JP2003338641A - Thermoelectric element - Google Patents

Thermoelectric element

Info

Publication number
JP2003338641A
JP2003338641A JP2002147356A JP2002147356A JP2003338641A JP 2003338641 A JP2003338641 A JP 2003338641A JP 2002147356 A JP2002147356 A JP 2002147356A JP 2002147356 A JP2002147356 A JP 2002147356A JP 2003338641 A JP2003338641 A JP 2003338641A
Authority
JP
Japan
Prior art keywords
solder
thermoelectric
thermoelectric element
thermal expansion
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002147356A
Other languages
Japanese (ja)
Inventor
Tomohisa Arai
智久 新井
Takashi Rokutanda
貴史 六反田
Masami Okamura
正己 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002147356A priority Critical patent/JP2003338641A/en
Publication of JP2003338641A publication Critical patent/JP2003338641A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To avoid deterioration in an element function, element breakdown and the like due to thermal fatigue, by reducing thermal stress caused by a soldering layer or the like in a thermoelectric element using a thermoelectric semiconductor. <P>SOLUTION: The thermoelectric element 1 is composed by connecting an n-type thermoelectric semiconductor and a p-type thermoelectric semiconductor 5 that are alternately aligned on a support member 2 in series by first and second electrodes 6 and 7 that are joined to ends of the semiconductors via the soldering layers 8 and 9, respectively. The soldering layers 8 and 9 for joining thermoelectric semiconductors 4 and 5 to the electrodes 6 and 7 is composed of composite solder containing a thermal expansion inhibitor, such as metal powder, a metal fiber, ceramics powder, and a ceramics fiber, where average a linear expansion coefficient from 25 to 100°C is smaller than a soldering base material and the inhibitor has a volume ratio of 5 to 80%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱電半導体を利用
した熱電素子に関する。
TECHNICAL FIELD The present invention relates to a thermoelectric element using a thermoelectric semiconductor.

【0002】[0002]

【従来の技術】ビスマス(Bi)−テルル(Te)系、
鉄(Fe)−シリサイド(Si)系、コバルト(Co)
−アンチモン(Sb)系などの熱電半導体を利用した熱
電素子は、冷却もしくは加熱装置などとして利用されて
いる。熱電素子は小型・薄型で、かつ液体や気体などの
熱媒体(冷媒など)を使用することなく冷却の実施が可
能であることから、最近ではコンピュータのCPUやレ
ーザ素子などの高発熱半導体装置の冷却装置として注目
されている。また、これら以外の用途においても、各種
の分野で冷却装置や加熱装置として使用されている。
2. Description of the Related Art Bismuth (Bi) -tellurium (Te) system,
Iron (Fe) -silicide (Si) system, cobalt (Co)
-A thermoelectric element using a thermoelectric semiconductor such as antimony (Sb) is used as a cooling or heating device. Thermoelectric elements are small and thin and can be cooled without using a heat medium (refrigerant, etc.) such as liquid or gas. It is drawing attention as a cooling device. Further, also in applications other than these, it is used as a cooling device and a heating device in various fields.

【0003】このような熱電素子は、例えば複数個のP
型熱電半導体とN型熱電半導体とを交互に配置し、これ
ら複数個の熱電半導体を一方の端部側に配置される吸熱
側電極と他方の端部側に配置される放熱側電極で直列に
接続した構造を有している。このような熱電素子におい
て、N型熱電半導体からP型熱電半導体の方向に直流電
流を流すと、ペルチェ効果により熱電半導体の一方の端
部側で吸熱が起こると共に、他方の端部側で放熱(発
熱)が起こるため、吸熱側に被冷却部材や装置などを配
置することで冷却を実施することができる。
Such a thermoelectric element has, for example, a plurality of P elements.
Type thermoelectric semiconductors and N-type thermoelectric semiconductors are alternately arranged, and a plurality of these thermoelectric semiconductors are arranged in series by an endothermic side electrode arranged on one end side and a heat radiating side electrode arranged on the other end side. It has a connected structure. In such a thermoelectric element, when a direct current is made to flow from the N-type thermoelectric semiconductor to the P-type thermoelectric semiconductor, heat absorption occurs at one end side of the thermoelectric semiconductor due to the Peltier effect and heat dissipation at the other end side ( Since heat is generated, cooling can be performed by disposing a member to be cooled or a device on the heat absorbing side.

【0004】熱電素子の具体的な構造としては、例えば
以下に示すようなπ型構造が知られている(例えば特開
平7-321379号公報、特開平11-340527号公報、特開2001-
332773公報、特開2001-352107公報など参照)。すなわ
ち、第1の金属電極群(放熱側電極群)が形成されたセ
ラミックス基板などの支持部材を用意し、第1の金属電
極群上にそれぞれ複数個のP型熱電半導体とN型熱電半
導体とを交互に配置する。P型熱電半導体とN型熱電半
導体の上端部側には第2の金属電極群(吸熱側電極群)
を配置し、最終的に全ての熱電半導体が電気的に直列に
接続されるように、各金属電極とP型およびN型熱電半
導体とを接合する。これら金属電極と熱電半導体との接
合には一般に半田が用いられている。
As a concrete structure of the thermoelectric element, for example, a π-type structure as shown below is known (for example, JP-A-7-321379, JP-A-11-340527, and JP-A-2001-).
332773, JP 2001-352107, etc.). That is, a supporting member such as a ceramics substrate on which a first metal electrode group (heat radiation side electrode group) is formed is prepared, and a plurality of P-type thermoelectric semiconductors and N-type thermoelectric semiconductors are respectively provided on the first metal electrode group. Are arranged alternately. A second metal electrode group (heat absorption side electrode group) is provided on the upper end side of the P-type thermoelectric semiconductor and the N-type thermoelectric semiconductor.
And each metal electrode is bonded to the P-type and N-type thermoelectric semiconductors so that finally all the thermoelectric semiconductors are electrically connected in series. Solder is generally used for joining the metal electrodes and the thermoelectric semiconductor.

【0005】ところで、上記したようなπ型熱電素子の
動作時において、各構成部材(支持部材、金属電極、半
田層、熱電半導体など)は冷熱サイクルを繰返し受ける
ことになる。熱電素子は吸熱側と放熱側の熱膨張(伸
び)が異なることから、熱電素子全体にたわみが生じ
る。さらに、各構成部材間には熱膨張率に差があること
から、局所的には冷熱サイクルの印加時に熱応力が発生
する。特に、支持部材にセラミックス基板を用いた場
合、他の構成材料との熱膨張差が大きいため、冷熱サイ
クルの繰返しにより生じる熱応力が大きくなる。これら
素子全体のたわみや構成材料間の熱膨張差に起因する熱
応力によって、熱電素子は動作時に熱疲労を受けること
になり、この熱疲労により生じる亀裂や接合界面の剥離
などが素子性能の劣化、さらには素子破壊などの発生原
因となっている。
By the way, during the operation of the π-type thermoelectric element as described above, each component (support member, metal electrode, solder layer, thermoelectric semiconductor, etc.) is repeatedly subjected to a cooling / heating cycle. Since the thermoelectric element has different thermal expansion (elongation) between the heat absorption side and the heat radiation side, the entire thermoelectric element is bent. Further, since there is a difference in the coefficient of thermal expansion between the respective constituent members, thermal stress is locally generated when the cooling / heating cycle is applied. In particular, when a ceramic substrate is used as the supporting member, the difference in thermal expansion from other constituent materials is large, so that the thermal stress caused by repeated cooling and heating cycles becomes large. Due to the thermal stress due to the deflection of the entire element and the difference in thermal expansion between the constituent materials, the thermoelectric element is subjected to thermal fatigue during operation, and cracks and peeling of the bonding interface caused by this thermal fatigue deteriorate element performance. In addition, it is a cause of element destruction.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
の熱電素子においては冷熱サイクルの印加に伴う熱疲労
によって種々の問題が生じている。上述した各構成材料
間の熱膨張差に基づく熱応力のうち、半田は他の構成材
料に比べて熱膨張率が大きいことから、半田が接合され
る部材および半田自体にかかる熱応力は大きく、半田層
の厚さが厚い場合には熱応力による影響が顕著になる。
このような半田層に起因する熱応力は、熱電半導体と半
田層との接合界面に亀裂を生じさせたり、また半田層や
熱電半導体自体に亀裂を生じさせることになる。これら
が熱電素子の性能劣化や素子破壊の大きな要因となって
いる。
As described above, the conventional thermoelectric elements have various problems due to thermal fatigue caused by the application of the cooling / heating cycle. Among the thermal stresses based on the difference in thermal expansion between the constituent materials described above, since solder has a higher coefficient of thermal expansion than other constituent materials, the thermal stress applied to the members to which the solder is joined and the solder itself is large, When the solder layer is thick, the effect of thermal stress becomes significant.
The thermal stress caused by such a solder layer causes a crack at the bonding interface between the thermoelectric semiconductor and the solder layer, or causes a crack in the solder layer or the thermoelectric semiconductor itself. These are major causes of performance deterioration and element destruction of thermoelectric elements.

【0007】さらに、半田が接合される部材のうち熱電
半導体は脆性材料で機械的強度も低いため、熱電半導体
に疲労亀裂が生じやすい。また、半田自体も疲労強度が
低いことから、半田層自体にも疲労亀裂が生じやすい。
熱電素子は複数の熱電半導体を全て直列に接続して構成
されているため、熱電半導体や半田層、あるいはこれら
の接合界面に1箇所でも亀裂が生じると、素子全体とし
ての抵抗値が上昇するなどして、熱電素子の機能が損な
われることになる。
Further, among the members to which the solder is joined, the thermoelectric semiconductor is a brittle material and has a low mechanical strength, so that fatigue cracks are likely to occur in the thermoelectric semiconductor. Further, since the solder itself has a low fatigue strength, fatigue cracks easily occur in the solder layer itself.
Since the thermoelectric element is configured by connecting a plurality of thermoelectric semiconductors in series, if the crack occurs even at one location in the thermoelectric semiconductor, the solder layer, or the bonding interface between these, the resistance value of the entire element increases, etc. Then, the function of the thermoelectric element is impaired.

【0008】本発明はこのような課題に対処するために
なされたもので、半田層に起因する熱応力などを低減す
ることによって、熱疲労による素子機能の低下や素子破
壊の発生を抑制することを可能にした熱電素子を提供す
ることを目的としている。
The present invention has been made to address such a problem, and suppresses the deterioration of the element function and the occurrence of element destruction due to thermal fatigue by reducing the thermal stress caused by the solder layer. The object is to provide a thermoelectric element that enables the above.

【0009】[0009]

【課題を解決するための手段】本発明の熱電素子は、請
求項1に記載したように、支持部材と、前記支持部材上
に交互に配列されたP型熱電半導体およびN型熱電半導
体と、前記支持部材の表面に設けられていると共に、前
記P型熱電半導体およびN型熱電半導体の一方の端部に
半田層を介して接合された第1の電極と、前記P型熱電
半導体およびN型熱電半導体が直列に接続されるように
他方の端部に半田層を介して接合された第2の電極とを
具備する熱電素子において、前記半田層は25℃から100
℃までの平均線膨張率が半田母材より小さい熱膨張抑制
材を体積比で5〜80%の範囲で含む複合半田からなるこ
とを特徴としている。
A thermoelectric element according to the present invention has a support member and P-type thermoelectric semiconductors and N-type thermoelectric semiconductors alternately arranged on the support member, as described in claim 1. A first electrode provided on the surface of the support member and joined to one end of the P-type thermoelectric semiconductor and the N-type thermoelectric semiconductor via a solder layer; and the P-type thermoelectric semiconductor and the N-type In a thermoelectric element comprising a second electrode joined to the other end of the thermoelectric semiconductor via a solder layer so that the thermoelectric semiconductor is connected in series, the solder layer has a temperature of 25 ° C to 100 ° C.
It is characterized by being composed of a composite solder containing a thermal expansion suppressing material whose average linear expansion coefficient up to ℃ is smaller than that of the solder base material in a volume ratio of 5 to 80%.

【0010】本発明の熱電素子において、複合半田は請
求項2に記載したように25℃から100℃までの平均線膨
張率が12×10-6〜21×10-6/℃の範囲であることが好ま
しい。また、平均線膨張率が半田母材より小さい熱膨張
抑制材としては請求項3に記載したように、例えば金属
粉末、金属繊維、セラミックス粉末、およびセラミック
ス繊維から選ばれる少なくとも1種が用いられる。
In the thermoelectric element of the present invention, the composite solder has an average linear expansion coefficient of 12 × 10 −6 to 21 × 10 −6 / ° C. from 25 ° C. to 100 ° C. as described in claim 2. It is preferable. Further, as the thermal expansion suppressing material having an average linear expansion coefficient smaller than that of the solder base material, as described in claim 3, for example, at least one selected from metal powder, metal fiber, ceramic powder, and ceramic fiber is used.

【0011】本発明の熱電素子においては、上述したよ
うに熱膨張率が半田母材より小さい熱膨張抑制材を含む
複合半田で半田層を構成している。このような半田層に
よれば、熱膨張抑制材を含むことで半田層の熱膨張率自
体を低下させていることに加えて、半田層の熱膨張(伸
び)が熱膨張抑制材により機械的に拘束されるため、熱
電素子の冷熱動作に伴う半田層の熱変形を抑えることが
できる。従って、半田層に接合されている熱電半導体や
半田層自体に加わる熱応力が緩和され、熱電半導体や半
田層自体の熱疲労による亀裂発生などを抑制することが
できる。また半田層に亀裂が生じたとしても、熱膨張抑
制材は亀裂の伝播を阻止する機能を有するため、半田層
の信頼性を大幅に高めることができる。これらによっ
て、熱電素子の熱サイクルによる機能低下や素子破壊な
どを抑制することが可能となる。
In the thermoelectric element of the present invention, the solder layer is composed of the composite solder containing the thermal expansion suppressing material having a thermal expansion coefficient smaller than that of the solder base material as described above. According to such a solder layer, the thermal expansion coefficient itself of the solder layer is reduced by including the thermal expansion suppressing material, and the thermal expansion (elongation) of the solder layer is mechanically increased by the thermal expansion suppressing material. Therefore, the thermal deformation of the solder layer due to the cooling operation of the thermoelectric element can be suppressed. Therefore, the thermal stress applied to the thermoelectric semiconductor bonded to the solder layer or the solder layer itself is relieved, and the occurrence of cracks due to thermal fatigue of the thermoelectric semiconductor or the solder layer itself can be suppressed. Further, even if a crack occurs in the solder layer, the thermal expansion suppressing material has a function of preventing the propagation of the crack, so that the reliability of the solder layer can be significantly improved. As a result, it becomes possible to suppress the functional deterioration and element destruction due to the thermal cycle of the thermoelectric element.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施するための形
態について説明する。図1は本発明の一実施形態による
熱電素子の概略構造を示す断面図であり、図2はその要
部を拡大して示す断面図である。これらの図に示す熱電
素子1は上下に支持部材2、3を有しており、これら下
部支持部材2と上部支持部材3とは対向配置されてい
る。この実施形態の熱電素子1は下部支持部材2側が放
熱面、上部支持部材3側が吸熱面とされている。
BEST MODE FOR CARRYING OUT THE INVENTION Modes for carrying out the present invention will be described below. FIG. 1 is a sectional view showing a schematic structure of a thermoelectric element according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view showing a main part thereof. The thermoelectric element 1 shown in these figures has upper and lower support members 2 and 3, and the lower support member 2 and the upper support member 3 are arranged to face each other. In the thermoelectric element 1 of this embodiment, the lower support member 2 side is a heat dissipation surface and the upper support member 3 side is a heat absorption surface.

【0013】これら支持部材2、3のうち、下部支持部
材(放熱側支持部材)2は熱電素子1の構造支持体とし
て機能するものであり、例えばアルミナ基板、窒化アル
ミニウム基板、窒化珪素基板などの絶縁性のセラミック
ス基板を用いることが好ましい。上部支持部材3(吸熱
側支持部材)には、下部支持部材2と同様に絶縁性基板
であるセラミックス基板を用いてもよいし、また下部支
持部材2で素子構造全体を十分に支持可能であれば、上
部支持部材3は絶縁性樹脂基板や絶縁性樹脂フィルムな
どで構成してもよい。
Of these support members 2 and 3, the lower support member (heat radiation side support member) 2 functions as a structural support of the thermoelectric element 1, and is, for example, an alumina substrate, an aluminum nitride substrate, a silicon nitride substrate, or the like. It is preferable to use an insulating ceramic substrate. As the upper support member 3 (heat absorption side support member), a ceramic substrate, which is an insulating substrate, may be used similarly to the lower support member 2, and the lower support member 2 can sufficiently support the entire element structure. For example, the upper support member 3 may be composed of an insulating resin substrate or an insulating resin film.

【0014】上述した下部支持部材2と上部支持部材3
との間には、複数のN型熱電半導体4とP型熱電半導体
5とが交互に配列されており、これらは素子全体として
はマトリックス状に配置されている。熱電半導体4、5
には各種公知の材料を使用することができ、その代表例
としてBi−Te系熱電半導体が挙げられる。Bi−T
e系熱電半導体としては、BiおよびSbから選ばれる
少なくとも1種の元素と、TeおよびSeから選ばれる
少なくとも1種の元素とを必須元素として含み、さらに
必要に応じてI、Cl、Br、Hg、Au、Cuなどの
添加元素を含む化合物半導体が知られている。熱電半導
体4、5はBi−Te系熱電半導体に限られるものでは
なく、例えばFe−Si系、Co−Sb系などの各種の
熱電半導体を適用することが可能である。
The above-mentioned lower support member 2 and upper support member 3
A plurality of N-type thermoelectric semiconductors 4 and P-type thermoelectric semiconductors 5 are alternately arranged between and, and these elements are arranged in a matrix as a whole element. Thermoelectric semiconductor 4, 5
Various known materials can be used for, and a typical example thereof is a Bi-Te-based thermoelectric semiconductor. Bi-T
The e-based thermoelectric semiconductor contains at least one element selected from Bi and Sb and at least one element selected from Te and Se as essential elements, and further contains I, Cl, Br, and Hg as necessary. Compound semiconductors containing additive elements such as Au, Au, and Cu are known. The thermoelectric semiconductors 4 and 5 are not limited to Bi-Te based thermoelectric semiconductors, and various thermoelectric semiconductors such as Fe-Si based and Co-Sb based can be applied.

【0015】複数のN型熱電半導体4およびP型熱電半
導体5は、N型熱電半導体4からP型熱電半導体5の方
向に、すなわちN型熱電半導体4、P型熱電半導体5、
N型熱電半導体4、P型熱電半導体5…の順に直流電流
が流れるように、下部支持部材2側に設けられた第1の
電極6と上部支持部材3側に設けられた第2の電極7に
より電気的に直列に接続されている。これら第1および
第2の電極6、7はそれぞれ複数個で電極群を構成して
いる。なお、各電極6、7は例えば銅板やアルミニウム
板などの金属板、もしくは金属の被着層などにより構成
される。
The plurality of N-type thermoelectric semiconductors 4 and P-type thermoelectric semiconductors 5 are arranged in the direction from N-type thermoelectric semiconductor 4 to P-type thermoelectric semiconductor 5, that is, N-type thermoelectric semiconductor 4, P-type thermoelectric semiconductor 5,
A first electrode 6 provided on the lower support member 2 side and a second electrode 7 provided on the upper support member 3 side so that a direct current flows in the order of the N-type thermoelectric semiconductor 4, the P-type thermoelectric semiconductor 5 ... Are electrically connected in series. Each of the first and second electrodes 6 and 7 constitutes a plurality of electrode groups. Each of the electrodes 6 and 7 is made of, for example, a metal plate such as a copper plate or an aluminum plate, or a metal adhesion layer.

【0016】すなわち、下部支持部材2の表面には放熱
側電極となる第1の電極6が複数設けられている。一
方、上部支持部材3側には吸熱側電極となる第2の電極
7が複数配置されている。吸熱側の第2の電極7は、隣
り合うN型熱電半導体4とP型熱電半導体5とをこの順
で電気的に接続する形状を有している。放熱側の第1の
電極6は、両端部の電極(リード引出し電極)を除い
て、隣り合うP型熱電半導体5とN型熱電半導体4とを
この順で電気的に接続する形状を有している。
That is, a plurality of first electrodes 6 serving as heat dissipation side electrodes are provided on the surface of the lower support member 2. On the other hand, a plurality of second electrodes 7 serving as heat absorption side electrodes are arranged on the upper support member 3 side. The second electrode 7 on the heat absorption side has a shape for electrically connecting the adjacent N-type thermoelectric semiconductor 4 and P-type thermoelectric semiconductor 5 in this order. The first electrode 6 on the heat radiation side has a shape that electrically connects the adjacent P-type thermoelectric semiconductor 5 and N-type thermoelectric semiconductor 4 in this order, except for the electrodes (lead extraction electrodes) at both ends. ing.

【0017】N型熱電半導体4およびP型熱電半導体5
の下側端部(放熱側端部)は、図2に拡大して示すよう
に、それぞれ半田層8を介して第1の電極6に接合され
ている。また、N型熱電半導体4およびP型熱電半導体
5の上側端部(吸熱側端部)は、同様に半田層9を介し
て第2の電極7に接合されている。このように、隣り合
うN型熱電半導体4とP型熱電半導体5とを、それぞれ
第1の電極6と第2の電極7で順に接続することによっ
て、熱電素子1全体として見た場合に、複数のN型熱電
半導体4と複数のP型熱電半導体5とが交互に直列接続
されている。
N-type thermoelectric semiconductor 4 and P-type thermoelectric semiconductor 5
The lower end portion (end portion on the heat radiation side) is joined to the first electrode 6 via the solder layer 8 as shown in an enlarged view in FIG. Further, the upper end portions (end portions on the heat absorption side) of the N-type thermoelectric semiconductor 4 and the P-type thermoelectric semiconductor 5 are similarly joined to the second electrode 7 via the solder layer 9. In this way, when the N-type thermoelectric semiconductor 4 and the P-type thermoelectric semiconductor 5 which are adjacent to each other are sequentially connected by the first electrode 6 and the second electrode 7, respectively, a plurality of thermoelectric elements 1 can be obtained. The N-type thermoelectric semiconductors 4 and the plurality of P-type thermoelectric semiconductors 5 are alternately connected in series.

【0018】このような熱電素子1に直流電源10から
N型熱電半導体4からP型熱電半導体5の方向に直流電
流を流すと、ペルチェ効果によって熱電半導体4、5の
上端部側では吸熱が起こり、下端部側では放熱が起こ
る。従って、熱電素子1の吸熱側に相当する上部支持部
材3に被冷却体(冷却する部材や装置)を当接させるこ
とによって、被冷却体から熱を奪って冷却が行われる。
被冷却体から奪った熱は熱電素子1の放熱側に相当する
下部支持部材2側から放熱される。
When a direct current is passed through the thermoelectric element 1 from the DC power source 10 in the direction from the N-type thermoelectric semiconductor 4 to the P-type thermoelectric semiconductor 5, heat absorption occurs on the upper end side of the thermoelectric semiconductors 4 and 5 due to the Peltier effect. Heat dissipation occurs on the lower end side. Therefore, by bringing the object to be cooled (member or device for cooling) into contact with the upper support member 3 corresponding to the heat absorbing side of the thermoelectric element 1, heat is taken from the object to be cooled for cooling.
The heat taken from the object to be cooled is radiated from the lower support member 2 side corresponding to the heat radiation side of the thermoelectric element 1.

【0019】上述した構造を有する熱電素子1におい
て、熱電半導体4、5と第1および第2の電極6、7と
の接合を担う半田層8、9は、それぞれ25℃から100℃
までの平均線膨張率が半田母材より小さい熱膨張抑制材
を、体積比で5〜80%の範囲で含む複合半田により構成
されている。ここで、半田層8、9の母材となる半田材
料(半田母材)には、一般的に電子部品の接合に用いら
れている各種の半田を適用することができる。具体的に
は、Sn−Pb系、Pb−Sn系、Sn−Pb−Bi
系、Sn−Pb−Ag系、Sn−Ag系、Sn−Sb
系、Pb−Ag系、Bi−Sn系、Bi−Pb−Sn系
などの各種の半田を使用することができ、半田材料自体
は特に限定されるものではない。
In the thermoelectric element 1 having the above-mentioned structure, the solder layers 8 and 9 for bonding the thermoelectric semiconductors 4 and 5 to the first and second electrodes 6 and 7 are 25 ° C. to 100 ° C., respectively.
Is composed of a composite solder containing a thermal expansion suppressing material having an average linear expansion coefficient lower than that of the solder base material in a volume ratio of 5 to 80%. Here, as the solder material (solder base material) that is the base material of the solder layers 8 and 9, various kinds of solder generally used for joining electronic components can be applied. Specifically, Sn-Pb system, Pb-Sn system, Sn-Pb-Bi
System, Sn-Pb-Ag system, Sn-Ag system, Sn-Sb
A variety of solders such as a Pb-Ag system, a Pb-Ag system, a Bi-Sn system, and a Bi-Pb-Sn system can be used, and the solder material itself is not particularly limited.

【0020】半田層8、9を構成する複合半田は、上記
したような各種の半田母材に、それより平均線膨張率
(25〜100℃)が小さい熱膨張抑制材を、複合半田全体
に対する体積比が5〜80%の範囲となるように添加した
ものであり、複合半田自体の平均線膨張率(25〜100
℃)は12×10-6〜21×10-6/℃の範囲であることが好ま
しい。このような複合半田を使用して半田層8、9を形
成することによって、熱電素子1の冷熱動作時における
半田層8、9の熱膨張(熱による伸び)を抑制し、これ
によって熱電素子1の熱サイクルによる機能低下や素子
破壊などを防ぐことを可能にしている。
The composite solder constituting the solder layers 8 and 9 comprises various kinds of solder base materials as described above, and a thermal expansion suppressing material having a smaller average linear expansion coefficient (25 to 100 ° C.) than that of the above-mentioned solder base material with respect to the entire composite solder. It is added so that the volume ratio is in the range of 5 to 80%. The average linear expansion coefficient of the composite solder itself (25 to 100
C.) is preferably in the range of 12.times.10.sup.- 6 to 21.times.10.sup.- 6 / .degree. By forming the solder layers 8 and 9 using such a composite solder, thermal expansion (expansion due to heat) of the solder layers 8 and 9 during the cold heat operation of the thermoelectric element 1 is suppressed, whereby the thermoelectric element 1 is suppressed. This makes it possible to prevent functional deterioration and element destruction due to the thermal cycle of.

【0021】すなわち、熱電素子においては、一般的に
通電して冷熱動作させた際の熱膨張量(伸び)が吸熱側
と放熱側とでは異なり、特に放熱側電極と熱電半導体と
の間に介在する半田層には基板面方向に大きな応力が加
わる。例えば図3に示すように、従来の通常の半田で形
成した半田層8′、9′を有する熱電素子1′において
は、冷熱動作時の熱膨張量(伸び)が吸熱側(図中矢印
Bで示す)に比べて放熱側(図中矢印Aで示す)の方が
大きいため、放熱側電極6と熱電半導体4、5との間に
介在する半田層8′の伸びが大きくなる。また、通常の
半田で形成した半田層8′、9′は熱電半導体4、5と
の間の熱膨張差も大きい。
That is, in the thermoelectric element, generally, the amount of thermal expansion (elongation) at the time of carrying out the cooling operation by energizing is different between the heat absorbing side and the heat radiating side, and in particular, is interposed between the heat radiating side electrode and the thermoelectric semiconductor. A large stress is applied to the solder layer in the substrate surface direction. For example, as shown in FIG. 3, in a thermoelectric element 1'having solder layers 8'and 9'formed by conventional ordinary solder, the amount of thermal expansion (elongation) during cooling operation is on the heat absorption side (arrow B in the figure). Since the heat radiation side (shown by the arrow A in the figure) is larger than the heat radiation side electrode 6), the solder layer 8 ′ interposed between the heat radiation side electrode 6 and the thermoelectric semiconductors 4 and 5 becomes larger. Further, the solder layers 8'and 9'formed of normal solder also have a large difference in thermal expansion between the thermoelectric semiconductors 4 and 5.

【0022】これらによって、従来の熱電素子1′にお
いては熱電半導体4、5(特に放熱電極6側)に大きな
熱応力(図中矢印Cで示す)が作用する。このような熱
応力が熱電半導体4、5に亀裂X1を生じさせたり、さ
らに熱電半導体4、5と半田層8′、9′との接合界面
に亀裂X2を生じさせることになる。また、通常の半田
で形成した半田層8′、9′はそれ自体の疲労強度も低
いため、半田層8′、9′自体にも亀裂X3が生じやす
い。これら熱電半導体4、5や半田層8′、9′などの
亀裂Xは熱電素子1′の抵抗値の上昇原因などとなるこ
とから、素子性能の低下を招くことになる。さらに、亀
裂Xが進展すると熱電素子1′の破壊が生じてしまう。
As a result, a large thermal stress (indicated by an arrow C in the figure) acts on the thermoelectric semiconductors 4 and 5 (especially on the heat dissipation electrode 6 side) in the conventional thermoelectric element 1 '. Such thermal stress causes cracks X 1 in the thermoelectric semiconductors 4 and 5, and cracks X 2 in the bonding interfaces between the thermoelectric semiconductors 4 and 5 and the solder layers 8 ′ and 9 ′. Further, conventional solder layer 8 was formed in solder ', 9' is lower fatigue strength itself also, the solder layer 8 ', 9' cracks X 3 is likely to occur in itself. The cracks X in the thermoelectric semiconductors 4 and 5 and the solder layers 8'and 9'cause a rise in the resistance value of the thermoelectric element 1'and the like, which leads to deterioration in element performance. Further, if the crack X propagates, the thermoelectric element 1'is destroyed.

【0023】上述したような従来の素子構造に対して、
この実施形態の熱電素子1は半田層8、9を半田母材よ
り平均線膨張率(25〜100℃)が小さい熱膨張抑制材を
含む複合半田で構成しているため、上述したような亀裂
の発生を抑制することができ、さらに亀裂が発生した場
合においてもその進展を防ぐことができる。すなわち、
熱膨張抑制材を添加することで半田層8、9の熱膨張率
自体を低下させているため、熱電半導体4、5などとの
熱膨張差が従来に比べて小さい。これは熱膨張差に起因
する熱応力の緩和に寄与する。
In contrast to the conventional element structure as described above,
In the thermoelectric element 1 of this embodiment, since the solder layers 8 and 9 are composed of the composite solder containing the thermal expansion suppressing material having an average linear expansion coefficient (25 to 100 ° C.) smaller than that of the solder base material, the cracks as described above are generated. It is possible to suppress the occurrence of cracks and prevent the cracks from developing even when cracks occur. That is,
Since the thermal expansion coefficient itself of the solder layers 8 and 9 is lowered by adding the thermal expansion suppressing material, the difference in thermal expansion from the thermoelectric semiconductors 4 and 5 is smaller than that in the conventional case. This contributes to relaxation of thermal stress caused by the difference in thermal expansion.

【0024】このような点から熱膨張抑制材を含む複合
半田の平均線膨張率(25〜100℃)は12×10-6〜21×10
-6/℃の範囲であることが好ましい。複合半田の平均線
膨張率が21×10-6/℃を超えると、熱膨張差の抑制効果
を十分に得ることができない。一方、複合半田の平均線
膨張率が12×10-6/℃未満の場合には、例えば半田付け
時に熱電半導体4、5に亀裂が生じやすくなり、逆に疲
労特性を低下させるおそれがある。複合半田の平均線膨
張率(25〜100℃)は13×10-6〜19×10-6/℃の範囲と
することがより好ましく、さらに好ましくは15×10-6
19×10-6/℃の範囲である。
From such a point, the average linear expansion coefficient (25 to 100 ° C.) of the composite solder containing the thermal expansion suppressing material is 12 × 10 −6 to 21 × 10.
It is preferably in the range of -6 / ° C. If the average coefficient of linear expansion of the composite solder exceeds 21 × 10 −6 / ° C., the effect of suppressing the difference in thermal expansion cannot be sufficiently obtained. On the other hand, when the average coefficient of linear expansion of the composite solder is less than 12 × 10 −6 / ° C., the thermoelectric semiconductors 4 and 5 are likely to be cracked during soldering, which may deteriorate fatigue characteristics. The average linear expansion coefficient (25 to 100 ° C.) of the composite solder is more preferably in the range of 13 × 10 −6 to 19 × 10 −6 / ° C., further preferably 15 × 10 −6 to
The range is 19 × 10 -6 / ° C.

【0025】また、熱膨張抑制材は半田層8、9の熱膨
張率を低下させるだけでなく、半田層8、9の熱膨張
(伸び)を機械的に拘束する機能を有し、さらに機械的
強度の向上にも効果を発揮する。すなわち、熱電素子1
の冷熱動作に伴う半田層8、9の伸びが熱膨張抑制材に
より拘束されるため、半田層8、9の熱変形量を低減す
ることができる。従って、半田層8、9と直接接してい
る熱電半導体4、5に加わる応力や半田層8、9自体に
加わる応力を緩和することができる。このようにして熱
応力を緩和することで、熱電半導体4、5や半田層8、
9自体の熱疲労による亀裂発生などを抑制することが可
能となる。
The thermal expansion suppressing material not only lowers the coefficient of thermal expansion of the solder layers 8 and 9, but also mechanically restrains the thermal expansion (elongation) of the solder layers 8 and 9. Also effective in improving the physical strength. That is, the thermoelectric element 1
Since the expansion of the solder layers 8 and 9 due to the cold heat operation is restrained by the thermal expansion suppressing material, the amount of thermal deformation of the solder layers 8 and 9 can be reduced. Therefore, the stress applied to the thermoelectric semiconductors 4 and 5 in direct contact with the solder layers 8 and 9 and the stress applied to the solder layers 8 and 9 themselves can be relaxed. By relaxing the thermal stress in this way, the thermoelectric semiconductors 4, 5 and the solder layer 8,
It is possible to suppress the occurrence of cracks due to thermal fatigue of 9 itself.

【0026】さらに、半田層8、9に亀裂が生じたとし
ても、熱膨張抑制材は亀裂の伝播を阻止する機能を有す
ることから、亀裂の進展による素子機能の低下や素子破
壊の発生を防ぐことができ、半田層8、9の信頼性を大
幅に高めることができる。熱膨張抑制材は半田層8、9
の機械的強度の向上に対しても効果を発揮するため、こ
の点からも亀裂の発生や進展を妨げることができる。こ
のように、熱電素子1においては熱電半導体4、5や半
田層8、9自体の熱疲労による亀裂の発生や進展が抑え
られ、これらによって熱電素子1の熱サイクルによる機
能低下や素子破壊などを抑制することが可能となる。す
なわち、熱電素子1の長期信頼性、特に冷熱サイクルが
頻繁に付加されるような条件下で使用される熱電素子1
の長期信頼性を大幅に高めることができる。
Further, even if a crack is generated in the solder layers 8 and 9, the thermal expansion suppressing material has a function of preventing the propagation of the crack, so that the deterioration of the element function and the occurrence of the element destruction due to the progress of the crack are prevented. Therefore, the reliability of the solder layers 8 and 9 can be significantly improved. The thermal expansion suppressing material is the solder layers 8 and 9
Since it is also effective in improving the mechanical strength of, the generation and development of cracks can be prevented from this point as well. As described above, in the thermoelectric element 1, the generation and development of cracks due to thermal fatigue of the thermoelectric semiconductors 4 and 5 and the solder layers 8 and 9 themselves are suppressed. It becomes possible to suppress. That is, the long-term reliability of the thermoelectric element 1, particularly the thermoelectric element 1 used under the condition that a cooling / heating cycle is frequently added.
The long-term reliability of can be significantly increased.

【0027】上述したような複合半田からなる半田層
8、9は、通常の半田ペーストに熱膨張抑制材を十分に
混練して複合半田ペーストを作製し、このような複合半
田ペーストを用いて電極6、7と熱電半導体4、5とを
半田付けすることで形成されるものであって、熱膨張抑
制材が分散された半田層8、9となる。熱膨張抑制材は
複合半田全体に対して体積比で5〜80%の範囲となるよ
うに添加するものとする。なお、熱膨張抑制材の体積比
は、半田の金属成分と熱膨張抑制材との質量比と各成分
の真密度から算出した値である。
The solder layers 8 and 9 made of the composite solder as described above are prepared by sufficiently kneading a thermal expansion suppressing material with a normal solder paste to prepare a composite solder paste, and using such a composite solder paste, an electrode is formed. 6 and 7 and the thermoelectric semiconductors 4 and 5 are soldered to form solder layers 8 and 9 in which a thermal expansion suppressing material is dispersed. The thermal expansion suppressing material is added so as to be in a volume ratio of 5 to 80% with respect to the entire composite solder. The volume ratio of the thermal expansion suppressing material is a value calculated from the mass ratio of the metal component of the solder to the thermal expansion suppressing material and the true density of each component.

【0028】熱膨張抑制材の添加量が5体積%未満であ
ると、半田層8、9の熱膨張率の低減効果や熱変形の抑
制効果などを十分に得ることができない。一方、熱膨張
抑制材の添加量が80体積%を超えると、半田層8、9に
空隙などが生じやすくなって逆に強度を低下させたり、
また熱伝導率や導電性などを低下させるなどの不具合が
生じる。さらに、過剰な熱膨張抑制材の添加は半田ペー
ストの流動性の低下原因となるため、半田付け時の作業
性なども悪化する。
If the addition amount of the thermal expansion suppressing material is less than 5% by volume, the effect of reducing the thermal expansion coefficient of the solder layers 8 and 9 and the effect of suppressing thermal deformation cannot be sufficiently obtained. On the other hand, when the addition amount of the thermal expansion suppressing material exceeds 80% by volume, voids and the like are likely to be formed in the solder layers 8 and 9, and conversely the strength is decreased.
In addition, problems such as a decrease in thermal conductivity and conductivity occur. Furthermore, since the excessive addition of the thermal expansion suppressing material causes a decrease in the fluidity of the solder paste, workability during soldering also deteriorates.

【0029】熱膨張抑制材の添加量は、複合半田全体に
対して体積比で10〜60%の範囲(さらには20〜60%の範
囲)とすることがより好ましい。さらに、熱膨張抑制材
の添加量は構造支持体としての下部支持部材2や熱電半
導体4、5の平均線膨張率の値を考慮して、複合半田の
平均線膨張率(25〜100℃)が適切な値となるように制
御することが好ましい。ここで、複合半田の平均線膨張
率はおおよそ半田母材の線膨張率と熱膨張抑制材の線膨
張率および弾性率をそれぞれの体積比を基に複合則によ
り算出した値となるため、この複合半田の平均線膨張率
の値と下部支持部材2や熱電半導体4、5の平均線膨張
率の値とを考慮して、熱膨張抑制材の添加量を最適化す
ることが望ましい。
The addition amount of the thermal expansion suppressing material is more preferably in the range of 10 to 60% (more preferably in the range of 20 to 60%) by volume ratio with respect to the entire composite solder. Further, the addition amount of the thermal expansion suppressing material is an average linear expansion coefficient (25 to 100 ° C.) of the composite solder in consideration of the values of the average linear expansion coefficient of the lower support member 2 as a structural support and the thermoelectric semiconductors 4 and 5. Is preferably controlled to be an appropriate value. Here, the average coefficient of linear expansion of the composite solder is approximately the value calculated by the compound rule based on the respective volume ratios of the coefficient of linear expansion of the solder base material and the coefficient of linear expansion and coefficient of thermal expansion of the thermal expansion suppressing material. It is desirable to optimize the addition amount of the thermal expansion suppressing material in consideration of the value of the average linear expansion coefficient of the composite solder and the values of the average linear expansion coefficient of the lower support member 2 and the thermoelectric semiconductors 4 and 5.

【0030】上述したような熱膨張抑制材には、半田母
材より小さい平均線膨張率(25〜100℃)を有する材料
であれば各種粉末や繊維を適用することができ、例えば
金属粉末、金属繊維、セラミックス粉末、セラミックス
繊維(ガラス繊維を含む)などから選ばれる少なくとも
1種を用いることができる。また、熱膨張抑制材には平
均線膨張率が小さいことに加えて、半田母材とその接合
温度以下では合金化もしくは反応しにくい材料を使用す
ることが好ましい。熱膨張抑制材自体が半田母材と合金
化もしくは反応してしまうと、熱膨張抑制材としての機
能が損なわれたり、また半田自体の特性が低下するおそ
れがある。
As the thermal expansion suppressing material as described above, various powders and fibers can be applied as long as the material has an average linear expansion coefficient (25 to 100 ° C.) smaller than that of the solder base material. At least selected from metal fiber, ceramic powder, ceramic fiber (including glass fiber), etc.
One kind can be used. Further, as the thermal expansion suppressing material, it is preferable to use a material which is hard to be alloyed or react with the solder base material and its bonding temperature or lower in addition to having a small average linear expansion coefficient. If the thermal expansion suppressing material itself alloys or reacts with the solder base material, the function as the thermal expansion suppressing material may be impaired, or the characteristics of the solder itself may deteriorate.

【0031】このようなことから、熱膨張抑制材に金属
粉末や金属繊維を適用する場合には、W、Mo、Cr、
Zr、Ti、V、Nb、低熱膨張Fe基合金などを使用
することが好ましい。これらの金属や合金はいずれも熱
膨張率が小さいと共に、半田材料との反応性が低いもの
である。なお、低熱膨張Fe基合金としては、インバー
合金(例えばFe−36質量%Ni)、スーパーインバー
合金(例えばFe−31質量%Ni−5質量%Co)、コ
バール合金(例えばFe−29質量%Ni−17質量%C
o)、42アロイ(Fe−42質量%Ni)などが挙げられ
る。
From the above, when metal powder or metal fiber is applied to the thermal expansion suppressing material, W, Mo, Cr,
It is preferable to use Zr, Ti, V, Nb, a low thermal expansion Fe-based alloy, or the like. All of these metals and alloys have a small coefficient of thermal expansion and low reactivity with the solder material. As the low thermal expansion Fe-based alloy, Invar alloy (for example, Fe-36 mass% Ni), Super Invar alloy (for example, Fe-31 mass% Ni-5 mass% Co), Kovar alloy (for example, Fe-29 mass% Ni). -17% by mass C
o), 42 alloy (Fe-42 mass% Ni) and the like.

【0032】一方、セラミックス材料は一般的に熱膨張
率が小さく、かつ金属材料との濡れが小さくて反応しに
くいことから、半田層8、9中に分散させる熱膨張抑制
材に好適な材料である。セラミックス粉末およびセラミ
ックス繊維の構成材料は特に限定されるものではなく、
例えばアルミナ、シリカ、炭化珪素、炭素、およびこれ
らの複合化合物などが使用され、またガラス繊維などを
使用してもよい。セラミックス繊維としては、ウィスカ
ー、短繊維、長繊維などの種々の繊維状物質を使用する
ことができる。
On the other hand, a ceramic material generally has a small coefficient of thermal expansion, and since it does not easily react with the metal material due to its small wetting, it is a material suitable as a thermal expansion suppressing material to be dispersed in the solder layers 8 and 9. is there. The constituent materials of the ceramic powder and the ceramic fiber are not particularly limited,
For example, alumina, silica, silicon carbide, carbon, a composite compound thereof, or the like may be used, and glass fiber or the like may be used. Various fibrous substances such as whiskers, short fibers and long fibers can be used as the ceramic fibers.

【0033】上述したように、熱膨張抑制材には半田母
材とその接合温度以下で合金化もしくは反応しにくい材
料を使用することが好ましいものの、熱膨張抑制材(粒
子や繊維)と半田基地(母材)との結合力が弱すぎて、
例えば粒子や繊維が半田基地から容易に抜け落ちるよう
な状態では、これらの間で十分に力を伝達することがで
きないことから、半田層8、9の熱膨張を拘束する効果
などが損なわれることになる。そこで、熱膨張抑制材に
半田母材との反応性が低い材料を使用する場合には、予
め粉末や繊維の表面に半田との濡れ性がよい材料を、例
えばめっき法や蒸着法などでコーティングしておくこと
が好ましい。熱膨張抑制材の表面コーティング材には、
Ni、Cu、Ag、Au、およびこれらの元素を含む合
金などを適用することが好ましい。
As described above, it is preferable to use, as the thermal expansion suppressing material, a material that is less likely to be alloyed or react with the solder base material and the bonding temperature thereof, but the thermal expansion suppressing material (particles or fibers) and the solder matrix. The binding force with (base material) is too weak,
For example, in the state where particles or fibers easily fall out of the solder matrix, the force cannot be sufficiently transmitted between them, and the effect of restraining the thermal expansion of the solder layers 8 and 9 is impaired. Become. Therefore, when using a material having low reactivity with the solder base material as the thermal expansion suppressing material, a material having good wettability with solder is previously coated on the surface of the powder or fiber by, for example, a plating method or a vapor deposition method. Preferably. For the surface coating material of the thermal expansion suppressing material,
It is preferable to apply Ni, Cu, Ag, Au, and alloys containing these elements.

【0034】また、熱膨張抑制材として金属粉末やセラ
ミックス粉末を使用する場合には、平均粒径が32μm以
下の粉末を使用することが好ましい。粉末の平均粒径が
32μmを超えると、熱膨張抑制材(粒子)と半田基地
(母材)との結合力が弱まって十分に力の伝達がなされ
ず、半田層8、9の熱膨張を拘束する効果などが損なわ
れるおそれがある。金属粉末やセラミックス粉末の平均
粒径の下限値は特に限定されるものではないが、取扱い
やすさ(自然発火の抑制)などを考慮して、平均粒径が
0.1μm以上の粉末を使用することが好ましい。
When metal powder or ceramic powder is used as the thermal expansion suppressing material, it is preferable to use powder having an average particle size of 32 μm or less. The average particle size of the powder is
If it exceeds 32 μm, the bonding force between the thermal expansion suppressing material (particles) and the solder matrix (base material) is weakened and the force is not sufficiently transmitted, and the effect of restraining the thermal expansion of the solder layers 8 and 9 is impaired. May be The lower limit of the average particle size of the metal powder or the ceramic powder is not particularly limited, but the average particle size is set in consideration of the ease of handling (suppression of spontaneous combustion).
It is preferable to use a powder of 0.1 μm or more.

【0035】熱膨張抑制材として金属繊維やセラミック
ス繊維を使用する場合には、繊維状物質による熱膨張の
拘束効果を十分に得る上で、平均アスペクト比(繊維の
長さ(長径)/繊維の直径(短径))が2以上の繊維を
使用することが好ましい。このような繊維をその長さ方
向が半田層8、9の面方向に配列するように分散させる
ことによって、半田層8、9の面方向への伸び(熱膨
張)をより効果的に抑制することができる。繊維の直径
(短径)については、粉末の平均粒径と同様な理由から
30μm以下であることが好ましい。すなわち、直径(太
さ)があまり大きい繊維では半田基地(母材)との間で
十分に力の伝達がなされず、半田層8、9の熱膨張を拘
束する効果などが損なわれるおそれがある。
When a metal fiber or a ceramic fiber is used as the thermal expansion suppressing material, the average aspect ratio (fiber length (major axis) / fiber It is preferable to use fibers having a diameter (short diameter) of 2 or more. By dispersing such fibers so that the length direction thereof is arranged in the plane direction of the solder layers 8 and 9, the extension (thermal expansion) of the solder layers 8 and 9 in the plane direction is more effectively suppressed. be able to. The fiber diameter (minor axis) is the same as the average particle size of the powder.
It is preferably 30 μm or less. That is, if the fiber has a too large diameter (thickness), the force is not sufficiently transmitted to the solder base (base material), and the effect of restraining the thermal expansion of the solder layers 8 and 9 may be impaired. .

【0036】上述したような構成を有する熱電素子1
は、コンピュータのCPUのような超高集積回路素子や
レーザ素子などの高発熱半導体装置の冷却装置をはじめ
として、各種分野における冷却装置に好適に用いられる
ものである。熱電素子1の吸熱面と被冷却体(各種装置
や部品)との接触は直接行ってもよいが、例えばシリコ
ーングリースなどを介して接触させることが好ましい。
この場合、シリコーングリースには黒鉛粉末や窒化硼素
粉末などの高熱伝導性の粉末を配合しておくことが好ま
しく、これによって熱伝達効率をより一層高めることが
できる。さらに、黒鉛粉末や窒化硼素粉末などを含むシ
リコーングリースは摩耗によるせん断応力の低減効果な
どを有することから、熱電素子を用いたモジュールの熱
サイクル疲労などを軽減することが可能となる。
Thermoelectric element 1 having the structure as described above
Is suitable for use in a cooling device in various fields, including a cooling device for a high heat generation semiconductor device such as an ultra-high integrated circuit device such as a CPU of a computer or a laser device. The heat absorbing surface of the thermoelectric element 1 and the object to be cooled (various devices or parts) may be directly contacted with each other, but it is preferable to contact them via silicone grease or the like.
In this case, it is preferable to mix powder of high thermal conductivity such as graphite powder or boron nitride powder in the silicone grease, which can further improve heat transfer efficiency. Furthermore, since the silicone grease containing graphite powder, boron nitride powder, etc. has the effect of reducing the shear stress due to wear, it becomes possible to reduce the thermal cycle fatigue of the module using the thermoelectric element.

【0037】[0037]

【実施例】次に、本発明の具体的な実施例について述べ
る。
EXAMPLES Next, specific examples of the present invention will be described.

【0038】実施例1〜2、比較例1 まず、平均粒径が1.5μmの炭素粉末(平均線膨張率(25
〜100℃):3〜4×10- 6/℃)を用いて、その表面に予
めNiめっきで表面コーティングを施したもの(実施例
1)と表面コーティングを施していないもの(実施例
2)とを用意した。これら各炭素粉末をPb−Sn系半
田ペースト中に、半田金属と炭素粉末との体積比が70/
30となるように配合し、これらを十分に混練して複合半
田ペーストをそれぞれ作製した。
Examples 1 and 2, Comparative Example 1 First, carbon powder having an average particle diameter of 1.5 μm (average linear expansion coefficient (25
~100 ℃): 3~4 × 10 - 6 / ℃) using, those subjected to surface previously coated with Ni plating on the surface (Example 1) and those not subjected to the surface coating (Example 2) And prepared. Each of these carbon powders was added to a Pb-Sn solder paste at a volume ratio of the solder metal to the carbon powder of 70 /.
They were blended so as to be 30, and these were sufficiently kneaded to prepare composite solder pastes.

【0039】上述した各複合半田ペーストを用いて、図
4に示す試験用熱電素子を以下のようにして作製した。
まず、10mm×15mm×厚さ1.5mmのアルミナセラミックス
基板11と4mm×12mm×厚さ0.5mmの電気銅電極材12と
を、DBC法(銅と酸化銅の共晶温度以上で銅の融点以
下の温度に加熱して、ろう材を用いずに直接接合する方
法)で接合した後、電気銅電極材をエッチングでパター
ニングすることによって、放熱側電極12a、12bを
形成した。これら放熱側電極12a、12bと4mm×8mm
×厚さ0.5mmの電気銅電極材からなる吸熱側電極13と
で、3mm角の立方体に加工したBi−Te系のN型熱電
半導体14とP型熱電半導体15を挟み込むようにして
接合した。
Using each of the above-mentioned composite solder pastes, a test thermoelectric element shown in FIG. 4 was produced as follows.
First, a 10 mm × 15 mm × 1.5 mm thick alumina ceramic substrate 11 and a 4 mm × 12 mm × 0.5 mm thick electrolytic copper electrode material 12 were treated by the DBC method (above the eutectic temperature of copper and copper oxide and below the melting point of copper). After heating at a temperature of (1) and directly bonding without using a brazing material), the copper electrode material was patterned by etching to form the heat radiation side electrodes 12a, 12b. 4mm x 8mm with these heat radiation side electrodes 12a, 12b
B. A Bi-Te based N-type thermoelectric semiconductor 14 and a P-type thermoelectric semiconductor 15, which were processed into a cube of 3 mm square, were joined with the heat absorption side electrode 13 made of an electrolytic copper electrode material having a thickness of 0.5 mm so as to be sandwiched therebetween.

【0040】各電極12a、12b、13とN型熱電半
導体14およびP型熱電半導体15との接合は、上記し
た2種類の複合半田ペーストをそれぞれ用い、接合面に
複合半田ペーストを塗布した後に昇温して半田を溶融さ
せることにより実施した。半田接合後に形成された各半
田層16、17は炭素粉末をそれぞれ含むものである。
各半田層16、17の厚さは0.1mmとした。炭素粉末を3
0体積%含む複合半田の平均線膨張率(25〜100℃)は14
×10-6/℃である。この複合半田の平均線膨張率は、直
径5mmのグラファイト型で複合半田をホットプレスし、
丸棒状試料を作製して測定した。
The electrodes 12a, 12b, 13 and the N-type thermoelectric semiconductor 14 and the P-type thermoelectric semiconductor 15 are bonded to each other using the above-mentioned two kinds of composite solder pastes, respectively, and the composite solder pastes are applied to the bonding surfaces and then raised. It was carried out by heating to melt the solder. The solder layers 16 and 17 formed after the solder bonding contain carbon powder, respectively.
The thickness of each solder layer 16 and 17 was 0.1 mm. Carbon powder 3
The average linear expansion coefficient (25 to 100 ° C) of composite solder containing 0% by volume is 14
× 10 −6 / ° C. The average coefficient of linear expansion of this composite solder is 5 mm diameter graphite type hot pressed composite solder,
A round bar sample was prepared and measured.

【0041】また、Bi−Te系のN型熱電半導体14
にはBi28at.%−Te57at.%−Sb12at.%−Se3a
t.%の組成のものを使用し、Bi−Te系のP型熱電半
導体15にはBi10at.%−Te57at.%−Sb10at.%
−Se3at.%の組成のものを使用した。これらBi−T
e系熱電半導体14、15の平均線膨張率(25〜100
℃)は約13×10-6/℃である。各熱電半導体14、15
は接合面に予めニッケルめっきが施されている。この
後、吸熱側電極13上にフッ素系絶縁樹脂フィルム18
を張り付けると共に、通電用のリード線19を取り付け
て、それぞれ試験用熱電素子20とした。
Further, the Bi-Te system N-type thermoelectric semiconductor 14
Bi28at.%-Te57at.%-Sb12at.%-Se3a
The composition of t.% is used, and Bi-Te based P-type thermoelectric semiconductor 15 has Bi10at.%-Te57at.%-Sb10at.%.
-Se3 at.% Composition was used. These Bi-T
Average linear expansion coefficient of e-type thermoelectric semiconductors 14 and 15 (25 to 100
℃) is about 13 × 10 -6 / ℃. Each thermoelectric semiconductor 14, 15
Has a nickel-plated joint surface in advance. After that, the fluorine-based insulating resin film 18 is formed on the heat absorption side electrode 13.
Was attached and lead wires 19 for energization were attached to make test thermoelectric elements 20 respectively.

【0042】一方、本発明との比較例1として、炭素粉
末を含まないPb−Sn系半田ペースト(通常の半田ペ
ースト)を用いる以外は、上記実施例1と同様にした試
験用熱電素子20を作製した。ちなみに、Pb−Sn系
半田ペーストのみによる半田層の平均線膨張率(25〜10
0℃)は23×10-6/℃である。
On the other hand, as a comparative example 1 with the present invention, a test thermoelectric element 20 was prepared in the same manner as in the above-mentioned example 1 except that a Pb-Sn solder paste (normal solder paste) containing no carbon powder was used. It was made. By the way, the average linear expansion coefficient of the solder layer (25 to 10
0 ° C.) is 23 × 10 −6 / ° C.

【0043】このようにして得た実施例1、実施例2お
よび比較例1の各試験用熱電素子20に通電を繰り返し
て熱疲労試験を行った。熱疲労試験の具体的な条件は以
下の通りである。試験用熱電素子20はセラミックス基
板11側が放熱側であり、水冷した銅製ブロックを押し
付けて強制冷却して常に25℃とした。通電する電流は吸
熱側の絶縁樹脂フィルム18の中央部分の温度が10℃/
分の昇温速度となるように調整し、最大80℃となった時
に電流を零にした。吸熱側絶縁樹脂フィルム18の中央
部分の温度が30℃まで低下した時点で再度通電を行っ
た。この通電パターンを1サイクルとして熱疲労試験を
実施した。疲労の進行状況については放熱側電極12
a、12b間の抵抗値の変化を測定して判断した。図5
に各試験用熱電素子20の熱サイクル数(通電サイクル
数)と抵抗値変化との関係をそれぞれ示す。
A thermal fatigue test was carried out by repeatedly energizing the test thermoelectric elements 20 of Examples 1, 2 and Comparative Example 1 thus obtained. The specific conditions of the thermal fatigue test are as follows. The thermoelectric element 20 for test has a heat radiating side on the side of the ceramic substrate 11, and a water-cooled copper block is pressed against it forcibly cooling it to 25 ° C. at all times. The temperature of the central part of the insulating resin film 18 on the heat absorption side is 10 ° C /
The heating rate was adjusted to a minute, and the current was set to zero when the maximum temperature reached 80 ° C. When the temperature of the central portion of the heat absorbing side insulating resin film 18 dropped to 30 ° C., the power was supplied again. A thermal fatigue test was carried out using this energization pattern as one cycle. Regarding the progress of fatigue, the heat dissipation side electrode 12
It was judged by measuring the change in the resistance value between a and 12b. Figure 5
The relationship between the number of thermal cycles (the number of energization cycles) and the change in resistance value of each test thermoelectric element 20 is shown in FIG.

【0044】図5から明らかなように、炭素粉末を含ま
ないPb−Sn系半田ペーストを用いた比較例1の試験
用熱電素子は抵抗値の上昇が早く、100サイクル程度で
通電不良となっているのに対して、実施例1および実施
例2の試験用熱電素子はいずれも300サイクル以上の熱
サイクル後においても十分な通電状態が保たれており、
耐熱疲労特性に優れていることが分かる。特に、Niめ
っきを施した炭素粉末を用いた実施例1においては、50
0サイクル以上の耐熱サイクル性を示しており、熱電素
子の長期信頼性を大幅に高めることが可能となる。
As is apparent from FIG. 5, the test thermoelectric element of Comparative Example 1 using the Pb-Sn solder paste containing no carbon powder had a rapid increase in resistance value, resulting in poor energization in about 100 cycles. On the other hand, the test thermoelectric elements of Example 1 and Example 2 were both kept in a sufficiently electrified state even after the thermal cycles of 300 cycles or more,
It can be seen that the thermal fatigue resistance is excellent. In particular, in Example 1 using the Ni-plated carbon powder, 50
It exhibits a heat-resistant cycle property of 0 or more cycles, which makes it possible to significantly improve the long-term reliability of the thermoelectric element.

【0045】なお、熱疲労試験後の各素子の状態を詳細
に観察したところ、比較例1の試験用熱電素子では半田
層に亀裂が生じていると共に、熱電半導体にへき開破壊
が認められた。一方、実施例1の試験用熱電素子におい
ては、半田層および熱電半導体のいずれにも異常は認め
られなかった。ただし、実施例2の試験用熱電素子につ
いては、熱電半導体にわずかなへき開亀裂が認められ
た。このことからは、炭素粉末の表面には半田濡れ性の
高い金属などをコーティングすることが有効であること
が分かる。
When the state of each element after the thermal fatigue test was observed in detail, the test thermoelectric element of Comparative Example 1 was found to have cracks in the solder layer and cleavage cleavage in the thermoelectric semiconductor. On the other hand, in the test thermoelectric element of Example 1, no abnormality was found in either the solder layer or the thermoelectric semiconductor. However, regarding the test thermoelectric element of Example 2, a slight cleavage crack was observed in the thermoelectric semiconductor. From this, it can be seen that it is effective to coat the surface of the carbon powder with a metal having high solder wettability.

【0046】実施例3、比較例2 まず、平均粒径が3μmのMo粉末(平均線膨張率(25〜
100℃):5.1×10-6/℃)を用意した。このMo粉末を
Pb−Sn系半田ペースト中に、半田金属とMo粉末と
の体積比がそれぞれ表1に示す混練比となるように配合
し、これらを十分に混練して複合半田ペーストをそれぞ
れ作製した。これら各複合半田ペーストを用いる以外
は、上記した実施例1と同様にして試験用熱電素子をそ
れぞれ作製した。Mo粉末を含む各複合半田の平均線膨
張率(25〜100℃)は表1に示すとおりである。これら
複合半田の平均線膨張率は、直径5mmのグラファイト型
で複合半田をホットプレスし、それぞれ丸棒状試料を作
製して測定した。以下の実施例についても同様である。
Example 3 and Comparative Example 2 First, Mo powder having an average particle diameter of 3 μm (average linear expansion coefficient (25 to
100 ° C.): 5.1 × 10 −6 / ° C.) was prepared. This Mo powder was mixed in a Pb-Sn solder paste so that the volume ratio of the solder metal and the Mo powder would be the kneading ratios shown in Table 1, and these were sufficiently kneaded to produce composite solder pastes. did. Test thermoelectric elements were produced in the same manner as in Example 1 except that these composite solder pastes were used. The average linear expansion coefficient (25 to 100 ° C.) of each composite solder containing Mo powder is as shown in Table 1. The average coefficient of linear expansion of these composite solders was measured by hot pressing the composite solders with a graphite mold having a diameter of 5 mm and producing round bar-shaped samples. The same applies to the following examples.

【0047】このようにして得た各試験用熱電素子の熱
疲労試験を実施例1と同様にして実施した。各素子の疲
労寿命は表1に示す通りである。なお、疲労寿命は放熱
側電極12a、12b間の抵抗値変化が初期値の70%に
なった時点とし、その際の熱サイクル数で疲労寿命を示
した。
A thermal fatigue test of each test thermoelectric element thus obtained was carried out in the same manner as in Example 1. The fatigue life of each element is as shown in Table 1. The fatigue life was defined as the time when the resistance change between the heat radiation side electrodes 12a and 12b reached 70% of the initial value, and the fatigue life was indicated by the number of heat cycles at that time.

【0048】[0048]

【表1】 [Table 1]

【0049】表1から明らかなように、Mo粉末(熱膨
張抑制材)の体積比で5%、また複合半田の平均線膨張
率(25〜100℃)で21×10-6/℃を境にして、熱電素子
の疲労寿命の顕著な向上効果が認められた。また、Mo
粉末(熱膨張抑制材)の体積比が80%を超える場合に
は、平均線膨張率は十分に小さい値となるものの、疲労
寿命の向上効果は激減した。これは半田ペーストの流動
性が著しく悪化して熱電半導体との接合力が低下したこ
と、また半田層中の半田金属とMo粒子との結合が不十
分になったことによる。試料No.9の素子では、これらに
起因するものと考えられる亀裂が半田層や熱電半導体に
生じていることが認められた。
As is clear from Table 1, the volume ratio of Mo powder (thermal expansion suppressing material) is 5%, and the average linear expansion coefficient (25 to 100 ° C.) of the composite solder is 21 × 10 −6 / ° C. Then, a remarkable improvement effect of the fatigue life of the thermoelectric element was recognized. Also, Mo
When the volume ratio of the powder (thermal expansion inhibitor) exceeds 80%, the average linear expansion coefficient becomes a sufficiently small value, but the effect of improving fatigue life is drastically reduced. This is because the fluidity of the solder paste was significantly deteriorated and the bonding force with the thermoelectric semiconductor was reduced, and the bonding between the solder metal and the Mo particles in the solder layer was insufficient. In the element of Sample No. 9, it was confirmed that cracks thought to be caused by these were generated in the solder layer and the thermoelectric semiconductor.

【0050】実施例4 熱膨張抑制材として各種金属粉末や合金粉末を使用し
て、それらの効果を確認した。具体的には、表2に示す
平均粒径を有する各金属粉末を用意し、これら各金属粉
末をPb−Sn系半田ペースト中に、半田金属と金属粉
末との体積比がそれぞれ表1に示す混練比となるように
配合し、これらを十分に混練して複合半田ペーストをそ
れぞれ作製した。これら各複合半田ペーストを用いる以
外は、上記した実施例1と同様にして試験用熱電素子を
それぞれ作製した。各複合半田の平均線膨張率(25〜10
0℃)は表2に示す通りである。これら各試験用熱電素
子の熱疲労試験を実施例3と同様にして実施し、疲労寿
命を測定した。各素子の疲労寿命は表2に示す通りであ
る。
Example 4 Various metal powders and alloy powders were used as the thermal expansion suppressing material, and their effects were confirmed. Specifically, each metal powder having the average particle size shown in Table 2 is prepared, and the volume ratio of the solder metal to the metal powder is shown in Table 1 in the Pb-Sn solder paste. They were mixed so as to have a kneading ratio, and these were sufficiently kneaded to prepare composite solder pastes. Test thermoelectric elements were produced in the same manner as in Example 1 except that these composite solder pastes were used. Average coefficient of linear expansion of each composite solder (25 to 10
(0 ° C.) is as shown in Table 2. A thermal fatigue test of each of these test thermoelectric elements was carried out in the same manner as in Example 3, and the fatigue life was measured. The fatigue life of each element is shown in Table 2.

【0051】[0051]

【表2】 [Table 2]

【0052】表2から明らかなように、熱膨張率が小さ
いW、Cr、Zr、Ti、V、Nbなどの金属粉末、あ
るいは低熱膨張Fe基合金(インバー合金や42アロイな
ど)の粉末を、熱膨張抑制材として使用して半田層に分
散させることによって、熱電素子の熱疲労を軽減して疲
労寿命を改善し得ることが分かる。なお、実施例4で用
いた各金属粉末の25〜100℃の平均線膨張率は、Wが4.5
×10-6/℃、Crが6.5×10-6/℃、Zrが5.0×10-6
℃、Tiが8.9×10-6/℃、Vが8.3×10-6/℃、Nbが
7.2×10-6/℃、インバー合金が1.2×10-6/℃、42アロ
イが5.3×10-6/℃である。
As is clear from Table 2, metal powders such as W, Cr, Zr, Ti, V, and Nb having a small coefficient of thermal expansion, or powders of a low thermal expansion Fe-based alloy (Invar alloy, 42 alloy, etc.), It can be seen that the thermal fatigue of the thermoelectric element can be reduced and the fatigue life can be improved by using it as a thermal expansion suppressing material and dispersing it in the solder layer. The average linear expansion coefficient of 25 to 100 ° C. of each metal powder used in Example 4 was W 4.5.
× 10 -6 / ° C, Cr 6.5 × 10 -6 / ° C, Zr 5.0 × 10 -6 /
C, Ti is 8.9 × 10 -6 / ° C, V is 8.3 × 10 -6 / ° C, Nb is
7.2 × 10 -6 / ° C, Invar alloy 1.2 × 10 -6 / ° C, 42 alloy 5.3 × 10 -6 / ° C.

【0053】実施例5、比較例3 まず、平均アスペクト比が10、平均短径が0.5μmの炭化
珪素ウィスカー(平均線膨張率(25〜100℃):5.0×10
-6/℃)を用意し、その表面に予めNiめっきで表面コ
ーティングを施した。この炭化珪素ウィスカーをPb−
Sn系半田ペースト中に、半田金属と炭化珪素ウィスカ
ーとの体積比が25/75(=炭化珪素ウィスカー/半田金
属)となるように配合し、これらを十分に混練して複合
半田ペーストを作製した。この複合半田ペーストを用い
る以外は、上記した実施例1と同様にして試験用熱電素
子を作製した。炭化珪素ウィスカーを25体積%含む複合
半田の平均線膨張率(25〜100℃)は14×10-6/℃であ
る。
Example 5 and Comparative Example 3 First, silicon carbide whiskers having an average aspect ratio of 10 and an average minor axis of 0.5 μm (average linear expansion coefficient (25 to 100 ° C.): 5.0 × 10 5)
-6 / ° C.) was prepared, and the surface was pre-coated with Ni plating. This silicon carbide whisker is Pb-
The Sn-based solder paste was mixed so that the volume ratio of the solder metal to the silicon carbide whiskers was 25/75 (= silicon carbide whiskers / solder metal), and these were sufficiently kneaded to prepare a composite solder paste. . A test thermoelectric element was produced in the same manner as in Example 1 except that this composite solder paste was used. The average linear expansion coefficient (25 to 100 ° C) of the composite solder containing 25% by volume of silicon carbide whiskers is 14 × 10 -6 / ° C.

【0054】一方、本発明との比較例3として、炭化珪
素ウィスカーを含まないPb−Sn系半田ペースト(通
常の半田ペースト)を用いる以外は、上記実施例5と同
様にして試験用熱電素子を作製した。ちなみに、Pb−
Sn系半田ペーストのみによる半田層の平均線膨張率
(25〜100℃)は23×10-6/℃である。
On the other hand, as Comparative Example 3 with the present invention, a test thermoelectric element was prepared in the same manner as in Example 5 except that a Pb-Sn solder paste (normal solder paste) containing no silicon carbide whiskers was used. It was made. By the way, Pb-
The average linear expansion coefficient (25 to 100 ° C.) of the solder layer composed of only the Sn-based solder paste is 23 × 10 −6 / ° C.

【0055】このようにして得た実施例5および比較例
3の各試験用熱電素子について、実施例1と同様にして
熱疲労試験を実施した。図6に各試験用熱電素子の熱サ
イクル数(通電サイクル数)と抵抗値変化との関係をそ
れぞれ示す。図6から明らかなように、炭化珪素ウィス
カーを含む半田ペーストを用いた実施例5の試験用熱電
素子は500サイクル以上の熱サイクル後においても十分
な通電状態が保たれており、耐熱疲労特性に優れている
ことが分かる。すなわち、熱電素子の長期信頼性を大幅
に高めることが可能となる。
A thermal fatigue test was conducted on each of the test thermoelectric elements of Example 5 and Comparative Example 3 thus obtained in the same manner as in Example 1. FIG. 6 shows the relationship between the number of heat cycles (number of energization cycles) and the change in resistance value of each test thermoelectric element. As is clear from FIG. 6, the test thermoelectric element of Example 5 using the solder paste containing silicon carbide whiskers maintained a sufficient energized state even after a thermal cycle of 500 cycles or more, and had a thermal fatigue resistance characteristic. It turns out to be excellent. That is, the long-term reliability of the thermoelectric element can be significantly improved.

【0056】実施例6、比較例4 まず、Niめっきを施した炭素短繊維(平均線膨張率
(25〜100℃):3〜4×10-6/℃、平均アスペクト比:2
0、平均短径:5μm)を用意し、この炭素短繊維をPb
−Sn系半田ペースト中に、半田金属と炭素短繊維との
体積比が表3に示す混練比となるように配合し、これら
を十分に混練して複合半田ペーストをそれぞれ作製し
た。これら各複合半田ペーストを用いる以外は、上記し
た実施例1と同様にして試験用熱電素子をそれぞれ作製
した。炭素短繊維を含む各複合半田の平均線膨張率(25
〜100℃)は表3に示す通りである。これら各試験用熱
電素子の熱疲労試験を実施例3と同様にして実施し、疲
労寿命を測定した。各素子の疲労寿命は表3に示す通り
である。
Example 6 and Comparative Example 4 First, short carbon fibers plated with Ni (average linear expansion coefficient (25 to 100 ° C.): 3 to 4 × 10 −6 / ° C., average aspect ratio: 2
0, average short diameter: 5 μm) and prepare this carbon short fiber with Pb
-Sn solder paste was mixed so that the volume ratio of the solder metal and the short carbon fibers would be the kneading ratio shown in Table 3, and these were sufficiently kneaded to produce composite solder pastes. Test thermoelectric elements were produced in the same manner as in Example 1 except that these composite solder pastes were used. Average linear expansion coefficient of each composite solder containing short carbon fibers (25
(~ 100 ° C) is as shown in Table 3. A thermal fatigue test of each of these test thermoelectric elements was carried out in the same manner as in Example 3, and the fatigue life was measured. The fatigue life of each element is shown in Table 3.

【0057】[0057]

【表3】 [Table 3]

【0058】表3から明らかなように、炭素短繊維(熱
膨張抑制材)の体積比で5%、また複合半田の平均線膨
張率(25〜100℃)で21×10-6/℃を境にして、熱電素
子の疲労寿命の顕著な向上効果が認められた。
As is apparent from Table 3, the volume ratio of the short carbon fibers (thermal expansion suppressing material) was 5%, and the average linear expansion coefficient (25 to 100 ° C.) of the composite solder was 21 × 10 −6 / ° C. At the boundary, a remarkable improvement effect on the fatigue life of the thermoelectric element was recognized.

【0059】実施例7 上記した実施例6において、炭素短繊維のアスペクト比
を表4に示す値となるように調整したものをそれぞれ用
いる以外は、実施例6の試料No.3と同様にして複合半田
ペーストをそれぞれ作製し、さらにこれら各複合半田ペ
ーストを用いて試験用熱電素子をそれぞれ作製した。こ
れら各試験用熱電素子の熱疲労試験を実施例3と同様に
して実施し、疲労寿命を測定した。各素子の疲労寿命は
表4に示す通りである。
Example 7 In the same manner as in Sample No. 3 of Example 6 except that the carbon short fibers in which the aspect ratio was adjusted to have the values shown in Table 4 were used in Example 6 described above, respectively. Composite solder pastes were prepared, and test thermoelectric elements were prepared using the composite solder pastes. A thermal fatigue test of each of these test thermoelectric elements was carried out in the same manner as in Example 3, and the fatigue life was measured. The fatigue life of each element is shown in Table 4.

【0060】[0060]

【表4】 [Table 4]

【0061】表4から明らかなように、アスペクト比が
2以上の炭素短繊維(熱膨張抑制材)を使用することに
よって、熱電素子の疲労寿命をより顕著に向上させるこ
とが可能となる。なお、アスペクト比が2以上の炭素短
繊維を用いた場合、各炭素短繊維はその長さ方向が半田
層の面方向に配列していることが確認された。
As is clear from Table 4, the aspect ratio is
By using two or more short carbon fibers (thermal expansion suppressing material), the fatigue life of the thermoelectric element can be significantly improved. When carbon short fibers having an aspect ratio of 2 or more were used, it was confirmed that each carbon short fiber had its length direction aligned in the plane direction of the solder layer.

【0062】実施例8 熱膨張抑制材として各種繊維を使用して、それらの効果
を確認した。具体的には、まず表5に示す各繊維を用意
し、これら各繊維をPb−Sn系半田ペースト中に、半
田金属と繊維との体積比がそれぞれ20/80(=繊維/半
田金属(ただしEガラス繊維のみは40/60))となるよ
うに配合し、これらを十分に混練して複合半田ペースト
をそれぞれ作製した。なお、各繊維のアスペクト比はそ
れぞれ25〜50程度に調製した。これら各複合半田ペース
トを用いて試験用熱電素子をそれぞれ作製して疲労寿命
を測定した。その測定結果を表5に示す。
Example 8 Various fibers were used as the thermal expansion suppressing material, and their effects were confirmed. Specifically, first, each fiber shown in Table 5 is prepared, and the volume ratio of the solder metal to the fiber is 20/80 (= fiber / solder metal (however, in the Pb-Sn solder paste. Only E glass fiber was mixed so as to be 40/60)), and these were sufficiently kneaded to prepare composite solder pastes. The aspect ratio of each fiber was adjusted to about 25 to 50. A test thermoelectric element was produced using each of these composite solder pastes, and the fatigue life was measured. The measurement results are shown in Table 5.

【0063】[0063]

【表5】 [Table 5]

【0064】表5から明らかなように、熱膨張率が小さ
い各種のセラミックス繊維を熱膨張抑制材として使用す
ることによって、熱電素子の熱疲労を軽減して疲労寿命
を改善し得ることが分かる。
As is clear from Table 5, it is understood that the thermal fatigue of the thermoelectric element can be reduced and the fatigue life can be improved by using various ceramic fibers having a small coefficient of thermal expansion as the thermal expansion suppressing material.

【0065】実施例9 熱膨張抑制材としての繊維に対する金属コーティングの
効果を確認するために、実施例5と同一の炭化珪素ウィ
スカーに銅めっき、金めっき、銀めっき、ニッケル−燐
めっきをそれぞれ施す以外は、実施例5と同様にして試
験用熱電素子を作製して疲労寿命を測定した。その結
果、金属コーティングを施していない炭化珪素ウィスカ
ーを用いた場合の疲労寿命は105回であったのに対し
て、金属コーティングを施した炭化珪素ウィスカーを用
いた場合にはいずれも500回以上の疲労寿命を示すこと
が確認された。
Example 9 In order to confirm the effect of the metal coating on the fiber as the thermal expansion suppressing material, the same silicon carbide whiskers as in Example 5 are plated with copper, gold, silver and nickel-phosphorus. A test thermoelectric element was prepared and fatigue life was measured in the same manner as in Example 5 except for the above. As a result, the fatigue life was 105 times when using the silicon carbide whiskers without metal coating, whereas the fatigue life was 105 times or more when using the silicon carbide whiskers with metal coating. It was confirmed to show fatigue life.

【0066】[0066]

【発明の効果】以上説明したように、本発明の熱電素子
によれば、冷熱動作時の半田層に起因する熱応力などが
低減され、これによって熱疲労による素子機能の低下や
素子破壊の発生を大幅に抑制することができる。すなわ
ち、長期信頼性に優れた熱電素子を提供することが可能
となる。
As described above, according to the thermoelectric element of the present invention, the thermal stress and the like due to the solder layer during the cold heat operation are reduced, which causes the deterioration of the element function and the destruction of the element due to the thermal fatigue. Can be significantly suppressed. That is, it becomes possible to provide a thermoelectric element having excellent long-term reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態による熱電素子の概略構
造を示す図である。
FIG. 1 is a diagram showing a schematic structure of a thermoelectric element according to an embodiment of the present invention.

【図2】 図1に示す熱電素子の要部を拡大して示す断
面図である。
FIG. 2 is a cross-sectional view showing an enlarged main part of the thermoelectric element shown in FIG.

【図3】 従来構造の熱電素子における亀裂の発生状態
を説明するための図である。
FIG. 3 is a diagram for explaining a crack generation state in a thermoelectric element having a conventional structure.

【図4】 本発明の実施例で作製した熱疲労試験用熱電
素子の構成を示す図である。
FIG. 4 is a diagram showing a structure of a thermoelectric element for thermal fatigue test manufactured in an example of the present invention.

【図5】 本発明の実施例1、2による熱電素子の熱サ
イクル数と抵抗値変化との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the number of thermal cycles and the change in resistance value of thermoelectric elements according to Examples 1 and 2 of the present invention.

【図6】 本発明の実施例5による熱電素子の熱サイク
ル数と抵抗値変化との関係を示す図である。
FIG. 6 is a diagram showing the relationship between the number of thermal cycles and the change in resistance value of the thermoelectric element according to Example 5 of the present invention.

【符号の説明】[Explanation of symbols]

1……熱電素子、2……下部支持部材、3……上部支持
部材、4……N型熱電半導体、5……P型熱電半導体、
6……第1の電極(放電側電極)、7……第2の電極
(吸熱側電極)、8,9……半田層,10……直流電源
1 ... Thermoelectric element, 2 ... Lower support member, 3 ... Upper support member, 4 ... N-type thermoelectric semiconductor, 5 ... P-type thermoelectric semiconductor,
6 ... First electrode (discharge side electrode), 7 ... Second electrode (heat absorption side electrode), 8, 9 ... Solder layer, 10 ... DC power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡村 正己 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 5F036 AA01 BA23 BA33 BB21 BC06 BD01 BD13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masami Okamura             8th Shinsugita Town, Isogo Ward, Yokohama City, Kanagawa Prefecture             Ceremony company Toshiba Yokohama office F term (reference) 5F036 AA01 BA23 BA33 BB21 BC06                       BD01 BD13

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 支持部材と、前記支持部材上に交互に配
列されたP型熱電半導体およびN型熱電半導体と、前記
支持部材の表面に設けられていると共に、前記P型熱電
半導体およびN型熱電半導体の一方の端部に半田層を介
して接合された第1の電極と、前記P型熱電半導体およ
びN型熱電半導体が直列に接続されるように他方の端部
に半田層を介して接合された第2の電極とを具備する熱
電素子において、 前記半田層は、25℃から100℃までの平均線膨張率が半
田母材より小さい熱膨張抑制材を、体積比で5〜80%の
範囲で含む複合半田からなることを特徴とする熱電素
子。
1. A support member, P-type thermoelectric semiconductors and N-type thermoelectric semiconductors arranged alternately on the support member, and a P-type thermoelectric semiconductor and an N-type semiconductor provided on the surface of the support member. A first electrode joined to one end of a thermoelectric semiconductor via a solder layer and the other end of the thermoelectric semiconductor via a solder layer so that the P-type thermoelectric semiconductor and the N-type thermoelectric semiconductor are connected in series. In a thermoelectric element comprising a bonded second electrode, the solder layer comprises a thermal expansion suppressing material having an average linear expansion coefficient from 25 ° C. to 100 ° C. smaller than that of the solder base material in a volume ratio of 5 to 80%. A thermoelectric element comprising a composite solder containing in the range of.
【請求項2】 請求項1記載の熱電素子において、 前記複合半田は25℃から100℃までの平均線膨張率が12
×10-6〜21×10-6/℃の範囲であることを特徴とする熱
電素子。
2. The thermoelectric element according to claim 1, wherein the composite solder has an average coefficient of linear expansion from 25 ° C. to 100 ° C. of 12.
A thermoelectric element characterized by being in the range of × 10 -6 to 21 × 10 -6 / ° C.
【請求項3】 請求項1または請求項2記載の熱電素子
において、 前記熱膨張抑制材は、金属粉末、金属繊維、セラミック
ス粉末、およびセラミックス繊維から選ばれる少なくと
も1種からなることを特徴とする熱電素子。
3. The thermoelectric element according to claim 1 or 2, wherein the thermal expansion suppressing material is at least one selected from metal powder, metal fiber, ceramic powder, and ceramic fiber. Thermoelectric element.
【請求項4】 請求項3記載の熱電素子において、 前記金属粉末および金属繊維は、W、Mo、Cr、Z
r、Ti、V、Nb、および低熱膨張Fe基合金から選
ばれる少なくとも1種からなることを特徴とする熱電素
子。
4. The thermoelectric element according to claim 3, wherein the metal powder and the metal fiber are W, Mo, Cr, Z.
A thermoelectric element comprising at least one selected from r, Ti, V, Nb, and a low thermal expansion Fe-based alloy.
【請求項5】 請求項3記載の熱電素子において、 前記セラミックス粉末およびセラミックス繊維は、アル
ミナ、シリカ、炭化珪素、炭素、およびこれらの複合化
合物から選ばれる少なくとも1種からなることを特徴と
する熱電素子。
5. The thermoelectric element according to claim 3, wherein the ceramic powder and the ceramic fiber are made of at least one selected from alumina, silica, silicon carbide, carbon, and composite compounds thereof. element.
【請求項6】 請求項1ないし請求項5のいずれか1項
記載の熱電素子において、 前記熱膨張抑制材は表面に金属コーティングが施されて
いることを特徴とする熱電素子。
6. The thermoelectric element according to claim 1, wherein a surface of the thermal expansion suppressing material is coated with a metal.
【請求項7】 請求項6記載の熱電素子において、 前記金属コーティングは、Ni、Cu、Ag、Au、ま
たはこれらの元素を含む合金からなることを特徴とする
熱電素子。
7. The thermoelectric element according to claim 6, wherein the metal coating is made of Ni, Cu, Ag, Au, or an alloy containing these elements.
JP2002147356A 2002-05-22 2002-05-22 Thermoelectric element Withdrawn JP2003338641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002147356A JP2003338641A (en) 2002-05-22 2002-05-22 Thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147356A JP2003338641A (en) 2002-05-22 2002-05-22 Thermoelectric element

Publications (1)

Publication Number Publication Date
JP2003338641A true JP2003338641A (en) 2003-11-28

Family

ID=29705951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002147356A Withdrawn JP2003338641A (en) 2002-05-22 2002-05-22 Thermoelectric element

Country Status (1)

Country Link
JP (1) JP2003338641A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277206A (en) * 2004-03-25 2005-10-06 Toshiba Corp Thermoelectric converter
JP2008277394A (en) * 2007-04-26 2008-11-13 Kyocera Corp Thermoelectric module
WO2009082534A2 (en) * 2007-12-18 2009-07-02 Ppg Industries Ohio, Inc. A device for use in a furnace exhaust stream for thermoelectric generation
JP2010108958A (en) * 2008-10-28 2010-05-13 Kyocera Corp Thermoelectric module, and method of manufacturing the same
CN102237486A (en) * 2010-05-04 2011-11-09 罗伯特·博世有限公司 Thermoelectric modules
JPWO2010010783A1 (en) * 2008-07-22 2012-01-05 コニカミノルタホールディングス株式会社 Thermoelectric conversion element
WO2013074967A1 (en) * 2011-11-17 2013-05-23 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
WO2013182361A1 (en) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Thermoelectric element for converting energy between thermal energy and electrical energy and method for disassembling the thermoelectric element
JP2014204093A (en) * 2013-04-10 2014-10-27 日立化成株式会社 Thermoelectric conversion module and manufacturing method therefor
JP2017143111A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Thermoelectric conversion module and method for manufacturing the same
CN110767798A (en) * 2019-10-25 2020-02-07 王曙光 Battery material capable of converting heat energy into electric energy and preparation method thereof
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277206A (en) * 2004-03-25 2005-10-06 Toshiba Corp Thermoelectric converter
JP2008277394A (en) * 2007-04-26 2008-11-13 Kyocera Corp Thermoelectric module
WO2009082534A2 (en) * 2007-12-18 2009-07-02 Ppg Industries Ohio, Inc. A device for use in a furnace exhaust stream for thermoelectric generation
WO2009082534A3 (en) * 2007-12-18 2010-03-04 Ppg Industries Ohio, Inc. A device for use in a furnace exhaust stream for thermoelectric generation
US8461447B2 (en) 2007-12-18 2013-06-11 PPG Industries Ondo, Inc Device for use in a furnace exhaust stream for thermoelectric generation
JPWO2010010783A1 (en) * 2008-07-22 2012-01-05 コニカミノルタホールディングス株式会社 Thermoelectric conversion element
JP2010108958A (en) * 2008-10-28 2010-05-13 Kyocera Corp Thermoelectric module, and method of manufacturing the same
CN102237486A (en) * 2010-05-04 2011-11-09 罗伯特·博世有限公司 Thermoelectric modules
WO2013074967A1 (en) * 2011-11-17 2013-05-23 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
US9178128B2 (en) 2011-11-17 2015-11-03 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
US9865794B2 (en) 2011-11-17 2018-01-09 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
WO2013182361A1 (en) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Thermoelectric element for converting energy between thermal energy and electrical energy and method for disassembling the thermoelectric element
JP2014204093A (en) * 2013-04-10 2014-10-27 日立化成株式会社 Thermoelectric conversion module and manufacturing method therefor
JP2017143111A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Thermoelectric conversion module and method for manufacturing the same
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating
CN110767798A (en) * 2019-10-25 2020-02-07 王曙光 Battery material capable of converting heat energy into electric energy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4964009B2 (en) Power semiconductor module
JP5224430B2 (en) Power semiconductor module
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
US20070013054A1 (en) Thermally conductive materials, solder preform constructions, assemblies and semiconductor packages
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
US20180366629A1 (en) Thermoelectric device for high temperature applications
JPH0261539B2 (en)
JP2017059823A (en) Thermoelectric conversion module and thermoelectric conversion device
KR20110135855A (en) Method for fabricating thermoelectric device
JPH07202063A (en) Ceramic circuit board
JP2003338641A (en) Thermoelectric element
JP4401754B2 (en) Method for manufacturing thermoelectric conversion module
JP4699822B2 (en) Manufacturing method of semiconductor module
JP2017107925A (en) Thermoelectric conversion module and manufacturing method therefor
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
JPH09283656A (en) Ceramic circuit board
JPH08102570A (en) Ceramic circuit board
JP4592486B2 (en) Semiconductor module
JP2013071873A (en) Joint body
JP4557398B2 (en) Electronic element
JP2004186566A (en) Assembling method of thermoelectric conversion module
JP3469811B2 (en) Line type thermoelectric conversion module
JP2000164941A (en) Thermoelectric conversion module
JP2004235367A (en) Thermoelectric module
JPH08274423A (en) Ceramic circuit board

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802