JP2983828B2 - Resin composition with improved properties at high temperatures - Google Patents

Resin composition with improved properties at high temperatures

Info

Publication number
JP2983828B2
JP2983828B2 JP6036889A JP3688994A JP2983828B2 JP 2983828 B2 JP2983828 B2 JP 2983828B2 JP 6036889 A JP6036889 A JP 6036889A JP 3688994 A JP3688994 A JP 3688994A JP 2983828 B2 JP2983828 B2 JP 2983828B2
Authority
JP
Japan
Prior art keywords
polyimide resin
bis
aminophenoxy
component
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6036889A
Other languages
Japanese (ja)
Other versions
JPH07242822A (en
Inventor
達弘 吉田
啓造 高浜
周作 岡明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP6036889A priority Critical patent/JP2983828B2/en
Publication of JPH07242822A publication Critical patent/JPH07242822A/en
Application granted granted Critical
Publication of JP2983828B2 publication Critical patent/JP2983828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性に優れ、かつ有
機溶剤に可溶で成形加工性に優れた耐熱性樹脂組成物に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant resin composition having excellent heat resistance, being soluble in an organic solvent, and having excellent moldability.

【0002】[0002]

【従来の技術】ポリイミド樹脂は、耐熱性が高く難燃性
で電気絶縁性に優れていることからフィルムとしてフレ
キシブル印刷配線板や耐熱性接着テープの基材に、樹脂
ワニスとして半導体の層間絶縁膜、表面保護膜に広く使
用されている。しかし、従来のポリイミド樹脂は吸湿性
が高く、耐熱性に優れている反面不溶不融であったり融
点が極めて高く、加工性の点で決して使いやすい材料と
はいえなかった。また半導体の実装材料として層間絶縁
膜、表面保護膜などに使用されているが、これらは有機
溶剤に可溶なポリイミド樹脂の前駆体ポリアミック酸を
半導体表面に塗布し、加熱処理によって溶剤を除去する
と共にイミド化をして用いている。この時、イミド化を
完全に進めるために、また高沸点のアミド系溶剤を揮散
させるために300℃以上の高温乾燥工程を必要とす
る。このため高温にさらされ、他に使用する部材の熱損
傷や素子の劣化を招きアセンブリ工程の収率を劣化させ
る。また、皮膜の吸湿性が高いため、高温時に吸収した
水分が一気に蒸発して膨れやクラックの原因となるなど
の問題があった。
2. Description of the Related Art Polyimide resin has high heat resistance, flame retardancy and excellent electrical insulation, so it is used as a film for a substrate of a flexible printed wiring board or a heat-resistant adhesive tape, and as a resin varnish, an interlayer insulating film of a semiconductor. Widely used for surface protection film. However, conventional polyimide resins have high hygroscopicity and excellent heat resistance, but are insoluble or infusible or have an extremely high melting point, and thus cannot be said to be materials which are easy to use in terms of workability. In addition, as a semiconductor mounting material, it is used for an interlayer insulating film, a surface protective film, and the like. For these, a polyimide resin precursor polyamic acid soluble in an organic solvent is applied to the semiconductor surface, and the solvent is removed by heat treatment. And is used after imidation. At this time, a high-temperature drying step of 300 ° C. or more is required to completely advance the imidization and to volatilize the amide-based solvent having a high boiling point. For this reason, it is exposed to a high temperature, which causes thermal damage to other members to be used and deterioration of the element, thereby deteriorating the yield of the assembly process. In addition, since the film has high hygroscopicity, there has been a problem that moisture absorbed at a high temperature evaporates at a stretch and causes swelling and cracks.

【0003】前記の欠点を改良する方法として、有機溶
剤に可溶で既にイミド化されたポリイミド樹脂組成物か
らフィルム状接着剤を形成し、これを被着体に熱圧着す
る方法等が提案されている(特開平5−105850、
112760、112761号公報を参照)。しかしな
がら、ポリイミド樹脂をホットメルト型の接着剤として
使用するこの様な場合、ポリイミド樹脂のガラス転移温
度が高いと加工に非常な高温を要し被着材に熱損傷を与
える恐れが大きい。一方、低温加工性を付与するためポ
リイミド樹脂のガラス転移温度を下げるとポリイミド樹
脂の耐熱性という特徴を十分に生かすことができないと
いう問題点があった。
As a method for improving the above-mentioned drawbacks, there has been proposed a method of forming a film-like adhesive from a polyimide resin composition which is soluble in an organic solvent and has already been imidized, and thermocompression-bonds this to an adherend. (JP-A-5-105850,
112760, 112761). However, in such a case where the polyimide resin is used as a hot-melt type adhesive, if the glass transition temperature of the polyimide resin is high, a very high temperature is required for processing, and there is a great possibility that the adherend is thermally damaged. On the other hand, if the glass transition temperature of the polyimide resin is lowered to impart low temperature processability, there is a problem that the heat resistance characteristic of the polyimide resin cannot be fully utilized.

【0004】[0004]

【発明が解決しようとする課題】本発明は、耐熱性に優
れ、かつ低温での成形加工性の優れた耐熱性樹脂を得る
べく鋭意研究を重ねた結果、特定構造のポリイミド樹脂
にエポキシ化合物およびカップリング剤を添加すると、
上記課題が解決できることを見出し、本発明に到達した
ものである。
The present invention has been made as a result of intensive studies to obtain a heat-resistant resin having excellent heat resistance and excellent moldability at low temperatures. When the coupling agent is added,
The inventors have found that the above problems can be solved, and have reached the present invention.

【0005】[0005]

【課題を解決するための手段】本発明の耐熱性樹脂組成
物は、ガラス転移温度が350℃以下の有機溶剤に可溶
なポリイミド樹脂100重量部に対して、1分子中に少
なくとも2個以上のエポキシ基を有するエポキシ化合物
5〜100重量部、該エポキシ化合物と反応可能な活性
水素基を有する化合物0.1〜20重量部を主たる成分
として含有していることを特徴とする耐熱性樹脂組成物
である。
The heat-resistant resin composition of the present invention comprises at least two or more resins per molecule per 100 parts by weight of a polyimide resin soluble in an organic solvent having a glass transition temperature of 350 ° C. or lower. A heat-resistant resin composition comprising, as main components, 5 to 100 parts by weight of an epoxy compound having an epoxy group and 0.1 to 20 parts by weight of a compound having an active hydrogen group capable of reacting with the epoxy compound. Things.

【0006】本発明のポリイミド樹脂は、主たる酸成分
が3,3’,4,4’−ビフェニルテトラカルボン酸二
無水物、3,3’,4,4’−ベンゾフェノンテトラカ
ルボン酸二無水物である。主たるアミン成分は、2,2
−ビス(4−(4−アミノフェノキシ)フェニル)プロ
パン、1,3−ビス(3−アミノフェノキシ)ベンゼン
及びジメチルフェニレンジアミンの群から選ばれた1種
類または2種類以上のジアミンと一般式(1)で表され
るジアミノシロキサン化合物である。
In the polyimide resin of the present invention, the main acid component is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride or 3,3', 4,4'-benzophenonetetracarboxylic dianhydride. is there. The main amine component is 2,2
And one or more diamines selected from the group consisting of -bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (3-aminophenoxy) benzene, and dimethylphenylenediamine; ).

【0007】[0007]

【化1】 (式中、R1,R2:二価の、炭素数1〜4の脂肪族基ま
たは芳香族基 R3,R4,R5,R6:一価の脂肪族基または芳香族基 k:1〜20の整数)
Embedded image (Wherein, R 1 and R 2 are divalent aliphatic or aromatic groups having 1 to 4 carbon atoms R 3 , R 4 , R 5 and R 6 are monovalent aliphatic or aromatic groups k : Integer of 1 to 20)

【0008】その量比については、3,3’,4,4’
−ビフェニルテトラカルボン酸二無水物aモルと3,
3’,4,4’−ベンゾフェノンテトラカルボン酸二無
水物bモルとを酸成分とし、2,2−ビス(4−(4−
アミノフェノキシ)フェニル)プロパンcモルと、1,
3−ビス(3−アミノフェノキシ)ベンゼンとジメチル
フェニレンジアミンの群から選ばれた1種類または2種
類のジアミンdモルと、一般式(1)で表されるジアミ
ノシロキサン化合物eモルとをアミン成分とし、a、
b、c、d、eのモル比が 0.5 ≦ a/(a+b) ≦
0.8、0.2 ≦ b/(a+b) ≦0.5、かつ 0.05 ≦ e
/(c+d+e) ≦ 0.5 の割合であることが好まし
い。他の酸成分として4,4’−オキシジフタル酸二無
水物、エチレングリコールビストリメリット酸二無水物
からなる群より選ばれた1種または2種のテトラカルボ
ン酸二無水物を特性を損なわない範囲で併用することも
できる。他のアミン成分として、2,2−ビス(4−
(4−アミノフェノキシ)フェニル)ヘキサフルオロプ
ロパン、2,2−ビス(4−アミノフェノキシ)ヘキサ
フルオロプロパン、ビス−4−(4−アミノフェノキ
シ)フェニルスルフォン、ビス−4−(3−アミノフェ
ノキシ)フェニルスルフォンなどを特性を損なわない範
囲で、それらを単独、あるいは併用して使用することが
できる。
Regarding the quantitative ratio, 3,3 ′, 4,4 ′
Amol of biphenyltetracarboxylic dianhydride and 3,
3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (bmol) is used as an acid component and 2,2-bis (4- (4-
C-aminophenoxy) phenyl) propane and 1,
One or two kinds of diamines selected from the group consisting of 3-bis (3-aminophenoxy) benzene and dimethylphenylenediamine, and d moles of diamine and e moles of a diaminosiloxane compound represented by the general formula (1) are used as amine components. , A,
The molar ratio of b, c, d, and e is 0.5 ≦ a / (a + b) ≦
0.8, 0.2 ≦ b / (a + b) ≦ 0.5, and 0.05 ≦ e
/(C+d+e)≦0.5 One or two tetracarboxylic dianhydrides selected from the group consisting of 4,4′-oxydiphthalic dianhydride and ethylene glycol bistrimellitic dianhydride as other acid components within a range that does not impair the properties. They can be used together. As other amine components, 2,2-bis (4-
(4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4-aminophenoxy) hexafluoropropane, bis-4- (4-aminophenoxy) phenylsulfone, bis-4- (3-aminophenoxy) Phenylsulfone and the like can be used alone or in combination as long as the characteristics are not impaired.

【0009】さらに該ジアミノシロキサン化合物はジア
ミン成分総量の5〜50モル%用いることがより好まし
い。ジアミン成分の総量の5モル%より少ないと有機溶
剤への溶解性が低下し、50モル%を越えるとガラス転
移温度が著しく低下し耐熱性に問題が生じる。一般式
(1)で表されるシロキサン化合物として具体的には、
下記一般式(2)で表されるα,ω−ビス(3−アミノ
プロピル)ポリジメチルシロキサン(APPS)が好ま
しく、特にkの値が4〜10の範囲が、ガラス転移温
度、接着性、耐熱性の点から好ましい。これらのシロキ
サン化合物は単独で用いることは勿論、2種類以上を併
用することもできる。特にk=1と上記k=4〜10の
ものをブレンドして用いることは接着性を重視する用途
では好ましい。
Further, it is more preferable that the diaminosiloxane compound is used in an amount of 5 to 50 mol% of the total amount of the diamine component. If the total amount of the diamine components is less than 5 mol%, the solubility in an organic solvent is reduced, and if it exceeds 50 mol%, the glass transition temperature is remarkably lowered, and there is a problem in heat resistance. Specific examples of the siloxane compound represented by the general formula (1) include:
Α, ω-Bis (3-aminopropyl) polydimethylsiloxane (APPS) represented by the following general formula (2) is preferable. Particularly, when the value of k is in the range of 4 to 10, the glass transition temperature, adhesiveness, and heat resistance It is preferable from the viewpoint of properties. These siloxane compounds can be used alone or in combination of two or more. In particular, it is preferable to use a mixture of k = 1 and the above-mentioned k = 4 to 10 in applications where importance is attached to adhesiveness.

【0010】[0010]

【化2】 (式中、k:1〜20の整数)Embedded image (Where k is an integer of 1 to 20)

【0011】重縮合反応における酸成分とアミン成分の
当量比は、得られるポリアミック酸の分子量を決定する
重要な因子である。ポリマの分子量と物性、特に数平均
分子量と機械的性質の間に相関があることは良く知られ
ている。数平均分子量が大きいほど機械的性質が優れて
いる。従って、実用的に優れた強度を得るためには、あ
る程度高分子量であることが必要である。本発明では、
酸成分とアミン成分の当量比rが 0.900 ≦ r ≦ 1.060 より好ましくは、 0.975 ≦ r ≦ 1.025 の範囲にあることが好ましい。ただし、r=[全酸成分
の当量数]/[全アミン成分の当量数]である。rが
0.900未満では、分子量が低くて脆くなるため接着
力が弱くなる。また1.06を越えると、未反応のカル
ボン酸が加熱時に脱炭酸してガス発生、発泡の原因とな
り好ましくないことがある。
The equivalent ratio between the acid component and the amine component in the polycondensation reaction is an important factor that determines the molecular weight of the resulting polyamic acid. It is well known that there is a correlation between the molecular weight and physical properties of a polymer, especially the number average molecular weight and mechanical properties. The higher the number average molecular weight, the better the mechanical properties. Therefore, in order to obtain practically excellent strength, it is necessary to have a high molecular weight to some extent. In the present invention,
The equivalent ratio r between the acid component and the amine component is preferably 0.900 ≦ r ≦ 1.060, more preferably 0.975 ≦ r ≦ 1.025. Here, r = [equivalent number of all acid components] / [equivalent number of all amine components]. When r is less than 0.900, the molecular weight is low and the polymer becomes brittle, so that the adhesive strength is weak. If it exceeds 1.06, unreacted carboxylic acid may be decarbonated during heating to cause gas generation and foaming, which may be undesirable.

【0012】ポリイミド樹脂の分子量制御のためジカル
ボン酸無水物あるいはモノアミンを添加することは、上
述の酸/アミンモル比の範囲であれば特にこれを妨げな
い。
The addition of a dicarboxylic anhydride or a monoamine for controlling the molecular weight of the polyimide resin does not hinder the addition of the dicarboxylic acid anhydride or monoamine as long as the molar ratio of the acid / amine is within the above-mentioned range.

【0013】テトラカルボン酸二無水物とジアミンとの
反応は、非プロトン性極性溶媒中で公知の方法で行われ
る。非プロトン性極性溶媒は、N,N−ジメチルホルム
アミド(DMF)、N,N−ジメチルアセトアミド(D
MAC)、N−メチル−2−ピロリドン(NMP)、テ
トラヒドロフラン(THF)、ジグライム、シクロヘキ
サノン、1,4−ジオキサン(1,4−DO)などであ
る。非プロトン性極性溶媒は、一種類のみ用いてもよい
し、二種類以上を混合して用いてもよい。この時、上記
非プロトン性極性溶媒と相溶性がある非極性溶媒を混合
して使用しても良い。トルエン、キシレン、ソルベント
ナフサなどの芳香族炭化水素が良く使用される。混合溶
媒における非極性溶媒の割合は、30重量%以下である
ことが好ましい。これは非極性溶媒が30重量%以上で
は溶媒の溶解力が低下しポリアミック酸が析出する恐れ
があるためである。テトラカルボン酸二無水物とジアミ
ンとの反応は、良く乾燥したジアミン成分を脱水精製し
た前述反応溶媒に溶解し、これに閉環率98%、より好
ましくは99%以上の良く乾燥したテトラカルボン酸二
無水物を添加して反応を進める。
The reaction between the tetracarboxylic dianhydride and the diamine is carried out in a polar aprotic solvent by a known method. Aprotic polar solvents include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (D
MAC), N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), diglyme, cyclohexanone, 1,4-dioxane (1,4-DO) and the like. As the aprotic polar solvent, only one kind may be used, or two or more kinds may be used as a mixture. At this time, a non-polar solvent compatible with the aprotic polar solvent may be mixed and used. Aromatic hydrocarbons such as toluene, xylene, and solvent naphtha are often used. The proportion of the non-polar solvent in the mixed solvent is preferably 30% by weight or less. This is because if the nonpolar solvent is 30% by weight or more, the solvent power of the solvent may be reduced and polyamic acid may be precipitated. The reaction between the tetracarboxylic dianhydride and the diamine is carried out by dissolving the well-dried diamine component in the above-mentioned reaction solvent that has been dehydrated and purified, and adding thereto the ring-closing rate of 98%, more preferably 99% or more. The reaction is allowed to proceed by adding the anhydride.

【0014】このようにして得たポリアミック酸溶液を
続いて有機溶剤中で加熱脱水環化してイミド化しポリイ
ミドにする。イミド化反応によって生じた水は閉環反応
を妨害するため、水と相溶しない有機溶剤を系中に加え
て共沸させてディーン・スターク(Dean−Star
k)管などの装置を使用して系外に排出する。水と相溶
しない有機溶剤としてはジクロルベンゼンが知られてい
るが、エレクトロニクス用としては塩素成分が混入する
恐れがあるので、好ましくは前記芳香族炭化水素を使用
する。また、イミド化反応の触媒として無水酢酸、β-
ピコリン、ピリジンなどの化合物を使用することは妨げ
ない。
The polyamic acid solution thus obtained is subsequently heated and dehydrated and cyclized in an organic solvent to give an imidized polyimide. Since the water generated by the imidization reaction interferes with the ring closure reaction, an organic solvent incompatible with water is added to the system and azeotroped to form Dean-Stark (Dean-Stark).
k) Discharge out of the system using a device such as a pipe. Dichlorobenzene is known as an organic solvent that is not compatible with water, but the above-mentioned aromatic hydrocarbon is preferably used for electronics because a chlorine component may be mixed therein. Acetic anhydride, β-
It does not prevent the use of compounds such as picoline and pyridine.

【0015】本発明において、イミド閉環は程度が高い
ほど良く、イミド化率が低いと使用時の熱でイミド化が
起こり水が発生して好ましくないため、95%以上、よ
り好ましくは98%以上のイミド化率が達成されている
ことが望ましい。
In the present invention, the higher the degree of imide ring closure, the better the degree of imidization. If the rate of imidization is low, imidization occurs due to heat during use to generate water, which is not preferable. Is preferably achieved.

【0016】本発明の耐熱性樹脂組成物において使用す
る成分(B)エポキシ化合物は、少なくとも1分子中に
2個のエポキシ基を有するものであれば特に限定される
ものではないが、ポリイミド樹脂の溶媒への溶解性が良
好なものが好ましい。例えば、ビスフェノールA型のジ
グリシジルエーテル、ビスフェノールF型のジグリシジ
ルエーテル、フェノールノボラック型エポキシ樹脂、ビ
フェニル型エポキシ化合物等が挙げられる。
The component (B) epoxy compound used in the heat-resistant resin composition of the present invention is not particularly limited as long as it has at least two epoxy groups in one molecule. Those having good solubility in a solvent are preferred. For example, bisphenol A type diglycidyl ether, bisphenol F type diglycidyl ether, phenol novolak type epoxy resin, biphenyl type epoxy compound and the like can be mentioned.

【0017】前記エポキシ化合物の量比は成分(A)ポ
リイミド樹脂100重量部に対して5〜100重量部、
特に10〜70重量部の範囲にあることが好ましい。5
重量部未満では、未硬化のエポキシ化合物を添加し樹脂
組成物の軟化温度を下げ低温加工性をあげるという効果
があらわれにくく、100重量部をこえるとポリイミド
樹脂の耐熱性を損なうこととなり好ましくない。
The amount ratio of the epoxy compound is 5 to 100 parts by weight with respect to 100 parts by weight of the component (A) polyimide resin.
In particular, it is preferably in the range of 10 to 70 parts by weight. 5
If the amount is less than 10 parts by weight, the effect of adding an uncured epoxy compound to lower the softening temperature of the resin composition and increase the low-temperature processability is unlikely to be exhibited. If the amount exceeds 100 parts by weight, the heat resistance of the polyimide resin is impaired, which is not preferable.

【0018】また本発明の耐熱性樹脂組成物において使
用する成分(C)エポキシ樹脂と反応可能な活性水素基
を有する化合物は、成分(A)のポリイミド樹脂や成分
(B)のエポキシ化合物との相溶性、ポリイミド樹脂の
溶媒への溶解性が良好なものが好ましい。例えばレゾー
ル、ノボラック、アミン化合物等が挙げられる。成分
(C)の配合割合は成分(A)のポリイミド樹脂100
重量部に対して0.1〜20重量部、より好ましくは
0.5〜10重量部である。0.1重量部未満では、未
硬化のエポキシ化合物の反応率が極端に低くなり、本発
明にて望まれる効果が現れない。また高温時の樹脂の弾
性率が低下している時の樹脂フローの制御が困難であ
る。20重量部をこえると溶液状態でゲルが生じやすく
なり、加工性が損なわれる。また樹脂組成物の耐熱性を
損ない、好ましくない。
The compound (C) having an active hydrogen group capable of reacting with the epoxy resin used in the heat-resistant resin composition of the present invention may be used in combination with the polyimide resin of the component (A) or the epoxy compound of the component (B). Those having good compatibility and solubility of the polyimide resin in the solvent are preferred. For example, resol, novolak, amine compound and the like can be mentioned. The mixing ratio of the component (C) is 100% of the polyimide resin of the component (A).
The amount is 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight based on parts by weight. If the amount is less than 0.1 part by weight, the reaction rate of the uncured epoxy compound becomes extremely low, and the effect desired in the present invention does not appear. Further, it is difficult to control the resin flow when the elastic modulus of the resin at a high temperature is low. If the amount is more than 20 parts by weight, a gel is easily formed in a solution state, and the processability is impaired. Further, heat resistance of the resin composition is impaired, which is not preferable.

【0019】本発明の耐熱性樹脂組成物にはその加工
性、耐熱性を損なわない範囲で微細な無機充填材が配合
されていても良い。
The heat-resistant resin composition of the present invention may contain a fine inorganic filler as long as its workability and heat resistance are not impaired.

【0020】本発明では得られたポリイミド溶液にその
ままエポキシ化合物や該エポキシ化合物と反応可能な活
性水素基を有する化合物を添加し耐熱性樹脂組成物溶液
とすることができる。また、該ポリイミド溶液を貧溶媒
中に投入してポリイミド樹脂を再沈析出させて未反応モ
ノマを取り除いて精製し、乾燥して固形のポリイミド樹
脂として使用することもできる。高温工程を嫌う用途や
特に不純物や異物が問題になる用途では、再び有機溶剤
に溶解して濾過精製ワニスとすることが好ましい。この
時使用する溶剤は加工作業性を考え、沸点の低い溶剤を
選択することが可能である。
In the present invention, a heat-resistant resin composition solution can be obtained by adding an epoxy compound or a compound having an active hydrogen group capable of reacting with the epoxy compound as it is to the obtained polyimide solution. Further, the polyimide solution may be poured into a poor solvent to reprecipitate the polyimide resin, remove unreacted monomers, purify, and dry to use as a solid polyimide resin. In applications that dislike the high-temperature process, or particularly in applications where impurities or foreign matter becomes a problem, it is preferable to dissolve again in an organic solvent to obtain a filtration and purification varnish. The solvent used at this time can be selected from solvents having a low boiling point in consideration of workability.

【0021】本発明のポリイミド樹脂では、ケトン系溶
剤として、アセトン、メチルエチルケトン、メチルイソ
ブチルケトン、シクロペンタノン、シクロヘキサノン
を、エーテル系溶剤として、1,4−ジオキサン、テト
ラヒドロフラン、ジグライムを沸点200℃以下の低沸
点溶剤として使用することができる。これらの溶剤は単
独で使用しても良いし、2種以上を混合して用いること
もできる。あるいはポリイミド樹脂にこれら低沸点溶剤
を添加して使用することもできる。
In the polyimide resin of the present invention, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone are used as ketone solvents, and 1,4-dioxane, tetrahydrofuran, and diglyme are used as ether solvents. It can be used as a low boiling point solvent. These solvents may be used alone or in combination of two or more. Alternatively, these low-boiling solvents can be added to a polyimide resin for use.

【0022】[0022]

【作用】本発明のポリイミド樹脂にエポキシ化合物と反
応可能な活性水素基を有する化合物を添加した耐熱性樹
脂組成物は、見かけ上のガラス転移温度が該ポリイミド
樹脂のガラス転移温度より低下し低温加工性が向上す
る。一方、ガラス転移温度より高温域での接着力は該ポ
リイミド樹脂より向上し、IRリフローなどの熱衝撃を
与えても剥離が認められないなどの高温域での物性が向
上する。この特異な現象に対する詳細な機構は未だ明ら
かではない部分もあるが、エポキシ化合物と活性水素基
を有する化合物が反応した低分子量の生成物は、特定構
造のポリイミド樹脂に対して可塑剤として作用し該ポリ
イミド樹脂のガラス転移温度より低温域での弾性率を低
下せしめ、よって接着性、加工性など低温での作業性の
向上をもたらす。一方、ガラス転移温度より高温域では
その与えられた熱によって三次元網目構造が形成され、
ポリイミド樹脂の流動性を低下せしめ、よって該ポリイ
ミド樹脂の耐熱性を維持、あるいは向上せしめるものと
考えられる。以上の機構によって低温加工性と高温時の
耐熱信頼性の両立がはかられる。以下実施例により本発
明を詳細に説明するが、これらの実施例に限定されるも
のではない。
The heat-resistant resin composition obtained by adding a compound having an active hydrogen group capable of reacting with an epoxy compound to the polyimide resin of the present invention has an apparent glass transition temperature lower than the glass transition temperature of the polyimide resin and is processed at a low temperature. The performance is improved. On the other hand, the adhesive strength at a temperature higher than the glass transition temperature is higher than that of the polyimide resin, and the physical properties at a high temperature such as no peeling even when subjected to a thermal shock such as IR reflow are improved. Although the detailed mechanism for this peculiar phenomenon is still unclear, the low molecular weight product of the reaction between the epoxy compound and the compound having an active hydrogen group acts as a plasticizer on the polyimide resin of a specific structure. It lowers the modulus of elasticity at a temperature lower than the glass transition temperature of the polyimide resin, thereby improving workability at a low temperature such as adhesiveness and workability. On the other hand, in a region higher than the glass transition temperature, a three-dimensional network structure is formed by the given heat,
It is considered that the fluidity of the polyimide resin is reduced, and thus the heat resistance of the polyimide resin is maintained or improved. With the above mechanism, both low-temperature workability and high-temperature heat-reliability can be achieved. Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0023】[0023]

【実施例】【Example】

(ポリイミド樹脂PI−1の合成)乾燥窒素ガス導入
管、冷却器、温度計、撹拌機を備えた四口フラスコに、
脱水精製したNMP716gを入れ、窒素ガスを流しな
がら10分間激しくかき混ぜる。次に2,2−ビス(4
−(4−アミノフェノキシ)フェニル)プロパン(BA
PP)24.631g(0.060モル)、1,3−ビ
ス(3−アミノフェノキシ)ベンゼン(APB)48.
236g(0.165モル)、α,ω−ビス(3−アミ
ノプロピル)ポリジメチルシロキサン(APPS、式
(2))57.753g(平均分子量837、0.06
9モル)、1,3−ビス(3−アミノプロピル)テトラ
メチルジメチルシロキサン(APDS,式(2)におい
てk=1)1.491g(0.006モル)を投入し、
系を60℃に加熱し、均一になるまでかき混ぜる。均一
に溶解後、系を氷水浴で5℃に冷却し、3,3’,4,
4’−ビフェニルテトラカルボン酸二無水物(BPD
A)52.960g(0.180モル)、3,3’,
4,4’−ベンゾフェノンテトラカルボン酸二無水物
(BTDA)38.668g(0.120モル)を粉末
状のまま15分間かけて添加し、その後3時間撹拌を続
けた。この間フラスコは5℃に保った。
(Synthesis of polyimide resin PI-1) In a four-necked flask equipped with a dry nitrogen gas inlet tube, a cooler, a thermometer, and a stirrer,
Add 716 g of dehydrated and purified NMP, and stir vigorously for 10 minutes while flowing nitrogen gas. Next, 2,2-bis (4
-(4-aminophenoxy) phenyl) propane (BA
PP) 24.631 g (0.060 mol), 1,3-bis (3-aminophenoxy) benzene (APB)
236 g (0.165 mol), 57.753 g of α, ω-bis (3-aminopropyl) polydimethylsiloxane (APPS, formula (2)) (average molecular weight 837, 0.06
9 mol), 1.491 g (0.006 mol) of 1,3-bis (3-aminopropyl) tetramethyldimethylsiloxane (APDS, k = 1 in the formula (2)) were added,
Heat the system to 60 ° C. and stir until uniform. After dissolving uniformly, the system was cooled to 5 ° C in an ice water bath,
4'-biphenyltetracarboxylic dianhydride (BPD
A) 52.960 g (0.180 mol), 3,3 ′,
38.668 g (0.120 mol) of 4,4'-benzophenonetetracarboxylic dianhydride (BTDA) was added over 15 minutes while keeping the powdery state, and then stirring was continued for 3 hours. During this time, the flask was kept at 5 ° C.

【0024】その後、窒素ガス導入管と冷却器を外し、
キシレンを満たしたディーン・スターク管をフラスコに
装着し、系にキシレン179gを添加した。油浴に代え
て系を175℃に加熱し発生する水を系外に除いた。4
時間加熱したところ、系からの水の発生は認められなく
なった。冷却後この反応溶液を大量のメタノール中に投
入し、ポリイミド樹脂を析出させた。固形分を濾過後、
80℃で12時間減圧乾燥し溶剤を除き、204.72
g(収率91.5%)の固形樹脂を得た。KBr錠剤法
で赤外吸収スペクトルを測定したところ、環状イミド結
合に由来する5.6μmの吸収を認めたが、アミド結合
に由来する6.06μmの吸収を認めることはできず、
この樹脂はほぼ100%イミド化していることが確かめ
られた。
After that, remove the nitrogen gas inlet pipe and the cooler,
A Dean-Stark tube filled with xylene was attached to the flask, and 179 g of xylene was added to the system. The system was heated to 175 ° C. instead of the oil bath, and the generated water was removed from the system. 4
After heating for an hour, no water was generated from the system. After cooling, the reaction solution was poured into a large amount of methanol to precipitate a polyimide resin. After filtering the solids,
The solvent was removed by drying under reduced pressure at 80 ° C. for 12 hours to remove the solvent.
g (yield 91.5%) of a solid resin was obtained. When an infrared absorption spectrum was measured by a KBr tablet method, an absorption of 5.6 μm derived from a cyclic imide bond was recognized, but an absorption of 6.06 μm derived from an amide bond could not be recognized.
It was confirmed that this resin was almost 100% imidized.

【0025】このようにして得たポリイミド樹脂は、ガ
ラス転移温度が133℃、引張り弾性率が170kgf/m
m2、ジメチルホルムアミド(DMF)、1,4−ジオキ
サン(1,4−DO)に良く溶解することが確かめられ
た。
The polyimide resin thus obtained has a glass transition temperature of 133 ° C. and a tensile modulus of 170 kgf / m 2.
m 2 , dimethylformamide (DMF), and 1,4-dioxane (1,4-DO) were confirmed to be well dissolved.

【0026】(ポリイミド樹脂PI−2の合成)前記の
ポリイミド樹脂PI−1の合成と同様にして、PI−2
を得た。エンドキャップ剤としてp−フェノキシアニリ
ン(PPA)を用いた。得られたポリイミド樹脂は、ガ
ラス転移温度が158℃、引張り弾性率が229kgf/m
m2、ジメチルホルムアミド、1,4−ジオキサンに良く
溶解することが確かめられた。表1にポリイミド樹脂P
I−1、およびPI−2の物性を示した。
(Synthesis of polyimide resin PI-2) PI-2 was synthesized in the same manner as in the synthesis of polyimide resin PI-1.
I got P-Phenoxyaniline (PPA) was used as an end cap agent. The obtained polyimide resin has a glass transition temperature of 158 ° C. and a tensile modulus of 229 kgf / m.
It was confirmed that the compound dissolved well in m 2 , dimethylformamide, and 1,4-dioxane. Table 1 shows polyimide resin P
The physical properties of I-1 and PI-2 were shown.

【0027】[0027]

【表1】 [Table 1]

【0028】モノマの欄のDPXは2,5−ジメチル−
p−フェニレンジアミンを表す。溶解性の欄のSは該当
する溶媒に溶解することを示す。ガラス転移温度はDS
C測定により求めた。引張り試験は室温、引張り速度5
mm/minにて測定した。ヤング率は粘弾性スペクトロメ
ーターにより求めた。
DPX in the monomer column is 2,5-dimethyl-
Represents p-phenylenediamine. S in the column of solubility indicates that the compound is dissolved in the corresponding solvent. Glass transition temperature is DS
It was determined by C measurement. Tensile test at room temperature, tensile speed 5
It was measured at mm / min. Young's modulus was determined using a viscoelastic spectrometer.

【0029】(実施例1)ガラス製フラスコにポリイミ
ド樹脂PI−1、100gとDMF440gを入れ、室
温で充分に撹拌しポリイミドを完全に溶解させる。均一
に溶解した後、フェノールノボラック型エポキシ化合物
(EOCN−1020、日本化薬(株)製)50gを加え
室温にて2時間撹拌した。その後均一に溶解しているこ
とを確認して、ノボラック(PR−53647、住友デ
ュレズ(株)製)10gを撹拌しながら徐々に加えた。
引き続き2時間撹拌し樹脂溶液を調製した。この溶液組
成物は、室温にて5日間放置してもゲル化せず均一な溶
液の状態のままであった。
Example 1 A glass flask was charged with 100 g of polyimide resin PI-1 and 440 g of DMF, and thoroughly stirred at room temperature to completely dissolve the polyimide. After uniformly dissolving, 50 g of a phenol novolak type epoxy compound (EOCN-1020, manufactured by Nippon Kayaku Co., Ltd.) was added, and the mixture was stirred at room temperature for 2 hours. After confirming that the solution was uniformly dissolved, 10 g of novolak (PR-53647, manufactured by Sumitomo Durez Co., Ltd.) was gradually added with stirring.
Subsequently, the mixture was stirred for 2 hours to prepare a resin solution. This solution composition did not gel even when left at room temperature for 5 days, and remained in a uniform solution state.

【0030】このようにして得た樹脂溶液をドクターブ
レードで鏡面研磨ステンレス鋼板に塗布し、厚み50μ
mのフィルムを得た。乾燥温度は最高195℃で乾燥時
間20分であった。溶解性、ガラス転移温度、引張り特
性、ヤング率を表2に示す。
The resin solution thus obtained was applied to a mirror-polished stainless steel plate with a doctor blade, and the thickness was 50 μm.
m was obtained. The drying temperature was a maximum of 195 ° C. and the drying time was 20 minutes. Table 2 shows the solubility, glass transition temperature, tensile properties, and Young's modulus.

【0031】このワニスをリバースロールコーターでポ
リイミドフィルム(商品名ユーピレックスSGA、厚み
50μm、宇部興産(株)製)の片面に塗布し、接着剤層
の厚みが30μmの接着テープを得た。乾燥温度は最高
200℃で乾燥時間15分であった。この接着テープを
42アロイのプレートに熱圧着して試験片を作製し(2
50℃2秒間熱圧着し、圧を開放後250℃で30秒間
アニールした。接着面にかかる圧力はゲージ圧力と接着
面積から計算の結果4kgf/cm2であった。)、引張り試
験機にて180度ピール強度を測定した結果を表2に示
す。接着強度は常態およびプレッシャークッカー(12
5℃、48時間、飽和100%)で処理した後の室温で
の180度ピール強度を測定したものである(引張り速
度50mm/min)。試験片の破断面は接着樹脂層が凝集
破壊し、発泡は全く認められなかった。
The varnish was applied to one surface of a polyimide film (trade name: Upilex SGA, thickness: 50 μm, manufactured by Ube Industries, Ltd.) using a reverse roll coater to obtain an adhesive tape having an adhesive layer having a thickness of 30 μm. The drying temperature was a maximum of 200 ° C. and the drying time was 15 minutes. This adhesive tape was thermocompression bonded to a 42 alloy plate to prepare a test piece (2
After thermocompression bonding at 50 ° C. for 2 seconds, the pressure was released, and annealing was performed at 250 ° C. for 30 seconds. The pressure applied to the bonded surface was 4 kgf / cm 2 calculated from the gauge pressure and the bonded area. ), And the results of measuring the 180 degree peel strength with a tensile tester are shown in Table 2. The adhesive strength was normal and pressure cooker (12
The peel strength at room temperature after treatment at 5 ° C. for 48 hours at a saturation of 100% was measured (tension speed: 50 mm / min). In the fracture surface of the test piece, the adhesive resin layer was cohesively broken, and no foaming was observed.

【0032】(実施例2〜4)実施例1と同様にして表
2に示す配合にて樹脂溶液を調製し、フィルム、接着テ
ープを得た。得られた評価結果を表2に示す。
Examples 2 to 4 Resin solutions were prepared in the same manner as in Example 1 with the formulations shown in Table 2 to obtain films and adhesive tapes. Table 2 shows the obtained evaluation results.

【0033】[0033]

【表2】 [Table 2]

【0034】溶解性の欄のSは該当する溶媒に溶解する
ことを示す。ガラス転移温度はDSC測定により求め
た。引張り試験は室温、引張り速度5mm/minにて測
定した。使用する成分(B)エポキシ化合物について、
YX−4000Hはビフェニル型エポキシ化合物エピコ
ートYX−4000H、油化シェルエポキシ(株)製、
EOCN−1020はフェノールノボラック型エポキシ
化合物EOCN−1020、日本化薬(株)製、エピコ
ート828はビスフェノール型エポキシ化合物、油化シ
ェルエポキシ(株)製をそれぞれ示している。使用する成
分(C)について、PR−50781、175、221
93、53647は住友デュレズ(株)製を示してい
る。
S in the column of solubility indicates that the compound is soluble in the corresponding solvent. The glass transition temperature was determined by DSC measurement. The tensile test was performed at room temperature at a tensile speed of 5 mm / min. About the component (B) epoxy compound used,
YX-4000H is a biphenyl type epoxy compound epicoat YX-4000H, manufactured by Yuka Shell Epoxy Co., Ltd.
EOCN-1020 indicates a phenol novolak type epoxy compound EOCN-1020, manufactured by Nippon Kayaku Co., Ltd., and Epicoat 828 indicates a bisphenol type epoxy compound, manufactured by Yuka Shell Epoxy Co., Ltd., respectively. About the component (C) used, PR-50781, 175, 221
93, 53647 is manufactured by Sumitomo Durez Corporation.

【0035】(比較例1、2)ポリイミド樹脂PI−1
およびPI−2のみのフィルムを作製し、42アロイプ
レートとの接着強度を実施例と同様にして測定しその結
果を表3に示した。
(Comparative Examples 1 and 2) Polyimide resin PI-1
And a film made of PI-2 only, and the adhesive strength to a 42 alloy plate was measured in the same manner as in the example. The results are shown in Table 3.

【0036】[0036]

【表3】 [Table 3]

【0037】(比較例3)ポリイミド樹脂PI−1、1
00gとエピコート828、20gのみで調製した樹脂
溶液から得た接着テープの接着強度を実施例と同様にし
て測定しその結果を表3に示した。
Comparative Example 3 Polyimide Resin PI-1,1
The adhesive strength of an adhesive tape obtained from a resin solution prepared using only 00 g and Epicoat 828 and 20 g was measured in the same manner as in the example, and the results are shown in Table 3.

【0038】表2、3の結果から、実施例の樹脂フィル
ムの接着強度は吸湿後でもその強度はわずかしか低下し
ていないが、比較例のポリイミド樹脂フィルムの接着強
度は、常態に比べて吸湿後は著しく低下している。
From the results shown in Tables 2 and 3, the adhesive strength of the resin film of the example was slightly reduced even after moisture absorption, but the adhesive strength of the polyimide resin film of the comparative example was lower than that of the normal state. After that, it has dropped significantly.

【0039】以上の実施例から本発明により、耐熱性と
成形加工性に優れたフィルム接着剤を得られることが示
される。
The above examples show that the present invention can provide a film adhesive having excellent heat resistance and moldability.

【0040】[0040]

【発明の効果】本発明によれば、耐熱性と成形加工性を
両立させた信頼性の高いフィルム接着剤を提供すること
が可能である。低沸点溶媒に可溶であるため残留溶媒を
ほぼ完璧になくすことが可能で、また既にイミド化され
ているため、加工時にイミド化のための高温過程が不要
で水分の発生も無い。またタックのないフィルムとして
使用することができるので連続作業性やクリーンな環境
を必要とする場合に非常に有効である。このため高信頼
性と耐熱性を要求するエレクトロニクス用材料として工
業的に極めて利用価値が高い。
According to the present invention, it is possible to provide a highly reliable film adhesive having both heat resistance and moldability. Since it is soluble in a low boiling point solvent, the residual solvent can be almost completely eliminated, and since it has already been imidized, a high temperature process for imidization is not required during processing, and no water is generated. Also, since it can be used as a tack-free film, it is very effective when continuous workability and a clean environment are required. For this reason, it is extremely useful industrially as a material for electronics requiring high reliability and heat resistance.

【0041】本発明の樹脂組成物の使用方法は特に限定
されるものではないが、樹脂構成成分の全てが有機溶剤
に均一に溶解されている樹脂ワニスとして、コーティン
グやディッピングに、流延成形によってフィルムに、耐
熱性と加工性の両立した絶縁材料、接着フィルム等とし
て使用することができる。
The method of using the resin composition of the present invention is not particularly limited. However, as a resin varnish in which all of the resin components are uniformly dissolved in an organic solvent, coating and dipping are performed by casting. The film can be used as an insulating material, an adhesive film, or the like that has both heat resistance and processability.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−224152(JP,A) 特開 平5−140526(JP,A) 特開 平5−339555(JP,A) 特開 平5−140524(JP,A) 特開 平5−311147(JP,A) 特開 平2−191623(JP,A) 特開 平7−278412(JP,A) (58)調査した分野(Int.Cl.6,DB名) C08L 79/00 - 79/08 C09J 179/00 - 179/08 C08G 73/00 - 73/26 C08G 59/00 - 59/72 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-224152 (JP, A) JP-A-5-140526 (JP, A) JP-A-5-339555 (JP, A) JP-A-5-339555 140524 (JP, A) JP-A-5-311147 (JP, A) JP-A-2-191623 (JP, A) JP-A-7-278412 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C08L 79/00-79/08 C09J 179/00-179/08 C08G 73/00-73/26 C08G 59/00-59/72 CA (STN) REGISTRY (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (A)主たる酸成分が3,3’,4,
4’−ビフェニルテトラカルボン酸二無水物と3,
3’,4,4’−ベンゾフェノンテトラカルボン酸二無
水物であり、主たるアミン成分が、2,2−ビス(4−
(4−アミノフェノキシ)フェニル)プロパン、1,3
−ビス(3−アミノフェノキシ)ベンゼン及びジメチル
フェニレンジアミンの群から選ばれた1種類または2種
類以上のジアミンと一般式(1)で表されるジアミノシ
ロキサン化合物とからなる有機溶剤に可溶なガラス転移
温度が350℃以下のポリイミド樹脂100重量部と、
(B)1分子中に少なくとも2個以上のエポキシ基を有
するエポキシ化合物5〜100重量部と、(C)該エポ
キシ化合物と反応可能な活性水素基を有する化合物0.
1〜20重量部とを主たる成分として含有していること
を特徴とする耐熱性樹脂組成物。 【化1】 (式中、R1,R2:二価の、炭素数1〜4の脂肪族基ま
たは芳香族基 R3,R4,R5,R6:一価の脂肪族基または芳香族基 k:1〜20の整数)
(1) The main acid component is 3,3 ′, 4,
4'-biphenyltetracarboxylic dianhydride and 3,
3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, wherein the main amine component is 2,2-bis (4-
(4-aminophenoxy) phenyl) propane, 1,3
Glass soluble in an organic solvent comprising one or more diamines selected from the group of -bis (3-aminophenoxy) benzene and dimethylphenylenediamine and a diaminosiloxane compound represented by the general formula (1) 100 parts by weight of a polyimide resin having a transition temperature of 350 ° C. or less,
(B) 5 to 100 parts by weight of an epoxy compound having at least two epoxy groups in one molecule, and (C) a compound having an active hydrogen group capable of reacting with the epoxy compound.
A heat-resistant resin composition comprising 1 to 20 parts by weight as a main component. Embedded image (Wherein, R 1 and R 2 are divalent aliphatic or aromatic groups having 1 to 4 carbon atoms R 3 , R 4 , R 5 and R 6 are monovalent aliphatic or aromatic groups k : Integer of 1 to 20)
【請求項2】 成分(A)が3,3’,4,4’−ビフ
ェニルテトラカルボン酸二無水物aモルと3,3’,
4,4’−ベンゾフェノンテトラカルボン酸二無水物b
モルとを酸成分とし、2,2−ビス(4−(4−アミノ
フェノキシ)フェニル)プロパンcモルと、1,3−ビ
ス(3−アミノフェノキシ)ベンゼンとジメチルフェニ
レンジアミンの群から選ばれた1種類または2種類のジ
アミンdモルと、一般式(1)で表されるジアミノシロ
キサン化合物eモルとをアミン成分とし、a、b、c、
d、eのモル比が 0.5 ≦ a/(a+b) ≦ 0.8、0.2
≦ b/(a+b) ≦0.5、かつ 0.05 ≦ e/(c+d
+e) ≦ 0.5 の割合で両成分を反応させてイミド閉環
せしめたポリイミド樹脂である請求項1記載の耐熱性樹
脂組成物。
2. Component (A) comprising a mole of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 3,3 ′,
4,4'-benzophenonetetracarboxylic dianhydride b
And mol as an acid component, selected from the group consisting of c mol of 2,2-bis (4- (4-aminophenoxy) phenyl) propane and 1,3-bis (3-aminophenoxy) benzene and dimethylphenylenediamine. One or two kinds of diamine d mole and a diaminosiloxane compound e mole represented by the general formula (1) are used as an amine component, and a, b, c,
When the molar ratio of d and e is 0.5 ≦ a / (a + b) ≦ 0.8, 0.2
≦ b / (a + b) ≦ 0.5 and 0.05 ≦ e / (c + d
2. The heat-resistant resin composition according to claim 1, which is a polyimide resin obtained by reacting both components at a ratio of + e) .ltoreq.0.5 and imide ring-closing.
JP6036889A 1994-03-08 1994-03-08 Resin composition with improved properties at high temperatures Expired - Fee Related JP2983828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6036889A JP2983828B2 (en) 1994-03-08 1994-03-08 Resin composition with improved properties at high temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6036889A JP2983828B2 (en) 1994-03-08 1994-03-08 Resin composition with improved properties at high temperatures

Publications (2)

Publication Number Publication Date
JPH07242822A JPH07242822A (en) 1995-09-19
JP2983828B2 true JP2983828B2 (en) 1999-11-29

Family

ID=12482351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6036889A Expired - Fee Related JP2983828B2 (en) 1994-03-08 1994-03-08 Resin composition with improved properties at high temperatures

Country Status (1)

Country Link
JP (1) JP2983828B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632523B1 (en) * 2000-09-28 2003-10-14 Sumitomo Bakelite Company Limited Low temperature bonding adhesive composition
CN103122068B (en) * 2012-12-25 2015-07-08 中山大学 Polyimide acrylic ester oligomer for UV (ultraviolet) paint

Also Published As

Publication number Publication date
JPH07242822A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
US5773509A (en) Heat resistant resin composition, heat resistant film adhesive and process for producing the same
JP3014578B2 (en) Resin composition with improved properties at high temperatures
JP3695848B2 (en) Heat resistant film adhesive and method for producing the same
JP2983827B2 (en) Resin composition with improved properties at high temperatures
JPH09272739A (en) Polyimide resin
JP3233892B2 (en) Resin composition
JP2983828B2 (en) Resin composition with improved properties at high temperatures
JP3137309B2 (en) Heat resistant resin composition
JP2996857B2 (en) Heat resistant resin composition with excellent low temperature processability
JP2996858B2 (en) Heat resistant resin composition with excellent low temperature processability
JP3578545B2 (en) Soluble polyimide resin
JP2996859B2 (en) Heat resistant resin composition
JPH10231426A (en) Polyimide resin composition
JP3137308B2 (en) Heat resistant resin composition
JP2951206B2 (en) Resin composition with improved properties at high temperatures
JP2996872B2 (en) Heat resistant resin composition with excellent low temperature processability
JP3666988B2 (en) Heat resistant resin composition
JP3093061B2 (en) Soluble polyimide resin
JP3439262B2 (en) Film adhesive having improved properties at high temperature and method for producing the same
JP3646947B2 (en) Polyimide resin
JPH0834969A (en) Heat-resistant film adhesive having excellent low-temperature processability and production thereof
JP2719271B2 (en) Soluble polyimide resin
JP3093063B2 (en) Soluble polyimide resin
JPH101534A (en) Heat-resistant resin composition
JPH07224150A (en) Heat-resistant resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees