JP3592054B2 - Electronic circuit and manufacturing method thereof - Google Patents

Electronic circuit and manufacturing method thereof Download PDF

Info

Publication number
JP3592054B2
JP3592054B2 JP34482197A JP34482197A JP3592054B2 JP 3592054 B2 JP3592054 B2 JP 3592054B2 JP 34482197 A JP34482197 A JP 34482197A JP 34482197 A JP34482197 A JP 34482197A JP 3592054 B2 JP3592054 B2 JP 3592054B2
Authority
JP
Japan
Prior art keywords
solder
weight
electronic circuit
tin
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34482197A
Other languages
Japanese (ja)
Other versions
JPH11176881A (en
Inventor
秀文 植田
康男 山岸
雅之 北嶋
成和 竹居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP34482197A priority Critical patent/JP3592054B2/en
Publication of JPH11176881A publication Critical patent/JPH11176881A/en
Application granted granted Critical
Publication of JP3592054B2 publication Critical patent/JP3592054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、電子回路とその製造方法に関する。より詳しく言えば、本発明は、電子部品類、特に大規模集積回路(LSI)チップをチップ上の金バンプに被着したはんだを介して基板に接合するフリップチップ接合により表面実装して製造された電子回路とその製造方法に関する。
【0002】
【従来の技術】
フリップチップ接合は、実装面積が小さく、また、回路の配線長が短いことから、高密度実装や高速デバイスの実装に適している。このため、フリップチップ接合は大型コンピュータの分野で採用されてきたが、最近では小型化、高機能化が進む民生用電子機器にも用いられるようになってきた。
【0003】
フリップチップ接合のバンプについては、アルミニウム電極上へのバンプ形成が容易であることから金バンプを用いた開発例が増加している。金バンプと基板電極の接続には、はんだ付け、異方導電性フィルム、導電ペーストなどのように中間材を介す方式と、バンプと基板電極を熱圧着して金属間の固相拡散により接合する方式がある。
【0004】
金属間の固相拡散により接合する方式は、良好な状態の接合形成が難しく、濡れ不良等により信頼性の低下を招く。その一方、中間材を介す方式のうち、異方導電性フィルムや導電ペーストにより金バンプと基板電極を接続する方式では、位置ずれ、高抵抗、リペア(補修)不可といった問題点がある。これに対して、はんだ付けにより金バンプと基板電極を接続する場合、セルフアライメント効果による位置ずれ補正、低抵抗化、リペア性の付与といった長所が考えられる。
【0005】
従来、チップ側バンプと基板電極との接合部のはんだは、溶融はんだ射出、はんだペースト印刷、あるいはスーパーソルダ法により、基板電極側に供給する方法が一般に用いられている。しかし、基板にはんだを供給するこれらの方法では、狭ピッチ化への対応において、例えば溶融はんだ射出の場合はブリッジの発生、はんだペーストの場合は印刷性やはんだ粉末の微小化の限界という問題がある。更に、これらの方法では、工数が増加したり、基板メーカへ処理を依頼しなければならず、コストの上昇を引き起こす。
【0006】
このような不都合を解消し、チップの金バンプと基板電極の接合にはんだ付けを用い且つ狭ピッチ化に対応可能なフリップチップ接合を目指す技術として、溶融はんだ槽に金バンプを浸漬することにより金バンプ側にはんだを供給する方法が着目されている。しかしながら、この方法においては、はんだ中に含まれるスズが金と反応してAuSn、AuSn、AuSnといった金属間化合物を形成しやすく、そしてこのような金属間化合物は固くて脆い性質を有し、接合部に発生するとしばしば信頼性低下の原因となることが問題となっている。
【0007】
チップ上に形成した金バンプを溶融はんだ中に浸漬して金バンプにはんだを供給し、基板上の導体配線パターンに接合する技術を開示している特開平3−108734号公報では、はんだをインジウムを含む合金と限定している。はんだにインジウムを含ませることで、金とスズとの反応を抑制することが可能になる。ところが、はんだがインジウムを含む場合には、次に述べるような問題が生じる。第一に、インジウムの易酸化性からはんだ浴表面を清浄な状態に保つことが難しく、特に大気中では溶融浴のはんだをバンプへ移す(供給する)ことが良好に行なえない。第二に、雰囲気の調整等で第一の問題を解消しても、はんだの供給を良好に行なうためには、はんだ浴の設定温度を融点から50℃以上高くしなければならず、他のはんだと比べてより大きな熱応力が金バンプに加わる。第三に、インジウムは高価な材料であることから、コストが高くなる。以上のように、インジウムを含むはんだを用いた場合には、金バンプへのはんだの供給がしずらくなり、且つコストの上昇を招く。
【0008】
【発明が解決しようとする課題】
本発明は、従来技術に存する上記の欠点を解消して、インジウムを含むはんだを使用した場合に比べて金バンプへのはんだの供給が容易であって、しかも金とはんだ中のスズとの反応を抑制できる新しいはんだ供給方法を利用して、LSIチップに代表される半導体チップを回路基板へ表面実装して電子回路を製造する方法と、その方法により製作したチップ−基板間の接合の信頼性の高い電子回路を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の電子回路製造方法は、半導体チップを回路基板にはんだを介して接合することにより電子回路を製造する方法であって、半導体チップの電極上に形成された金バンプを液相線温度が125℃以上且つ180℃未満のはんだの溶融浴に浸漬して金バンプ上にはんだを供給及び被着し、次いで半導体チップを回路基板上の所定の位置に配置し、そして金バンプ上のはんだを溶融後再固化させて半導体チップを回路基板に接合する方法である。
【0010】
また、本発明の電子回路は、半導体チップがその電極上に形成された金バンプをはんだを介して回路基板の電極に接合して当該回路基板に搭載されている電子回路であって、当該はんだが液相線温度が125℃以上且つ180℃未満のはんだであることを特徴とする。
【0011】
【発明の実施の形態】
本発明では、金バンプを備えた、LSIチップに代表される半導体チップを回路基板にフリップチップ接合する際に使用されるはんだとして、液相線温度が125℃以上且つ180℃未満のはんだ合金を使用する。上述のように、金バンプをはんだを介して回路基板の電極に接合すると、金とはんだ中のスズとの金属間化合物が生成して接合部の信頼性の低下の原因となる。本発明は、この金属間化合物の生成を抑制するには、比較的低融点のはんだを採用し、金とはんだの反応温度を下げることを可能とすることが有効であることを見いだしてなされたものである。
【0012】
はんだを金バンプへ供給して被着するとき及び被着したはんだを介しチップを回路基板へ実装するときの温度が高いと、はんだ中への金の拡散が著しく進行するため、Au−Sn化合物が多量に生成し、基板実装後の接合部は非常に脆い状態となる。そのような接合部が電子回路の反復使用に伴う発熱と冷却のサイクルにさらされると、異種材料間の熱膨張率差による応力が加わるため、接合部にクラックが発生し、オープン不良(絶縁不良)が発生する。先に説明した特開平3−108734号公報では、インジウムを含むはんだを用いることでこのような不都合の解消を図っている。
【0013】
これに対し、本発明によれば、はんだの融点を低くすることで、バンプへのはんだ供給時及びチップの基板実装時の温度を低下させることにより、Au−Sn化合物の生成を抑制することで、チップと基板との接合部の信頼性を高めることがとが可能となる。
【0014】
本発明で使用するはんだは、液相線温度が125℃以上且つ180℃未満の合金である。125℃という下限は、これより低い液相線温度の合金の実用の可能性がないことによる。180℃という上限は、液相線温度がこれ以上になるとAu−Sn化合物の生成量が多くなることによるものである。
【0015】
本発明におけるはんだとして好適なものは、SnとBiを主成分とする合金である。このSn−Biはんだにおける好ましいSn含有量は40〜59重量%であり、残部(すなわち41〜60重量%)がBiである。このSn−Biはんだは、上記の組成範囲内において、更にAgを最高で2重量%まで含んでもよい。すなわちAgを含む場合のはんだ組成は、Snが40〜59重量%、Biが41〜60重量%、そしてAgが2重量%以下となる。Agには、SnとBiだけからなるはんだの熱疲労特性を改善する優れた作用があり、すなわちAgを含むSn−Biはんだは延性が増して接合部の信頼性を更に高めることができる。2重量%より多量の銀を使用しても差し支えはないが、はんだの延性を高める銀の効果はその含有量を2重量%をより多くすると延性を逆に低下させるので、実用的には2重量%以下の銀含有量とすることが好ましい。本発明において特に好ましいはんだは、Snを42重量%、Biを57重量%、そしてAgを1重量%含有するものである。
