JP3575223B2 - Driving force control device for vehicles - Google Patents

Driving force control device for vehicles Download PDF

Info

Publication number
JP3575223B2
JP3575223B2 JP11109397A JP11109397A JP3575223B2 JP 3575223 B2 JP3575223 B2 JP 3575223B2 JP 11109397 A JP11109397 A JP 11109397A JP 11109397 A JP11109397 A JP 11109397A JP 3575223 B2 JP3575223 B2 JP 3575223B2
Authority
JP
Japan
Prior art keywords
driving force
force control
vehicle
speed
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11109397A
Other languages
Japanese (ja)
Other versions
JPH10297321A (en
Inventor
徹 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11109397A priority Critical patent/JP3575223B2/en
Priority to DE69831031T priority patent/DE69831031T2/en
Priority to EP03014653A priority patent/EP1346871B1/en
Priority to EP98107737A priority patent/EP0875414B1/en
Priority to DE69839949T priority patent/DE69839949D1/en
Priority to US09/066,816 priority patent/US6199005B1/en
Publication of JPH10297321A publication Critical patent/JPH10297321A/en
Application granted granted Critical
Publication of JP3575223B2 publication Critical patent/JP3575223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、駆動輪の空転を防いで車両の安定性及び運転性を確保する駆動力制御装置に関し、特に無段変速機を備えた駆動力制御装置の改良に関するものである。
【0002】
【従来の技術】
加速時等に駆動輪が空転して、加速性能が低下するのを防止する駆動力制御装置(あるいはTCS=トラクションコントロールシステム)としては、アクチュエータに駆動される第2スロットルの開度や燃料噴射カット、点火タイミングリタード制御などによりエンジン出力を抑制したり、制動装置を作動させることで駆動輪の空転を抑制するものが従来から知られており、さらに、無段変速機を備えた車両の駆動力制御装置としては、例えば、特開平4−50440号公報等が知られている。
【0003】
また、無段変速機としてはVベルト式やトロイダル式が従来から知られており、これら無段変速機の変速制御は、車速やスロットル開度(又はアクセルペダル踏み込み量)等の運転状態に基づいて、変速比を連続的に変化させている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の車両用駆動力制御装置にあっては、燃料噴射カット、点火時期制御や制動制御のように、応答性の高い駆動力制御を行った場合、無段変速機の変速応答性が駆動力制御に追従できず、特に図5に示すように、例えば、発進時等の加速状態において、駆動輪が空転して駆動輪速Vwrが従動輪速Vwfよりも大きいしきい値Vwsを超える初期スリップ状態になる時間t0以降では、駆動力制御装置が燃料噴射カット、点火時期制御あるいは制動制御を開始して、時間t1までに駆動輪速Vwrをしきい値以下のスリップ状態へ迅速に収束させる。
【0005】
一方、無段変速機の変速制御は、一般的に無段変速機の出力軸回転数≒駆動輪速Vwrと入力軸回転数の比を実際の変速比とし、この実変速比を運転状態に応じた目標変速比へ一致させるように制御するため、図5の時間t0からt1までの間では、駆動輪速Vwrの急変に呼応して、図中斜線部のように目標変速比RTOも急激にHi側へ変化した後にLo側へ復帰するが、上記したように変速制御の応答性は駆動力制御に比して低いため、図6に示すように、実際の変速比は図中実線で示す所定の変速線に沿って変化できず、図中一点差線で示したLo側とHi側の間でハンチングを起こし、この変速比のハンチングによって駆動輪のトルクも急変するため、車体に加わる前後方向の加速度も振動して運転性及び安定性を損なう場合があった。
【0006】
そこで本発明は、上記問題点に鑑みてなされたもので、駆動力制御装置が作動したときの無段変速機の変速比のハンチングを抑制することを目的とする。
【0007】
【課題を解決するための手段】
第1の発明は、無段変速機を介してエンジンに連結された駆動輪と、車両の運転状態に応じて前記無段変速機の変速比を設定する変速制御手段と、前記駆動輪の路面に対するスリップが所定値を超えたときに駆動輪の空転を判定する駆動力制御開始判定手段と、前記駆動力制御開始判定手段が駆動輪の空転を判定したときに駆動輪の駆動力を低減する駆動力抑制手段とを備えた車両用駆動力制御装置において、
前記変速制御手段は、車速を検出する車速検出手段と、少なくとも車速に応じて変速比を設定する変速比設定手段と、前記駆動力制御開始判定手段が駆動輪の空転を判定してから所定期間内であるかを判定する初期スリップ判定手段と、前記所定期間内のときのみ、検出車速の変動量に対する変速比の変動量を低減し、加速スリップ状態ではあるもののスリップ収束状態にあるときには前記検出車速の変動量に対する変速比の変動量を低減を禁止する車速ゲイン低減手段とを備える。
【0008】
また、第2の発明は、前記第1の発明において、前記車速ゲイン低減手段は、前記検出車速の一次遅れの値を演算するとともに前記変速比設定手段へ出力するフィルタを有する。
【0009】
また、第3の発明は、前記第1の発明において、前記車速ゲイン低減手段は、通常走行用の第1の変速マップと、前記第1変速マップよりもHi側の変速比で、かつ変速比変化量の小さい第2の変速マップを備えて、前記所定期間内である場合には第2の変速マップへ切り換える。
【0010】
また、第4の発明は、前記第1の発明において、前記初期スリップ判定手段は、駆動輪の加速スリップ率が所定値以上、かつ、駆動輪の加速スリップ率変化量が所定値以上のときに、前記所定期間内であると判定する。
【0012】
【発明の効果】
したがって、第1の発明は、駆動輪が空転を開始して、初期スリップ状態の間は検出車速の変動量に対する変速比の変動量が低減されるため、応答性の高い駆動力制御に比して応答性の低い変速制御のハンチングを防止することが可能となって、前記従来例のような変速比のハンチングに起因する車体前後加速度の振動を抑制しながらも、確実に駆動輪の空転を抑制することが可能となって、無段変速機を備えた駆動力制御装置の運転性及び安定性を大幅に向上させることが可能となる。
【0013】
また、第2の発明は、検出車速を一次遅れのフィルタによって処理して、この値に基づいて変速比の設定を行うことにより、駆動輪が空転を開始してから所定期間は、検出車速の変動量に対する変速比の変動量が低減されるため、応答性の高い駆動力制御に比して応答性の低い変速制御のハンチングを防止することが可能となる。
【0014】
また、第3の発明は、駆動輪が空転を開始してから所定期間は、通常走行用の第1の変速マップから第1変速マップよりもHi側の変速比で、かつ変速比変化量の小さい第2の変速マップへ切り換えられるため、駆動輪が空転を開始してから所定期間は、検出車速の変動量に対する変速比の変動量が低減されるため、応答性の高い駆動力制御に比して応答性の低い変速制御のハンチングを防止することが可能となる。
【0015】
また、第4の発明は、駆動輪の加速スリップ率Sが所定値上、かつ、駆動輪の加速スリップ率変化量Sdtが所定値以上のときに、駆動輪が空転を開始した所定期間内であると判定するため、変速制御のハンチングが生じやすい期間を正確に判定することができる。
【0017】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて説明する。
【0018】
図1において、駆動力制御装置はマイクロコンピュータ等から構成されたTCSコントローラ1と、TCSコントローラ1の駆動力低減指令に応じてエンジン4へ燃料カット制御、点火タイミングリタード制御を行うエンジンコントローラ2と、同じくTCSコントローラ1の駆動力低減指令に応じて駆動輪RR、RLのブレーキ装置21RR、21RLを制御する制動力制御装置20と、TCSコントローラ1の駆動力低減指令に応じて変速制御の車速ゲインを低下させるCVTコントローラ3から構成した場合を示す。
【0019】
無段変速機6に連結されたエンジン4は、エンジンコントローラ2によって燃料噴射量や点火時期等を運転状態に応じて制御されており、前記従来例と同様にエンジンコントローラ2は、通常の運転時ではスロットル開度センサ11が検出したスロットル開度TVO(又はアクセルペダル踏み込み量)に応じてエンジン回転数Neを制御している。
【0020】
無段変速機6は駆動輪としての後輪RR、RLに連結されており、CVTコントローラ3が決定した目標変速比RTOとなるよう実際の変速比を変更するもので、CVTコントローラ3は、スロットル開度センサ11が検出したスロットル開度TVOと、車速センサ5が検出した車速VSP等の運転状態に応じて、図示しないマップから目標変速比RTOを演算する。
【0021】
なお、無段変速機6は後輪RR、RLと連結されるFR式を構成しており、以下、左右後輪RL、RRを駆動輪とし、左右前輪FL、FRを従動輪とする。
【0022】
TCSコントローラ1には、各車輪または車軸の回転速度を検出する車輪速センサ12FR、12FL、12RR、12RLの検出信号がそれぞれ入力され、TCSコントローラ1は、これら各車輪速VWFR、VWFL、VWRR、VWRLに基づいて駆動輪RR、RLの空転を検出し、駆動輪RR、RLが空転した場合には、エンジンコントローラ2及び制動力制御装置20へ駆動力制御要求を送出し、前記従来例のように燃料カットや点火タイミングリタードを行ってエンジン4の出力を抑制するとともに、後輪RR、RLのブレーキ装置21RR、21RLを作動させ、さらにTCSコントローラ1はCVTコントローラ3へも駆動力制御中を示す駆動力制御信号を送出する。
【0023】
そして、CVTコントローラ3はこのTCSコントローラ1からの駆動力制御信号に応じて、車速センサ5が検出した車速VSPのゲインを低下させる。なお、車速センサ5は無段変速機6の出力軸回転数を検出し、これに所定の定数を乗じたものを車速VSPとして用いる。
【0024】
ここで、TCSコントローラ1及びCVTコントローラ3で行われる駆動力制御及び変速制御の一例を図2のフローチャートに示し、以下、このフローチャートを参照しながら駆動力制御と変速制御について詳述する。なお、このフローチャートに基づく制御は所定時間毎に実行されるものである。
【0025】
ステップS1〜S6、S8及びS10はTCSコントローラ1で行われる制御を示し、ステップS7、S9はTCSコントローラ1の指令に応じてCVTコントローラ3で行われる制御を示す。
【0026】
ステップS1では、TCSコントローラ1が各車輪速センサ12FR〜12RLの出力を読み込んで、各車輪の速度VWFR、VWFL、VWRR、VWRLを求める。
【0027】
そして、ステップS2では、従動輪の平均速度Vwfを、左右前輪FR、FLの車輪速VWFR、VWFLの平均値より求め、ステップS3では、同様にして駆動輪の平均速度Vwrを左右後輪RR、RLの車輪速VWRR、VWRLから求める。
【0028】
次に、ステップS4では、駆動輪の空転を検出するとともに、駆動力制御の目標値となる駆動輪速の目標値Vwsを、現在の車速を代表する従動輪平均速Vwfに所定値αを加算して求める。
【0029】
Vws=Vwf+α
ここで、目標駆動輪速Vwsの設定は、例えば、従動輪平均速Vwfに所定値α(例えば、2〜5Km/h)を加算した値となる。
【0030】
ステップS5では、駆動輪平均速Vwrが目標駆動輪速Vwsを超えたか否かを判定することで駆動輪の空転を検出し、駆動輪平均速Vwrが目標駆動輪速Vwsを超えたときには、駆動輪が空転したと判定してステップS6の処理へ進む一方、駆動輪平均速Vwrが目標駆動輪速Vws以下の場合には、通常走行中であると判定してステップS9以降へ進む。
【0031】
次に、駆動輪の空転が検出されたステップS6では、現在のスリップ状態が初期状態、すなわち、図5に示したように、加速スリップ率Sが大きい状態であるか否かを判定し、初期スリップ状態であると判定された場合にはステップS7へ進む一方、そうでない場合、すなわち、図5のスリップ収束状態にあれば、ステップS8へ進む。
【0032】
この初期スリップ状態では、TCSコントローラ1はエンジンコントローラ2へ燃料カット、点火タイミングリタードを要求するとともに、制動力制御装置20へ制動開始要求を送出する。
【0033】
なお、駆動輪の加速スリップ率Sは、
S=Vwr/Vwf
で表される。
【0034】
そして、ステップS7では、初期スリップ状態と判定されている間、CVTコントローラ3は車速センサ5が検出した車速VSPにフィルタ処理を行って、車速VSPの変化量に対するゲインを低減する。このフィルタ処理は、例えば、一次遅れフィルタ処理などによって実行され、フィルタ処理後の値VSP’を変速制御に用いる車速VSP’として設定する。
【0035】
一方、加速スリップ状態ではあるが、スリップ収束状態にある場合では、ステップS8へ進んで、変速制御に用いる車速VSP’に車速センサ5の検出値である車速VSPを代入した後、ステップS10へ進む。
【0036】
ステップS10では、前記したように、TCSコントローラ1がスリップ状態に応じてエンジンコントローラ2又は制動力制御装置20へ駆動力制御信号を送出して駆動力制御を行う。
【0037】
なお、上記ステップS5で通常走行中であると判定された場合には、駆動力制御を行わずに、ステップS9へ進んで、変速制御に用いる車速VSP’に車速センサ5の検出値である車速VSPを代入した後、ステップS11へ進む。
【0038】
次に、ステップS11では、上記ステップS7〜S9のいずれかで設定された車速VSP’とスロットル開度TVOに基づいて、目標変速比RTOを演算した後、ステップS12で無段変速機6へ指令する。
【0039】
上記ステップS1〜ステップS12の処理を所定時間毎に行うことにより、駆動輪RR又はRLが空転を開始して、初期スリップ状態になると、CVTコントローラ3は、車速センサ5のが検出した車速VSPに一次遅れなどのフィルタ処理を加えて、検出車速VSPに対するゲインを低減した値VSP’を変速制御に用いるようにしたため、初期スリップ状態の間は、応答性の高い駆動力制御に比して応答性の低い変速制御に用いる車速VSP’の変動量が抑制されるため、前記従来例のような変速比のハンチングに起因する車体前後加速度の振動を抑制しながらも、確実に駆動輪の空転を抑制することが可能となって、無段変速機6を備えた駆動力制御装置の運転性及び安定性を大幅に向上させることが可能となるのである。
【0040】
そして、駆動輪RR、RLの空転状態が図5に示したスリップ収束状態に入ると、車速VSP’=車速VSPとなって、通常の変速制御を行うことができるのである。
【0041】
なお、上記実施形態において、初期スリップ状態が判定されている間は、ステップS7の車速フィルタ処理を行うようにしたが、図示はしないが、初期スリップ状態が判定されたときから所定時間だけ、上記ステップS7を実行してもよい。
【0042】
図3は第2の実施形態を示し、前記第1実施形態のステップS7で行う車速VSPのフィルタ処理に代わって、変速マップを切り換えるようにしたもので、その他の構成は前記第1実施形態と同様である。
【0043】
図3のマップは、CVTコントローラ3に予め設定されるもので、通常走行用に使用する「Normal」モードと、積雪路等に用いる「Snow」モードの変速マップを示しており、「Snow」モードの変速マップは「Normal」モードに対してHi側の目標変速比に設定され、かつ車速VSPの変化に対する目標変速比の変化が小さく設定されている。
【0044】
上記ステップS7において、初期スリップ状態の間は変速マップを「Snow」モードへ切り換えることにより、車速VSPの変動量に対する目標変速比RTOの変動量を通常走行用の「Normal」モードに比して低減することができ、前記第1実施形態と同様に、初期スリップ状態の間は、車速の変動量が抑制されるため目標変速比RTOの変動量も抑制され、前記従来例のような変速比のハンチングに起因する車体前後加速度の振動を抑制しながらも、確実に駆動輪の空転を抑制することが可能となり、駆動輪RR、RLの空転状態がスリップ収束状態に入ると、変速マップは「Normal」モードへ復帰して通常の変速制御を行うことができるのである。
【0045】
図4は第3の実施形態を示し、前記第1実施形態のステップS6で行う初期スリップ状態の判定を、加速スリップ率Sと加速スリップ率変化量Sdtのマップより行うようにしたもので、その他の構成は前記第1実施形態と同様である。
【0046】
図4のマップにおいて、加速スリップ率Sは前記第1実施形態と同様に、駆動輪平均速Vwrと従動輪平均速Vwfの比であり、加速スリップ率変化量Sdtは加速スリップ率Sの微分値である。
【0047】
ステップS6において、上記加速スリップ率S及び加速スリップ率変化量Sdtを演算し、図4に示すように、加速スリップ率Sが所定値S1以上、かつ加速スリップ率変化量Sdtが所定値Sdt1以上の領域にあれば、初期スリップ状態であると判定することができ、初期スリップ状態の判定、すなわち、変速制御のハンチングが生じやすい期間を正確に判定することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す駆動力制御装置の概略図。
【図2】同じくTCSコントローラ及びCVTコントローラで行われる制御の一例を示すフローチャート。
【図3】第2の実施形態を示し、スロットル開度TVOをパラメータとする車速に応じた変速比のマップである。
【図4】第3の実施形態を示し、初期スリップ状態を判定するマップを示し、加速スリップ率Sと加速スリップ率変化量Sdtの関係を示すマップである。
【図5】従来例を示し、駆動輪が空転したときの各車輪速と変速比の関係を示すグラフで、図中実線はスリップ状態の場合を、図中波線は駆動輪のグリップ状態を示す。
【図6】同じく、加速スリップ状態の変速比変動の様子を示し、車速VSPと入力軸回転数の関係を示す。
【符号の説明】
1 TCSコントローラ
2 エンジンコントローラ
3 CVTコントローラ
4 エンジン
5 車速センサ
6 無段変速機
11 スロットル開度センサ
12FR、12FL、12RR、12RL 車輪速センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a driving force control device that prevents idling of driving wheels to ensure vehicle stability and drivability, and more particularly to an improvement in a driving force control device including a continuously variable transmission.
[0002]
[Prior art]
As a driving force control device (or TCS = traction control system) for preventing a driving wheel from running idle during acceleration or the like and deteriorating acceleration performance, an opening degree of a second throttle driven by an actuator or a fuel injection cut-off is used. It has been known that the engine output is suppressed by ignition timing retard control or the like, and that the idling of the drive wheels is suppressed by operating a braking device. Further, the driving force of a vehicle equipped with a continuously variable transmission is known. As a control device, for example, Japanese Patent Application Laid-Open No. 4-50440 is known.
[0003]
As the continuously variable transmission, a V-belt type and a toroidal type are conventionally known, and the shift control of these continuously variable transmissions is performed based on operating conditions such as a vehicle speed and a throttle opening (or an accelerator pedal depression amount). Thus, the gear ratio is continuously changed.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional vehicle driving force control device, when a highly responsive driving force control such as fuel injection cut, ignition timing control or braking control is performed, the shift responsiveness of the continuously variable transmission is reduced. Cannot follow the driving force control. In particular, as shown in FIG. 5, for example, in an acceleration state such as at the time of starting, the driving wheel idles and the threshold value Vws at which the driving wheel speed Vwr is larger than the driven wheel speed Vwf is increased. After time t0 when the initial slip state is exceeded, the driving force control device starts fuel injection cut, ignition timing control or braking control, and quickly drives the drive wheel speed Vwr to a slip state below the threshold value by time t1. Let it converge.
[0005]
On the other hand, in the speed change control of the continuously variable transmission, generally, the ratio of the output shaft speed of the continuously variable transmission / the drive wheel speed Vwr and the input shaft speed is set as the actual speed ratio, and this actual speed ratio is set to the operating state. In order to perform control so as to match the target gear ratio corresponding to the target gear ratio, the target gear ratio RTO also sharply changes from time t0 to t1 in FIG. Then, after returning to the Hi side, the control returns to the Lo side. However, as described above, the response of the shift control is lower than that of the driving force control, and therefore, as shown in FIG. It cannot be changed along the predetermined shift line shown, and hunting occurs between the Lo side and the Hi side shown by the dashed line in the figure, and the hunting at this speed ratio causes a sudden change in the torque of the drive wheels, so that it is applied to the vehicle body. The acceleration in the front-rear direction may also vibrate and impair drivability and stability. It was.
[0006]
Therefore, the present invention has been made in view of the above problems, and has as its object to suppress hunting of the speed ratio of the continuously variable transmission when the driving force control device operates.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a drive wheel connected to an engine via a continuously variable transmission, shift control means for setting a speed ratio of the continuously variable transmission in accordance with a driving state of a vehicle, and a road surface of the drive wheel. And a driving force control start determining unit that determines idle rotation of the drive wheel when the slip with respect to the drive wheel exceeds a predetermined value, and reduces the driving force of the drive wheel when the drive force control start determining unit determines that the drive wheel idles. A driving force control device for a vehicle including a driving force suppression unit,
The shift control unit includes a vehicle speed detection unit that detects a vehicle speed, a gear ratio setting unit that sets a gear ratio according to at least the vehicle speed, and a predetermined period after the driving force control start determination unit determines that the driving wheels are idling. Initial slip determination means for determining whether the vehicle speed is within the predetermined range, and reducing the amount of change in the speed ratio with respect to the amount of change in the detected vehicle speed only during the predetermined period. Vehicle speed gain reducing means for prohibiting reduction of the speed ratio fluctuation amount with respect to the vehicle speed fluctuation amount .
[0008]
In a second aspect based on the first aspect, the vehicle speed gain reducing means has a filter for calculating a primary delay value of the detected vehicle speed and outputting the value to the speed ratio setting means.
[0009]
In a third aspect based on the first aspect, the vehicle speed gain reducing means includes a first speed change map for normal running, a speed ratio on the Hi side relative to the first speed map, and a speed ratio. A second shift map having a small change amount is provided, and if the second shift map is within the predetermined period, switching to the second shift map is performed.
[0010]
In a fourth aspect based on the first aspect, the initial slip determination means is configured to determine whether the acceleration slip rate of the driving wheel is equal to or more than a predetermined value and the amount of change in the acceleration slip rate of the driving wheel is equal to or more than a predetermined value. , Is determined to be within the predetermined period.
[0012]
【The invention's effect】
Therefore, according to the first invention, since the amount of change in the gear ratio with respect to the amount of change in the detected vehicle speed is reduced during the initial slip state when the drive wheels start idling, the first invention is more effective than the highly responsive driving force control. Hunting of the shift control with low responsiveness can be prevented, and while the vibration of the longitudinal acceleration of the vehicle body caused by the hunting of the gear ratio as in the conventional example described above is suppressed, the idling of the drive wheels is surely prevented. This makes it possible to greatly improve the operability and stability of the driving force control device including the continuously variable transmission.
[0013]
In the second invention, the detected vehicle speed is processed by a first-order lag filter, and the speed ratio is set based on this value. Since the amount of change of the speed ratio with respect to the amount of change is reduced, it is possible to prevent hunting of shift control with low responsiveness as compared with drive force control with high responsiveness.
[0014]
Further, in the third invention, for a predetermined period after the drive wheels start idling, the first speed change map for normal traveling is a speed ratio on the Hi side relative to the first speed change map, and the change ratio of the speed ratio. Since the second shift map is switched to a smaller one, the amount of change in the speed ratio with respect to the amount of change in the detected vehicle speed is reduced for a predetermined period after the drive wheels start idling. As a result, it is possible to prevent hunting of the shift control with low response.
[0015]
According to a fourth aspect of the present invention, when the acceleration slip ratio S of the driving wheel is above a predetermined value and the amount of change Sdt of the acceleration slip ratio of the driving wheel is equal to or more than the predetermined value, the driving wheel starts idling within a predetermined period. Since it is determined that there is a shift, it is possible to accurately determine a period in which hunting of the shift control is likely to occur.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
[0018]
In FIG. 1, a driving force control device includes a TCS controller 1 composed of a microcomputer or the like, an engine controller 2 that performs fuel cut control and ignition timing retard control for an engine 4 in response to a driving force reduction command of the TCS controller 1, Similarly, a braking force control device 20 that controls the brake devices 21RR and 21RL of the drive wheels RR and RL in response to the driving force reduction command of the TCS controller 1 and a vehicle speed gain for speed change control in response to the driving force reduction command of the TCS controller 1 This shows a case in which the CVT controller 3 is configured to be lowered.
[0019]
The engine 4 connected to the continuously variable transmission 6 controls the fuel injection amount, the ignition timing, and the like according to the operating state by the engine controller 2. In, the engine speed Ne is controlled in accordance with the throttle opening TVO (or accelerator pedal depression amount) detected by the throttle opening sensor 11.
[0020]
The continuously variable transmission 6 is connected to rear wheels RR and RL as drive wheels, and changes the actual gear ratio so as to achieve the target gear ratio RTO determined by the CVT controller 3. The target gear ratio RTO is calculated from a map (not shown) according to the throttle opening TVO detected by the opening sensor 11 and the driving state such as the vehicle speed VSP detected by the vehicle speed sensor 5.
[0021]
In addition, the continuously variable transmission 6 forms an FR system that is connected to the rear wheels RR and RL. Hereinafter, the left and right rear wheels RL and RR are set as driving wheels, and the left and right front wheels FL and FR are set as driven wheels.
[0022]
Detection signals of wheel speed sensors 12FR, 12FL, 12RR, and 12RL for detecting the rotation speed of each wheel or axle are input to the TCS controller 1, respectively. The TCS controller 1 calculates the wheel speeds V WFR , V WFL , and V WFL . Based on WRR , V WRL , idle rotation of the drive wheels RR, RL is detected, and when the drive wheels RR, RL idle, a drive force control request is sent to the engine controller 2 and the braking force control device 20, and As in the example, the output of the engine 4 is suppressed by performing the fuel cut or the ignition timing retard, the brake devices 21RR and 21RL of the rear wheels RR and RL are operated, and the TCS controller 1 also controls the CVT controller 3 to control the driving force. A driving force control signal indicating the inside is transmitted.
[0023]
Then, the CVT controller 3 decreases the gain of the vehicle speed VSP detected by the vehicle speed sensor 5 according to the driving force control signal from the TCS controller 1. The vehicle speed sensor 5 detects the output shaft speed of the continuously variable transmission 6 and multiplies the output shaft speed by a predetermined constant to use as the vehicle speed VSP.
[0024]
Here, an example of the driving force control and the shift control performed by the TCS controller 1 and the CVT controller 3 is shown in a flowchart of FIG. 2, and the driving force control and the shift control will be described in detail below with reference to this flowchart. The control based on this flowchart is executed every predetermined time.
[0025]
Steps S1 to S6, S8, and S10 indicate control performed by the TCS controller 1, and steps S7 and S9 indicate control performed by the CVT controller 3 in response to a command from the TCS controller 1.
[0026]
In step S1, the TCS controller 1 reads the output of each of the wheel speed sensors 12FR to 12RL to determine the speeds V WFR , V WFL , V WRR , V WRL of each wheel.
[0027]
In step S2, the average speed Vwf of the driven wheels is obtained from the average value of the wheel speeds V WFR and V WFL of the left and right front wheels FR and FL. In step S3, the average speed Vwr of the drive wheels is similarly calculated using the left and right rear wheels. It is determined from the wheel speeds V WRR , V WRL of RR, RL.
[0028]
Next, in step S4, idling of the driving wheels is detected, and a target value Vws of the driving wheel speed, which is a target value of the driving force control, and a predetermined value α is added to a driven wheel average speed Vwf representing the current vehicle speed. Ask for it.
[0029]
Vws = Vwf + α
Here, the setting of the target driving wheel speed Vws is, for example, a value obtained by adding a predetermined value α (for example, 2 to 5 km / h) to the driven wheel average speed Vwf.
[0030]
In step S5, idling of the drive wheels is detected by determining whether or not the average drive wheel speed Vwr exceeds the target drive wheel speed Vws. When the average drive wheel speed Vwr exceeds the target drive wheel speed Vws, the drive is started. While it is determined that the wheels have slipped and the process proceeds to step S6, if the average drive wheel speed Vwr is equal to or lower than the target drive wheel speed Vws, it is determined that the vehicle is traveling normally and the process proceeds to step S9 and subsequent steps.
[0031]
Next, in step S6 in which idling of the drive wheels is detected, it is determined whether or not the current slip state is an initial state, that is, whether or not the acceleration slip ratio S is large as shown in FIG. If it is determined that the vehicle is in the slip state, the process proceeds to step S7. If not, that is, if the vehicle is in the slip convergence state of FIG. 5, the process proceeds to step S8.
[0032]
In this initial slip state, the TCS controller 1 requests the engine controller 2 to perform fuel cut and ignition timing retard, and sends a braking start request to the braking force control device 20.
[0033]
Note that the acceleration slip ratio S of the drive wheels is
S = Vwr / Vwf
It is represented by
[0034]
Then, in step S7, while it is determined that the vehicle is in the initial slip state, the CVT controller 3 performs a filtering process on the vehicle speed VSP detected by the vehicle speed sensor 5 to reduce the gain with respect to the amount of change in the vehicle speed VSP. This filtering process is executed by, for example, a first-order lag filtering process, and the value VSP ′ after the filtering process is set as the vehicle speed VSP ′ used for the shift control.
[0035]
On the other hand, when the vehicle is in the acceleration slip state but in the slip convergence state, the process proceeds to step S8, in which the vehicle speed VSP, which is the detection value of the vehicle speed sensor 5, is substituted for the vehicle speed VSP 'used for the shift control, and then the process proceeds to step S10. .
[0036]
In step S10, as described above, the TCS controller 1 performs a driving force control by transmitting a driving force control signal to the engine controller 2 or the braking force control device 20 according to the slip state.
[0037]
If it is determined in step S5 that the vehicle is traveling normally, the process proceeds to step S9 without performing the driving force control, and the vehicle speed VSP ′ used for the shift control is set to the vehicle speed VSP ′ detected by the vehicle speed sensor 5. After substituting VSP, the process proceeds to step S11.
[0038]
Next, in step S11, a target gear ratio RTO is calculated based on the vehicle speed VSP 'and the throttle opening TVO set in any of steps S7 to S9, and then in step S12, a command is sent to the continuously variable transmission 6. I do.
[0039]
By performing the processing of the above steps S1 to S12 every predetermined time, when the drive wheel RR or RL starts idling and enters the initial slip state, the CVT controller 3 changes the vehicle speed VSP detected by the vehicle speed sensor 5 to Since the value VSP ′ obtained by reducing the gain with respect to the detected vehicle speed VSP by using filter processing such as a first-order lag is used for the shift control, the responsiveness during the initial slip state is higher than that of the responsive driving force control. The fluctuation amount of the vehicle speed VSP 'used for low-speed shift control is suppressed, so that the vibration of the vehicle longitudinal acceleration due to the hunting of the speed ratio as in the conventional example described above is suppressed, while the idling of the drive wheels is reliably suppressed. This makes it possible to greatly improve the operability and stability of the driving force control device provided with the continuously variable transmission 6.
[0040]
Then, when the idling state of the drive wheels RR and RL enters the slip convergence state shown in FIG. 5, the vehicle speed VSP ′ = vehicle speed VSP, and the normal shift control can be performed.
[0041]
In the above embodiment, while the initial slip state is determined, the vehicle speed filtering process of step S7 is performed. However, although not shown, the vehicle speed filter processing is performed only for a predetermined time from when the initial slip state is determined. Step S7 may be performed.
[0042]
FIG. 3 shows a second embodiment, in which a shift map is switched in place of the vehicle speed VSP filter process performed in step S7 of the first embodiment, and other configurations are the same as those of the first embodiment. The same is true.
[0043]
The map of FIG. 3 is set in advance in the CVT controller 3 and shows a shift map of a “Normal” mode used for normal running and a “Snow” mode used for a snowy road or the like, and shows a “Snow” mode. Is set to the target gear ratio on the Hi side in the "Normal" mode, and the change in the target gear ratio with respect to the change in the vehicle speed VSP is set to be small.
[0044]
In step S7, the shift map is switched to the “Snow” mode during the initial slip state, so that the variation of the target speed ratio RTO with respect to the variation of the vehicle speed VSP is reduced as compared with the “Normal” mode for normal running. As in the case of the first embodiment, during the initial slip state, the amount of change in the vehicle speed is suppressed, so that the amount of change in the target speed ratio RTO is also suppressed. While suppressing the vibration of the longitudinal acceleration of the vehicle body due to hunting, it is possible to surely suppress the idling of the driving wheels. When the idling state of the driving wheels RR and RL enters the slip convergence state, the shift map becomes "Normal". The mode is returned to the normal mode.
[0045]
FIG. 4 shows a third embodiment, in which the determination of the initial slip state performed in step S6 of the first embodiment is performed based on a map of the acceleration slip rate S and the acceleration slip rate change amount Sdt. Is similar to that of the first embodiment.
[0046]
In the map of FIG. 4, the acceleration slip ratio S is the ratio between the average speed of the driving wheel Vwr and the average speed of the driven wheel Vwf, as in the first embodiment, and the acceleration slip ratio change amount Sdt is a differential value of the acceleration slip ratio S. It is.
[0047]
In step S6, the acceleration slip rate S and the acceleration slip rate change amount Sdt are calculated, and as shown in FIG. 4, the acceleration slip rate S is equal to or more than a predetermined value S1 and the acceleration slip rate change amount Sdt is equal to or more than a predetermined value Sdt1. If it is in the area, it can be determined that the vehicle is in the initial slip state, and the determination of the initial slip state, that is, the period in which hunting in the shift control is likely to occur can be accurately determined.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a driving force control device according to an embodiment of the present invention.
FIG. 2 is a flowchart showing an example of control performed by a TCS controller and a CVT controller.
FIG. 3 shows a second embodiment, and is a map of a gear ratio according to a vehicle speed using a throttle opening TVO as a parameter.
FIG. 4 shows a third embodiment, shows a map for determining an initial slip state, and is a map showing a relationship between an acceleration slip rate S and an acceleration slip rate change amount Sdt.
FIG. 5 is a graph showing a conventional example, in which the relationship between each wheel speed and the gear ratio when the drive wheel is idling, the solid line in the figure indicates the case of a slip state, and the wavy line in the figure indicates the grip state of the drive wheel. .
FIG. 6 is also a diagram illustrating a state of a speed ratio change in an acceleration slip state, and illustrates a relationship between a vehicle speed VSP and an input shaft rotation speed.
[Explanation of symbols]
Reference Signs List 1 TCS controller 2 Engine controller 3 CVT controller 4 Engine 5 Vehicle speed sensor 6 Continuously variable transmission 11 Throttle opening sensors 12FR, 12FL, 12RR, 12RL Wheel speed sensors

Claims (4)

無段変速機を介してエンジンに連結された駆動輪と、
車両の運転状態に応じて前記無段変速機の変速比を設定する変速制御手段と、
前記駆動輪の路面に対する加速スリップが所定値を超えたときに駆動輪の空転を判定する駆動力制御開始判定手段と、
前記駆動力制御開始判定手段が駆動輪の空転を判定したときに駆動輪の駆動力を低減する駆動力抑制手段とを備えた車両用駆動力制御装置において、
前記変速制御手段は、
車速を検出する車速検出手段と、
少なくとも車速に応じて変速比を設定する変速比設定手段と、
前記駆動力制御開始判定手段が駆動輪の空転を判定してから所定期間内であるかを判定する初期スリップ判定手段と、
前記所定期間内のときのみ、検出車速の変動量に対する変速比の変動量を低減し、加速スリップ状態ではあるもののスリップ収束状態にあるときには前記検出車速の変動量に対する変速比の変動量を低減を禁止する車速ゲイン低減手段とを備えたことを特徴とする車両用駆動力制御装置。
Drive wheels connected to the engine via a continuously variable transmission,
Shift control means for setting a speed ratio of the continuously variable transmission according to a driving state of the vehicle;
Driving force control start determination means for determining idle rotation of the drive wheel when the acceleration slip of the drive wheel with respect to the road surface exceeds a predetermined value;
A driving force control device for a vehicle, comprising: a driving force control unit that reduces driving force of a driving wheel when the driving force control start determination unit determines that the driving wheel is idling.
The shift control means,
Vehicle speed detecting means for detecting a vehicle speed;
Speed ratio setting means for setting a speed ratio according to at least a vehicle speed;
Initial slip determination means for determining whether the driving force control start determination means is within a predetermined period after determining idle rotation of the drive wheels,
Only during the predetermined period, the amount of change in the speed ratio with respect to the amount of change in the detected vehicle speed is reduced, and when the vehicle is in the accelerated slip state but in the slip convergence state, the amount of change in the speed ratio with respect to the amount of change in the detected vehicle speed is reduced. A driving force control device for a vehicle, comprising: a vehicle speed gain reducing means for prohibiting .
前記車速ゲイン低減手段は、前記検出車速の一次遅れの値を演算するとともに前記変速比設定手段へ出力するフィルタを有することを特徴とする請求項1に記載の車両用駆動力制御装置。 2. The driving force control device for a vehicle according to claim 1, wherein the vehicle speed gain reducing unit has a filter that calculates a first-order lag value of the detected vehicle speed and outputs the value to the gear ratio setting unit . 前記車速ゲイン低減手段は、通常走行用の第1の変速マップと、前記第1変速マップよりもHi側の変速比で、かつ変速比変化量の小さい第2の変速マップを備えて、前記所定期間内である場合には第2の変速マップへ切り換えることを特徴とする請求項1に記載の車両用駆動力制御装置。 The vehicle speed gain reducing means includes a first shift map for normal running, and a second shift map having a Hi-speed gear ratio smaller than the first gear map and having a smaller gear ratio change amount. The driving force control device for a vehicle according to claim 1, wherein the switching to the second shift map is performed during the period . 前記初期スリップ判定手段は、駆動輪の加速スリップ率が所定値以上、かつ、駆動輪の加速スリップ率変化量が所定値以上のときに、前記所定期間内であると判定することを特徴とする請求項1に記載の車両用駆動力制御装置。The initial slip determination means determines that the current time is within the predetermined period when the acceleration slip rate of the driving wheel is equal to or more than a predetermined value and the amount of change in the acceleration slip rate of the driving wheel is equal to or more than a predetermined value. The vehicle driving force control device according to claim 1.
JP11109397A 1997-04-28 1997-04-28 Driving force control device for vehicles Expired - Lifetime JP3575223B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11109397A JP3575223B2 (en) 1997-04-28 1997-04-28 Driving force control device for vehicles
DE69831031T DE69831031T2 (en) 1997-04-28 1998-04-28 Traction control system of a vehicle
EP03014653A EP1346871B1 (en) 1997-04-28 1998-04-28 Vehicle drive force control device
EP98107737A EP0875414B1 (en) 1997-04-28 1998-04-28 Vehicle drive force control device
DE69839949T DE69839949D1 (en) 1997-04-28 1998-04-28 Traction control system of a vehicle
US09/066,816 US6199005B1 (en) 1997-04-28 1998-04-28 Vehicle drive force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11109397A JP3575223B2 (en) 1997-04-28 1997-04-28 Driving force control device for vehicles

Publications (2)

Publication Number Publication Date
JPH10297321A JPH10297321A (en) 1998-11-10
JP3575223B2 true JP3575223B2 (en) 2004-10-13

Family

ID=14552213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11109397A Expired - Lifetime JP3575223B2 (en) 1997-04-28 1997-04-28 Driving force control device for vehicles

Country Status (1)

Country Link
JP (1) JP3575223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101664705B1 (en) * 2015-06-16 2016-10-10 현대자동차주식회사 Control method for vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560466B2 (en) * 2005-09-28 2010-10-13 本田技研工業株式会社 Transmission control device
DE102016223066A1 (en) * 2016-11-23 2018-05-24 Robert Bosch Gmbh A method for traction control of drive wheels of a motor vehicle and traction control device for traction control of drive wheels of a motor vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101664705B1 (en) * 2015-06-16 2016-10-10 현대자동차주식회사 Control method for vehicle

Also Published As

Publication number Publication date
JPH10297321A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
US5168955A (en) Traction control system for four-wheel drive vehicle
EP1275549B1 (en) Driving force controlling apparatus and method for four-wheel drive vehicle
JP2002234355A (en) Control device for four-wheel drive vehicle
EP0875414B1 (en) Vehicle drive force control device
JP2946251B2 (en) Drive wheel torque control device for vehicle
KR100262696B1 (en) Drive Power Control Method for Vehicle
JP2519960B2 (en) Vehicle traction control method
JP2704774B2 (en) Vehicle drive wheel slip control system
US5548513A (en) Driving-wheel torque control system for automotive vehicles
KR100222151B1 (en) Driving force controller for a vehicle
US20030098193A1 (en) Four-wheel drive control system and method
US6845838B2 (en) Four-wheel drive vehicle
JP3575223B2 (en) Driving force control device for vehicles
JP3709692B2 (en) Vehicle driving force control device
JP3204079B2 (en) Vehicle driving force control device
JP3428363B2 (en) Vehicle driving force control device
JP2502758B2 (en) Integrated control device for front and rear wheel drive force distribution and drive force
JP3564862B2 (en) Driving force control device for vehicles
JP3412404B2 (en) Engine output control device for vehicle
JP3509982B2 (en) Vehicle acceleration slip control device
WO2003091057A1 (en) Device and method for controlling distribution of drive force of four-wheel drive car
JP2956360B2 (en) Total control system for traction and differential limiting torque
JPH1178837A (en) Device for controlling braking/driving force of vehicle
JPH06122331A (en) Drive wheel torque control device for vehicle
JPH05294225A (en) Traction control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 10

EXPY Cancellation because of completion of term