JP3656511B2 - Driving force control device for four-wheel drive vehicle - Google Patents

Driving force control device for four-wheel drive vehicle Download PDF

Info

Publication number
JP3656511B2
JP3656511B2 JP2000104272A JP2000104272A JP3656511B2 JP 3656511 B2 JP3656511 B2 JP 3656511B2 JP 2000104272 A JP2000104272 A JP 2000104272A JP 2000104272 A JP2000104272 A JP 2000104272A JP 3656511 B2 JP3656511 B2 JP 3656511B2
Authority
JP
Japan
Prior art keywords
wheel
drive
wheel speed
speed
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000104272A
Other languages
Japanese (ja)
Other versions
JP2001287559A (en
Inventor
真次 松本
原平 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000104272A priority Critical patent/JP3656511B2/en
Publication of JP2001287559A publication Critical patent/JP2001287559A/en
Application granted granted Critical
Publication of JP3656511B2 publication Critical patent/JP3656511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、四輪駆動車の駆動力制御装置に関する。
【0002】
【従来の技術】
駆動スリップを抑制する駆動力制御装置は、2輪のみにエンジン駆動力が伝達されることで、加速操作や低μ路走行等で駆動スリップが発生しやすい二輪駆動車に適用されることが多い。これに対し、四輪駆動車はエンジン駆動力が四輪に配分されることで、同じエンジン駆動力であれば二輪駆動車に比べ各輪から路面へ伝達される駆動力が低くなり、駆動スリップ自体が発生しにくく、路面μが小さい場合でもある程度の駆動力は発生可能なため、駆動力制御を適用されることは少なかった。
【0003】
しかしながら、大トルクエンジンを搭載した四輪駆動車等では、エンジン駆動力を前後輪に配分しても駆動スリップの発生がみられ、四輪駆動車への駆動力制御装置の適用要求があるが、四輪共に駆動輪であり、エンジン駆動力が伝達される四輪が全て駆動スリップ状態になることもあるため、駆動スリップ制御の制御対象駆動輪速をどのように決めるかが困難である。
【0004】
これに対し、特開昭61−285130号公報には、四輪車輪速の平均値を制御対象駆動輪速とする四輪駆動車の駆動力制御装置が提案され、また、特開平3−125633号公報には、前後駆動力配分クラッチを介してエンジン駆動力が副次的に伝達される副駆動輪速の平均値を制御対象駆動輪速とする四輪駆動車の駆動力制御装置が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、前者の四輪駆動車の駆動力制御装置にあっては、前後輪駆動力配分により旋回中における前後輪間の回転速度差の発生を旋回状態に応じて許容しながら車両のヨー運動をコントロールする場合、駆動スリップを抑制するために駆動スリップ制御が行われてしまい、前後駆動力配分による車両のヨー運動のコントロールができず、前後駆動力配分制御の効果が損なわれることになる。つまり、四輪車輪速の平均値を制御対象駆動輪速とした場合、主駆動輪が含まれるため、駆動スリップを過大評価してしまい駆動スリップ制御が行われるというように、前後輪駆動力配分制御と駆動スリップ制御との2つの制御に干渉が生じるという問題がある。
【0006】
一方、後者の四輪駆動車の駆動力制御装置にあっては、通常の加速走行時程度のような、エンジンから主駆動輪(後輪駆動ベースなら後輪)へのトルク伝達応答性より前後駆動力配分クラッチから副駆動輪(後輪駆動ベースなら前輪)へのトルク伝達応答性が速い場合には、前後輪駆動力配分制御と駆動スリップ制御とをうまく両立させることができるが(図9)、逆に、発進急加速時のような、前後駆動力配分クラッチから副駆動輪へのトルク伝達応答性よりエンジンから主駆動輪へのトルク伝達応答性が速い場合には、前後輪回転速度差を検出してからエンジン駆動力を副駆動輪側へ配分するのでは間に合わず、エンジンからの駆動力が主駆動輪にに大きく作用する時間が発生し、特に、低μ路等においては主駆動輪の駆動スリップが大きくなる場合がある。
例えば、ベース車両が後輪2輪駆動であった場合には、前輪に駆動力が配分されるまでに後輪の駆動スリップが瞬間的に大きくなり、車両がオーバーステア傾向になる場合がある(図10)。また、ベース車両が前輪2輪駆動であった場合には、後輪に駆動力が配分されるまでに前輪の駆動スリップが瞬間的に大きくなり、車両がアンダーステア傾向になる場合がある。
【0007】
本発明は、このような問題点に着目してなされたもので、通常の加速走行時程度における前後輪駆動力配分制御と駆動スリップ制御との両立を達成しながら、発進急加速時等のように、副駆動輪へのトルク伝達応答性より主駆動輪へのトルク伝達応答性が速い状況が生じたときも車両の操縦安定性を確保することができる四輪駆動車の駆動力制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明では、エンジンと前後輪との間に前後駆動力配分手段が設けられ、前後輪のうちエンジン駆動力が主に伝達される主駆動輪とエンジン駆動力が副次的に伝達される副駆動輪との回転速度差に応じた前記前後駆動力配分手段への指令により前後輪への駆動力配分を制御する前後輪駆動力配分制御手段と、
駆動スリップが設定しきい値以上である場合に少なくともエンジン出力を低減することで駆動スリップを抑制する駆動スリップ制御手段とを備えた四輪駆動車の駆動力制御装置において、
前記エンジンから主駆動輪へのエンジントルク伝達速さであるエンジントルク応答性と前記前後駆動力配分手段を介した副駆動輪への配分トルク伝達速さである配分トルク応答性とを比較するトルク伝達応答性比較手段を設け、
前記トルク伝達応答性比較手段による比較結果で、配分トルク応答性がエンジントルク応答性より速い場合、副駆動輪の平均車輪速を駆動スリップの制御対象駆動輪速とし、エンジントルク応答性が配分トルク応答性より速い場合、主駆動輪と副駆動輪の四輪平均車輪速を駆動スリップの制御対象駆動輪速とする制御対象駆動輪速変更手段を設けたことを特徴とする。
【0009】
請求項2記載の発明では、請求項1記載の四輪駆動車の駆動力制御装置において、
前記トルク伝達応答性比較手段を、エンジンと前後駆動力配分手段との間に設けられた変速機の変速比を検出する変速比検出手段とし、
前記制御対象駆動輪速変更手段を、ロー変速比の場合、四輪平均車輪速を駆動スリップの制御対象駆動輪速とし、ハイ変速比の場合、副駆動輪の平均車輪速を駆動スリップの制御対象駆動輪速とする手段としたことを特徴とする。
【0010】
請求項3記載の発明では、請求項1または請求項2記載の四輪駆動車の駆動力制御装置において、
前記トルク伝達応答性比較手段を、エンジン駆動力を決めるアクセル開度又はアクセル開度変化量を検出するアクセル操作検出手段とし、
前記制御対象駆動輪速変更手段を、前輪の平均車輪速と後輪の平均車輪速の重み付けを変更することで、副駆動輪の平均車輪速から主駆動輪と副駆動輪の四輪平均車輪速まで無段階に変化する車輪速を駆動スリップの制御対象駆動輪速とする手段としたことを特徴とする。
【0011】
【発明の作用および効果】
請求項1記載の発明にあっては、前後輪駆動力配分制御手段において、前後輪のうちエンジン駆動力が主に伝達される主駆動輪とエンジン駆動力が副次的に伝達される副駆動輪との回転速度差に応じ、エンジンと前後輪との間に設けられた前後駆動力配分手段への指令により前後輪への駆動力配分が制御される。
一方、駆動スリップ制御手段において、駆動スリップが設定しきい値以上である場合に少なくともエンジン出力を低減することで駆動スリップを抑制する制御が行われる。
この駆動スリップ制御では、トルク伝達応答性比較手段において、エンジンから主駆動輪へのエンジントルク伝達速さであるエンジントルク応答性と、前後駆動力配分手段を介した副駆動輪への配分トルク伝達速さである配分トルク応答性とが比較され、制御対象駆動輪速変更手段において、トルク伝達応答性比較手段による比較結果で、配分トルク応答性がエンジントルク応答性より速い場合、副駆動輪の平均車輪速が駆動スリップの制御対象駆動輪速とされ、エンジントルク応答性が配分トルク応答性より速い場合、主駆動輪と副駆動輪の四輪平均車輪速が駆動スリップの制御対象駆動輪速とされる。
すなわち、通常加速走行時程度であり配分トルク応答性がエンジントルク応答性より速い場合には、副駆動輪の平均車輪速が駆動スリップの制御対象駆動輪速とされることで、駆動スリップ制御に入りにくく、前後輪駆動力配分制御による車両のヨー運動のコントロールというメリットを生かしつつ、4輪トータルの駆動力が過大となり、4輪全てが駆動スリップするのを防止することができる。また、発進急加速時等でありエンジントルク応答性が配分トルク応答性より速い場合には、四輪平均車輪速が駆動スリップの制御対象駆動輪速とされることで、駆動スリップ制御に入り易く、主駆動輪の過大な駆動スリップを抑制することができる。この場合、前後輪駆動力配分制御のメリットは十分に発揮できないが、そもそも配分トルク応答性が足りない領域なので前後輪駆動力配分制御効果を十分に発揮することはできず、むしろ主駆動輪の過大なスリップにより車両の操縦安定性が悪化する傾向にあり、この主駆動輪のスリップを抑制した方が車両挙動として好ましいものとなる。
よって、配分トルク応答性がエンジントルク応答性より速い場合、副駆動輪の平均車輪速を駆動スリップの制御対象駆動輪速とし、エンジントルク応答性が配分トルク応答性より速い場合、主駆動輪と副駆動輪の四輪平均車輪速を駆動スリップの制御対象駆動輪速としたため、通常の加速走行時程度における前後輪駆動力配分制御と駆動スリップ制御との両立を達成しながら、発進急加速時等のように、副駆動輪へのトルク伝達応答性より主駆動輪へのトルク伝達応答性が速い状況が生じたときも車両の操縦安定性を確保することができる。
【0012】
請求項2記載の発明にあっては、変速比検出手段において、エンジンと前後駆動力配分手段との間に設けられた変速機の変速比が検出され、制御対象駆動輪速変更手段において、ロー変速比の場合、四輪平均車輪速が駆動スリップの制御対象駆動輪速とされ、ハイ変速比の場合、副駆動輪の平均車輪速が駆動スリップの制御対象駆動輪速とされる。
すなわち、ローギア位置等のようにロー変速比の場合、変速機において入力トルク(エンジントルク)を増大させて出力トルク(駆動輪トルク)とするため、トルク増大ゲインが大きく配分トルク伝達応答性よりエンジントルク伝達応答性が速い状況と推定することができる。逆に、ハイ変速比、例えば、変速比1の場合は入力トルクと出力トルクとが同じで、オーバードライブギア位置等のように変速比1未満の場合は入力トルクに対し出力トルクが減少するため、エンジントルク応答性より配分トルク応答性が速い状況と推定することができる。つまり、変速比情報(有段変速機にあってはギア位置情報)をトルク伝達応答性の比較情報として用いることができる。
よって、変速比検出手段という簡単なトルク伝達応答性比較手段により、変速比情報を制御対象駆動輪速変更手段の入力情報として駆動スリップの制御対象駆動輪速を変更することができる。
【0013】
請求項3記載の発明にあっては、アクセル操作検出手段において、エンジン駆動力を決めるアクセル開度又はアクセル開度変化量が検出され、制御対象駆動輪速変更手段において、前輪の平均車輪速と後輪の平均車輪速の重み付けを変更することで、副駆動輪の平均車輪速から主駆動輪と副駆動輪の四輪平均車輪速まで無段階に変化する車輪速が駆動スリップの制御対象駆動輪速とされる。
すなわち、アクセル開度又はアクセル開度変化量が小さい場合、エンジントルク応答性が遅く、エンジントルク応答性より配分トルク応答性が速い状況と推定することができる。また、アクセル開度又はアクセル開度変化量が大きくなるにしたがって、エンジントルク応答性が速くなり、エンジントルク応答性と配分トルク応答性の関係は、相対的に配分トルク伝達応答性よりエンジントルク伝達応答性が速くなってゆく状況と推定することができる。つまり、アクセル操作情報をトルク伝達応答性の比較情報として用いることができる。
よって、アクセル操作検出手段という簡単なトルク伝達応答性比較手段により、アクセル操作情報を制御対象駆動輪速変更手段の入力情報として駆動スリップの制御対象駆動輪速を変更することができる。
加えて、前輪の平均車輪速と後輪の平均車輪速の重み付け変更を変更することで、副駆動輪の平均車輪速から主駆動輪と副駆動輪の四輪平均車輪速まで無段階に変化する車輪速が駆動スリップの制御対象駆動輪速とされるため、エンジントルク応答性と配分トルク応答性との大小関係が明確でない領域において、最適な駆動スリップの制御対象駆動輪速を得ることができる。
【0014】
【発明の実施の形態】
以下、この発明を図面に基づいて詳細に説明する。
【0015】
まず、構成を説明する。
図1は請求項1に係る発明を示す概念図であり、aはエンジン、bは前後輪駆動力配分手段、cは前後輪駆動力配分制御手段、dは駆動スリップ制御手段、eはトルク伝達応答性比較手段、fは制御対象駆動輪速変更手段であり、制御対象駆動輪速変更手段fにおいて、トルク伝達応答性比較手段eによる比較結果で、配分トルク応答性がエンジントルク応答性より速い場合、副駆動輪の平均車輪速が駆動スリップの制御対象駆動輪速とされ、エンジントルク応答性が配分トルク応答性より速い場合、主駆動輪と副駆動輪の四輪平均車輪速が駆動スリップの制御対象駆動輪速とされる。
【0016】
(実施の形態1)
次に、請求項1〜請求項3に記載の発明に対応する実施の形態1について説明する。
【0017】
図2は実施の形態1における四輪駆動車の駆動力配分制御装置が適用された駆動系を含む全体システム図である。実施の形態1の駆動力制御装置が適用される車両は後輪駆動ベースの四輪駆動車で、その駆動系は、エンジン1、自動変速機9、フロントファイナルドライブ2a、リアファイナルドライブ3a、トランスファー4(前後輪駆動力配分手段)、左右前輪10,20(副駆動輪)、左右後輪30,40(主駆動輪)を備えている。
【0018】
前記トランスファー4は、自動変速機9からのエンジン駆動力がリアプロペラシャフト3bと共に伝達されるクラッチドラム5aと、チェーン5cを介してフロントプロペラシャフト2bに係合されるクラッチハブ5bを有し、クラッチドラム5a及びクラッチハブ5bのそれぞれに設けられたドライブプレート5d,ドリブンプレート5eとの間で油圧アクチュエータ6に作動により動力伝達を行う湿式多板クラッチ5を有する。そして、トランスファー4は、湿式多板クラッチ5の締結により、左右前輪10,20へのエンジン駆動力の伝達を行う。
【0019】
即ち、各後輪30,40へは自動変速機9からのエンジン駆動力がそのままリアプロペラシャフト3b,リアファイナルドライブ3a及びリアドライブシャフト3cを介して伝達され、各前輪10,20へは前記トランスファ4の湿式多板クラッチ5,チェーン5c,フロントプロペラシャフト2b,フロントファイナルドライブ2a,フロントドライブシャフト2cを介して伝達される。
【0020】
そしてトランスファー4は、駆動性能と操舵性能の両立を図りながら前後輪の駆動力配分を最適に制御するべく、湿式多板クラッチ5の油圧を制御する油圧アクチュエータ6により左右前輪10,20に駆動力を伝達することで、二輪駆動状態から四輪駆動状態(リジッド四輪駆動)との間の駆動力配分制御を行う。左右前輪10,20及び左右後輪30,40には、それぞれ車輪速を検知する車輪速センサ11,21,31,41が設置されており、各車輪速センサ11,21,31,41からの信号は、駆動状態を制御するコントローラ50に入力される。また、車両の前後方向加速度Xgを検知する前後加速度センサ7、及び横方向加速度Ygを検知する横加速度センサ8が備えられており、この各Gセンサの信号もコントローラ50に入力される。
【0021】
また、駆動力制御としてのエンジン出力の制御は、コントローラ50よりエンジン出力制御を行うエンジン用コントローラ51に目標駆動トルクTes指令がなされ、燃料カット及びスロットル開度を制御することで、エンジン出力が制御される。スロットル制御は、エンジン用コントローラ51からのスロットル開度指令に応じてスロットル用コントローラ52が行う。
一方、コントローラ50は、ミッションを制御するAT用コントローラ53とつながっており、ギア位置GRの信号が入力される。また、エンジン用コントローラ51からはエンジンの駆動トルクTeも入力される。また、アクセル開度センサ54のアクセル開度信号Accは、エンジン用コントローラ51に入力され、コントローラ50やAT用コントローラ53にも送られる。
【0022】
次に、作用を説明する。
図4はコントローラ50により実行されるエンジン出力制御プログラムのフローチャートで、以下、各ステップについて詳述する。この処理は図示していないオペレーティングシステムで一定の時間毎の定時割り込み遂行される。
【0023】
ステップ100では、車輪速、前後加速度、横加速度、アクセル開度の各センサ及び各コントロールユニットからの各種データを読み込む。つまり、前後加速度Xg、横加速度Yg、各車輪速Vwi(i=1〜4)、エンジン駆動トルクTe、ギア位置GR、アクセル開度Accをそれぞれ読み込む。
【0024】
ステップ101では、アクセル開度変化量dAccを算出する。本実施例では、アクセル開度Accより次式に従って算出する。
dAcc=Kacc*(Acc[0]+Acc[1]−Acc[3]−Acc[4])
ここで、Kaccは単位換算の係数である。また、[]内の数字は、何周期前の値であるかを示す。
【0025】
ステップ102では、セレクト車輪速Vfsを算出する。本実施例では、各輪の車輪速Vwに加速時/減速時などに応じてフィルタをかけ、より車体速度に近いVwfi(i=1〜4)を各輪で算出し、制動時/非制動時などの条件により、各Vwfiから例えば加速時などは最も小さい車輪速を選択するなどして最も車体速度に近いセレクト車輪速Vfsを算出する。特に4輪が駆動スリップし、駆動スリップ制御が作動する状態では、前輪10,20の車輪速の小さい方の車輪をある加速内で追従するようにVfsを算出する。ここで、前輪10,20の車輪速の小さい方の車輪としたのは、本実施例での四輪駆動装置の特性により、前輪10,20に配分される駆動力が後輪30,40より小さい傾向にあるためであり、他の四輪駆動装置を使用する場合は、その四輪駆動装置にあったセレクトの方法があることは言うまでもない。
【0026】
ステップ103は、制御車輪速Vwtを算出する。本実施例では、ギア位置GR及びアクセル開度変化量dAccに応じて制御車輪速Vwtを算出する。
ギア位置GRが1,2速(ロー変速比)の場合は、アクセル開度変化量dAccに応じて前輪10,20の平均車輪速Vwfと後輪30,40の平均車輪速Vwrの重み付けを変更し、駆動スリップ制御の対象となる車輪速である制御車輪速Vwtを次式に従って算出する。
Vwt=Ka*Vwf+(1−Ka)*Vwr
Vwf=(Vw1+Vw2)/2
Vwr=(Vw3+Vw4)/2
Kaは、図4に示す特性図、つまり、アクセル開度変化量dAccが0〜dAcc1まではKa=1、dAcc1〜dAcc2まではKa=1〜0.5、dAcc2以上ではKa=0.5というように、アクセル開度変化量dAccにより算出される。
また、ギア位置GRが3,4速(ハイ変速比)の場合は、前輪10,20の平均車輪速Vwfを制御車輪速Vwtとする。
【0027】
ステップ104では、車輪の収束判断を行う。本実施例では、後述する方法で算出された目標車輪速Vwsiと制御対象車輪速Vwtとの偏差がある設定値(例えば1km/h)以内にあるときは、車輪速は収束した状態にあるものと考え、収束判断カウンタKsuをカウントアップする。この収束判断カウンタKsuがある設定値(例えば150ms;制御周期が10msecの場合は15となる)以上になった場合を車輪速収束状態と判断する。
【0028】
ステップ105では、セレクト車輪速変化量dVfsを算出する。本実施例では、一定時間内(例えば40msec間)におけるセレクト車輪速Vfsの平均値の変化量として、次式に従いセレクト車輪速変化量dVfsを算出する。ただし、次式は40msec間毎に算出される。
dVfs=Kg*(VF[0]+VF[1]−VF[3]−VF[4])
ここで、VFはセレクト車輪速Vfsの平均値であり、10msec毎に次式に従い算出される。また、Kgは単位換算の係数である。
VF[0]=Kg*(Vfs[0]+Vfs[1]+Vfs[2]+Vfs[3])/4
ここで、[]内の数字は、何周期前の値であるかを示す。
【0029】
ステップ106では、路面勾配推定値dSを算出する。本実施例では、ステップ103で収束判断されている場合に、次式で路面勾配推定値dSを算出する。dS=dVfs−Xg
また、収束判断していない場合は、dS=0とする。
【0030】
ステップ107では、路面勾配推定値dSに応じて坂道判断を行う。本実施例では、路面勾配推定値dSが、ある設定値(例えば0.05g)以上のときに登坂路であると判断し、坂道判断カウンタKsaをカウントアップする。この坂道判断カウンタKsaは最大値を持ち(例えば50)、路面勾配推定値が前記設定値以下になった場合はカウントダウンされる。
【0031】
ステップ108では、坂道判断に応じて前後加速度補正量dVhを算出する。本実施例では、坂道判断カウンタKsaを用い、Ksaが設定値以上(例えば15)の場合は、
dVh=min((Ksa−15)*Kr,dVhmax)
とする。ここでKrはチューニング定数であり、例えば0.01などとする。また、設定値以下の場合は、dVh=0とする。また、dVhmaxは補正量の最大制限値であり、大きすぎる補正が行われないように設定される。
【0032】
ステップ109では、前後加速度最小値Vidminを算出する。本実施例では、四輪駆動配分制御装置の差動制限トルクTETSに応じて、図5に示す特性マップに従い前後加速度最小値Vidminを算出する。
【0033】
ステップ110は、車体速変化量Vidを算出する。本実施例では、前後加速度センサ値(加速側プラス)と前後加速度補正値及びステップ109で算出した前後加速度最小値Vidminより次式に従って算出する。
加速判断時;
Vid=max(Xg+dVh,Vidmin)
ここで、加速判断はセレクト車輪速Vfsと推定車体速Viの前回値との比較により判断し、Vfs≧Vi(前回値)の時に加速時と判断する。
減速判断時;
Vid=Xg−G_offset
本実施例では、オフセットは市場にある一般的な坂道では、減速時にVidが正の値になることがないように0.3gとする。
【0034】
ステップ111では、推定車体速Viを算出する。本実施例では、セレクト車輪速Vfs、車体速変化量Vid、推定車体速Viの前回値より次式に従い算出する。
加速時;
Vi=min(Vi(前回値)+Vid,Vfs)
減速時;
Vi=max(Vi(前回値)+Vid,0)
つまり、Viの前回値に車体速変化量Vidを加算するものとする。ただし、加速時はVfsを最大制限値とし、減速時は0を下限値とする。このようにして推定車体速を算出することで、四輪駆動車で4輪が駆動スリップして駆動力制御が作動しているような状態であり、かつ、路面に勾配があるような車体速度推定が厳しい状況であっても、精度良く車体速推定が可能となる。
【0035】
次のステップからは、この推定車体速VIと制御車輪速Vwtを用いた駆動スリップ制御についての説明となる。
【0036】
まず、四輪駆動配分制御の制御量の算出を行う。ステップ112では、四輪駆動力配分装置により制御される差動力制限トルクTETSを算出する。本実施例では、以下に示すように各輪の車輪速より前後それぞれ平均車輪速Vwf、Vwrを算出し、その差である前後回転数差△Vfrに応じて、差動制限トルクTETSを算出する。
Vwf=(Vw1+Vw2)/2
Vwr=(Vw3+Vw4)/2
△Vfr=Vwr−Vwf
前後回転数差△Vfrから差動制限トルクTETSの算出は、図7に示す特性マップに従い算出する。図7の特性マップの傾きKtは、図6に示すように、横加速度Ygが大きいほど小さくなる特性を持つ。
【0037】
ステップ113では、駆動スリップ制御の目標スリップ量Sstarを算出する。本実施例では、基準目標スリップ量SO(例えば2.5km/h)に対し、加減速の状態、直進又は旋回の判断、路面μの判断、駆動スリップ制御の作動及び非作動などにより補正して目標スリップ量Sstarを設定する。
【0038】
ステップ114では、目標車輪速Vwsを算出する。本実施例では、ステップ111で求めた推定車体速Viとステップ113で設定した目標スリップ量Sstarより次式で算出する。
Vws=Vi+Sstar
【0039】
ステップ115では、目標駆動トルクTesを算出する。本実施例では、まずステップ114で求めた目標車輪速Vwsとステップ103で求めた制御車輪速Vwtとの偏差εを次式で算出する。
ε=Vws−Vwt
さらに、この偏差εに応じてF/B制御(ここではPID制御)の指令値である目標駆動トルクTesを次式で算出する。
駆動スリップ制御非作動時;
Tes=Te
駆動スリップ制御作動時;
Tes=Kp*ε+Kd*dε/dt+Ki*∫εdt
ここで、Kp、Kd、KiはそれぞれF/Bゲインであり、ギア位置GPなどにより変更される。例えば、ギア位置GPに応じてローギアほどゲインを大きく、ハイギアほどゲインを小さくする。また、車輪速偏差εに応じて、εが大きい程、応答性向上のためにゲインを大きく(非線形制御)したり、スリップの収束側では、再スリップ防止のために、ゲインを下げるなどとしても良い。
【0040】
ステップ116では、各駆動信号を出力する。つまり、駆動力配分制御装置には、目標差動制限トルクTETSに対応した電圧指令値を出力する。また、エンジン用コントローラ51には、目標駆動トルクTesを出力する。
【0041】
[前後輪駆動力配分制御と駆動スリップ制御]
前後輪駆動力配分制御は、図3のステップ112において、前後輪のうちエンジン駆動力が主に伝達される後輪30,40とエンジン駆動力が副次的に伝達される前輪10,20との前後回転数差△Vfrに応じて、差動制限トルクTETSが算出される。そして、エンジン1と前後輪との間に設けられた湿式多板クラッチ5の油圧アクチュエータ6への指令により、湿式多板クラッチ5が差動制限トルクTETSを得る油圧で締結され、前後輪への駆動力配分が制御される。
【0042】
一方、駆動スリップ制御は、ステップ111で求めた推定車体速Viとステップ113で設定した目標スリップ量Sstarに基づいてステップ114において目標車輪速Vwsが算出され、ステップ115において、この目標車輪速Vwsとステップ103で求めた制御車輪速Vwtとの偏差εに応じてF/B制御の指令値である目標駆動トルクTes算出される。そして、エンジン用コントローラ51は、駆動力制御用のコントローラ50から目標駆動トルクTesを入力し、その目標値に応じて、燃料カット及びスロットル開度を制御することでエンジン出力が制御される。ここで、スロットル制御は、エンジン用コントローラ51からのスロットル開度指令に応じてスロットル用コントローラ52が行う。
【0043】
[制御車輪速Vwtの設定]
上記駆動スリップ制御で用いられる制御車輪速Vwtは、ステップ103において、ギア位置GR及びアクセル開度変化量dAccに応じて算出される。
ギア位置GRが1,2速(ロー変速比)の場合は、アクセル開度変化量dAccに応じて前輪10,20の平均車輪速Vwfと後輪30,40の平均車輪速Vwrの重み付けを変更し、次式に従って算出される。
Vwt=Ka*Vwf+(1−Ka)*Vwr 但し、Ka=1〜0.5
また、ギア位置GRが3,4速(ハイ変速比)の場合は、前輪10,20の平均車輪速Vwfがそのまま制御車輪速Vwtとされる。
【0044】
すなわち、ギア位置GRが3,4速であり、加速しても通常加速走行時程度であり前輪10,20への配分トルク応答性が後輪30,40へのエンジントルク応答性より速い場合には、副駆動輪である前輪10,20の平均車輪速Vwfが駆動スリップの制御対象となる制御車輪速Vwtとされることで、駆動スリップ制御に入りにくく、前後輪駆動力配分制御による車両のヨー運動のコントロールというメリットを生かしつつ、4輪トータルの駆動力が過大となり、4輪全てが駆動スリップする場合には駆動スリップ制御を実行することで4輪駆動スリップを防止することができる。
【0045】
また、ギア位置GRが1速である発進急加速時においては、後輪30,40へのエンジントルク応答性が前輪10,20への配分トルク応答性より速くなるが、この場合には、アクセル急踏み操作によりアクセル開度変化量dAccが、図4においてdAcc2以上となり、Ka=0.5とされることで、制御車輪速Vwtは、Vwt=0.5*Vwf+0.5*Vwrの式、つまり、四輪平均車輪速が駆動スリップの制御対象となる制御車輪速Vwtとされることで、駆動スリップ制御に入り易く、図8のVwr特性に示すように、主駆動輪である後輪30,40の過大な駆動スリップを抑制することができる。
【0046】
この場合、前後輪駆動力配分制御のメリットは十分に発揮できないが、そもそも前輪10,20への配分トルク応答性が足りない領域なので前後輪駆動力配分制御効果(ヨーコントロール効果)を十分に発揮することはできず、むしろ後輪30,40の過大なスリップにより車両の操縦安定性が悪化する傾向にあり、この後輪30,40のスリップを抑制した方が車両挙動として好ましいものとなる。
【0047】
さらに、ギア位置GRが1速または2速である加速時においては、加速操作が速くなるにしたがって、後輪30,40へのエンジントルク応答性が次第に速くなるが、この場合には、アクセル踏み込み操作の程度がアクセル開度変化量dAccにより監視され、アクセル開度変化量dAccが、図4において、dAcc1〜dAcc2の領域となり、アクセル開度変化量dAccの上昇に応じてKaは1から0.5まで比例的に下げられる、つまり、アクセル開度変化量dAccが大きいほど後輪速Vwrの重み付けを大きくした値が駆動スリップの制御対象となる制御車輪速Vwtとされることになる。よって、低アクセル開度変化量領域では、ギア位置GRが3,4速の場合と同様に、前後輪駆動力配分制御と駆動スリップ制御との両立を達成する制御としながら、アクセル開度変化量dAccが大きくなるほど主駆動輪である後輪30,40の駆動スリップを抑制する制御が強められ、ギア位置GRが1速である発進急加速時の制御に近づく。
【0048】
次に、効果を説明する。
【0049】
(1) 前輪10,20への配分トルク応答性が後輪30,40へのエンジントルク応答性より速いと判断された場合、前輪10,20のVwfをそのまま制御車輪速Vwtとし、後輪30,40へのエンジントルク応答性が前輪10,20への配分トルク応答性より速いと判断された場合、基本的に四輪平均車輪速を駆動スリップの制御対象となる制御車輪速Vwtとしたため、通常の加速走行時程度における前後輪駆動力配分制御と駆動スリップ制御との両立を達成しながら、発進急加速時等のように、前輪10,20へのトルク伝達応答性より後輪30,40へのトルク伝達応答性が速い状況が生じたときも車両の操縦安定性を確保することができる。
【0050】
(2) 自動変速機9のギア位置を検出し、1,2速のロー側ギア位置の場合、基本的に四輪平均車輪速を駆動スリップの制御対象となる制御車輪速Vwtとし、3,4速のハイ側ギア位置の場合、前輪10,20のVwfをそのまま制御車輪速Vwtとするようにしたため、ギア位置情報を用いた簡単なトルク伝達応答性比較により、駆動スリップ制御の制御車輪速Vwtを変更することができる。
すなわち、ローギア位置の場合、変速機において入力トルクを増大させて出力トルクとするため、トルク増大ゲインが大きく配分トルク伝達応答性よりエンジントルク伝達応答性が速い状況と推定することができる。逆に、ハイギア位置の場合、入力トルクと出力トルクとが同じ、もしくは、入力トルクに対し出力トルクが減少するため、エンジントルク応答性より配分トルク応答性が速い状況と推定することができる。つまり、有段変速機にあってはギア位置情報をトルク伝達応答性の比較情報として用いることができる。
【0051】
(3) アクセル開度変化量dAccにより前輪10,20の平均車輪速Vwfと後輪30,40の平均車輪速Vwrの重み付けを変更することで、前輪10,20の平均車輪速Vwfから四輪平均車輪速まで無段階に変化する車輪速を駆動スリップの制御対象となる制御車輪速Vwtとしたため、アクセル開度変化量情報を用いた簡単なトルク伝達応答性比較により、駆動スリップ制御の制御車輪速Vwtを変更することができると共に、エンジントルク応答性と配分トルク応答性との大小関係が明確でないアクセル開度変化量領域(図4のdAcc1〜dAcc2)において、最適な駆動スリップ制御の制御車輪速Vwtを得ることができる。
すなわち、アクセル開度変化量dAccが小さい場合、エンジントルク応答性が遅く、エンジントルク応答性より配分トルク応答性が速い状況と推定することができる。また、アクセル開度変化量dAccが大きくなるにしたがって、エンジントルク応答性が速くなり、エンジントルク応答性と配分トルク応答性の関係は、相対的に配分トルク伝達応答性よりエンジントルク伝達応答性が速くなってゆく状況と推定することができる。つまり、アクセル開度変化量dAccをトルク伝達応答性の比較情報として用いることができる。
【0052】
以上、本発明の実施の形態1を説明してきたが、具体的な構成については、この実施の形態1に限られるものではない。
【0053】
例えば、実施の形態1では、後輪駆動ベースの四輪駆動車への適用例を示したが、前輪駆動ベースの四輪駆動車や駆動ベースを決めることなくトランスファーから前後輪に駆動力を配分するような四輪駆動車にも適用できることはいうまでもない。
【0054】
実施の形態1では、請求項2及び請求項3に記載の発明を組み合わせてトルク伝達応答性を比較する手段とする好適な例を示したが、請求項2に記載された発明と請求項3に記載された発明のそれぞれによりトルク伝達応答性を比較する手段としても良い。
【0055】
実施の形態1では、アクセル開度変化量により重み付けを変更する例を示したが、アクセル開度により重み付けを変更するようにしても良い。さらに、ギア位置(無段変速機の場合には変速比)やアクセル開度またはアクセル開度変化量以外にも、エンジントルク伝達応答と配分トルク伝達応答を比較し得る他の情報をこれらと組み合わせたり、独立に用いてトルク伝達応答性比較手段とする例も勿論本発明に含まれる。
【図面の簡単な説明】
【図1】請求項1に係る本発明の四輪駆動車の駆動力制御装置を示す概念図である。
【図2】実施の形態1における四輪駆動車の駆動力制御装置が適用された全体システム図である。
【図3】実施の形態1における前後輪駆動力配分制御及び駆動スリップ制御処理を表すフローチャートである。
【図4】実施の形態1の駆動スリップ制御で用いられる制御車輪速を決める重み付け係数Kaの特性を示す図である。
【図5】実施の形態1での前後加速度最小値Vidminと差動制限トルクTETSとの関係を表す特性マップである。
【図6】実施の形態1の前後輪駆動力配分制御での差動制限トルクTETSを決める横加速度に対するゲイン特性図である。
【図7】実施の形態1の前後輪駆動力配分制御での前後輪回転速度差△Vfrに対する差動制限トルク特性図である。
【図8】実施の形態1での発進急加速時における推定車体速、目標車輪速、前輪平均速、後輪平均速を示すタイムチャートである。
【図9】従来装置において通常の加速走行時程度の場合における推定車体速、目標車輪速、前輪平均速、後輪平均速を示すタイムチャートである。
【図10】従来装置において発進急加速時における推定車体速、目標車輪速、前輪平均速、後輪平均速を示すタイムチャートである。
【符号の説明】
1 エンジン
2 フロントファイナルドライブ
3 リヤファイナルドライブ
4 トランスファ
5 湿式多板クラッチ
6 油圧アクチュエータ
7 前後加速度センサ
8 横加速度センサ
9 自動変速機
10,20 前輪(副駆動輪)
30,40 後輪(主駆動輪)
11,21,31,41 車輪速センサ
50 コントロールユニット
51 エンジンコントロールユニット
52 スロットルコントロールユニット
53 A/Tコントロールユニット
54 アクセル開度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a driving force control device for a four-wheel drive vehicle.
[0002]
[Prior art]
A driving force control device that suppresses driving slip is often applied to a two-wheel drive vehicle in which driving slip is likely to occur during acceleration operation, low μ road traveling, etc., because engine driving force is transmitted to only two wheels. . On the other hand, in the four-wheel drive vehicle, the engine drive force is distributed to the four wheels, so if the engine drive force is the same, the drive force transmitted from each wheel to the road surface is lower than the two-wheel drive vehicle, resulting in a drive slip. Since it is difficult to generate itself and a certain amount of driving force can be generated even when the road surface μ is small, the driving force control is rarely applied.
[0003]
However, in a four-wheel drive vehicle or the like equipped with a large torque engine, a drive slip is generated even if the engine drive force is distributed to the front and rear wheels, and there is a request to apply a drive force control device to the four-wheel drive vehicle. Since all four wheels are driving wheels and all four wheels to which engine driving force is transmitted may be in a driving slip state, it is difficult to determine the driving wheel speed to be controlled by the driving slip control.
[0004]
On the other hand, Japanese Patent Application Laid-Open No. 61-285130 proposes a driving force control device for a four-wheel drive vehicle in which the average value of the four-wheel wheel speed is a control target drive wheel speed, and Japanese Patent Application Laid-Open No. 3-125633. The publication proposes a driving force control device for a four-wheel drive vehicle in which the average value of the sub-drive wheel speed to which the engine drive force is transmitted secondarily through the front and rear drive force distribution clutch is used as the control target drive wheel speed. Has been.
[0005]
[Problems to be solved by the invention]
However, in the former driving force control device for a four-wheel drive vehicle, the yaw motion of the vehicle is allowed while allowing the generation of the rotational speed difference between the front and rear wheels during turning by the front and rear wheel driving force distribution according to the turning state. In the case of control, the drive slip control is performed to suppress the drive slip, the control of the yaw motion of the vehicle by the front and rear drive force distribution cannot be performed, and the effect of the front and rear drive force distribution control is impaired. In other words, when the average value of the four-wheel wheel speed is set as the control target drive wheel speed, the main drive wheel is included, so that the drive slip is overestimated and the drive slip control is performed. There is a problem that interference occurs between the two controls of the control and the drive slip control.
[0006]
On the other hand, in the driving force control device of the latter four-wheel drive vehicle, it is more or less than the torque transmission response from the engine to the main drive wheel (rear wheel if the rear wheel drive base is used) as in normal acceleration running. When the torque transmission responsiveness from the driving force distribution clutch to the auxiliary driving wheel (or the front wheel in the case of the rear wheel driving base) is fast, the front / rear wheel driving force distribution control and the driving slip control can both be successfully achieved (FIG. 9). ) On the other hand, when the torque transmission response from the engine to the main drive wheel is faster than the torque transmission response from the front / rear driving force distribution clutch to the auxiliary drive wheel, such as during sudden acceleration, the front / rear wheel rotation speed Distributing the engine drive force to the sub drive wheels after detecting the difference will not be in time, and will cause time for the drive force from the engine to act on the main drive wheels, especially on low μ roads. Large drive slip of drive wheels There is a case in Kunar.
For example, when the base vehicle is rear wheel two-wheel drive, the drive slip of the rear wheel increases momentarily until the driving force is distributed to the front wheels, and the vehicle tends to oversteer ( FIG. 10). Further, when the base vehicle is a front-wheel two-wheel drive, the drive slip of the front wheels increases momentarily until the driving force is distributed to the rear wheels, and the vehicle may tend to be understeered.
[0007]
The present invention has been made paying attention to such a problem, and achieves both front and rear wheel driving force distribution control and driving slip control at the time of normal acceleration traveling, while at the time of starting sudden acceleration, etc. In addition, a driving force control device for a four-wheel drive vehicle that can ensure the steering stability of the vehicle even when a situation occurs in which the torque transmission response to the main drive wheel is faster than the torque transmission response to the auxiliary drive wheel. The purpose is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, front and rear driving force distribution means are provided between the engine and the front and rear wheels, and the main driving wheel and the engine to which the engine driving force is mainly transmitted among the front and rear wheels. Front and rear wheel driving force distribution control means for controlling the driving force distribution to the front and rear wheels according to a command to the front and rear driving force distribution means according to the rotational speed difference with the sub driving wheels to which the driving force is transmitted secondarily;
In the drive force control device for a four-wheel drive vehicle, comprising a drive slip control means for suppressing the drive slip by reducing at least the engine output when the drive slip is a set threshold value or more,
Torque for comparing engine torque responsiveness, which is the engine torque transmission speed from the engine to the main drive wheels, and distributed torque responsiveness, which is the distributed torque transmission speed to the sub drive wheels via the front / rear driving force distribution means Provide transmission response comparison means,
If the distribution torque response is faster than the engine torque response as a result of comparison by the torque transmission response comparison means, the average wheel speed of the auxiliary drive wheels is set as the drive wheel speed to be controlled by the drive slip, and the engine torque response is the distribution torque. When the speed is faster than the responsiveness, there is provided a control target drive wheel speed changing means for setting a four-wheel average wheel speed of the main drive wheel and the sub drive wheel to be a control target drive wheel speed of the drive slip.
[0009]
According to a second aspect of the present invention, in the driving force control apparatus for a four-wheel drive vehicle according to the first aspect,
The torque transmission response comparing means is a gear ratio detecting means for detecting a gear ratio of a transmission provided between the engine and the front / rear driving force distribution means,
In the case of the low gear ratio, the four-wheel average wheel speed is set to the driving slip control target driving wheel speed, and in the case of the high gear ratio, the control target driving wheel speed changing means controls the driving wheel speed to the average wheel speed of the auxiliary driving wheel. It is characterized by the means for obtaining the target driving wheel speed.
[0010]
According to a third aspect of the present invention, in the driving force control device for a four-wheel drive vehicle according to the first or second aspect,
The torque transmission response comparing means is an accelerator operation detecting means for detecting an accelerator opening or an accelerator opening change amount for determining an engine driving force,
By changing the weight of the average wheel speed of the front wheel and the average wheel speed of the rear wheel, the four-wheel average wheel of the main driving wheel and the auxiliary driving wheel is changed from the average wheel speed of the auxiliary driving wheel by changing the weight of the average wheel speed of the front wheel and the average wheel speed of the rear wheel. The wheel speed that changes steplessly to the speed is used as a drive wheel speed to be controlled by the drive slip.
[0011]
Operation and effect of the invention
In the invention according to claim 1, in the front and rear wheel driving force distribution control means, the main driving wheel to which the engine driving force is mainly transmitted and the sub driving to which the engine driving force is transmitted secondarily among the front and rear wheels. The distribution of driving force to the front and rear wheels is controlled in accordance with a command to a front and rear driving force distribution means provided between the engine and the front and rear wheels in accordance with the difference in rotational speed between the wheels.
On the other hand, in the drive slip control means, when the drive slip is greater than or equal to a set threshold value, control for suppressing the drive slip is performed by reducing at least the engine output.
In this drive slip control, in the torque transmission response comparison means, the engine torque response, which is the engine torque transmission speed from the engine to the main driving wheel, and the distribution torque transmission to the auxiliary driving wheel via the front and rear driving force distribution means. If the distributed torque responsiveness is faster than the engine torque responsiveness as a result of comparison by the torque transmission responsiveness comparing means in the controlled drive wheel speed changing means, the distributed torque responsiveness that is the speed is compared. If the average wheel speed is the driving wheel speed to be controlled by the drive slip and the engine torque response is faster than the distributed torque response, the four-wheel average wheel speed of the main driving wheel and the auxiliary driving wheel is the driving wheel speed to be controlled by the driving slip. It is said.
That is, when it is about normal acceleration travel and the distributed torque response is faster than the engine torque response, the average wheel speed of the sub drive wheels is set as the drive wheel speed to be controlled by the drive slip. It is difficult to enter, and while taking advantage of the control of the yaw motion of the vehicle by the front and rear wheel driving force distribution control, the total driving force of the four wheels becomes excessive and it is possible to prevent all four wheels from slipping. If the engine torque response is faster than the distributed torque response, such as when starting sudden acceleration, the four-wheel average wheel speed is set as the drive slip control target drive wheel speed, making it easy to enter drive slip control. In addition, an excessive driving slip of the main driving wheel can be suppressed. In this case, the merit of front and rear wheel driving force distribution control cannot be fully demonstrated, but since the distribution torque responsiveness is insufficient in the first place, the front and rear wheel driving force distribution control effect cannot be fully exhibited. Control stability of the vehicle tends to deteriorate due to excessive slip, and it is preferable as the vehicle behavior to suppress the slip of the main drive wheels.
Therefore, when the distributed torque responsiveness is faster than the engine torque responsiveness, the average wheel speed of the auxiliary drive wheels is set as the driving slip control target drive wheel speed, and when the engine torque responsiveness is faster than the distributed torque responsiveness, The four-wheel average wheel speed of the auxiliary driving wheels is the driving wheel speed to be controlled by the driving slip. Thus, even when a situation occurs in which the torque transmission response to the main drive wheel is faster than the torque transmission response to the auxiliary drive wheel, the steering stability of the vehicle can be ensured.
[0012]
In the invention according to claim 2, the transmission ratio detecting means detects the transmission ratio of the transmission provided between the engine and the front-rear driving force distribution means, and the controlled drive wheel speed changing means In the case of the gear ratio, the average wheel speed of the four wheels is set as the driving wheel speed to be controlled by the drive slip, and in the case of the high gear ratio, the average wheel speed of the auxiliary driving wheel is set as the driving wheel speed to be controlled of the driving slip.
That is, in the case of a low gear ratio, such as a low gear position, the input torque (engine torque) is increased in the transmission to produce output torque (drive wheel torque). It can be estimated that the torque transmission response is fast. On the other hand, the input torque and the output torque are the same when the gear ratio is high, for example, when the gear ratio is 1, and the output torque decreases with respect to the input torque when the gear ratio is less than 1, such as overdrive gear position. It can be estimated that the distribution torque response is faster than the engine torque response. That is, the gear ratio information (gear position information in the case of a stepped transmission) can be used as torque transmission response comparison information.
Therefore, the control target drive wheel speed of the drive slip can be changed by using a simple torque transmission response comparison means called the gear ratio detection means with the speed ratio information as input information of the control target drive wheel speed changing means.
[0013]
In the third aspect of the invention, the accelerator operation detecting means detects the accelerator opening or the accelerator opening change amount for determining the engine driving force, and the control target drive wheel speed changing means detects the average wheel speed of the front wheels. By changing the weighting of the average wheel speed of the rear wheels, the wheel speed that changes steplessly from the average wheel speed of the auxiliary drive wheels to the average wheel speed of the four wheels of the main drive and auxiliary drive wheels is controlled by the drive slip It is assumed to be wheel speed.
That is, when the accelerator opening or the amount of change in the accelerator opening is small, it can be estimated that the engine torque response is slow and the distribution torque response is faster than the engine torque response. Also, as the accelerator opening or the amount of change in accelerator opening increases, the engine torque response becomes faster, and the relationship between the engine torque response and the distributed torque response is relatively higher than the engine torque transfer response. It can be estimated that the responsiveness becomes faster. That is, accelerator operation information can be used as torque transmission response comparison information.
Therefore, the control target drive wheel speed of the drive slip can be changed by using a simple torque transmission response comparing means called the accelerator operation detection means with the accelerator operation information as input information of the control target drive wheel speed changing means.
In addition, by changing the weighting change of the average wheel speed of the front wheels and the average wheel speed of the rear wheels, it changes in a stepless manner from the average wheel speed of the auxiliary driving wheels to the average wheel speed of the four main driving wheels and auxiliary driving wheels. Since the wheel speed to be controlled is the driving wheel speed to be controlled by the driving slip, the optimum driving wheel speed to be controlled by the driving slip can be obtained in a region where the magnitude relationship between the engine torque response and the distribution torque response is not clear. it can.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0015]
First, the configuration will be described.
FIG. 1 is a conceptual diagram showing an invention according to claim 1, wherein a is an engine, b is front and rear wheel driving force distribution means, c is front and rear wheel driving force distribution control means, d is drive slip control means, and e is torque transmission. Responsiveness comparison means, f is a controlled drive wheel speed changing means, and in the controlled drive wheel speed changing means f, the distribution torque response is faster than the engine torque response in the comparison result by the torque transmission response comparison means e. In this case, if the average wheel speed of the auxiliary driving wheel is the driving wheel speed to be controlled by the driving slip and the engine torque response is faster than the distribution torque response, the average wheel speed of the four main driving wheels and the auxiliary driving wheel is the driving slip. The control target drive wheel speed.
[0016]
(Embodiment 1)
Next, a first embodiment corresponding to the invention described in claims 1 to 3 will be described.
[0017]
FIG. 2 is an overall system diagram including a drive system to which the drive power distribution control device for a four-wheel drive vehicle in the first embodiment is applied. The vehicle to which the driving force control apparatus of the first embodiment is applied is a four-wheel drive vehicle based on a rear wheel drive, and its drive system is an engine 1, an automatic transmission 9, a front final drive 2a, a rear final drive 3a, a transfer. 4 (front and rear wheel driving force distribution means), left and right front wheels 10 and 20 (sub driving wheels), and left and right rear wheels 30 and 40 (main driving wheels).
[0018]
The transfer 4 has a clutch drum 5a to which the engine driving force from the automatic transmission 9 is transmitted together with the rear propeller shaft 3b, and a clutch hub 5b to be engaged with the front propeller shaft 2b via a chain 5c. A wet multi-plate clutch 5 that transmits power to the hydraulic actuator 6 by operation between a drive plate 5d and a driven plate 5e provided on each of the drum 5a and the clutch hub 5b is provided. The transfer 4 transmits the engine driving force to the left and right front wheels 10 and 20 when the wet multi-plate clutch 5 is engaged.
[0019]
That is, the engine driving force from the automatic transmission 9 is directly transmitted to the rear wheels 30 and 40 via the rear propeller shaft 3b, the rear final drive 3a, and the rear drive shaft 3c, and the transfer wheels are transferred to the front wheels 10 and 20, respectively. 4 wet multi-plate clutch 5, chain 5c, front propeller shaft 2b, front final drive 2a, and front drive shaft 2c.
[0020]
The transfer 4 applies driving force to the left and right front wheels 10 and 20 by a hydraulic actuator 6 that controls the hydraulic pressure of the wet multi-plate clutch 5 in order to optimally control the driving force distribution of the front and rear wheels while achieving both driving performance and steering performance. Is transmitted to control the driving force distribution between the two-wheel drive state and the four-wheel drive state (rigid four-wheel drive). The left and right front wheels 10 and 20 and the left and right rear wheels 30 and 40 are provided with wheel speed sensors 11, 21, 31 and 41 for detecting wheel speeds, respectively. The signal is input to the controller 50 that controls the driving state. Further, a longitudinal acceleration sensor 7 for detecting the longitudinal acceleration Xg of the vehicle and a lateral acceleration sensor 8 for detecting the lateral acceleration Yg are provided, and signals from these G sensors are also input to the controller 50.
[0021]
In addition, the engine output control as the driving force control is performed by the controller 50 giving a target drive torque Tes command to the engine controller 51 that controls the engine output, and the engine output is controlled by controlling the fuel cut and the throttle opening. Is done. The throttle control is performed by the throttle controller 52 in response to a throttle opening command from the engine controller 51.
On the other hand, the controller 50 is connected to an AT controller 53 that controls the mission, and receives a signal of the gear position GR. An engine drive torque Te is also input from the engine controller 51. The accelerator opening signal Acc of the accelerator opening sensor 54 is input to the engine controller 51 and sent to the controller 50 and the AT controller 53.
[0022]
Next, the operation will be described.
FIG. 4 is a flowchart of an engine output control program executed by the controller 50. Each step will be described in detail below. This process is performed at regular intervals at regular intervals in an operating system (not shown).
[0023]
In step 100, various data are read from each sensor and each control unit of wheel speed, longitudinal acceleration, lateral acceleration, and accelerator opening. That is, the longitudinal acceleration Xg, the lateral acceleration Yg, each wheel speed Vwi (i = 1 to 4), the engine drive torque Te, the gear position GR, and the accelerator opening Acc are read.
[0024]
In step 101, an accelerator opening change amount dAcc is calculated. In the present embodiment, calculation is made from the accelerator opening Acc according to the following equation.
dAcc = Kacc * (Acc [0] + Acc [1] −Acc [3] −Acc [4])
Here, Kacc is a unit conversion coefficient. Also, the number in [] indicates how many cycles ago the value is.
[0025]
In step 102, the selected wheel speed Vfs is calculated. In this embodiment, the wheel speed Vw of each wheel is filtered according to acceleration / deceleration, etc., and Vwfi (i = 1 to 4) closer to the vehicle body speed is calculated for each wheel, and braking / non-braking is performed. Depending on conditions such as time, the selected wheel speed Vfs closest to the vehicle body speed is calculated from each Vwfi by, for example, selecting the smallest wheel speed during acceleration or the like. In particular, when four wheels drive slip and drive slip control is activated, Vfs is calculated so that the wheel with the smaller wheel speed of the front wheels 10 and 20 follows within a certain acceleration. Here, the wheel with the smaller wheel speed of the front wheels 10 and 20 is selected because the driving force distributed to the front wheels 10 and 20 is greater than that of the rear wheels 30 and 40 due to the characteristics of the four-wheel drive device in this embodiment. This is because it tends to be small, and when using another four-wheel drive device, it goes without saying that there is a selection method suitable for the four-wheel drive device.
[0026]
Step 103 calculates the control wheel speed Vwt. In this embodiment, the control wheel speed Vwt is calculated according to the gear position GR and the accelerator opening change amount dAcc.
When the gear position GR is 1st and 2nd speed (low gear ratio), the weighting of the average wheel speed Vwf of the front wheels 10 and 20 and the average wheel speed Vwr of the rear wheels 30 and 40 is changed according to the accelerator opening change amount dAcc. Then, the control wheel speed Vwt, which is the wheel speed that is the target of the drive slip control, is calculated according to the following equation.
Vwt = Ka * Vwf + (1-Ka) * Vwr
Vwf = (Vw1 + Vw2) / 2
Vwr = (Vw3 + Vw4) / 2
Ka is a characteristic diagram shown in FIG. 4, that is, Ka = 1 when the accelerator opening change amount dAcc is 0 to dAcc1, Ka = 1 to 0.5 when dAcc1 to dAcc2, and Ka = 0.5 when dAcc2 or more. Thus, it is calculated from the accelerator opening change amount dAcc.
When the gear position GR is 3rd and 4th speed (high gear ratio), the average wheel speed Vwf of the front wheels 10 and 20 is set as the control wheel speed Vwt.
[0027]
In step 104, it is determined whether or not the wheels have converged. In this embodiment, when the deviation between the target wheel speed Vwsi calculated by the method described later and the wheel speed Vwt to be controlled is within a certain set value (for example, 1 km / h), the wheel speed is in a converged state. The convergence judgment counter Ksu is counted up. A case where the convergence determination counter Ksu becomes a certain set value (for example, 150 ms; 15 when the control period is 10 msec) or more is determined as the wheel speed convergence state.
[0028]
In step 105, the selected wheel speed change amount dVfs is calculated. In this embodiment, the change amount dVfs of the selected wheel speed is calculated according to the following equation as the change amount of the average value of the selected wheel speed Vfs within a certain time (for example, for 40 msec). However, the following equation is calculated every 40 msec.
dVfs = Kg * (VF [0] + VF [1] -VF [3] -VF [4])
Here, VF is an average value of the selected wheel speed Vfs, and is calculated according to the following equation every 10 msec. Kg is a unit conversion coefficient.
VF [0] = Kg * (Vfs [0] + Vfs [1] + Vfs [2] + Vfs [3]) / 4
Here, the number in [] indicates how many cycles ago the value is.
[0029]
In step 106, an estimated road surface slope value dS is calculated. In this embodiment, when the convergence is determined in step 103, the road surface slope estimated value dS is calculated by the following equation. dS = dVfs-Xg
If the convergence is not judged, dS = 0.
[0030]
In step 107, the slope is judged according to the road surface gradient estimated value dS. In this embodiment, when the road surface gradient estimated value dS is equal to or greater than a certain set value (for example, 0.05 g), it is determined that the road is an uphill road, and the hill determination counter Ksa is counted up. This slope judgment counter Ksa has a maximum value (for example, 50), and is counted down when the road surface gradient estimated value becomes equal to or smaller than the set value.
[0031]
In step 108, the longitudinal acceleration correction amount dVh is calculated according to the slope judgment. In this embodiment, the slope judgment counter Ksa is used, and when Ksa is equal to or larger than a set value (for example, 15),
dVh = min ((Ksa-15) * Kr, dVhmax)
And Here, Kr is a tuning constant, for example, 0.01. If it is less than the set value, dVh = 0. Further, dVhmax is a maximum limit value of the correction amount, and is set so that correction that is too large is not performed.
[0032]
In step 109, the minimum longitudinal acceleration value Vidmin is calculated. In the present embodiment, the minimum longitudinal acceleration value Vidmin is calculated according to the characteristic map shown in FIG. 5 in accordance with the differential limiting torque ETTS of the four-wheel drive distribution control device.
[0033]
In step 110, the vehicle body speed change amount Vid is calculated. In this embodiment, the longitudinal acceleration sensor value (acceleration side plus), the longitudinal acceleration correction value, and the longitudinal acceleration minimum value Vidmin calculated in step 109 are calculated according to the following equation.
When judging acceleration;
Vid = max (Xg + dVh, Vidmin)
Here, the acceleration is determined by comparing the selected wheel speed Vfs with the previous value of the estimated vehicle speed Vi, and when Vfs ≧ Vi (previous value), it is determined that the vehicle is accelerating.
When judging deceleration;
Vid = Xg-G_offset
In the present embodiment, the offset is set to 0.3 g on a general slope on the market so that Vid does not become a positive value during deceleration.
[0034]
In step 111, an estimated vehicle speed Vi is calculated. In the present embodiment, calculation is performed according to the following equation from the previous values of the selected wheel speed Vfs, the vehicle body speed change amount Vid, and the estimated vehicle body speed Vi.
During acceleration;
Vi = min (Vi (previous value) + Vid, Vfs)
When decelerating;
Vi = max (Vi (previous value) + Vid, 0)
That is, the vehicle body speed change amount Vid is added to the previous value of Vi. However, Vfs is the maximum limit value during acceleration, and 0 is the lower limit value during deceleration. By calculating the estimated vehicle speed in this manner, the vehicle speed is such that the four wheels are in a four-wheel drive vehicle where the four wheels are driving slip and the driving force control is operating, and the road surface has a gradient. Even when the estimation is severe, the vehicle speed can be estimated with high accuracy.
[0035]
From the next step, the driving slip control using the estimated vehicle body speed VI and the control wheel speed Vwt will be described.
[0036]
First, the control amount of the four-wheel drive distribution control is calculated. In step 112, the differential force limiting torque ETTS controlled by the four-wheel driving force distribution device is calculated. In this embodiment, the average wheel speeds Vwf and Vwr are calculated from the wheel speeds of the respective wheels, as shown below, and the differential limiting torque TETS is calculated according to the difference between the front and rear rotational speeds ΔVfr. .
Vwf = (Vw1 + Vw2) / 2
Vwr = (Vw3 + Vw4) / 2
△ Vfr = Vwr−Vwf
The calculation of the differential limiting torque TETS from the front-rear rotational speed difference ΔVfr is performed according to the characteristic map shown in FIG. As shown in FIG. 6, the slope Kt of the characteristic map in FIG. 7 has a characteristic that becomes smaller as the lateral acceleration Yg is larger.
[0037]
In step 113, a target slip amount Sstar for driving slip control is calculated. In this embodiment, the target target slip amount S0 (for example, 2.5 km / h) is corrected by the acceleration / deceleration state, straight or turning determination, road surface μ determination, driving slip control operation and non-operation, and the like. Set the slip amount Sstar.
[0038]
In step 114, the target wheel speed Vws is calculated. In this embodiment, the estimated vehicle speed Vi obtained in step 111 and the target slip amount Sstar set in step 113 are calculated by the following equation.
Vws = Vi + Sstar
[0039]
In step 115, the target drive torque Tes is calculated. In this embodiment, first, a deviation ε between the target wheel speed Vws obtained at step 114 and the control wheel speed Vwt obtained at step 103 is calculated by the following equation.
ε = Vws−Vwt
Further, a target drive torque Tes, which is a command value for F / B control (here, PID control), is calculated by the following equation in accordance with the deviation ε.
When drive slip control is not activated;
Tes = Te
When driving slip control is activated;
Tes = Kp * ε + Kd * dε / dt + Ki * ∫εdt
Here, Kp, Kd, and Ki are F / B gains, which are changed by the gear position GP or the like. For example, according to the gear position GP, the gain is increased as the gear is lower, and the gain is decreased as the gear is higher. Depending on the wheel speed deviation ε, the larger the ε, the larger the gain (nonlinear control) for improving the response, or the lowering of the gain on the slip convergence side to prevent re-slip. good.
[0040]
In step 116, each drive signal is output. That is, a voltage command value corresponding to the target differential torque limit ETTS is output to the driving force distribution control device. Further, the target drive torque Tes is output to the engine controller 51.
[0041]
[Front and rear wheel drive force distribution control and drive slip control]
In step 112 of FIG. 3, the front and rear wheel driving force distribution control includes the rear wheels 30 and 40 to which engine driving force is mainly transmitted and the front wheels 10 and 20 to which engine driving force is transmitted secondarily. The differential limiting torque ETTS is calculated in accordance with the front-rear rotational speed difference ΔVfr. Then, according to a command to the hydraulic actuator 6 of the wet multi-plate clutch 5 provided between the engine 1 and the front and rear wheels, the wet multi-plate clutch 5 is fastened with a hydraulic pressure to obtain the differential limiting torque ETTS, Driving force distribution is controlled.
[0042]
On the other hand, in the drive slip control, the target wheel speed Vws is calculated in step 114 based on the estimated vehicle speed Vi obtained in step 111 and the target slip amount Sstar set in step 113. In step 115, the target wheel speed Vws is calculated. The target drive torque Tes, which is a command value for F / B control, is calculated according to the deviation ε from the control wheel speed Vwt obtained in step 103. The engine controller 51 receives the target driving torque Tes from the driving force control controller 50, and controls the engine output by controlling the fuel cut and the throttle opening in accordance with the target value. Here, the throttle control is performed by the throttle controller 52 in accordance with a throttle opening command from the engine controller 51.
[0043]
[Setting of control wheel speed Vwt]
The control wheel speed Vwt used in the drive slip control is calculated in step 103 according to the gear position GR and the accelerator opening change amount dAcc.
When the gear position GR is 1st and 2nd speed (low gear ratio), the weighting of the average wheel speed Vwf of the front wheels 10 and 20 and the average wheel speed Vwr of the rear wheels 30 and 40 is changed according to the accelerator opening change amount dAcc. And calculated according to the following equation.
Vwt = Ka * Vwf + (1-Ka) * Vwr where Ka = 1 to 0.5
When the gear position GR is 3rd and 4th speed (high gear ratio), the average wheel speed Vwf of the front wheels 10 and 20 is directly used as the control wheel speed Vwt.
[0044]
That is, when the gear position GR is 3rd and 4th speed, even if it is accelerated, it is about the time of normal acceleration traveling, and the distributed torque response to the front wheels 10, 20 is faster than the engine torque response to the rear wheels 30, 40. Since the average wheel speed Vwf of the front wheels 10 and 20 as the auxiliary drive wheels is set to the control wheel speed Vwt to be controlled by the drive slip, it is difficult to enter the drive slip control and the vehicle of the vehicle by the front and rear wheel drive force distribution control is controlled. Taking advantage of the control of the yaw motion, when the total driving force of the four wheels becomes excessive and all the four wheels slip, the driving slip control can be executed to prevent the four-wheel driving slip.
[0045]
In addition, at the time of start-up / acceleration where the gear position GR is the first speed, the engine torque response to the rear wheels 30 and 40 is faster than the distributed torque response to the front wheels 10 and 20, but in this case, the accelerator The accelerator opening change amount dAcc is greater than or equal to dAcc2 in FIG. 4 due to a sudden stepping operation, and Ka = 0.5, so that the control wheel speed Vwt is expressed by the equation Vwt = 0.5 * Vwf + 0.5 * Vwr, That is, the four-wheel average wheel speed is set to the control wheel speed Vwt to be controlled by the drive slip, so that the drive slip control can be easily performed. As shown in the Vwr characteristic of FIG. , 40 excessive drive slip can be suppressed.
[0046]
In this case, the advantages of front and rear wheel drive force distribution control cannot be fully demonstrated, but the front and rear wheel drive force distribution control effect (yaw control effect) is fully demonstrated because the torque distribution response to front wheels 10 and 20 is insufficient. Rather, the steering stability of the vehicle tends to deteriorate due to excessive slip of the rear wheels 30 and 40, and it is preferable as the vehicle behavior to suppress the slip of the rear wheels 30 and 40.
[0047]
Further, at the time of acceleration where the gear position GR is the first speed or the second speed, the engine torque response to the rear wheels 30 and 40 gradually increases as the acceleration operation becomes faster. In this case, the accelerator is depressed. The degree of operation is monitored by the accelerator opening change amount dAcc, and the accelerator opening change amount dAcc is in the region of dAcc1 to dAcc2 in FIG. 4, and Ka increases from 1 to 0 as the accelerator opening change amount dAcc increases. The value is increased proportionally to 5, that is, the greater the accelerator opening change amount dAcc is, the larger the weight of the rear wheel speed Vwr is set as the control wheel speed Vwt to be controlled by the drive slip. Therefore, in the low accelerator opening change amount region, as in the case where the gear position GR is the third and fourth gears, the accelerator opening change amount is controlled while achieving both the front and rear wheel driving force distribution control and the drive slip control. As dAcc increases, the control for suppressing the drive slip of the rear wheels 30 and 40, which are the main drive wheels, is strengthened, and the control is closer to the control at the time of start and acceleration where the gear position GR is the first speed.
[0048]
Next, the effect will be described.
[0049]
(1) When it is determined that the distributed torque response to the front wheels 10 and 20 is faster than the engine torque response to the rear wheels 30 and 40, the Vwf of the front wheels 10 and 20 is directly used as the control wheel speed Vwt, and the rear wheels 30 , 40, when it is determined that the engine torque response to the front wheels 10, 20 is faster than the distributed torque response to the front wheels 10, 20, the four-wheel average wheel speed is basically the control wheel speed Vwt to be controlled by the drive slip. While achieving both the front and rear wheel driving force distribution control and the drive slip control at the time of normal acceleration traveling, the rear wheels 30 and 40 are responsive to the torque transmission response to the front wheels 10 and 20 as in the case of sudden acceleration. Even when a situation in which the torque transmission response to the vehicle is fast occurs, the steering stability of the vehicle can be ensured.
[0050]
(2) The gear position of the automatic transmission 9 is detected, and in the case of the 1st and 2nd low gear positions, the average wheel speed of the four wheels is basically set as the control wheel speed Vwt to be controlled by the drive slip, In the case of the 4-speed high gear position, Vwf of the front wheels 10 and 20 is set to the control wheel speed Vwt as it is, so that the control wheel speed of the drive slip control is compared by a simple torque transmission response comparison using the gear position information. Vwt can be changed.
That is, in the case of the low gear position, since the input torque is increased in the transmission to obtain the output torque, it can be estimated that the torque increase gain is large and the engine torque transmission response is faster than the distribution torque transmission response. Conversely, in the case of the high gear position, the input torque and the output torque are the same, or the output torque decreases with respect to the input torque, so it can be estimated that the distributed torque response is faster than the engine torque response. That is, in the stepped transmission, the gear position information can be used as torque transmission response comparison information.
[0051]
(3) By changing the weight of the average wheel speed Vwf of the front wheels 10 and 20 and the average wheel speed Vwr of the rear wheels 30 and 40 according to the accelerator opening change amount dAcc, the four wheels are obtained from the average wheel speed Vwf of the front wheels 10 and 20. Since the wheel speed that changes steplessly to the average wheel speed is the control wheel speed Vwt to be controlled by the drive slip, the control wheel of the drive slip control is compared by a simple torque transmission response comparison using the accelerator opening change information. In the accelerator opening change region (dAcc1 to dAcc2 in FIG. 4) in which the speed Vwt can be changed and the magnitude relationship between the engine torque response and the distributed torque response is not clear, the control wheel for optimum drive slip control Speed Vwt can be obtained.
That is, when the accelerator opening change amount dAcc is small, it can be estimated that the engine torque response is slow and the distribution torque response is faster than the engine torque response. Further, as the accelerator opening change amount dAcc increases, the engine torque response becomes faster, and the relationship between the engine torque response and the distribution torque response is relatively higher than the distribution torque transmission response. It can be estimated that the situation is getting faster. That is, the accelerator opening change amount dAcc can be used as torque transmission response comparison information.
[0052]
The first embodiment of the present invention has been described above, but the specific configuration is not limited to the first embodiment.
[0053]
For example, in the first embodiment, an example of application to a four-wheel drive vehicle with a rear wheel drive base has been shown, but the driving force is distributed from the transfer to the front and rear wheels without determining the front wheel drive base four-wheel drive vehicle or the drive base. Needless to say, the present invention can also be applied to such a four-wheel drive vehicle.
[0054]
In the first embodiment, a preferred example in which the invention according to claim 2 and claim 3 is combined and used as a means for comparing torque transmission responsiveness has been shown. However, the invention according to claim 2 and claim 3 are described. It is good also as a means to compare torque transmission responsiveness by each of invention described in (1).
[0055]
In Embodiment 1, although the example which changes weighting by the accelerator opening variation | change_quantity was shown, you may make it change weighting by accelerator opening. Furthermore, in addition to the gear position (speed ratio in the case of a continuously variable transmission), the accelerator opening or the amount of change in the accelerator opening, other information that can compare the engine torque transmission response with the distributed torque transmission response is combined with these. Of course, examples of the torque transmission response comparing means used independently are also included in the present invention.
[Brief description of the drawings]
1 is a conceptual diagram showing a driving force control apparatus for a four-wheel drive vehicle according to the present invention according to claim 1;
FIG. 2 is an overall system diagram to which the driving force control apparatus for a four-wheel drive vehicle in the first embodiment is applied.
FIG. 3 is a flowchart showing front and rear wheel driving force distribution control and driving slip control processing in the first embodiment.
FIG. 4 is a diagram illustrating characteristics of a weighting coefficient Ka that determines a control wheel speed used in the drive slip control according to the first embodiment.
FIG. 5 is a characteristic map showing the relationship between the minimum longitudinal acceleration value Vidmin and the differential limiting torque TETS in the first embodiment.
FIG. 6 is a gain characteristic diagram with respect to lateral acceleration that determines differential limiting torque ETTS in front and rear wheel driving force distribution control according to the first embodiment;
FIG. 7 is a differential limiting torque characteristic diagram with respect to a front-rear wheel rotational speed difference ΔVfr in the front-rear wheel driving force distribution control according to the first embodiment.
8 is a time chart showing an estimated vehicle body speed, a target wheel speed, a front wheel average speed, and a rear wheel average speed during start-up and rapid acceleration in Embodiment 1. FIG.
FIG. 9 is a time chart showing an estimated vehicle body speed, a target wheel speed, a front wheel average speed, and a rear wheel average speed when the conventional apparatus is in a normal acceleration traveling state.
FIG. 10 is a time chart showing an estimated vehicle body speed, a target wheel speed, a front wheel average speed, and a rear wheel average speed at the time of sudden acceleration in a conventional apparatus.
[Explanation of symbols]
1 engine
2 Front final drive
3 Rear final drive
4 Transfer
5 Wet multi-plate clutch
6 Hydraulic actuator
7 Longitudinal acceleration sensor
8 Lateral acceleration sensor
9 Automatic transmission
10,20 Front wheel (sub drive wheel)
30, 40 Rear wheel (main drive wheel)
11, 21, 31, 41 Wheel speed sensor
50 Control unit
51 Engine control unit
52 Throttle control unit
53 A / T control unit
54 Accelerator position sensor

Claims (3)

エンジンと前後輪との間に前後駆動力配分手段が設けられ、前後輪のうちエンジン駆動力が主に伝達される駆動輪(以下、主駆動輪)とエンジン駆動力が副次的に伝達される駆動輪(以下、副駆動輪)との回転速度差に応じた前記前後駆動力配分手段への指令により前後輪への駆動力配分を制御する前後輪駆動力配分制御手段と、
駆動スリップが設定しきい値以上である場合に少なくともエンジン出力を低減することで駆動スリップを抑制する駆動スリップ制御手段とを備えた四輪駆動車の駆動力制御装置において、
前記エンジンから主駆動輪へのエンジントルク伝達速さであるエンジントルク応答性と前記前後駆動力配分手段を介した副駆動輪への配分トルク伝達速さである配分トルク応答性とを比較するトルク伝達応答性比較手段を設け、
前記トルク伝達応答性比較手段による比較結果で、配分トルク応答性がエンジントルク応答性より速い場合、副駆動輪の平均車輪速を駆動スリップの制御対象駆動輪速とし、エンジントルク応答性が配分トルク応答性より速い場合、主駆動輪と副駆動輪の四輪平均車輪速を駆動スリップの制御対象駆動輪速とする制御対象駆動輪速変更手段を設けたことを特徴とする四輪駆動車の駆動力制御装置。
Front / rear driving force distribution means is provided between the engine and the front and rear wheels, and the driving wheel (hereinafter referred to as main driving wheel) to which the engine driving force is mainly transmitted among the front and rear wheels and the engine driving force are transmitted secondarily. Front and rear wheel driving force distribution control means for controlling the driving force distribution to the front and rear wheels in accordance with a command to the front and rear driving force distribution means according to the rotational speed difference with the driving wheel (hereinafter referred to as sub driving wheel);
In the drive force control device for a four-wheel drive vehicle, comprising a drive slip control means for suppressing the drive slip by reducing at least the engine output when the drive slip is a set threshold value or more,
Torque for comparing engine torque responsiveness, which is the engine torque transmission speed from the engine to the main drive wheels, and distributed torque responsiveness, which is the distributed torque transmission speed to the sub drive wheels via the front / rear driving force distribution means Provide transmission response comparison means,
If the distribution torque response is faster than the engine torque response as a result of comparison by the torque transmission response comparison means, the average wheel speed of the auxiliary drive wheels is set as the drive wheel speed to be controlled by the drive slip, and the engine torque response is the distribution torque. When the vehicle is faster than the responsiveness, a four-wheel drive vehicle is provided with control target drive wheel speed changing means for setting the four-wheel average wheel speed of the main drive wheel and the sub drive wheel to be the control target drive wheel speed of the drive slip. Driving force control device.
請求項1記載の四輪駆動車の駆動力制御装置において、
前記トルク伝達応答性比較手段を、エンジンと前後駆動力配分手段との間に設けられた変速機の変速比を検出する変速比検出手段とし、
前記制御対象駆動輪速変更手段を、ロー変速比の場合、四輪平均車輪速を駆動スリップの制御対象駆動輪速とし、ハイ変速比の場合、副駆動輪の平均車輪速を駆動スリップの制御対象駆動輪速とする手段としたことを特徴とする四輪駆動車の駆動力制御装置。
The driving force control apparatus for a four-wheel drive vehicle according to claim 1,
The torque transmission response comparing means is a gear ratio detecting means for detecting a gear ratio of a transmission provided between the engine and the front / rear driving force distribution means,
In the case of the low gear ratio, the four-wheel average wheel speed is set to the driving slip control target driving wheel speed, and in the case of the high gear ratio, the control target driving wheel speed changing means controls the driving wheel speed to the average wheel speed of the auxiliary driving wheel. A driving force control device for a four-wheel drive vehicle, characterized in that it is a means for obtaining a target drive wheel speed.
請求項1または請求項2記載の四輪駆動車の駆動力制御装置において、
前記トルク伝達応答性比較手段を、エンジン駆動力を決めるアクセル開度又はアクセル開度変化量を検出するアクセル操作検出手段とし、
前記制御対象駆動輪速変更手段を、前輪の平均車輪速と後輪の平均車輪速の重み付けを変更することで、副駆動輪の平均車輪速から主駆動輪と副駆動輪の四輪平均車輪速まで無段階に変化する車輪速を駆動スリップの制御対象駆動輪速とする手段としたことを特徴とする四輪駆動車の駆動力制御装置。
In the driving force control device for a four-wheel drive vehicle according to claim 1 or 2,
The torque transmission response comparing means is an accelerator operation detecting means for detecting an accelerator opening or an accelerator opening change amount for determining an engine driving force,
By changing the weight of the average wheel speed of the front wheel and the average wheel speed of the rear wheel, the four-wheel average wheel of the main driving wheel and the auxiliary driving wheel is changed from the average wheel speed of the auxiliary driving wheel by changing the weight of the average wheel speed of the front wheel and the average wheel speed of the rear wheel. A driving force control device for a four-wheel drive vehicle, characterized in that the wheel speed that changes steplessly to the speed is used as a drive wheel speed to be controlled by the drive slip.
JP2000104272A 2000-04-06 2000-04-06 Driving force control device for four-wheel drive vehicle Expired - Lifetime JP3656511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000104272A JP3656511B2 (en) 2000-04-06 2000-04-06 Driving force control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000104272A JP3656511B2 (en) 2000-04-06 2000-04-06 Driving force control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JP2001287559A JP2001287559A (en) 2001-10-16
JP3656511B2 true JP3656511B2 (en) 2005-06-08

Family

ID=18617849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000104272A Expired - Lifetime JP3656511B2 (en) 2000-04-06 2000-04-06 Driving force control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP3656511B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271947B (en) * 2009-01-08 2014-05-07 丰田自动车株式会社 Control device for power transmission device for four-wheel drive vehicle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351945A (en) * 2003-05-26 2004-12-16 Tochigi Fuji Ind Co Ltd Differential control device
JP4657864B2 (en) * 2005-09-26 2011-03-23 日立オートモティブシステムズ株式会社 Vehicle braking force control device
JP4915083B2 (en) * 2005-11-11 2012-04-11 スズキ株式会社 Vehicle driving force distribution control device
JP4964333B2 (en) * 2009-12-07 2012-06-27 本田技研工業株式会社 Control device for four-wheel drive vehicle
GB2505020B (en) 2012-08-16 2015-09-09 Jaguar Land Rover Ltd Vehicle speed control system
GB2505021B (en) 2012-08-16 2015-09-09 Jaguar Land Rover Ltd Vehicle speed control system
CN109606369B (en) * 2017-09-30 2021-01-19 比亚迪股份有限公司 Vehicle running control method and device and four-wheel drive type vehicle
US20230311904A1 (en) * 2022-04-04 2023-10-05 GM Global Technology Operations LLC Vehicle speed and/or wheel speed estimation using multiple speed measurements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271947B (en) * 2009-01-08 2014-05-07 丰田自动车株式会社 Control device for power transmission device for four-wheel drive vehicle

Also Published As

Publication number Publication date
JP2001287559A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
JP3589202B2 (en) Driving force control device for four-wheel drive vehicle
JP6149112B2 (en) Vehicle control system and control method
JP6653085B2 (en) Vehicle driving force control device
JP2016537261A (en) Vehicle control system and method
CA2074000C (en) Drive wheel torque controlling system for vehicle
JP3656511B2 (en) Driving force control device for four-wheel drive vehicle
JP4233794B2 (en) Driving force distribution control device for four-wheel drive vehicles
US6896083B2 (en) Four-wheel drive control system and method
JP3536523B2 (en) Driving force control device for vehicles
JPH11115719A (en) Power distribution control device for four-wheel drive vehicle
JP5663368B2 (en) Vehicle driving support control device
JP3467973B2 (en) Driving force distribution control device
JP3470505B2 (en) Transmission control device for automatic transmission
JP3651327B2 (en) Driving force control device for four-wheel drive vehicle
US8682556B2 (en) Control device for controlling drive force that operates on vehicle
JP3716333B2 (en) Driving force control device for four-wheel drive vehicle
JP3539280B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2012192875A (en) Driving support control device for vehicle
JP6039975B2 (en) Vehicle driving force distribution control device
JP3555132B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP3713995B2 (en) Vehicle travel control device
JP2008144788A (en) Apparatus for controlling vehicle driving force
JP3575223B2 (en) Driving force control device for vehicles
JP3518464B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2000085393A (en) Four-wheel drive vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8