【0016】
Sn−Biはんだ、あるいはSn−Bi−Agはんだのほかに、本発明では例えばSn−Bi−Pb系のはんだ等を使用することも可能である。
【0017】
本発明において半導体チップの金バンプをはんだ溶融浴に浸漬して金バンプへはんだを供給する具体的方法、及び金バンブに被着したはんだを介して半導体チップを回路基板の電極に接合する具体的方法は、半導体産業の分野において周知であり、ここで詳しく説明するには及ばない。
【0018】
【実施例】
次に、実施例により本発明を更に説明する。
表1に示したように液相線温度の異なる各種はんだ合金を、同表に浸漬温度として示した液相線温度以上の温度に加熱して溶融状態とし、これにLSIチップのアルミニウム電極上に形成した金バンプを浸漬させた。浸漬後の金バンプ断面の走査型電子顕微鏡(SEM)観察により、金バンプ上へのはんだ供給・被着状態を調査した。その結果から金バンプへうまくはんだを供給してバンプ上にはんだ皮膜を形成できた試料(表1の「はんだ被着状態」が○と表示されているもの)について、被着したはんだを加熱溶融することにより金バンプを回路基板の銅電極上に接合し、LSIチップを基板へ実装した。(表1の「はんだ被着状態」が×と表示されているものは、バンプ上のはんだ皮膜が十分でなかったことを示している。)実装後の接合部断面を電子プローブ微量分析計(EPMA)で分析して、金バンプの基板への接合状態を調査した。
【0019】
得られた結果を表1に示す。基板への接合状態が○で表示されているものは、はんだを介して金バンブと銅電極との良好な接合が形成されたことを示しており、×で表示されているものは、接合部にクラックが発生し、良好な接合が形成できなかったことを示している。AuSn発生量が「少」と表示されているものは、はんだ中のスズのうちのわずかなものだけがAn−Sn金属間化合物を形成していたことを示しており、「多」と表示されているものは、はんだ中のスズの大半がAn−Sn金属間化合物を形成していたことを示していて、矢印の左側がはんだをバンプへ被着時の状態であり、右側が接合後の状態である。
【0020】
【表1】

Figure 0003592054
【0021】
液相線温度が180℃未満のはんだ3種について、はんだを金バンプへ供給及び被着する際の温度(はんだ浴温度)を200℃以下とした場合に、はんだの良好な供給・被着、チップの基板への良好な実装が行なえた。一方、融点が180℃以上のはんだでは、Au−Sn金属間化合物が多量に生成するため、基板への実装がうまく行なえず、また、たとえ行なえても実装直後に接合部は破断した。
【0022】
【発明の効果】
以上説明したように、本発明によれば、金バンプへのはんだの供給を低い温度で容易に行うことができ、且つ、金とはんだ中のスズとの反応を効果的に抑制できることから半導体チップの金バンプと回路基板の電極との接合強度を向上させることができ、それゆえ信頼性の高い電子回路を提供することが可能になる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic circuit and a method for manufacturing the same. More specifically, the present invention is manufactured by surface mounting electronic components, especially large-scale integrated circuit (LSI) chips, by flip-chip bonding, in which the chips are bonded to a substrate via solder applied to gold bumps on the chip. Electronic circuit and a method of manufacturing the same.
[0002]
[Prior art]
Flip chip bonding is suitable for high-density mounting and high-speed device mounting because the mounting area is small and the wiring length of the circuit is short. For this reason, flip-chip bonding has been adopted in the field of large-sized computers, but recently it has also been used in consumer electronic devices that are becoming smaller and more sophisticated.
[0003]
Regarding flip-chip bonding bumps, development examples using gold bumps are increasing because bump formation on aluminum electrodes is easy. The connection between the gold bump and the substrate electrode is via a method such as soldering, an anisotropic conductive film, or conductive paste, or by bonding the bump and the substrate electrode by thermocompression and solid phase diffusion between the metals. There is a method to do.
[0004]
In the method of bonding by solid-phase diffusion between metals, it is difficult to form a bond in a good state, and the reliability is reduced due to poor wetting or the like. On the other hand, among the methods using an intermediate material, the method of connecting a gold bump and a substrate electrode with an anisotropic conductive film or a conductive paste has problems such as displacement, high resistance, and repair (repair). On the other hand, when the gold bump is connected to the substrate electrode by soldering, advantages such as correction of displacement due to a self-alignment effect, reduction of resistance, and provision of repairability are considered.
[0005]
Conventionally, a method of supplying solder to a board electrode side by injecting molten solder, printing a solder paste, or using a super solder method has been generally used for solder at a joint between a chip-side bump and a board electrode. However, these methods of supplying solder to a substrate have problems in narrowing the pitch, such as the occurrence of bridges in the case of molten solder injection, and limitations of printability and miniaturization of solder powder in the case of solder paste. is there. Furthermore, in these methods, the number of man-hours increases and processing must be requested to a substrate maker, which causes an increase in cost.
[0006]
As a technique for solving such inconvenience and using solder for joining the gold bumps of the chip and the substrate electrodes and aiming at flip-chip joining that can respond to narrow pitch, the gold bumps are immersed in a molten solder bath. Attention has been paid to a method of supplying solder to the bump side. However, in this method, tin contained in the solder easily reacts with gold to form intermetallic compounds such as AuSn, AuSn 2 and AuSn 4 , and such intermetallic compounds have a hard and brittle property. The problem is that if it occurs at the joint, it often causes a decrease in reliability.
[0007]
Japanese Patent Application Laid-Open No. 3-1087334 discloses a technique in which a gold bump formed on a chip is immersed in molten solder to supply the solder to the gold bump and join the conductor to a conductor wiring pattern on a substrate. And alloys containing the same. By including indium in the solder, it becomes possible to suppress the reaction between gold and tin. However, when the solder contains indium, the following problems occur. First, it is difficult to keep the surface of the solder bath clean because of the oxidizability of indium, and it is not possible to transfer (supply) the solder in the molten bath to the bumps particularly in the air. Second, even if the first problem is solved by adjusting the atmosphere or the like, in order to supply the solder satisfactorily, the set temperature of the solder bath must be raised by 50 ° C. or more from the melting point. Greater thermal stress is applied to the gold bumps as compared to solder. Third, indium is an expensive material, which increases costs. As described above, when the solder containing indium is used, it becomes difficult to supply the solder to the gold bumps, and the cost is increased.
[0008]
[Problems to be solved by the invention]
The present invention solves the above-mentioned drawbacks in the prior art, makes it easier to supply the solder to the gold bumps than when using a solder containing indium, and furthermore, the reaction between gold and tin in the solder. A method of manufacturing an electronic circuit by mounting a semiconductor chip typified by an LSI chip on a circuit board by using a new solder supply method capable of suppressing the problem, and the reliability of bonding between a chip and a board manufactured by the method. It is an object to provide an electronic circuit having high performance.
[0009]
[Means for Solving the Problems]
The electronic circuit manufacturing method of the present invention is a method of manufacturing an electronic circuit by bonding a semiconductor chip to a circuit board via solder, and the method in which a liquidus temperature is applied to a gold bump formed on an electrode of the semiconductor chip. The solder is supplied and deposited on the gold bump by dipping in a molten bath of solder at 125 ° C. or higher and lower than 180 ° C., and then the semiconductor chip is placed at a predetermined position on the circuit board, and the solder on the gold bump is removed. This is a method in which a semiconductor chip is joined to a circuit board by melting and then re-solidifying.
[0010]
Further, the electronic circuit of the present invention is an electronic circuit mounted on the circuit board by bonding a gold bump formed on the electrode of the semiconductor chip to the electrode of the circuit board via solder, and Is a solder having a liquidus temperature of 125 ° C. or more and less than 180 ° C.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a solder alloy having a liquidus temperature of 125 ° C. or higher and lower than 180 ° C. is used as a solder used when flip-chip bonding a semiconductor chip typified by an LSI chip having a gold bump to a circuit board. use. As described above, when the gold bump is joined to the electrode of the circuit board via the solder, an intermetallic compound of gold and tin in the solder is generated, which causes a reduction in the reliability of the joint. The present invention has been found to be effective in suppressing the formation of this intermetallic compound by employing a solder having a relatively low melting point and enabling a reduction in the reaction temperature between gold and solder. Things.
[0012]
When the temperature is high when the solder is supplied to the gold bumps to be applied and when the chip is mounted on the circuit board via the applied solder, the diffusion of gold into the solder remarkably progresses. Is generated in a large amount, and the bonded portion after mounting on the board is in a very brittle state. When such joints are subjected to the cycle of heat generation and cooling associated with the repeated use of electronic circuits, stress is applied due to the difference in the coefficient of thermal expansion between dissimilar materials, causing cracks in the joints and poor openness (insulation failure). ) Occurs. In Japanese Patent Application Laid-Open No. 3-1087334 described above, such a disadvantage is solved by using a solder containing indium.
[0013]
On the other hand, according to the present invention, by lowering the melting point of the solder, by lowering the temperature at the time of supplying the solder to the bumps and at the time of mounting the chip on the substrate, the generation of the Au-Sn compound is suppressed. In addition, it is possible to increase the reliability of the joint between the chip and the substrate.
[0014]
The solder used in the present invention is an alloy having a liquidus temperature of 125 ° C. or more and less than 180 ° C. The lower limit of 125 ° C. is due to the lack of practicality of lower liquidus temperature alloys. The upper limit of 180 ° C. is attributable to the fact that when the liquidus temperature is higher than this, the production amount of the Au—Sn compound increases.
[0015]
Preferred as the solder in the present invention is an alloy containing Sn and Bi as main components. The preferred Sn content in the Sn-Bi solder is 40 to 59% by weight, and the balance (i.e., 41 to 60% by weight) is Bi. The Sn-Bi solder may further contain up to 2% by weight of Ag within the above composition range. That is, the solder composition containing Ag is 40 to 59% by weight of Sn, 41 to 60% by weight of Bi, and 2% by weight or less of Ag. Ag has an excellent effect of improving the thermal fatigue characteristics of the solder consisting of Sn and Bi alone, that is, the Sn-Bi solder containing Ag has an increased ductility and can further enhance the reliability of the joint. It is safe to use silver in an amount larger than 2% by weight, but the effect of silver for improving the ductility of the solder is to decrease the ductility when the content is more than 2% by weight. Preferably, the silver content is less than or equal to weight percent. Particularly preferred solders in the present invention are those containing 42% by weight of Sn, 57% by weight of Bi, and 1% by weight of Ag.
[0016]
In addition to the Sn-Bi solder or the Sn-Bi-Ag solder, in the present invention, for example, a Sn-Bi-Pb-based solder can be used.
[0017]
In the present invention, a specific method of immersing a gold bump of a semiconductor chip in a solder melting bath and supplying solder to the gold bump, and a specific method of joining the semiconductor chip to an electrode of a circuit board via the solder applied to the gold bump Methods are well known in the semiconductor industry and need not be discussed at length here.
[0018]
【Example】
Next, the present invention will be further described with reference to examples.
As shown in Table 1, various solder alloys having different liquidus temperatures were heated to a temperature equal to or higher than the liquidus temperature indicated as the immersion temperature in the same table to be in a molten state. The formed gold bump was immersed. The state of solder supply and deposition on the gold bump was examined by scanning electron microscope (SEM) observation of the cross section of the gold bump after immersion. From the results, for the sample that successfully supplied the solder to the gold bump and formed the solder film on the bump (the “Solder applied state” in Table 1 is indicated by “○”), the applied solder was melted by heating. By doing so, the gold bump was bonded on the copper electrode of the circuit board, and the LSI chip was mounted on the board. (If the “Solder application state” in Table 1 is indicated by x, it indicates that the solder film on the bump was not sufficient.) The cross section of the joint after mounting was measured with an electron probe microanalyzer ( The state of bonding of the gold bumps to the substrate was examined by analysis using EPMA.
[0019]
Table 1 shows the obtained results. When the bonding state to the substrate is indicated by ○, it indicates that a good connection between the gold bump and the copper electrode was formed via the solder, and when the bonding state was indicated by ×, the bonding portion was indicated. This indicates that cracks occurred and good bonding could not be formed. When the amount of generated AuSn is indicated as "small", it indicates that only a small amount of tin in the solder has formed the An-Sn intermetallic compound, and is indicated as "many". Indicates that most of the tin in the solder formed an An-Sn intermetallic compound, the left side of the arrow indicates the state at the time of applying the solder to the bump, and the right side of the arrow indicates the state after bonding. State.
[0020]
[Table 1]
Figure 0003592054
[0021]
For three types of solder having a liquidus temperature of less than 180 ° C., when the temperature (solder bath temperature) at the time of supplying and applying solder to the gold bumps is set to 200 ° C. or less, good supply and deposition of solder can be achieved. The chip was successfully mounted on the substrate. On the other hand, in the case of a solder having a melting point of 180 ° C. or higher, a large amount of Au—Sn intermetallic compound was generated, so that mounting on a substrate could not be carried out well.
[0022]
【The invention's effect】
As described above, according to the present invention, the supply of the solder to the gold bumps can be easily performed at a low temperature, and the reaction between gold and tin in the solder can be effectively suppressed. Therefore, the bonding strength between the gold bump and the electrode of the circuit board can be improved, and therefore, a highly reliable electronic circuit can be provided.

Claims (10)

半導体チップを回路基板にはんだを介して接合することにより電子回路を製造する方法であって、半導体チップの電極上に形成された金バンプを液相線温度が125℃以上且つ180℃未満のはんだの溶融浴に浸漬して金バンプ上にはんだを供給及び被着し、次いで半導体チップを回路基板上の所定の位置に配置し、そして金バンプ上のはんだを溶融後再固化させて半導体チップを回路基板に接合する電子回路の製造方法。A method for manufacturing an electronic circuit by bonding a semiconductor chip to a circuit board via solder, comprising: forming a gold bump formed on an electrode of the semiconductor chip by soldering with a liquidus temperature of 125 ° C. or more and less than 180 ° C. The solder is supplied and deposited on the gold bumps by immersion in the melting bath of the above, then the semiconductor chip is arranged at a predetermined position on the circuit board, and the solder on the gold bumps is melted and solidified again to form the semiconductor chip. A method for manufacturing an electronic circuit to be joined to a circuit board. 前記はんだとしてスズとビスマスを主成分とするはんだを使用する、請求項1記載の方法。The method according to claim 1, wherein a solder containing tin and bismuth as main components is used as the solder. 前記はんだがスズを40〜59重量%及びビスマスを41〜60重量%含む、請求項2記載の方法。The method of claim 2, wherein the solder comprises 40-59% by weight tin and 41-60% by weight bismuth. 前記はんだがスズを40〜59重量%、ビスマスを41〜60重量%含み、且つ2重量%以下の銀を含む、請求項2記載の方法。3. The method of claim 2, wherein the solder comprises 40-59% by weight tin, 41-60% by weight bismuth, and no more than 2% by weight silver. 前記はんだがスズを42重量%、ビスマスを57重量%、そして銀を1重量%含有している、請求項4記載の方法。The method of claim 4 wherein the solder contains 42% by weight tin, 57% by weight bismuth, and 1% by weight silver. 半導体チップがその電極上に形成された金バンプをはんだを介して回路基板の電極に接合して当該回路基板に搭載されている電子回路であって、当該はんだが液相線温度が125℃以上且つ180℃未満のはんだであることを特徴とする電子回路。An electronic circuit in which a semiconductor chip is mounted on a circuit board by bonding gold bumps formed on the electrodes to electrodes of the circuit board via solder, and the solder has a liquidus temperature of 125 ° C. or higher. An electronic circuit characterized by being a solder having a temperature of less than 180 ° C. 前記はんだがスズとビスマスを主成分とするはんだである、請求項6記載の電子回路。The electronic circuit according to claim 6, wherein the solder is a solder containing tin and bismuth as main components. 前記はんだがスズを40〜59重量%及びビスマスを41〜60重量%含むはんだである、請求項7記載の電子回路。The electronic circuit according to claim 7, wherein the solder is a solder containing 40 to 59% by weight of tin and 41 to 60% by weight of bismuth. 前記はんだがスズを40〜59重量%、ビスマスを41〜60重量%含み、且つ2重量%以下の銀を含むはんだである、請求項8記載の電子回路。9. The electronic circuit according to claim 8, wherein the solder is a solder containing 40 to 59% by weight of tin, 41 to 60% by weight of bismuth, and 2% by weight or less of silver. 前記はんだがスズを42重量%、ビスマスを57重量%、そして銀を1重量%含有するはんだである、請求項9記載の電子回路。The electronic circuit of claim 9, wherein the solder is a solder containing 42% by weight tin, 57% by weight bismuth, and 1% by weight silver.
JP34482197A 1997-12-15 1997-12-15 Electronic circuit and manufacturing method thereof Expired - Fee Related JP3592054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34482197A JP3592054B2 (en) 1997-12-15 1997-12-15 Electronic circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34482197A JP3592054B2 (en) 1997-12-15 1997-12-15 Electronic circuit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11176881A JPH11176881A (en) 1999-07-02
JP3592054B2 true JP3592054B2 (en) 2004-11-24

Family

ID=18372238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34482197A Expired - Fee Related JP3592054B2 (en) 1997-12-15 1997-12-15 Electronic circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3592054B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135268B2 (en) * 1998-09-04 2008-08-20 株式会社豊田中央研究所 Lead-free solder alloy
JP2011077308A (en) * 2009-09-30 2011-04-14 Fujitsu Ltd Method for mounting semiconductor device
JP6548537B2 (en) * 2015-09-10 2019-07-24 株式会社弘輝 Solder alloy and solder composition

Also Published As

Publication number Publication date
JPH11176881A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
US7709746B2 (en) Pb-free solder-connected structure and electronic device
US6307160B1 (en) High-strength solder interconnect for copper/electroless nickel/immersion gold metallization solder pad and method
KR0124517B1 (en) Lead-free, tin, antimony, bismtuh, copper solder alloy
JP2516326B2 (en) Ternary solder alloy, method of electrically connecting integrated circuit chip to substrate having circuit pattern formed thereon, and integrated circuit chip module
US7344061B2 (en) Multi-functional solder and articles made therewith, such as microelectronic components
JP3232963B2 (en) Lead-free solder for connecting organic substrates and mounted products using the same
JPH0788681A (en) Lead-free high-temperature tin based multicomponent solder
JPH0788680A (en) Composition of high-temperature lead-free tin based solder
JPH071179A (en) Lead-free tin - bismuth solder
JP5041102B2 (en) Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component
JP2001298051A (en) Solder connecting part
US6619536B2 (en) Solder process and solder alloy therefor
JP3592054B2 (en) Electronic circuit and manufacturing method thereof
JPH0985484A (en) Lead-free solder and packaging method using the same and packaged articles
US20020009610A1 (en) Technical field
JP3460442B2 (en) Lead-free solder and mounted products using it
JPH11135533A (en) Electrode structure, silicon semiconductor element provided with the electrode, its manufacture, circuit board mounting the element and its manufacture
KR20060061327A (en) Formation method of solder bumps using thin film heater fabricated on ic chip or ic chip wafer and the facility to make the same
CA2493351C (en) Pb-free solder-connected structure and electronic device
CN114211081A (en) Preparation method of Sn-based lead-free polycrystalline welding spot
Vuorela et al. Bismuth-filled anisotropically conductive adhesive for flip chip bonding
Kang et al. Diffusional processes in metallurgical interconnections
JPH11245081A (en) Heat melting joint member and semiconductor packaging device using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees