wire to the electrode terminal with a predetermined solder, fixing the electrode terminal, and pulling the lead in the longitudinal direction of the lead (parallel to the substrate). It was measured as the strength when performing.
[0020]
As shown in Table 1, the bonding strength of the comparative example is as low as 5.5 kg / mm 2 , the rate of change of the ACR is as high as 1.2% in the reliability test, and the deterioration of the thermoelectric conversion module is smaller than that of the thermal cooling cycle. It shows that it was intense. On the other hand, in all of Examples 1 to 4 of the present invention, the bonding strength was as high as 7.0 kg / mm 2 or more, and the ACR change rate was as low as 0.31% or less in the reliability test. It can be seen that there is little deterioration. Further, as shown in Table 2, Examples 5 to 10 of the present invention also have a joint strength of 5.6 kg / mm 2 or more, a change rate of ACR of 0.97% or less in a reliability test, and The deterioration of the conversion module is small.
[0021]
【The invention's effect】
As described above, according to the present invention, there is an effect that the connection reliability of the lead wires of the thermoelectric conversion module is extremely high.
[Brief description of the drawings]
FIG. 1 is a diagram showing a thermoelectric conversion module according to an embodiment of the present invention.
FIG. 2 is a diagram showing a conventional thermoelectric conversion module.
FIG. 3 is a view showing a conventional thermoelectric conversion module.
[Explanation of symbols]
1: lower substrate, 2: upper substrate, 3: thermoelectric element, 4: lower electrode, 5: upper electrode, 10: lead wire

Claims (1)

下基板と、前記下基板に対向する上基板と、前記下基板及び上基板の各対向面に夫々形成された複数個の下部電極及び上部電極と、前記下部電極と上部電極との間に設けられ前記下部電極及び上部電極により直列及び/又は並列に接続された複数個の熱電素子と、前記直列及び/又は並列に接続された熱電素子群の両端部の熱電素子に接続され前記下基板上に形成された少なくとも1対の端子部と、この端子部に接続されたリード線と、を有し、前記熱電素子と前記下部電極及び上部電極と、並びに、前記リード線と前記端子部とは、Au−Sn系合金(Auが50質量%以上)からなるはんだにより接合されており、前記リード線は、Au線又はAu、Pd、Pt、Ni、Ag、Cr、Co、Ti、Ru及びRhからなる群から選択された材料で被覆された軟銅線であることを特徴とする熱電変換モジュール。A lower substrate, an upper substrate opposed to the lower substrate, a plurality of lower electrodes and upper electrodes formed respectively on the opposing surfaces of the lower substrate and the upper substrate, and provided between the lower electrode and the upper electrode. A plurality of thermoelectric elements connected in series and / or parallel by the lower electrode and the upper electrode; and a thermoelectric element at both ends of the group of thermoelectric elements connected in series and / or parallel, on the lower substrate. And at least one pair of terminal portions, and a lead wire connected to the terminal portion, wherein the thermoelectric element, the lower electrode and the upper electrode, and the lead wire and the terminal portion , Au—Sn based alloy (Au is 50% by mass or more), and the lead wire is made of an Au wire or Au, Pd, Pt, Ni, Ag, Cr, Co, Ti, Ru, and Rh. Selected from the group consisting of Thermoelectric conversion module, which is a coated annealed copper wire in charge.
JP2002042297A 2002-02-19 2002-02-19 Thermoelectric conversion module Expired - Fee Related JP3552704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042297A JP3552704B2 (en) 2002-02-19 2002-02-19 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002042297A JP3552704B2 (en) 2002-02-19 2002-02-19 Thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2003243728A JP2003243728A (en) 2003-08-29
JP3552704B2 true JP3552704B2 (en) 2004-08-11

Family

ID=27782456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042297A Expired - Fee Related JP3552704B2 (en) 2002-02-19 2002-02-19 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP3552704B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100397671C (en) * 2003-10-29 2008-06-25 京瓷株式会社 Thermoelectric inverting model
JP2005277256A (en) * 2004-03-26 2005-10-06 Aisin Seiki Co Ltd Lead wire and thermoelectric module comprising the same
JP2006073632A (en) * 2004-08-31 2006-03-16 Toshiba Corp Thermoelectric conversion device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2003243728A (en) 2003-08-29

Similar Documents

Publication Publication Date Title
US20030024733A1 (en) Lead-free solder, and connection lead and electrical component using said lead-free solder
KR101986557B1 (en) Sn-Cu-BASED LEAD-FREE SOLDER ALLOY
JP4401754B2 (en) Method for manufacturing thermoelectric conversion module
JP5362719B2 (en) Junction structure and method of manufacturing electronic component
JPWO2006011204A1 (en) Lead-free solder alloy
JP2009231317A (en) Thermoelectric module
JP4228926B2 (en) Semiconductor device
JP2007067231A (en) Thermoelectric module
JP2005340268A (en) Transistor package
JP3552704B2 (en) Thermoelectric conversion module
JP2003282974A (en) Thermoelectric conversion module
JP2009158725A (en) Semiconductor device and die bonding material
JP2002313604A (en) Polymer ptc device
JP2004342879A (en) Method of assembling thermoelectric transducing module and blazing material used for assembling the module
JP4826310B2 (en) Thermoelectric module
JP4792713B2 (en) Lead wire, manufacturing method thereof, and solar cell assembly
JP2004186566A (en) Assembling method of thermoelectric conversion module
JP2002231564A (en) Ceramic capacitor
JP3184449B2 (en) Die bond materials for semiconductor devices
JP2004207717A (en) Thermoelectric module
JP3670432B2 (en) Solder for thermoelectric cooling device
JP2005161397A (en) Solder and its manufacturing method
JP2006245153A (en) Electrode connecting wire material for solar cell, and solar cell connected with wire material
JP3832414B2 (en) Hermetic seal cap
JP2005286121A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Ref document number: 3552704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees