JP3646947B2 - Polyimide resin - Google Patents

Polyimide resin Download PDF

Info

Publication number
JP3646947B2
JP3646947B2 JP07735496A JP7735496A JP3646947B2 JP 3646947 B2 JP3646947 B2 JP 3646947B2 JP 07735496 A JP07735496 A JP 07735496A JP 7735496 A JP7735496 A JP 7735496A JP 3646947 B2 JP3646947 B2 JP 3646947B2
Authority
JP
Japan
Prior art keywords
silicone
formula
polyimide resin
represented
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07735496A
Other languages
Japanese (ja)
Other versions
JPH09263636A (en
Inventor
啓造 高浜
周作 岡明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP07735496A priority Critical patent/JP3646947B2/en
Publication of JPH09263636A publication Critical patent/JPH09263636A/en
Application granted granted Critical
Publication of JP3646947B2 publication Critical patent/JP3646947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性に優れ、かつ有機溶剤に可溶で成形加工性に優れたポリイミド樹脂に関するものである。
【0002】
【従来の技術】
ポリイミド樹脂は耐熱性が高く難燃性で電気絶縁性に優れていることから、電気、電子材料として広く利用されている。フィルムとしてフレキシブル印刷配線板や耐熱性接着テープの基材に、樹脂ワニスとして半導体の絶縁皮膜、保護皮膜に広く利用されている。しかし、従来のポリイミド樹脂は吸湿性が高く、耐熱性に優れている反面不溶不融であったり極めて融点が高く、加工性の点で決して使いやすい材料とはいえなかった。半導体の実装材料として層間絶縁膜、表面保護膜などに使用されているが、これらは有機溶剤に可溶な前駆体ポリアミド酸を半導体表面に塗布し、加熱処理によって溶剤を除去すると共にイミド化を進めている。この時、イミド化に300℃以上の高温で1時間以上の加熱行程を必要とし、素子を高温にさらすため、アセンブリ行程の収率を低下させる。また、皮膜の吸湿性が高いため吸収した水分が高温時に一気に蒸発して膨れやクラックの原因となるなどの問題点があった。
【0003】
一方、これらの従来型のポリイミド樹脂の欠点を補う目的で、多くの熱可塑性ポリイミド樹脂や溶媒可溶性ポリイミド樹脂が提案されている。その一つとしてシリコーン変性ポリイミド樹脂がある。シリコーン変性ポリイミド樹脂は低吸湿性と溶媒可溶性に優れておりエレクトロニクス用として好適ではあるが、シリコーン含量と密接に関連する耐熱性と溶媒可溶性、低吸湿性はトレードオフの関係にある。より優れた信頼性を得るには従来のシリコーン変性ポリイミド樹脂では充分とは言えなかった。
【0004】
【発明が解決しようとする課題】
本発明は、耐熱性に優れ吸湿性の低い、かつ有機溶剤に可溶な成形加工性の優れたポリイミド樹脂を得るべく鋭意研究を重ねた結果、特定構造のポリイミド樹脂が上記課題を解決することができることを見出し、本発明に到達したものである。
【0005】
【課題を解決するための手段】
【0006】
本発明のポリイミド樹脂は350℃を超えない温度で5分間加熱した時に式(1)で表される環状シロキサンガスの発生量が樹脂の0.02重量%未満であることを特徴とし、かつ式(2)で表されるシリコーンジアミンと4,4’−オキシジフタル酸二無水物を必須成分とするシリコーン変性ポリイミド樹脂である。
【0007】
【化1】

Figure 0003646947
(nは3以上の整数)
【0008】
【化2】
Figure 0003646947
(式中R1は2価の炭化水素基)
【0009】
本発明のポリイミド樹脂は、式(2)で表されるシリコーンジアミンaモルと式(3)で表されるシリコーンジアミンbモルおよび他のジアミンcモルをアミン成分、4,4’−オキシジフタル酸二無水物dモルと他の酸二無水物eモルを酸成分とし、かつ0.02≦a/(a+b+c)≦0.50かつb/(a+b+c)≦0.02かつ0.6≦d/(d+e)かつ0.96≦(d+e)/(a+b+c)≦1.04のモル比で両成分を反応させイミド閉環せしめた有機溶剤に可溶なポリイミド樹脂あるいは該ポリイミド樹脂の分子末端を一般式(5)で表される酸無水物fモルでエンドキャップし、かつ0.02≦a/(a+b+c)≦0.50かつb/(a+b+c)≦0.02かつ0.6≦d/(d+e+0.5f)かつ0.002≦0.5f/(d+e+0.5f)≦0.05かつ0.96≦(d+e+0.5f)/(a+b+c)≦1.04のモル比で両成分を反応させイミド閉環せしめた有機溶剤に可溶なポリイミド樹脂あるいは該ポリイミド樹脂の分子末端を一般式(6)で表される芳香族アミンgモルでエンドキャップし、かつ0.02≦a/(a+b+c+0.5g)≦0.50かつb/(a+b+c+0.5g)≦0.02かつ0.002≦0.5g/(a+b+c+0.5g)≦0.05かつ0.6≦d/(d+e)かつ0.96≦(d+e)/(a+b+c+0.5g)≦1.04のモル比で両成分を反応させイミド閉環せしめた有機溶剤に可溶なポリイミド樹脂である。
【0010】
【化3】
Figure 0003646947
(式中R2は2価の炭化水素基、nは2〜20の整数)
【0011】
【化4】
Figure 0003646947
【0012】
【化5】
Figure 0003646947
【0013】
【化6】
Figure 0003646947
(式中Yは水素原子、あるいはメチル、エチル、プロピル、ブチル、フェニル、メトキシ、エトキシ、プロポキシ、ブトキシもしくはフェノキシ基の中から選ばれた少なくとも1種類の基)
【0014】
本発明で使用する式(2)で表されるシリコーンジアミンは、1,3−ビス(3−アミノプロピル)テトラメチルシロキサンなどであって、低吸水性、低温加工性、溶媒への溶解性を付与するために用いる。またこれらの短鎖シリコーンジアミンは耐熱性に優れ他のシリコーンジアミンを用いるよりも高温での信頼性の高い樹脂が製造できる。該シリコーンジアミンは全アミン成分の2〜50モル%の範囲で用いることが好ましい2モル%より少ないと低吸湿性、低温加工性、溶媒への溶解性が発現せず、50モル%を越えるとガラス転移温度が著しく低下し耐熱性に問題が生じる。より好ましい添加量は低吸湿性、低温加工性、溶媒への溶解性、耐熱性の点から全アミン成分の10モル%〜35モル%である。
【0015】
本発明で使用する式(3)で表されるシリコーンジアミンは、α,ω−ビス(3−アミノプロピル)ポリジメチルシロキサンなどであり式(2)のものと併用することによって低吸水性、低温加工性、溶媒への溶解性を著しく向上させる。特にnが4〜13の範囲がガラス転移温度、加工性の点から好ましい。ただしこのシリコ
ーンジアミンは高温で分解し式(1)で表される環状シロキサンガスを発生するため樹脂の発泡や周辺材料の汚染を引き起こすおそれがあり、樹脂の耐熱性の点からその添加量は全アミン成分の2モル%以下でなければならない。より好ましい添加量は低吸湿性、低温加工性、高温での耐熱性の点から全アミン成分の0.2〜0.8モル%である。
【0016】
酸成分の主要な構成成分である4,4’−オキシジフタル酸二無水物の量比は、得られるポリイミド樹脂の溶解性に極めて重要で、上記の範囲内にないと低沸点溶剤に溶解するという本発明の特徴が失われる。
【0017】
また本発明で用いる他のジアミンとしては2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェノキシ)ヘキサフルオロプロパン、ビス−4−(4−アミノフェノキシ)フェニルスルフォン、ビス−4−(3−アミノフェノキシ)フェニルスルフォン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフォン、3,3’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルメタン、4,4’−ビス(4−アミノフェノキシ)ビフェニルなどの中の1種類もしくは2種類を組み合わせて用いることが出来る。中でも接着性を重視する応用分野ではアミノフェノキシ構造を持つジアミンを用いることが好ましい。
【0018】
また本発明で用いる他の酸二無水物としては3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、無水ピロメリット酸などの中の1種類もしくは2種類を組み合わせて用いることが出来る。
【0019】
式(4)で表されるジアミンは1,3−ビス(3−アミノフェノキシ)ベンゼンや1,4−ビス(4−アミノフェノキシ)ベンゼンなどであり、特に1,3−ビス(3−アミノフェノキシ)ベンゼンを用いる事は低沸点溶媒への溶解性や低温加工性の面で好ましい。
【0020】
接着剤や成形材料等に当該ポリイミドを使用する場合、分子末端をエンドキャップし分子量をコントロールする事により、接着や成形に適した溶融粘度を得ることができ、加工性を高めることができる。エンドキャップ剤である酸無水物、あるいは芳香族アミンの量比は上記の範囲にあることが好ましい。この範囲より少ないと分子量が高くなりすぎて、本発明の特徴である低沸点溶剤への溶解性が低下し、また接着性を重視する用途では溶融粘度の上昇により濡れ性が低下し好ましくない。またこの範囲以上では分子量が著しく低下し、耐熱性に問題を生じる。さらに低温加工性、耐熱性、機械強度の点からエンドキャップ剤が全酸成分あるいは全アミン成分の0.4〜2.4モル%の範囲にあることがより好ましい。
【0021】
エンドキャップ剤としては一般式(5)で表される酸無水物および一般式(6)で表される芳香族アミンが挙げられる。酸無水物としては、無水フタル酸、無水マレイン酸、無水ナジック酸など、芳香族アミンとしては、p−メチルアニリン、p−メトキシアニリン、p−フェノキシアニリンなどが用いられる。
【0022】
重合反応における酸性分とアミン成分の等量比は、得られるポリアミック酸の分子量を決定する重要な因子である。ポリマの分子量と物性、特に数平均分子量と機械的性質の間に相関があることはよく知られている。数平均分子量が大きいほど機械的性質が優れている。従って、実用的に優れた強度を得るためにはある程度高分子量で有ることが必要である。本発明では酸性分とアミン成分の当量比rが0.96≦r≦1.04のモル比であることが好ましい。また0.98≦r≦1.02の範囲であることは機械的強度および耐熱性の両面からより好ましい。
【0023】
テトラカルボン酸二無水物とジアミンとの反応は、非プロトン性極性溶媒中で公知の方法で行われる。非プロトン性極性溶媒は、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAC)、N−メチル−2−ピロリドン(NMP)、テトラヒドロフラン(THF)、ジグライム、シクロヘキサノン、1,4−ジオキサン(1,4−DO)などである。非プロトン性極性溶媒は、一種類のみ用いてもよいし、二種類以上を混合して用いてもよい。この時、上記非プロトン性極性溶媒と相溶性がある非極性溶媒を混合して使用しても良い。トルエン、キシレン、ソルベントナフサなどの芳香族炭化水素が良く使用される。混合溶媒における非極性溶媒の割合は、30重量%以下であることが好ましい。これは非極性溶媒が30重量%以上では溶媒の溶解力が低下しポリアミック酸が析出する恐れがあるためである。テトラカルボン酸二無水物とジアミンとの反応は、良く乾燥したジアミン成分を脱水精製した前述反応溶媒に溶解し、これに閉環率98%、より好ましくは99%以上の良く乾燥したテトラカルボン酸二無水物を添加して反応を進める。
【0024】
このようにして得たポリアミック酸溶液を、続いて有機溶剤中で加熱脱水環化してイミド化しポリイミドにする。イミド化反応によって生じた水は閉環反応を妨害するため、水と相溶しない有機溶剤を系中に加えて共沸させてディーン・スターク(Dean-Stark)管などの装置を使用して系外に排出する。水と相溶しない有機溶剤としてはジクロルベンゼンが知られているが、エレクトロニクス用としては塩素成分が混入する恐れがあるので、好ましくは前記芳香族炭化水素を使用する。また、イミド化反応の触媒として無水酢酸、β-ピコリン、ピリジンなどの化合物を使用することは妨げない。
【0025】
本発明において、イミド閉環は程度が高いほど良く、イミド化率が低いと使用時の熱でイミド化が起こり水が発生して好ましくないため、95%以上、より好ましくは98%以上のイミド化率が達成されていることが望ましい。
【0026】
本発明のポリイミド樹脂の使用方法や用途は特に限定されるものではないが、樹脂ワニスをそのままコーティングやディッピングに用いる他にワニスを流延成形後乾燥しフィルムにする事も可能である。また固体で押出成形用の樹脂として使用することも可能である。固体にする方法としては貧溶媒への再沈殿等がある。樹脂ワニスで用いる場合でも特に不純物や異物等を嫌うエレクトロニクス用途等に使用する場合は一度再沈殿し固体にした樹脂を再度有機溶剤に溶解し濾過をして用いることが好ましい。
【0027】
本発明のポリイミド樹脂は、有機溶剤に可溶な特定構造のほぼ完全にイミド化されたポリイミド樹脂である。ポリイミドの原料であるシリコーンジアミンの鎖長と量比を限定することによって低吸湿性、低温加工性を維持したまま従来のシリコーン変性ポリイミドを遥かに上回る耐熱性を達成する事ができる。以下実施例により本発明を詳細に説明するが、これらの実施例に限定されるものではない。
【0028】
【実施例】
(実施例1)
乾燥窒素ガス導入管、冷却器、温度計、撹拌機を備えた四口フラスコに脱水精製したNMP384gを入れ、窒素ガスを流しながら10分間激しくかき混ぜる。次に2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン30.665g(0.075モル)と1,3−ビス(3−アミノフェノキシ)ベンゼン21.838g(0.075モル)と1,3−ビス(アミノプロピル)テトラメチルシロキサン9.050g(0.036モル)とα,ω−ビス(3−アミノプロピル)ポリジメチルシロキサン0.782g(平均分子量837、0.001モル)を投入し、系を60℃に加熱し均一になるまでかき混ぜる。均一に溶解後、系を氷水浴で5℃に冷却し、4,4’−オキシジフタル酸二無水物45.884g(0.149モル)と3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物11.915g(0.037モル)を粉末状のまま10分間かけて添加し、その後5時間撹拌を続けポリアミド酸溶液を得た。この間フラスコは5℃に保った。
【0029】
その後、窒素ガス導入管と冷却器を外し、キシレンを満たしたディーン・スターク管をフラスコに装着し、系にキシレンを添加した。氷水浴から油浴に替えて系を加熱し発生する水を系外に除いた。4時間加熱したところ、系からの水の発生は認められなくなった。冷却後この反応溶液を大量のメタノール中に投入しポリイミド樹脂を析出させた。固形分を濾過後、80℃で12時間減圧乾燥して固形樹脂を得た。KBr錠剤法で赤外吸収スペクトルを測定したところ、環状イミド結合に由来
5.60μmの吸収を認めたが、アミド結合に由来する6.06μmの吸収を認めることができず、この樹脂はほぼ100%イミド化していることが確認できた。
このポリイミド樹脂の加熱時の発生ガスをパージアンドトラップGC−MS法で測定したところ、350℃で5分間の加熱による式(1)で表される環状シロキサンの発生量の総和は樹脂の0.0012重量%であった。
【0030】
前記のポリイミド樹脂をシクロヘキサノンに溶解し、固形分25%のポリイミド樹脂ワニスを得た。このワニスをリバースロールコーターで二軸延伸ポリエステルフィルム(商品名ダイアホイル、厚さ50μm、三菱レーヨン(株)社製)に塗布し、乾燥後二軸延伸ポリエステルフィルムから剥離し、30μmの厚みの支持体なしの均一なフィルムを得た。乾燥温度は最高180℃で乾燥時間6分であった。剥離は容易で特に支障はなかった。このフィルムをステンレス板に熱圧着して試験片を作製し(300℃2秒間熱圧着し、圧を開放後300℃で30秒間アニールした。接着面にかかる圧力はゲージ圧力と接着面積から計算の結果4kgf/cm2であった。)、この試験片の180度ピール強度は2.0kgf/cmであり、優れた接着力を示した。また貼り付け時のテープからの分解ガスによる汚染の有無を調べるためにテープ貼り付け部近傍のステンレス面に対する純水の接触角を貼り付け前後で測定したが前後とも60゜で変化は見られなかった。
【0031】
(実施例2〜6)
実施例1と同様にして表1に示す配合にてポリイミド樹脂およびその有機溶剤溶液およびフィルムを作成し、実施例1と同様の評価を行った結果を表1に示す。
【0032】
【表1】
Figure 0003646947
【0033】
なお第2表でODPAは4,4’−オキシジフタル酸二無水物を、BTDAは3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物を、PAは無水フタル酸を,BAPPは2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを、APBは1,3−ビス(3−アミノフェノキシ)ベンゼンを、APDSは1,3−ビス(アミノプロピル)テトラメチルシロキサンを、APPSはα,ω−ビス(3−アミノプロピル)ポリジメチルシロキサンを、PPAはp−フェノキシアニリンをそれぞれ略記したものである。
【0034】
(比較例1〜5)
実施例1と同様にして表2に示す配合にてポリイミド樹脂およびその有機溶剤溶液およびフィルムの作成を試みた。得られた評価結果を表2に示す。
【0035】
【表2】
Figure 0003646947
【0036】
以上の実施例から本発明により有機溶剤に可溶で低温加工性および高温での耐熱性の両立したポリイミド樹脂が得られることが示される。
【0037】
【発明の効果】
本発明によれば、耐熱性と低温加工性を両立させたポリイミド樹脂を提供することが可能である。低沸点溶媒に可溶であるため残留溶媒をほぼ完全になくすことが可能で、また既にイミド化されているため、加工時にイミド化のための高温過程が不要で水分の発生も無い。このため高信頼性と耐熱性を要求するエレクトロニクス用材料として工業的に極めて利用価値が高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyimide resin excellent in heat resistance, soluble in an organic solvent and excellent in moldability.
[0002]
[Prior art]
Polyimide resins are widely used as electrical and electronic materials because of their high heat resistance, flame resistance, and excellent electrical insulation. Widely used as a substrate for flexible printed wiring boards and heat-resistant adhesive tapes as a film, and as an insulating film and protective film for semiconductors as a resin varnish. However, the conventional polyimide resin has high hygroscopicity and excellent heat resistance, but it is insoluble and infusible or has an extremely high melting point. It is used as a semiconductor mounting material for interlayer insulation films, surface protective films, etc. These are coated with a precursor polyamic acid soluble in organic solvents on the semiconductor surface, and the solvent is removed by heat treatment and imidization is performed. proceeding. At this time, imidization requires a heating process of 1 hour or more at a high temperature of 300 ° C. or higher, and the device is exposed to a high temperature, so that the yield of the assembly process is lowered. In addition, since the film has high hygroscopicity, the absorbed moisture evaporates at a high temperature and causes swelling and cracks.
[0003]
On the other hand, many thermoplastic polyimide resins and solvent-soluble polyimide resins have been proposed for the purpose of compensating for the drawbacks of these conventional polyimide resins. One example is a silicone-modified polyimide resin. Silicone-modified polyimide resin is excellent for low moisture absorption and solvent solubility and is suitable for electronics. However, heat resistance closely related to silicone content, solvent solubility and low moisture absorption are in a trade-off relationship. Conventional silicone-modified polyimide resins have not been sufficient to obtain better reliability.
