JP3658170B2 - 流量センサ - Google Patents

流量センサ Download PDF

Info

Publication number
JP3658170B2
JP3658170B2 JP00769298A JP769298A JP3658170B2 JP 3658170 B2 JP3658170 B2 JP 3658170B2 JP 00769298 A JP00769298 A JP 00769298A JP 769298 A JP769298 A JP 769298A JP 3658170 B2 JP3658170 B2 JP 3658170B2
Authority
JP
Japan
Prior art keywords
resistor
heating
flow rate
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00769298A
Other languages
English (en)
Other versions
JPH11201793A (ja
Inventor
智也 山川
正浩 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP00769298A priority Critical patent/JP3658170B2/ja
Priority to US09/103,939 priority patent/US6134960A/en
Priority to DE19832964A priority patent/DE19832964B4/de
Publication of JPH11201793A publication Critical patent/JPH11201793A/ja
Application granted granted Critical
Publication of JP3658170B2 publication Critical patent/JP3658170B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • G01F1/699Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters by control of a separate heating or cooling element

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、感熱抵抗体(以下、「感熱抵抗」ともいう)で構成された複数の発熱抵抗体(以下、「発熱抵抗」ともいう)を流体の上流から下流に向けて配置し、これら発熱抵抗体(あるいは発熱抵抗体によって加熱された部分)から流体への熱伝達現象に基づいて流体の流速あるいは流量を計測する流量検出素子からなる流量センサに関し、例えば内燃機関の吸入空気量を計測する場合等に用いられる流量センサに関するものである。
【0002】
【従来の技術】
図13は例えば特開平1−185416号公報に示されている従来の感熱式流量センサの流量検出素子であり、図14は従来の感熱式流量センサの回路図である。
従来の感熱式流量センサの流量検出素子は図13に示すように、セラミックなどの電気絶縁材料で作られた平板状基材38、この平板状基材38の表面上にスパッタリングとフォトエッチングにより形成された感熱抵抗体である白金薄膜よりなる発熱抵抗39a,39bより構成さている。発熱抵抗39aは吸気上流側に対応する位置に、また発熱抵抗39bは吸気下流側に対応する位置に形成され、これら発熱抵抗39a(以下、上流側発熱抵抗と記載する),発熱抵抗39b(以下、下流側発熱抵抗と記載する)の外表面上にはアルミナまたは酸化シリコンの薄膜がコーティングされている。上流側発熱抵抗39a,下流側発熱抵抗39bは平板状基材38の表面上で外部接続端子40a,40bに接続されている。
【0003】
図示しない吸気温度検出用の温度補償抵抗も感熱抵抗体である白金薄膜よりなり、発熱抵抗と同様なプロセスで構成されているが、その抵抗値は発熱抵抗の50倍以上になるように設計されている。
図14において、上流側発熱抵抗39a,下流側発熱抵抗39b、温度補償抵抗41a,41bは計測流体である空気が通る主通路19の中に配置されている。
【0004】
上流側発熱抵抗39a、上流側の温度補償抵抗41a及び固定抵抗42a,43a,44aでブリッジ回路を構成し固定抵抗42aと44aとの中点及び固定抵抗43aと上流側発熱抵抗39aとの中点の電位をそれぞれ差動増幅器45aに入力して電位差を検出するようにしている。
【0005】
この差動増幅器45aからの電位差検出信号をトランジスタ46aのベースに入力し、上記ブリッジ中点の電位が等しくなるように閉ループ制御している。このトランジスタ46aのエミッタは温度補償抵抗41aと上流側発熱抵抗39aとの接続点に接続され、そのコレクタは電源に接続している。
【0006】
同様にして、下流側発熱抵抗39b,下流側の温度補償抵抗41b,固定抵抗42b,43b,44bでブリッジ回路を構成し、差動増幅器45b及びトランジスタ46bを用いて閉ループ制御回路を構成している。そして、ブリッジ回路を構成する固定抵抗42bと44bとの中点及び固定抵抗43bと下流側発熱抵抗39bとの中点の電位をそれぞれ差動増幅器45bに入力して電位差を検出するようにしている。
【0007】
上流側および下流側発熱抵抗39a,39bにおける温度が、温度補償抵抗41a,41bで計測された吸気温度よりも100℃高い温度になるように、ブリッジ回路を構成する固定抵抗の値が決められている。
尚、ブリッジの平衡条件より、例えば、上流側発熱抵抗39aの抵抗値RHは以下の式で与えられる。
【0008】
RH={(Rk+R1)・R3}/R2
ただしRk:温度補償用抵抗41aの抵抗値
R1:固定抵抗42aの抵抗値
R2:固定抵抗44aの抵抗値
R3:固定抵抗43aの抵抗値
【0009】
上流側発熱抵抗39aにおける温度が、吸気温度よりも100℃高い温度になるように各ブリッジ抵抗値を設定しているため、吸気温度が一定ならば温度補償用抵抗体41aの抵抗値、発熱抵抗体39aの抵抗値は一定となり、この発熱抵抗体39aの抵抗値は流量に拘わらず一定値となるように差動増幅器45aとトランジスタ46aによりブリッジに流す電流を制御する。よって、発熱抵抗体39aに流れる電流を固定抵抗43aにおける電圧降下より検出することで、空気流量を求めることができる。
【0010】
このような従来の流量センサにおいて、上流側発熱抵抗39aから気流に伝達する熱は気流の流速が大きいほど増す。一方、下流側発熱抵抗39bに沿って流れる気流は、上流側発熱抵抗39aによって昇温されているため、上流側発熱抵抗39aほど気流に熱が伝達されない。即ち、上流側発熱抵抗39aは下流側発熱抵抗39bより良く冷却され、冷却の度合いの差は気流の流速が増すほど大きくなる。
【0011】
従って、上流側発熱抵抗39aの抵抗値を一定に保つための加熱電流は、下流側発熱抵抗39bの抵抗値を一定に保つための加熱電流よりも大きく、その差は気流の流速が大きいほど増す。
加熱電流は、空気流量の関数である熱伝達量に相当する量となり、熱伝達量は流速の関数であるため、固定抵抗43aの両端電圧Vaと固定抵抗43bの両端電圧Vbの差は気流の流速、あるいは定められた通路内を通過する気流の流量の関数となる。
【0012】
このように気流が上流から下流に流れる順方向流の場合はVa>Vbとなり、逆方向流の場合はVb>Vaとなるため、VaとVbの差は流量の絶対値と気流の方向を現す出力となる。従って、差動増幅器47でVaとVbの差をとって出力とすれば流れの方向を検出できる流量センサとなる。
【0013】
【発明が解決しようとする課題】
ところで、この種の従来の流量センサでは、上流側発熱抵抗39aと下流側発熱抵抗39bを構成する各々のブリッジ回路において、ブリッジ回路を構成する抵抗は同じ物が用いられている。
【0014】
従って、例えばVa−Vbの値を流量センサの流量信号として取り扱う場合は、流量が0のときVa−Vb=0となり気流が下流から上流に流れる逆流の場合はVa−Vb<0となる。
このような出力を持つ流量センサを、例えば自動車用内燃機関の燃料制御用コントロールユニットのように流量センサの信号が入力される装置に使用する場合は、負の入力を認識できるように回路を構成する必要があり、入力回路が複雑化する。
【0015】
また、流量センサの内部においてVa−Vbの値に所定のバイアスVobを加え、Va−Vb+Vobを流量信号として取り扱うこともできるが、この場合は流量センサ内に電圧加算回路を新たに追加しなければならない。さらに、流量センサを自動車用内燃機関の吸入空気流量センサとして用いるような場合は、周囲温度が−30℃〜110℃の範囲で変化するため、この電圧加算回路は周囲温度によるバイアスVobの変動を極めて小さく回路設計を行う必要がある。
上記のような対策はいずれにしてもコストのかかるものとなる。
【0016】
一方、本流量センサが自動車等の内燃機関の燃料制御用吸気流量センサとして用いられる場合ではスロットル開度が大きくバルブオーバラップのある運転領域では流量は逆流を含む脈動流となることがある。だが、一般に最大逆流流量は順方向流の最大計測流量よりもかなり小さなものとなる。従ってこのような用途の流量センサの感度は順方向流の計測において高く設計されることが望しい。
しかしながら、上記のような従来の流量センサにおいては、順方向流と逆方向流の感度が等しくなっているため、順方向の最大計測流量に制限が生じる場合がある。
【0017】
この発明は上述のような問題点を解消するためになされたもので、第1の目的は逆流検出時から順流検出時にかけて、正の単調増加出力を単純な構成で得ることにあり、それによって流量センサ及びその出力を受ける装置の構成を単純にすることにある。またこの発明の第2の目的は順方向流に対する感度の高い流量センサを得ることにある。
【0018】
【課題を解決するための手段】
請求項1の発明に係る流量センサは、感熱抵抗で構成された複数の発熱抵抗体を流体の上流から下流に向けて配置し、発熱抵抗体から流体への熱伝達現象に基づいて流体の流量を計測する感熱式流量センサにおいて、複数の発熱抵抗体の温度が流体の温度に対して各々所定の温度だけ昇温するように発熱抵抗体に流す加熱電流を制御する手段と、複数の発熱抵抗体のうち、流体の上流側にある上流側発熱抵抗体への加熱電流と流体の下流側にある下流側発熱抵抗体への加熱電流との加熱電流差を求める手段と、加熱電流差に基づいて流体の流量を検出する手段とを備え、流体の流量が0のときに上流側発熱抵抗体の加熱電流が下流側発熱抵抗体の加熱電流よりも大きくなるようにして、加熱電流差が所定の計測流量範囲における流体の逆流時において正の値をとるように構成したものである。
【0019】
請求項2に係る流量センサは、上流側発熱抵抗体の抵抗値が下流側発熱抵抗体の抵抗値よりも小さく設定されたものである。
【0020】
請求項3に係る流量センサは、発熱抵抗体が膜状に構成され、上流側発熱抵抗体の膜厚が、下流側発熱抵抗体の膜厚よりも厚く設定されたものである。
【0021】
請求項4に係る流量センサは、上流側発熱抵抗体の平均温度が下流側発熱抵抗体の平均温度よりも高く設定されたものである。
【0022】
請求項5に係る流量センサは、上流側発熱抵抗体の面積が下流側発熱抵抗体の面積よりも大きく設定されたものである。
【0023】
請求項6に係る流量センサによる流体の流量を検出する手段は、上流側感熱抵抗体に直列接続され、上流側感熱抵抗体に流れる加熱電流を検出する第1の抵抗と、下流側感熱抵抗体に直列接続され、下流側感熱抵抗体に流れる加熱電流を検出する第1の抵抗よりも抵抗値が小さい第2の抵抗とを含み、第1の抵抗の両端電圧と第2の抵抗の両端電圧との電圧差から流体の流量を検出するものである。
【0024】
【発明の実施の形態】
実施の形態1.
図1はこの発明の一実施の形態である流量検出素子17Aの断面図(図1の下図)と平面図(上図)を示すものである。断面図は平面図に示されたA−A部の断面を表す。これは以下に述べる他の実施の形態においても同様である。
本実施の形態に係る流量検出素子17Aは、図に示すように厚さ0.4mmのシリコンよりなる平板状基材1の表面に厚さ1μmの窒化シリコン等よりなる絶縁性の支持膜2がスパッタ、蒸着、CVD等の方法で形成され、その上に厚さ0.2μmの白金等の感熱抵抗体膜よりなる発熱抵抗4,5が蒸着やスパッタ等の方法で着膜されている。
【0025】
発熱抵抗4,5は写真製版、ウエットあるいはドライエッチング等の方法を用いて電流路であるパターンニングが形成されている。パターンニングによって構成された発熱抵抗4,5の発熱部の面積は、1mm×0.05mmである。また、絶縁性の支持膜2の上には同様に厚さ0.2μmの白金等の感熱抵抗体膜よりなる計測流体温補償抵抗6a,6bが蒸着やスパッタ等の方法で着膜されている。
【0026】
更に、発熱抵抗4,5及び計測流体温補償抵抗6a,6bの上には厚さ1μmの窒化シリコン等よりなる絶縁性の保護膜3がスパッタ、蒸着、CVD等の方法で形成されている。
矢印9は計測流体の流れの方向である。内燃機関の吸気流量を計測する場合は吸気口からシリンダーへ流れる方向を示すことになる。ただし、例えば4気筒内燃機関の場合、バルブオーバラップやスロットル弁開度や吸気管路の条件によっては逆流を含む脈動流となる。
【0027】
発熱抵抗4は順方向流の場合上流側に、発熱抵抗5は下流側にあり、両発熱抵抗4,5は流れの方向に並んでいる。発熱抵抗4,5(上流側発熱抵抗4、下流側発熱抵抗5と記載する)及び計測流体温補償抵抗6a,6bはリードパターン13a〜13hを経て流量検出素子の外部との電気的接続を行うための電極14a〜14hに接続されている。電極14a〜14hの部分はワイヤボンド等の方法で外部と電気的な接続をするために保護膜3が除去されている。
【0028】
さらに、平板状基材1の支持膜2が形成されている面とは逆の面に形成された裏面保護膜15に写真製版等の方法でエッチングホール16を形成後、例えばアルカリエッチング等を施すことによって、平板状基材1の一部が除去され、ダイヤフラム12が形成されている。ダイヤフラム12の面積は1.4mm×0.4mmである。
【0029】
上流側発熱抵抗4と下流側発熱抵抗5によって各々形成される上流側の発熱部と下流側の発熱部は流れの方向の幅及び流れと直交する方向の長さが同一であり、発熱面積が同一となっているが、上流側発熱抵抗4は、下流側発熱抵抗5にくらべてパターン幅が大きく、またパターン長が短く設計されているため、上流側発熱抵抗4の抵抗値RH1は下流側発熱抵抗5の抵抗値RH2よりも小さくなっている。
【0030】
尚、図では流量検出素子17Aの構造がわかりやすいように示されており実際の寸法比では描かれていない。これは以下に示す他の実施の形態の図においても同様である。図5は本実施の形態に係る加熱電流制御回路と計測流体の流量及び流速検出回路を含む流量センサの構成図である。
【0031】
上流側発熱抵抗4を含むブリッジ回路23aは、ホイストンブリッジを形成する上流側発熱抵抗4、基準抵抗24a、固定抵抗28a、固定抵抗26aと温度補償抵抗6aの直列体及びインピーダンス変換回路を構成する固定抵抗25a,26a,差動増幅器29a、そしては基準抵抗24a,固定抵抗28aの各両端電圧であるAa点とBa点の電位差を求める差動増幅器30a、ベースに差動増幅器30aの出力を入力し、コレクタをpnp型の出力トランジスタ32aのベースに接続したエミッタ接地のnpn型の制御トランジスタ31aより構成される。インピーダンス変換回路は温度補償抵抗6aに電流が流れ過ぎないようにするためである。
【0032】
尚、出力トランジスタ32aのエミッタは電源の+に、コレクタはブリッジの+端に接続されている。従って、出力トランジスタ32aはベース電流に応じて所定のコレクタ電流、即ち加熱電流がブリッジを通して上流側発熱抵抗4に流れる。差動増幅器30a、制御トランジスタ31a,出力トランジスタ32aによってAa点とBa点の電圧が等しくなるように上流側発熱抵抗4に流す加熱電流IH1を制御する閉ループ回路が構成されている。
【0033】
即ち、この閉ループは従来技術において説明したように、上流側発熱抵抗4における温度が、吸気温度よりも100℃高い温度になるように、各ブリッジ抵抗値を設定しており、また、吸気温度が一定ならば温度補償用抵抗体6aの抵抗値、上流側発熱抵抗体4の抵抗値は一定となり、この上流側発熱抵抗体4の抵抗値RH1は流量に拘わらず一定値となるように差動増幅器30aと制御トランジスタ31a、制御トランジスタ32aによりブリッジに流す電流を制御する。よって、上流側発熱抵抗体4に流れる電流を基準抵抗24aにおける電圧降下より検出することで、空気流量を求めることができる。
【0034】
下流側発熱抵抗5を含むブリッジ回路23bは、ホイストンブリッジを形成する下流側発熱抵抗5、基準抵抗24b、固定抵抗28b、固定抵抗と温度補償抵抗6bの直列体及びインピーダンス変換回路を構成する固定抵抗25b,26b,差動増幅器29b、そしては基準抵抗24b,固定抵抗28bの各両端電圧であるAb点とBb点の電位差を求める差動増幅器30b、ベースに差動増幅器30bベースに差動増幅器34bの出力を入力し、コレクタをpnp型の出力トランジスタ32aのベースに接続したエミッタ接地のnpn型の制御トランジスタ31aより構成される。
【0035】
インピーダンス変換回路は温度補償抵抗6bに電流が流れ過ぎないようにするためである。出力トランジスタ32bのエミッタは電源の+に、コレクタはブリッジの+端に接続されている。差動増幅器30b、トランジスタ31b,32bによってAb点とBb点の電圧が等しくなるように加熱電流IH2を制御する閉ループ回路が構成されている。
【0036】
即ち、この閉ループは従来技術において説明したように、下流側発熱抵抗5における温度が、吸気温度よりも100℃高い温度になるように、各ブリッジ抵抗値を設定しており、また、吸気温度が一定ならば温度補償用抵抗体6bの抵抗値、下流側発熱抵抗体5の抵抗値は一定となり、この下流側発熱抵抗体5の抵抗値RH2は流量に拘わらず一定値となるように差動増幅器30bと制御トランジスタ31b、制御トランジスタ32bによりブリッジに流す電流を制御する。よって、下流側発熱抵抗体5に流れる電流を基準抵抗24bにおける電圧降下より検出することで、空気流量を求めることができる。
【0037】
基準抵抗24a,24bの各両端電圧VM1,VM2の差は差動増幅器34
で求められる。差動増幅器34の後段には、差動増幅器35と増幅率を決める固定抵抗36,37とからなる増幅回路が接続されている。差動増幅器35の出力Voは流量センサの出力である。
【0038】
図6及び図7は、例えば図1に示す流量検出素子17Aを用いた流量センサの正面図及び横断面図である。図において17は流量検出素子、18は流量検出素子17を収めた検出管路、19は検出管路18を収めた計測流体の通路である主通路、20は主通路において計測流体の入り側に設けた格子状の整流器、21は図5に示す加熱電流制御回路及び流量・流速検出回路が収められたケース、22は加熱電流制御回路及び流量・流速検出回路に電源を供給したり、計測出力を取り出すためのコネクタである。流量センサの正面図及び横断面図は以後に述べる他の実施の形態においても同様である。
【0039】
上流側及び下流側発熱抵抗4,5は図5に示す制御回路によって所定の平均温度になるようにフィードバック制御されている。
加熱電流値は、上流側及び下流側発熱抵抗4,5の発熱温度を各々計測流体温補償抵抗6a,6bで検出された計測流体温度に基づいて適切に変えて行けば、計測流体の流速と密度の積に相当する量の関数となる。このような定温度差制御の検出原理については上述した従来例と同等である。
【0040】
計測流体の流速が早くなると、上流側発熱抵抗4から計測流体への熱伝達が多くなるため加熱電流が増加する。一方下流側にある下流側発熱抵抗5の部分には上流側発熱抵抗4によって暖められた気流が流れるため上流側発熱抵抗4に比べると加熱電流の増加は少ない。従って、上流側発熱抵抗4と下流側発熱抵抗5の加熱電流の差を基準抵抗24a,bにおける電圧降下の差VM1−VM2を差動増幅器34で求めることによって、流量と流れの方向を検出することができる。上流側発熱抵抗4のジュール熱をH1,下流側発熱抵抗5のジュール熱をH2とすると、これらは式(1),(2)で表される。
【0041】
H1=IH12・RH1=A1+S1・h・(TH1−Ta1) ・・・(1)
H2=IH22・RH2=A2+S2・h・(TH2−Ta2) ・・・(2)
但し、
IH1:上流側発熱抵抗4の加熱電流
IH2:下流側発熱抵抗5の加熱電流
RH1:上流側発熱抵抗4の抵抗値
RH2:下流側発熱抵抗5の抵抗値
A1 :上流側の発熱部の流量0時の熱損失量
A2 :下流側の発熱部の流量0時の熱損失量
S1 :発熱抵抗4が構成された発熱部の面積
S2 :発熱抵抗5が構成された発熱部の面積
h :発熱部の熱伝達率
h=f(Qn)
Q:流量
n:流量によって決まる定数
TH1:発熱抵抗4の平均温度
TH1=Ta+ΔT1
Ta:流量センサに流入する気流温度
ΔT1:発熱抵抗4の昇温値
TH2:発熱抵抗5の平均温度
TH2=Ta+ΔT2
ΔT2:発熱抵抗5の昇温値
Ta1:発熱抵抗4が構成された発熱部表面を流れる気流の温度
順流時:Ta1≒Ta
逆流時:Ta1>Ta
Ta2:発熱抵抗5が構成された発熱部表面を流れる気流の温度
順流時:Ta2>Ta
逆流時:Ta2≒Ta
【0042】
また、IH1とIH2は基準抵抗24a,24bによって電圧VM1,VM2に変換される。
【0043】
VM1=IH1・RM1 ・・・(3)
VM2=IH2・RM2 ・・・(4)
但し、
RM1:基準抵抗24aの抵抗値
RM2:基準抵抗24bの抵抗値
【0044】
上記式(1),(2)において、A1=A2,S1=S2,TH1=TH2であり、また、流量0のときはTa1≒Ta2となるので、
IH1 2 ・RH1=IH2 2 ・RH2
となる。ここで、RH1<RH2なので、IH1>IH2となり、従って、上記式(3),(4)より、VM1>VM2となる。
【0045】
図8は、従来例と同様にRH1=RH2とした場合の、所定の通路径を有する管路内を通過する流量に対するVM1,VM2,VM1−VM2の特性の一例を示す。図9は本実施の形態の流量に対するVM1,VM2,VM1−VM2の特性を示す。
【0046】
本実施の形態の場合は、流量約−40g/s以上の流領域においてVM1−VM2は正の値で単調増加している。従って、本流量センサの出力を受ける装置において、負の値の入力を受けるインターフェイス回路は不要であり、また本流量センサ内に電圧加算回路を付加する必要もない。
【0047】
差動増幅器34より出力されたVM1−VM2は図5に示した増幅回路(演算増幅器35等)によって所定の増幅がなされ、流量センサの出力Voは計測流量範囲において0〜5Vとなっている。
尚、本実施の形態では、RH1<RH2とするために上流側発熱抵抗4は下流側発熱抵抗5に比べてパターン幅を大きく、パターン長を短くしているが、パターン幅のみを大きくしたり、パターン長のみを長くしても良い。
【0048】
実施の形態2.
図2はこの発明の他の実施の形態である流量検出素子17Bの断面図と平面図を示すもので、図における1〜16は実施の形態1と同一のものである。この実施の形態では上流側発熱抵抗4と下流側発熱抵抗5のパターンニングは同一であるが、白金膜の厚さが、図2内の下段断面図(上流側発熱抵抗4が下流側発熱抵抗5よりも高くなっている)のように増厚されており、0.23μmとなっている。
【0049】
このように構成された流量検出素子17Bを用いた場合の流量センサの動作は実施の形態1と同様であるが、本実施の形態の場合、上流側発熱抵抗4パターンニングと下流側発熱抵抗5のパターンニングとが同一に構成されているために、上流と下流発熱抵抗4,5のパターンニングの差による発熱部の温度分布の差が生じにくい。したがって、発熱部の温度分布を均一にするといったパターンニングの自由度が大きく、検出精度を高めることができる。
【0050】
実施の形態3.
図3はこの発明の他の一実施の形態である流量検出素子17Cの断面図と平面図を示すもので、図における1〜16は実施の形態1と同一のものである。この実施の形態では上流側発熱抵抗4と下流側発熱抵抗5が構成された各々の発熱部の面積及び、抵抗値は同一である。
【0051】
上流側及び下流側発熱抵抗4,5は図5に示す制御回路によって平均温度が制御されているが、本実施の形態では上流側発熱抵抗4の平均温度が下流側発熱抵抗5の平均温度よりも高くなるようにブリッジの構成抵抗を設定している。従ってΔT1>ΔT2となっている。
【0052】
このように構成されている場合は、式(1),(2)において、RH1=RH2,A1>A2,S1=S2,TH1>TH2である。流量0のときはTa1≒Ta2であるから、H1>H2となり従ってVM1−VM2>0となる。図10は本実施の形態の流量に対するVM1,VM2,VM1−VM2の特性を示す。
【0053】
流量約−40g/s以上の流領域においてVM1−VM2は正の値で単調増加している。従って、本流量センサの出力を受ける装置において、負の値の入力を受けるインターフェイス回路は不要であり、また本流量センサ内に電圧加算回路を付加する必要もない。
【0054】
VM1−VM2は図5に示した増幅回路によって所定の増幅がなされ、流量センサの出力Voは計測流量範囲において例えば0〜5Vとなっている。
【0055】
さらに本実施の形態では、順方向流のとき、上流側の発熱部から下流側の発熱部への気流による熱伝達量が大きくなり、流量が増加したときの下流側発熱抵抗5の加熱電流IH2の増加が抑制される。つまり、式(2)においてTa2をより大きくすることができる。従って上下流の加熱電流差を大きくとることができ、流量センサとしての順方向流に対する感度を上げることができる。
【0056】
実施の形態4.
図4はこの発明の別の一実施の形態である流量検出素子17Dの断面図と平面図を示すもので、図における1〜16は、上記実施の形態1と同一のものである。この実施の形態では上流側発熱抵抗4が構成された発熱部の面積S1のほうが、下流側発熱抵抗5が構成された発熱部の面積S2よりも大きくなっている。
【0057】
上流側および下流側発熱抵抗4,5は図5に示す制御回路によって各々同一の平均温度に制御されている。このように構成されている場合は、式(1),(2)において、 RH1=RH2,A1>A2,TH1=TH2である。流量0のときはTa1≒Ta2であるから、H1>H2となり従って VM1−VM2>0となる。
【0058】
図11は本実施の形態の流量に対するVM1,VM2,VM1−VM2の特性を示す。流量約−40g/s以上の流領域においてVM1−VM2は正の値で単調増加している。従って、本流量センサの出力を受ける装置において、負の値の入力を受けるインターフェイス回路は不要であり、また本流量センサ内に電圧加算回路を付加する必要もない。
【0059】
VM1−VM2は図5に示した増幅回路によって所定の増幅がなされ、流量センサの出力Voは計測流量範囲において例えば0〜5Vとなっている。
さらに本実施の形態では、順方向流のとき、上流側の発熱部から下流側の発熱部への気流による熱伝達量が大きくなり、流量が増加したときの下流側発熱抵抗5の加熱電流IH2の増加が抑制される。つまり、式(2)においてTa2をより大きくとることができる。従って上下流の加熱電流差を大きくとることができ、流量センサとしての順方向流に対する感度を上げることができる。
【0060】
尚、本実施の形態では上流側の発熱部の面積を下流側の発熱部の面積より大きくするために、流れ方向の幅を大きくしたが、流れに直交する方向に大きくしても良い。
【0061】
実施の形態5.
本実施の形態では図3に示した流量検出素子17Cを用い、図5の回路図において加熱電流検出用の基準抵抗24aと24bの抵抗値をRM1>RM2とし、またTH1=TH2となるようにブリッジ回路23a,23bの固定抵抗27a,27b,28a,28bの抵抗値が定められている。
【0062】
この場合は、式(1)(2)より、流量が0のときはH1=H2となり従って式(3)(4)よりVM1−VM2>0となる。図12は本実施の形態の流量に対するVM1,VM2,VM1−VM2の特性を示す。
【0063】
本実施の形態の場合は、流量約−40g/s以上の流領域においてVM1−VM2は正の値で単調増加している。従って、本流量センサの出力を受ける装置において、負の値の入力を受けるインターフェイス回路は不要であり、また本流量センサ内に電圧加算回路を付加する必要もない。VM1−VM2は図5に示した増幅回路によって所定の増幅がなされ、流量センサの出力Voは計測流量範囲において例えば0〜5Vとなっている。
【0064】
以上に述べた各実施の形態では、流量検出素子17A〜17Dに平板状の形状を持つものについて説明したが、必ずしも平板状である必要はなく、例えば単一の円筒形状で上流と下流に抵抗膜が形成されている場合や、白金膜を着膜した円筒形状の素子や白金線を巻き付けた円筒形状の素子を上下流に複数並べたように配置した流量検出素子を用いても良い。また、発熱抵抗4,5の発熱部の大きさも上記に限定されることはない。
【0065】
【発明の効果】
請求項1の発明に係る流量センサは、感熱抵抗で構成された複数の発熱抵抗体を流体の上流から下流に向けて配置し、発熱抵抗体から流体への熱伝達現象に基づいて流体の流量を計測する感熱式流量センサにおいて、複数の発熱抵抗体の温度が流体の温度に対して各々所定の温度だけ昇温するように発熱抵抗体に流す加熱電流を制御する手段と、複数の発熱抵抗体のうち、流体の上流側にある上流側発熱抵抗体への加熱電流と流体の下流側にある下流側発熱抵抗体への加熱電流との加熱電流差を求める手段と、加熱電流差に基づいて流体の流量を検出する手段とを備え、流体の流量が0のときに上流側発熱抵抗体の加熱電流が下流側発熱抵抗体の加熱電流よりも大きくなるようにして、加熱電流差が所定の計測流量範囲における流体の逆流時において正の値をとるように構成したので上流側にある感熱抵抗体の加熱電流と下流側にある感熱抵抗体の加熱電流の差を流量信号として用いれば逆流時から順流時にかけて常に正の単調増加出力が得られ、流量センサ及びその出力を受ける装置のインターフェイスを単純、安価に構成できるという効果がある。
【0066】
請求項2に係る流量センサは、上流側発熱抵抗体の抵抗値が下流側発熱抵抗体の抵抗値よりも小さく設定されたので、上下流で同一のジュール熱を発生させる場合でも、上流側感熱抵抗体の加熱電流が下流側加熱電流よりも大きくなり、上流側にある感熱抵抗体の加熱電流と下流側にある感熱抵抗体の加熱電流の差を流量信号として用いれば逆流時から順流時にかけて常に正の単調増加出力が得られ、流量センサ及びその出力を受ける装置のインターフェイスを単純、安価に構成できるという効果がある。
【0067】
請求項3に係る流量センサは、発熱抵抗体が膜状に構成され、上流側発熱抵抗体の膜厚が、下流側発熱抵抗体の膜厚よりも厚く設定されたので、上流側と下流側感熱抵抗体の形状、配置を同一とした場合でも、上流側発熱抵抗と下流側発熱抵抗のパターンニングの自由度を損なわずに上流側感熱抵抗体の抵抗値を下流側感熱抵抗体の抵抗値よりも小さくできるため、温度分布や熱伝達の状況が上流と下流で大きく異なることがなく容易に逆流時から順流時にかけて常に正の単調増加出力が得られ、かつ精度の良い流量センサが得られるという効果がある。
【0068】
請求項4に係る流量センサは、上流側発熱抵抗体の平均温度が下流側発熱抵抗体の平均温度よりも高く設定されたので、上下流の発熱部が同じ表面積であり、そこに構成された感熱抵抗体が同じ抵抗値である場合でも、上流側感熱抵抗体のジュール熱が下流側感熱抵抗体のジュール熱より大きくなり、従って上流側にある感熱抵抗体の加熱電流と下流側にある感熱抵抗体の加熱電流の差を流量信号として用いれば容易に逆流時から順流時にかけて常に正の単調増加出力が得られ、流量センサ及びその出力を受ける装置のインターフェイスを単純、安価に構成できる。また順方向の検出感度を高めた流量センサが構成できるという効果がある。
さらに加えて順方向流においては、上流側の発熱部から下流側の発熱部への気流による伝熱量が増すために上下流の感熱抵抗体の加熱電流の差を大きくとることができ、感度を高めることができるという効果がある。
【0069】
請求項5に係る流量センサは、上流側発熱抵抗体の面積が下流側発熱抵抗体の面積よりも大きく設定されたので、上流側感熱抵抗体のジュール熱が下流側感熱抵抗体のジュール熱より大きくなり、従って上流側にある感熱抵抗体の加熱電流と下流側にある感熱抵抗体の加熱電流の差を流量信号として用いれば容易に逆流から順方向において正の単調増加出力が得られ、流量センサ及びその出力を受ける装置のインターフェイスを単純、安価に構成でき、また順方向の検出感度を高めた流量センサが構成できる。
さらに加えて順方向流においては、上流側の発熱部から下流側の発熱部への気流による伝熱量が増すために上下流の感熱抵抗体の加熱電流の差を大きくとることができ、感度を高めることができる。
【0070】
請求項6に係る流量センサによる流体の流量を検出する手段は、上流側感熱抵抗体に直列接続され、上流側感熱抵抗体に流れる加熱電流を検出する第1の抵抗と、下流側感熱抵抗体に直列接続され、下流側感熱抵抗体に流れる加熱電流を検出する第1の抵抗よりも抵抗値が小さい第2の抵抗とを含み、第1の抵抗の両端電圧と第2の抵抗の両端電圧との電圧差から流体の流量を検出するので、上流側にある感熱抵抗体の加熱電流と下流側にある感熱抵抗体の加熱電流の差を流量信号として用いれば逆流時から順流時にかけて常に容易に正の単調増加出力が得られ、流量センサ及びその出力を受ける装置のインターフェイスを単純、安価に構成できるという効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す流量検出素子の断面図及び平面図である。
【図2】 この発明の実施の形態2を示す流量検出素子の断面図及び平面図である。
【図3】 この発明の実施の形態3と実施の形態5を示す流量検出素子の断面図及び平面図である。
【図4】 この発明の実施の形態4を示す流量検出素子の断面図及び平面図である。
【図5】 この発明の加熱電流制御回路及び計測流体の流量及び流速検出回路を示す図である。
【図6】 この発明の一実施の形態を示す流量センサの正面図である。
【図7】 この発明の一実施の形態を示す流量センサの横断面図である。
【図8】 従来の流量検出特性図である。
【図9】 本発明の実施の形態1の流量検出特性図である。
【図10】 本発明の実施の形態2の流量検出特性図である。
【図11】 本発明の実施の形態3の流量検出特性図である。
【図12】 本発明の実施の形態4の流量検出特性図である。
【図13】 従来の流量検出素子の平面図である。
【図14】 従来の流量センサの回路図である。
【符号の説明】
1 平板状基材、2 支持膜、3 保護膜、4 上流側発熱抵抗、5 下流側発熱抵抗、6a,6b 温度補償抵抗、17A〜17D 流量検出素子、23a,b ブリッジ回路、24a,b 基準抵抗、25a〜28a,25b〜28b固定抵抗、29a,29b,30a,30b 差動増幅器、31a,31b,32a,32b トランジスタ、33 電源、34 差動増幅器、35,36,37 固定抵抗、39a,39b 発熱抵抗。

Claims (6)

  1. 感熱抵抗で構成された複数の発熱抵抗体を流体の上流から下流に向けて配置し、前記発熱抵抗体から前記流体への熱伝達現象に基づいて前記流体の流量を計測する感熱式流量センサにおいて、
    前記複数の発熱抵抗体の温度が前記流体の温度に対して各々所定の温度だけ昇温するように前記発熱抵抗体に流す加熱電流を制御する手段と、
    前記複数の発熱抵抗体のうち、前記流体の上流側にある上流側発熱抵抗体への加熱電流と前記流体の下流側にある下流側発熱抵抗体への加熱電流との加熱電流差を求める手段と、
    前記加熱電流差に基づいて前記流体の流量を検出する手段とを備え、
    前記流体の流量が0のときに前記上流側発熱抵抗体の加熱電流が前記下流側発熱抵抗体の加熱電流よりも大きくなるようにして、前記加熱電流差が所定の計測流量範囲における前記流体の逆流時において正の値をとるように構成したことを特徴とする流量センサ。
  2. 前記上流側発熱抵抗体の抵抗値が前記下流側発熱抵抗体の抵抗値よりも小さく設定されたことを特徴とする請求項1に記載の流量センサ
  3. 前記発熱抵抗体は、膜状に構成され、前記上流側発熱抵抗体の膜厚が、前記下流側発熱抵抗体の膜厚よりも厚く設定されたことを特徴とする請求項1または請求項2に記載の流量センサ。
  4. 前記上流側発熱抵抗体の平均温度が前記下流側発熱抵抗体の平均温度よりも高く設定されたことを特徴とする請求項1から請求項3までのいずれか1項に記載の流量センサ。
  5. 前記上流側発熱抵抗体の面積が前記下流側発熱抵抗体の面積よりも大きく設定されたことを特徴とする請求項1から請求項4までのいずれか1項に記載の流量センサ。
  6. 前記流体の流量を検出する手段は、
    前記上流側感熱抵抗体に直列接続され、前記上流側感熱抵抗体に流れる加熱電流を検出する第1の抵抗と、
    前記下流側感熱抵抗体に直列接続され、前記下流側感熱抵抗体に流れる加熱電流を検出する前記第1の抵抗よりも抵抗値が小さい第2の抵抗とを含み、
    前記第1の抵抗の両端電圧と前記第2の抵抗の両端電圧との電圧差から前記流体の流量を検出することを特徴とする請求項1から請求項5までのいずれか1項に記載の流量センサ。
JP00769298A 1998-01-19 1998-01-19 流量センサ Expired - Lifetime JP3658170B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP00769298A JP3658170B2 (ja) 1998-01-19 1998-01-19 流量センサ
US09/103,939 US6134960A (en) 1998-01-19 1998-06-25 Thermal-type flow sensor
DE19832964A DE19832964B4 (de) 1998-01-19 1998-07-22 Thermischer Flußsensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00769298A JP3658170B2 (ja) 1998-01-19 1998-01-19 流量センサ

Publications (2)

Publication Number Publication Date
JPH11201793A JPH11201793A (ja) 1999-07-30
JP3658170B2 true JP3658170B2 (ja) 2005-06-08

Family

ID=11672838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00769298A Expired - Lifetime JP3658170B2 (ja) 1998-01-19 1998-01-19 流量センサ

Country Status (3)

Country Link
US (1) US6134960A (ja)
JP (1) JP3658170B2 (ja)
DE (1) DE19832964B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680178B1 (ja) * 2013-12-26 2015-03-04 三菱電機株式会社 流量センサおよび内燃機関の制御システム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272260A (ja) * 2000-03-27 2001-10-05 Ngk Spark Plug Co Ltd 質量流量センサ及びそれを用いた質量流量計
JP2001349759A (ja) * 2000-06-08 2001-12-21 Mitsubishi Electric Corp 熱式流量センサ
US6763712B1 (en) * 2000-10-05 2004-07-20 Ford Global Technologies, Llc Flow-sensing device and method for fabrication
JP3718198B2 (ja) * 2003-02-26 2005-11-16 株式会社日立製作所 流量センサ
JP2004317268A (ja) * 2003-04-16 2004-11-11 Hitachi Ltd 車載電子装置,熱式流量計及び電子回路基板
DE10324290A1 (de) * 2003-05-21 2004-12-16 Robert Bosch Gmbh Durchflusssensor mit zwei Heizwiderständen
DE10330253A1 (de) * 2003-07-04 2005-01-20 Robert Bosch Gmbh Sensorelement
US7107835B2 (en) * 2004-09-08 2006-09-19 Honeywell International Inc. Thermal mass flow sensor
JP4850105B2 (ja) * 2007-03-23 2012-01-11 日立オートモティブシステムズ株式会社 熱式流量計
JP5969760B2 (ja) * 2011-12-27 2016-08-17 株式会社堀場エステック 熱式流量センサ
JP5523528B2 (ja) 2012-09-20 2014-06-18 三菱電機株式会社 熱式流量センサおよび熱式流量センサによる流量検出信号生成方法
DE102012219304A1 (de) * 2012-10-23 2014-04-24 Continental Automotive Gmbh Luftmassenmesser
US20140208755A1 (en) * 2013-01-28 2014-07-31 General Electric Company Gas Turbine Air Mass Flow Measuring System and Methods for Measuring Air Mass Flow in a Gas Turbine Inlet Duct
US9255826B2 (en) * 2013-07-16 2016-02-09 Honeywell International Inc. Temperature compensation module for a fluid flow transducer
CN108884742B (zh) * 2016-03-02 2022-02-01 沃特洛电气制造公司 虚拟传感***

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3444347A1 (de) * 1984-12-05 1986-06-12 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur luftmengenmessung
DE3606853A1 (de) * 1986-03-03 1987-09-10 Vdo Schindling Messsonde
US4843881A (en) * 1987-12-24 1989-07-04 Aalborg Instruments & Controls Fluid flow sensor system
JPH01185416A (ja) * 1988-01-20 1989-07-25 Mitsubishi Electric Corp 内燃機関用熱式流量計
US5237867A (en) * 1990-06-29 1993-08-24 Siemens Automotive L.P. Thin-film air flow sensor using temperature-biasing resistive element
DE4219551C2 (de) * 1991-06-13 1996-04-18 Mks Japan Inc Massenströmungssensor
JP2682349B2 (ja) * 1992-09-18 1997-11-26 株式会社日立製作所 空気流量計及び空気流量検出方法
EP0695928A3 (en) * 1994-08-02 1996-11-27 Hitachi Ltd Suction air flow meter for an internal combustion engine
JPH08313320A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 熱式空気流量計用測定素子及びそれを含む熱式空気流量計
JPH0989619A (ja) * 1995-07-19 1997-04-04 Ricoh Co Ltd 感熱式流量計
US5852239A (en) * 1996-06-12 1998-12-22 Ricoh Company, Ltd. Flow sensor having an intermediate heater between two temperature-sensing heating portions
JP3361708B2 (ja) * 1997-01-10 2003-01-07 株式会社日立製作所 空気流量計測装置用測定素子及びそれを備えた空気流量計測装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680178B1 (ja) * 2013-12-26 2015-03-04 三菱電機株式会社 流量センサおよび内燃機関の制御システム

Also Published As

Publication number Publication date
DE19832964B4 (de) 2004-12-02
US6134960A (en) 2000-10-24
JPH11201793A (ja) 1999-07-30
DE19832964A1 (de) 1999-07-29

Similar Documents

Publication Publication Date Title
JP3658170B2 (ja) 流量センサ
KR960015065B1 (ko) 질량기류센서용 제어 및 검출회로
JP4608843B2 (ja) 流量測定装置
JPH10197309A (ja) 熱式空気流量計用の測定素子及び熱式空気流量計
JP4157034B2 (ja) 熱式流量計測装置
JP6499566B2 (ja) 気体センサ装置及び気体センサ装置の加熱電流制御方法
JP2001027558A (ja) 感熱式流量センサ
US4587843A (en) Thermocouple-type gas-flow measuring apparatus
JP3133608B2 (ja) 熱式空気流量検出装置
JP3513048B2 (ja) 感熱式流量センサおよびその製造方法
KR100323315B1 (ko) 감열식 유량센서
JP2842729B2 (ja) 感熱式流量センサ
KR20070110763A (ko) 감열식 유량 센서의 유량 검출 소자
JPS61194317A (ja) 直熱型流量センサ
JP3668921B2 (ja) 流量検出素子
JP2944890B2 (ja) 熱式空気流量検出装置
JP3095322B2 (ja) 熱式空気流量検出装置
JP3174222B2 (ja) 熱式空気流量検出装置
JPS60230019A (ja) ガス流量検出装置
JP3577902B2 (ja) 熱式流速センサ
JPH08105779A (ja) 熱式空気流量検出装置
JP3174234B2 (ja) 熱式空気流量検出装置
JP2646846B2 (ja) 感温抵抗素子
JPH07286876A (ja) 熱式空気流量検出装置
JP3184402B2 (ja) 熱式空気流量検出装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term