[0004]
[Problems to be solved by the invention]
As a result of intensive studies to obtain a polyimide resin excellent in heat resistance, low in hygroscopicity and excellent in moldability that is soluble in an organic solvent, a polyimide resin having a specific structure solves the above problems. The present invention has been found.
[0005]
[Means for Solving the Problems]
[0006]
The polyimide resin of the present invention is characterized in that the amount of cyclic siloxane gas represented by the formula (1) is less than 0.02% by weight of the resin when heated for 5 minutes at a temperature not exceeding 350 ° C. This is a silicone-modified polyimide resin containing the silicone diamine represented by (2) and 4,4′-oxydiphthalic dianhydride as essential components.
[0007]
[Chemical 1]
Figure 0003646947
(N is an integer of 3 or more)
[0008]
[Chemical formula 2]
Figure 0003646947
(Wherein R 1 is a divalent hydrocarbon group)
[0009]
The polyimide resin of the present invention comprises a silicone diamine a mole represented by the formula (2), a silicone diamine b mole represented by the formula (3) and another diamine c mole as an amine component, 4,4′-oxydiphthalic acid dihydrate. An anhydride d mol and another acid dianhydride e mol are acid components, and 0.02 ≦ a / (a + b + c) ≦ 0.50 and b / (a + b + c) ≦ 0.02 and 0.6 ≦ d / ( d + e) and 0.96 ≦ (d + e) / (a + b + c) ≦ 1.04. The polyimide resin soluble in an organic solvent in which both components are reacted to cause imide ring closure or the molecular terminal of the polyimide resin is represented by the general formula ( 5) and end-capped with fmol of acid anhydride represented by 5), and 0.02 ≦ a / (a + b + c) ≦ 0.50 and b / (a + b + c) ≦ 0.02 and 0.6 ≦ d / (d + e + 0. 5f) and 0.002 ≦ Soluble in imide-cyclized organic solvent by reacting both components at a molar ratio of 0.5f / (d + e + 0.5f) ≦ 0.05 and 0.96 ≦ (d + e + 0.5f) / (a + b + c) ≦ 1.04 The polyimide resin or the molecular terminal of the polyimide resin is endcapped with g mol of an aromatic amine represented by the general formula (6), and 0.02 ≦ a / (a + b + c + 0.5 g) ≦ 0.50 and b / (a + b + c + 0). 0.5 g) ≦ 0.02 and 0.002 ≦ 0.5 g / (a + b + c + 0.5 g) ≦ 0.05 and 0.6 ≦ d / (d + e) and 0.96 ≦ (d + e) / (a + b + c + 0.5 g) ≦ It is a polyimide resin soluble in an organic solvent in which both components are reacted at a molar ratio of 1.04 to cause imide ring closure.
[0010]
[Chemical 3]
Figure 0003646947
(Wherein R 2 is a divalent hydrocarbon group, n is an integer of 2 to 20)
[0011]
[Formula 4]
Figure 0003646947
[0012]
[Chemical formula 5]
Figure 0003646947
[0013]
[Chemical 6]
Figure 0003646947
Wherein Y is a hydrogen atom or at least one group selected from methyl, ethyl, propyl, butyl, phenyl, methoxy, ethoxy, propoxy, butoxy or phenoxy groups.
[0014]
The silicone diamine represented by the formula (2) used in the present invention is 1,3-bis (3-aminopropyl) tetramethylsiloxane, etc., and has low water absorption, low temperature workability, and solubility in a solvent. Used to grant. These short-chain silicone diamines are excellent in heat resistance and can produce a resin having higher reliability at a higher temperature than using other silicone diamines. The silicone diamine is preferably used in the range of 2 to 50 mol% of the total amine component. When the amount is less than 2 mol%, low hygroscopicity, low-temperature processability and solubility in a solvent are not exhibited, and when it exceeds 50 mol%. A glass transition temperature falls remarkably and a problem arises in heat resistance. A more preferable addition amount is 10 mol% to 35 mol% of the total amine component from the viewpoint of low hygroscopicity, low temperature processability, solubility in a solvent, and heat resistance.
[0015]
The silicone diamine represented by the formula (3) used in the present invention is α, ω-bis (3-aminopropyl) polydimethylsiloxane or the like, and is used in combination with the one of the formula (2). Processability and solubility in solvents are significantly improved. In particular, n is preferably in the range of 4 to 13 from the viewpoint of glass transition temperature and workability. However, this silicone diamine decomposes at a high temperature and generates a cyclic siloxane gas represented by the formula (1), which may cause foaming of the resin and contamination of surrounding materials. Must be 2 mol% or less of the amine component. A more preferable addition amount is 0.2 to 0.8 mol% of the total amine component from the viewpoint of low hygroscopicity, low temperature processability, and heat resistance at high temperature.
[0016]
The amount ratio of 4,4'-oxydiphthalic dianhydride, which is the main component of the acid component, is extremely important for the solubility of the resulting polyimide resin, and if it is not within the above range, it will dissolve in a low boiling point solvent. The features of the present invention are lost.
[0017]
Other diamines used in the present invention include 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2, 2-bis (4-aminophenoxy) hexafluoropropane, bis-4- (4-aminophenoxy) phenylsulfone, bis-4- (3-aminophenoxy) phenylsulfone, 1,3-bis (3-aminophenoxy) Benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 4,4′-diaminodiphenyl ether, 3 , 4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl One or two of sulfone, 4,4′-diaminodiphenylmethane, 4,4′-bis (4-aminophenoxy) biphenyl and the like can be used in combination. Among them, it is preferable to use a diamine having an aminophenoxy structure in an application field in which adhesion is important.
[0018]
Other acid dianhydrides used in the present invention include 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, One or two of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and pyromellitic anhydride can be used in combination.
[0019]
The diamine represented by the formula (4) is 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, etc., and particularly 1,3-bis (3-aminophenoxy). ) The use of benzene is preferable in terms of solubility in a low boiling point solvent and low temperature processability.
[0020]
When the polyimide is used for an adhesive, a molding material or the like, a melt viscosity suitable for adhesion or molding can be obtained by end-capping the molecular end and controlling the molecular weight, thereby improving workability. The amount ratio of the acid anhydride or the aromatic amine as the end cap agent is preferably within the above range. If it is less than this range, the molecular weight becomes too high, so that the solubility in a low-boiling solvent, which is a feature of the present invention, is lowered, and in applications where importance is attached to adhesiveness, wettability is lowered due to an increase in melt viscosity, which is not preferable. Above this range, the molecular weight is remarkably lowered, causing a problem in heat resistance. Furthermore, it is more preferable that an end cap agent exists in the range of 0.4-2.4 mol% of all the acid components or all the amine components from the point of low temperature workability, heat resistance, and mechanical strength.
[0021]
Examples of the end cap agent include an acid anhydride represented by the general formula (5) and an aromatic amine represented by the general formula (6). Examples of the acid anhydride include phthalic anhydride, maleic anhydride, and nadic anhydride, and examples of the aromatic amine include p-methylaniline, p-methoxyaniline, and p-phenoxyaniline.
[0022]
The equivalence ratio between the acidic component and the amine component in the polymerization reaction is an important factor that determines the molecular weight of the resulting polyamic acid. It is well known that there is a correlation between the molecular weight and physical properties of polymers, especially the number average molecular weight and mechanical properties. The higher the number average molecular weight, the better the mechanical properties. Therefore, in order to obtain a practically excellent strength, it is necessary to have a certain high molecular weight. In the present invention, it is preferable that the equivalent ratio r of the acid component and the amine component is a molar ratio of 0.96 ≦ r ≦ 1.04. Further, the range of 0.98 ≦ r ≦ 1.02 is more preferable in terms of both mechanical strength and heat resistance.
[0023]
Reaction of tetracarboxylic dianhydride and diamine is performed by a well-known method in an aprotic polar solvent. Aprotic polar solvents are N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), diglyme, cyclohexanone, 1,4 -Dioxane (1,4-DO) and the like. Only one type of aprotic polar solvent may be used, or two or more types may be used as a mixture. At this time, a nonpolar solvent compatible with the aprotic polar solvent may be mixed and used. Aromatic hydrocarbons such as toluene, xylene and solvent naphtha are often used. The ratio of the nonpolar solvent in the mixed solvent is preferably 30% by weight or less. This is because if the amount of the nonpolar solvent is 30% by weight or more, the dissolving power of the solvent is lowered and polyamic acid may be precipitated. The reaction between the tetracarboxylic dianhydride and the diamine is performed by dissolving the well-dried diamine component in the above-described reaction solvent obtained by dehydration and purification, and then adding the well-dried tetracarboxylic acid dihydrate having a ring closure rate of 98%, more preferably 99% or more. Add anhydride to drive reaction.
[0024]
The polyamic acid solution thus obtained is subsequently subjected to heat dehydration cyclization in an organic solvent to imidize it into a polyimide. Since the water generated by the imidization reaction hinders the ring-closing reaction, an organic solvent that is incompatible with water is added to the system and azeotroped to use the equipment such as Dean-Stark tube. To discharge. Dichlorobenzene is known as an organic solvent that is incompatible with water. However, for electronics, there is a possibility that a chlorine component may be mixed, and thus the aromatic hydrocarbon is preferably used. In addition, the use of a compound such as acetic anhydride, β-picoline or pyridine as a catalyst for the imidization reaction is not prevented.
[0025]
In the present invention, the higher the degree of imide ring closure, the better, and the low imidization rate is not preferable because imidization occurs due to heat during use and water is generated, so 95% or more, more preferably 98% or more imidization. It is desirable that the rate is achieved.
[0026]
Although the usage method and application of the polyimide resin of the present invention are not particularly limited, the resin varnish can be used for coating and dipping as it is, or the varnish can be cast and dried to form a film. It is also possible to use it as a solid resin for extrusion molding. Examples of the method for solidifying include reprecipitation in a poor solvent. Even when used in a resin varnish, it is preferable to use the resin which has been re-precipitated and solidified once again in an organic solvent and filtered, especially when used in electronics applications where impurities and foreign matters are disliked.
[0027]
The polyimide resin of the present invention is a substantially completely imidized polyimide resin having a specific structure soluble in an organic solvent. By limiting the chain length and quantity ratio of silicone diamine, which is a raw material for polyimide, heat resistance far exceeding that of conventional silicone-modified polyimide can be achieved while maintaining low hygroscopicity and low-temperature processability. EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
[0028]
【Example】
(Example 1)
384 g of dehydrated and purified NMP is placed in a four-necked flask equipped with a dry nitrogen gas inlet tube, a cooler, a thermometer, and a stirrer, and stirred vigorously for 10 minutes while flowing nitrogen gas. Next, 30.665 g (0.075 mol) of 2,2-bis (4- (4-aminophenoxy) phenyl) propane and 21.38 g (0.075 mol) of 1,3-bis (3-aminophenoxy) benzene And 1,3-bis (aminopropyl) tetramethylsiloxane 9.050 g (0.036 mol) and α, ω-bis (3-aminopropyl) polydimethylsiloxane 0.782 g (average molecular weight 837, 0.001 mol) The system is heated to 60 ° C. and stirred until uniform. After homogeneous dissolution, the system was cooled to 5 ° C. in an ice-water bath, and 45.884 g (0.149 mol) of 4,4′-oxydiphthalic dianhydride and 3,3 ′, 4,4′-benzophenonetetracarboxylic acid. 11.915 g (0.037 mol) of dianhydride was added in powder form over 10 minutes, and then the stirring was continued for 5 hours to obtain a polyamic acid solution. During this time, the flask was kept at 5 ° C.
[0029]
Thereafter, the nitrogen gas introduction tube and the cooler were removed, a Dean-Stark tube filled with xylene was attached to the flask, and xylene was added to the system. The generated water was removed from the system by heating the system from the ice water bath to the oil bath. When heated for 4 hours, no water was observed from the system. After cooling, this reaction solution was poured into a large amount of methanol to precipitate a polyimide resin. The solid content was filtered and then dried under reduced pressure at 80 ° C. for 12 hours to obtain a solid resin. When an infrared absorption spectrum was measured by the KBr tablet method, an absorption of 5.60 μm derived from a cyclic imide bond was observed, but an absorption of 6.06 μm derived from an amide bond could not be recognized, and this resin was almost 100%. % Imidization was confirmed.
When the generated gas during heating of the polyimide resin was measured by the purge and trap GC-MS method, the total amount of cyclic siloxane represented by the formula (1) by heating at 350 ° C. for 5 minutes was 0. It was 0012% by weight.
[0030]
The polyimide resin was dissolved in cyclohexanone to obtain a polyimide resin varnish having a solid content of 25%. This varnish is applied to a biaxially stretched polyester film (trade name Diafoil, thickness 50 μm, manufactured by Mitsubishi Rayon Co., Ltd.) with a reverse roll coater, dried and then peeled off from the biaxially stretched polyester film, and supported with a thickness of 30 μm. A uniform film without body was obtained. The drying temperature was a maximum of 180 ° C. and the drying time was 6 minutes. Peeling was easy and there was no problem. This film was thermocompression bonded to a stainless steel plate to prepare a test piece (thermocompression bonding at 300 ° C. for 2 seconds, release the pressure and annealed at 300 ° C. for 30 seconds. The pressure applied to the bonding surface was calculated from the gauge pressure and the bonding area. The result was 4 kgf / cm 2 ), and the 180-degree peel strength of this test piece was 2.0 kgf / cm, indicating an excellent adhesive force. In addition, in order to investigate the presence or absence of contamination from the decomposition gas from the tape at the time of application, the contact angle of pure water with the stainless steel surface near the tape application part was measured before and after application, but no change was seen at 60 ° before and after application. It was.
[0031]
(Examples 2 to 6)
A polyimide resin and its organic solvent solution and film were prepared in the same manner as in Example 1 with the formulation shown in Table 1, and the results of the same evaluation as in Example 1 are shown in Table 1.
[0032]
[Table 1]
Figure 0003646947
[0033]
In Table 2, ODPA is 4,4′-oxydiphthalic dianhydride, BTDA is 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, PA is phthalic anhydride, BAPP is 2 , 2-bis (4- (4-aminophenoxy) phenyl) propane, APB is 1,3-bis (3-aminophenoxy) benzene, APDS is 1,3-bis (aminopropyl) tetramethylsiloxane, APPS is an abbreviation for α, ω-bis (3-aminopropyl) polydimethylsiloxane, and PPA is an abbreviation for p-phenoxyaniline.
[0034]
(Comparative Examples 1-5)
In the same manner as in Example 1, an attempt was made to prepare a polyimide resin, an organic solvent solution thereof, and a film with the formulation shown in Table 2. The obtained evaluation results are shown in Table 2.
[0035]
[Table 2]
Figure 0003646947
[0036]
From the above examples, it is shown that a polyimide resin which is soluble in an organic solvent and has both low-temperature workability and high-temperature heat resistance can be obtained by the present invention.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the polyimide resin which made heat resistance and low temperature workability compatible. Since it is soluble in a low-boiling solvent, the residual solvent can be almost completely eliminated, and since it has already been imidized, a high-temperature process for imidization is not required during processing, and no moisture is generated. For this reason, it is highly useful industrially as an electronic material that requires high reliability and heat resistance.

Claims (6)

(A−1)式(2)で表されるシリコーンジアミンaモル、
(A−2)式(3)で表されるシリコーンジアミンbモル、
(A−3)その他のジアミンcモル、
(B−1)4,4'−オキシジフタル酸二無水物dモル、および
(B−2)その他の酸二無水物eモル
を必須成分とするシリコーン変性ポリイミド樹脂であって、
かつ当該樹脂が下記条件[I]および[II]を満たすシリコーン変性ポリイミド樹脂。
[I]当該シリコーン変性ポリイミド樹脂が、下記4式をすべて満たすa〜eのモル比で上記成分を反応させイミド閉環せしめた有機溶剤に可溶な樹脂であること。
0.02≦a/(a+b+c)≦0.50
0.002≦b/(a+b+c)≦0.008
0.6≦d/(d+e)
0.96≦(d+e)/(a+b+c)≦1.04
[II] 当該シリコーン変性ポリイミド樹脂を350℃を超えない温度で5分間加熱した時に式(1)で表される環状シロキサンガスの発生量が樹脂の0.02重量%未満であること。
Figure 0003646947
(nは3以上の整数)
Figure 0003646947
(式中R1は2価の炭化水素基)
Figure 0003646947
(式中R2は2価の炭化水素基、nは2〜20の整数)
(A-1) a mole of silicone diamine represented by formula (2),
(A-2) b mol of silicone diamine represented by formula (3),
(A-3) Other diamine c mol,
(B-1) 4,4′-oxydiphthalic dianhydride d mole, and (B-2) other acid dianhydride e mole
And a silicone-modified polyimide resin satisfying the following conditions [I] and [II].
[I] The silicone-modified polyimide resin is a resin soluble in an organic solvent in which the above components are reacted and imide ring-closed at a molar ratio of a to e that satisfies all of the following four formulas.
0.02 ≦ a / (a + b + c) ≦ 0.50
0.002 ≦ b / (a + b + c) ≦ 0.008
0.6 ≦ d / (d + e)
0.96 ≦ (d + e) / (a + b + c) ≦ 1.04
[II] When the silicone-modified polyimide resin is heated at a temperature not exceeding 350 ° C. for 5 minutes, the generation amount of the cyclic siloxane gas represented by the formula (1) is less than 0.02% by weight of the resin.
Figure 0003646947
(N is an integer of 3 or more)
Figure 0003646947
(Wherein R 1 is a divalent hydrocarbon group)
Figure 0003646947
(Wherein R 2 is a divalent hydrocarbon group, n is an integer of 2 to 20)
(A−1)式(2)で表されるシリコーンジアミンaモル、
(A−2)式(3)で表されるシリコーンジアミンbモル、
(A−4)式(4)で表されるジアミンcモル、および
(B−1)4,4'−オキシジフタル酸二無水物dモル
を必須成分とするシリコーン変性ポリイミド樹脂であって、
かつ当該樹脂が下記条件[I]および[II]を満たすシリコーン変性ポリイミド樹脂。
[I] 当該シリコーン変性ポリイミド樹脂が、下記4式をすべて満たすa〜dのモル比で上記成分を反応させイミド閉環せしめた有機溶剤に可溶な樹脂であること。
0.02≦a/(a+b+c)≦0.50
0.002≦b/(a+b+c)≦0.008
0.5≦c/(a+b+c)
0.96≦d/(a+b+c)≦1.04
[II] 当該シリコーン変性ポリイミド樹脂を350℃を超えない温度で5分 間加熱した時に式(1)で表される環状シロキサンガスの発生量が樹脂の0 .02重量%未満であること。
Figure 0003646947
(A-1) a mole of silicone diamine represented by formula (2),
(A-2) b mol of silicone diamine represented by formula (3),
(A-4) a silicone-modified polyimide resin having as essential components diamine c mol represented by formula (4) and (B-1) 4,4′-oxydiphthalic dianhydride d mol
And a silicone-modified polyimide resin satisfying the following conditions [I] and [II].
[I] The silicone-modified polyimide resin is a resin soluble in an organic solvent in which the above-mentioned components are reacted at a molar ratio of a to d satisfying all of the following four formulas to cause imide ring closure.
0.02 ≦ a / (a + b + c) ≦ 0.50
0.002 ≦ b / (a + b + c) ≦ 0.008
0.5 ≦ c / (a + b + c)
0.96 ≦ d / (a + b + c) ≦ 1.04
[II] When the silicone-modified polyimide resin is heated at a temperature not exceeding 350 ° C. for 5 minutes, the amount of the cyclic siloxane gas represented by the formula (1) is 0. Less than 02% by weight.
Figure 0003646947
(A−1)式(2)で表されるシリコーンジアミンaモル、
(A−2)式(3)で表されるシリコーンジアミンbモル、
(A−3)他のジアミンcモル、
(B−1)4,4'−オキシジフタル酸二無水物dモル、および
(B−2)他の酸二無水物eモル、
を必須成分とするシリコーン変性ポリイミド樹脂であって、
当該樹脂の分子末端が一般式(5)で表される酸無水物fモルでエンドキャップされており、
かつ当該樹脂が下記条件[I]および[II]を満たすシリコーン変性ポリイミド樹脂。
[I] 当該シリコーン変性ポリイミド樹脂が、下記5式をすべて満たすa〜fのモル比で上記成分を反応させイミド閉環せしめた有機溶剤に可溶な樹脂であること。
0.02≦a/(a+b+c)≦0.50
0.002≦b/(a+b+c)≦0.008
0.6≦d/(d+e+0.5f)
0.002≦0.5f/(d+e+0.5f)≦0.05
0.96≦(d+e+0.5f)/(a+b+c)≦1.04
[II] 当該シリコーン変性ポリイミド樹脂を350℃を超えない温度で5分間加熱した時に式(1)で表される環状シロキサンガスの発生量が樹脂の0.02重量%未満であること。
Figure 0003646947
(A-1) a mole of silicone diamine represented by formula (2),
(A-2) b mol of silicone diamine represented by formula (3),
(A-3) Other diamine c mol,
(B-1) 4,4′-oxydiphthalic dianhydride d mole, and (B-2) other acid dianhydride e mole,
Is a silicone-modified polyimide resin having an essential component,
The molecular terminal of the resin is endcapped with an acid anhydride fmol represented by the general formula (5),
And a silicone-modified polyimide resin satisfying the following conditions [I] and [II].
[I] The silicone-modified polyimide resin is a resin soluble in an organic solvent in which the above components are reacted and imide ring closure is performed at a molar ratio of a to f that satisfies all of the following five formulas.
0.02 ≦ a / (a + b + c) ≦ 0.50
0.002 ≦ b / (a + b + c) ≦ 0.008
0.6 ≦ d / (d + e + 0.5f)
0.002 ≦ 0.5f / (d + e + 0.5f) ≦ 0.05
0.96 ≦ (d + e + 0.5f) / (a + b + c) ≦ 1.04
[II] When the silicone-modified polyimide resin is heated at a temperature not exceeding 350 ° C. for 5 minutes, the generation amount of the cyclic siloxane gas represented by the formula (1) is less than 0.02% by weight of the resin.
Figure 0003646947
(A−1)式(2)で表されるシリコーンジアミンaモル、
(A−2)式(3)で表されるシリコーンジアミンbモル、
(A−3)他のジアミンcモル、
(B−1)4,4'−オキシジフタル酸二無水物dモル、および
(B−2)他の酸二無水物eモル、
を必須成分とするシリコーン変性ポリイミド樹脂であって、
当該樹脂の分子末端が一般式(6)で表される芳香族アミンgモルでエンドキャップされており、
かつ当該樹脂が下記条件[I]および[II]を満たすシリコーン変性ポリイミド樹脂。
[I]当該シリコーン変性ポリイミド樹脂が、下記5式をすべて満たすa〜d、gのモル比で上記成分を反応させイミド閉環せしめた有機溶剤に可溶な樹脂であること。
0.02≦a/(a+b+c+0.5g)≦0.50
0.002≦b/(a+b+c)≦0.008
0.002≦0.5g/(a+b+c+0.5g)≦0.05
0.6≦d/(d+e)
0.96≦(d+e)/(a+b+c+0.5g)≦1.04
[II] 当該シリコーン変性ポリイミド樹脂を350℃を超えない温度で5分間加熱した時に式(1)で表される環状シロキサンガスの発生量が樹脂の0.02重量%未満であること。
Figure 0003646947
(式中Yは水素原子、あるいはメチル、エチル、プロピル、ブチル、フェニル、メトキシ、エトキシ、プロポキシ、ブトキシもしくはフェノキシ基の中から選ばれた少なくとも1種類の基)
(A-1) a mole of silicone diamine represented by formula (2),
(A-2) b mol of silicone diamine represented by formula (3),
(A-3) Other diamine c mol,
(B-1) 4,4′-oxydiphthalic dianhydride d mole, and (B-2) other acid dianhydride e mole,
Is a silicone-modified polyimide resin having an essential component,
The molecular terminal of the resin is endcapped with g mol of an aromatic amine represented by the general formula (6),
And a silicone-modified polyimide resin satisfying the following conditions [I] and [II].
[I] The silicone-modified polyimide resin is a resin that is soluble in an organic solvent in which the above components are reacted and the imide is ring-closed in a molar ratio of a to d and g that satisfies all of the following five formulas.
0.02 ≦ a / (a + b + c + 0.5 g) ≦ 0.50
0.002 ≦ b / (a + b + c) ≦ 0.008
0.002 ≦ 0.5 g / (a + b + c + 0.5 g) ≦ 0.05
0.6 ≦ d / (d + e)
0.96 ≦ (d + e) / (a + b + c + 0.5 g) ≦ 1.04
[II] When the silicone-modified polyimide resin is heated at a temperature not exceeding 350 ° C. for 5 minutes, the generation amount of the cyclic siloxane gas represented by the formula (1) is less than 0.02% by weight of the resin.
Figure 0003646947
Wherein Y is a hydrogen atom or at least one group selected from methyl, ethyl, propyl, butyl, phenyl, methoxy, ethoxy, propoxy, butoxy or phenoxy groups.
(A−1)式(2)で表されるシリコーンジアミンaモル、
(A−2)式(3)で表されるシリコーンジアミンbモル、
(A−4)式(4)で表されるジアミンcモル、および
(B−1)4,4'−オキシジフタル酸二無水物dモル、
を必須成分とするシリコーン変性ポリイミド樹脂であって、
当該樹脂の分子末端が一般式(5)で表される酸無水物fモルでエンドキャップされており、
かつ当該樹脂が下記条件[I]および[II]を満たすシリコーン変性ポリイミド樹脂。
[I]当該シリコーン変性ポリイミド樹脂が、下記5式をすべて満たすa〜d、fのモル比で上記成分を反応させイミド閉環せしめた有機溶剤に可溶な樹脂であること。
0.02≦a/(a+b+c)≦0.50
0.002≦b/(a+b+c)≦0.008
0.5≦c/(a+b+c)
0.002≦0.5f/(d+0.5f)≦0.05
0.96≦(d+0.5f)/(a+b+c)≦1.04
[II] 当該シリコーン変性ポリイミド樹脂を350℃を超えない温度で5分間加熱した時に式(1)で表される環状シロキサンガスの発生量が樹脂の0.02重量%未満であること。
(A-1) a mole of silicone diamine represented by formula (2),
(A-2) b mol of silicone diamine represented by formula (3),
(A-4) diamine c mol represented by formula (4), and (B-1) 4,4′-oxydiphthalic dianhydride d mol,
Is a silicone-modified polyimide resin having an essential component,
The molecular terminal of the resin is endcapped with an acid anhydride fmol represented by the general formula (5),
And a silicone-modified polyimide resin satisfying the following conditions [I] and [II].
[I] The silicone-modified polyimide resin is a resin soluble in an organic solvent in which the above components are reacted and imide ring closure is performed at a molar ratio of a to d and f satisfying all the following five formulas.
0.02 ≦ a / (a + b + c) ≦ 0.50
0.002 ≦ b / (a + b + c) ≦ 0.008
0.5 ≦ c / (a + b + c)
0.002 ≦ 0.5f / (d + 0.5f) ≦ 0.05
0.96 ≦ (d + 0.5f) / (a + b + c) ≦ 1.04
[II] When the silicone-modified polyimide resin is heated at a temperature not exceeding 350 ° C. for 5 minutes, the generation amount of the cyclic siloxane gas represented by the formula (1) is less than 0.02% by weight of the resin.
(A−1)式(2)で表されるシリコーンジアミンaモル
(A−2)式(3)で表されるシリコーンジアミンbモル
(A−4)式(4)で表されるジアミンcモル、および
(B−1)4,4'−オキシジフタル酸二無水物dモル、
を必須成分とするシリコーン変性ポリイミド樹脂であって、
当該樹脂の分子末端が一般式(6)で表される芳香族アミンgモルでエンドキャップされており、
かつ当該樹脂が下記条件[I]および[II]を満たすシリコーン変性ポリイミド樹脂。
[I]当該シリコーン変性ポリイミド樹脂が、下記5式をすべて満たすa〜d、gのモル比で上記成分を反応させイミド閉環せしめた有機溶剤に可溶な樹脂であること。
0.02≦a/(a+b+c+0.5g)≦0.50
b/(a+b+c+0.5g)≦0.02
0.5≦c/(a+b+c+0.5g)
0.002≦0.5g/(a+b+c+0.5g)≦0.05
0.96≦d/(a+b+c+0.5g)≦1.04
[II] 当該シリコーン変性ポリイミド樹脂を350℃を超えない温度で5分間加熱した時に式(1)で表される環状シロキサンガスの発生量が樹脂の0.02重量%未満であること。
以上
(A-1) Silicone diamine a mole represented by formula (2) (A-2) Silicone diamine b mole represented by formula (3) (A-4) Diamine c mole represented by formula (4) And (B-1) 4,4′-oxydiphthalic dianhydride d mol,
Is a silicone-modified polyimide resin having an essential component,
The molecular terminal of the resin is endcapped with g mol of an aromatic amine represented by the general formula (6),
And a silicone-modified polyimide resin satisfying the following conditions [I] and [II].
[I] The silicone-modified polyimide resin is a resin that is soluble in an organic solvent in which the above components are reacted and the imide is ring-closed in a molar ratio of a to d and g that satisfies all of the following five formulas.
0.02 ≦ a / (a + b + c + 0.5 g) ≦ 0.50
b / (a + b + c + 0.5 g) ≦ 0.02
0.5 ≦ c / (a + b + c + 0.5 g)
0.002 ≦ 0.5 g / (a + b + c + 0.5 g) ≦ 0.05
0.96 ≦ d / (a + b + c + 0.5 g) ≦ 1.04
[II] When the silicone-modified polyimide resin is heated at a temperature not exceeding 350 ° C. for 5 minutes, the generation amount of the cyclic siloxane gas represented by the formula (1) is less than 0.02% by weight of the resin.
that's all
JP07735496A 1996-03-29 1996-03-29 Polyimide resin Expired - Fee Related JP3646947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07735496A JP3646947B2 (en) 1996-03-29 1996-03-29 Polyimide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07735496A JP3646947B2 (en) 1996-03-29 1996-03-29 Polyimide resin

Publications (2)

Publication Number Publication Date
JPH09263636A JPH09263636A (en) 1997-10-07
JP3646947B2 true JP3646947B2 (en) 2005-05-11

Family

ID=13631583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07735496A Expired - Fee Related JP3646947B2 (en) 1996-03-29 1996-03-29 Polyimide resin

Country Status (1)

Country Link
JP (1) JP3646947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173322B2 (en) * 2002-03-13 2007-02-06 Mitsui Mining & Smelting Co., Ltd. COF flexible printed wiring board and method of producing the wiring board

Also Published As

Publication number Publication date
JPH09263636A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JPH09272739A (en) Polyimide resin
JP2624724B2 (en) Polyimide siloxane composition
JP3014578B2 (en) Resin composition with improved properties at high temperatures
JP3233892B2 (en) Resin composition
JP2983827B2 (en) Resin composition with improved properties at high temperatures
JP3707879B2 (en) Polyimide resin composition, film adhesive and method for producing the same
JP3646947B2 (en) Polyimide resin
JPH10231426A (en) Polyimide resin composition
JP3578545B2 (en) Soluble polyimide resin
JP3093061B2 (en) Soluble polyimide resin
JP3526130B2 (en) Film adhesive with improved heat resistance and method for producing the same
JP3093063B2 (en) Soluble polyimide resin
JP2983828B2 (en) Resin composition with improved properties at high temperatures
JP3137309B2 (en) Heat resistant resin composition
JP2719271B2 (en) Soluble polyimide resin
JPH06172523A (en) Soluble polyimide resin
JP2996859B2 (en) Heat resistant resin composition
JP2740075B2 (en) Soluble polyimide resin
JP2996857B2 (en) Heat resistant resin composition with excellent low temperature processability
JP3685545B2 (en) Soluble polyimide resin
JP2996858B2 (en) Heat resistant resin composition with excellent low temperature processability
JP3666988B2 (en) Heat resistant resin composition
JP3137308B2 (en) Heat resistant resin composition
JP2951206B2 (en) Resin composition with improved properties at high temperatures
JPH09272738A (en) Polyimide resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees