JP3643006B2 - Solid oxide fuel cell cell - Google Patents

Solid oxide fuel cell cell Download PDF

Info

Publication number
JP3643006B2
JP3643006B2 JP2000101448A JP2000101448A JP3643006B2 JP 3643006 B2 JP3643006 B2 JP 3643006B2 JP 2000101448 A JP2000101448 A JP 2000101448A JP 2000101448 A JP2000101448 A JP 2000101448A JP 3643006 B2 JP3643006 B2 JP 3643006B2
Authority
JP
Japan
Prior art keywords
fuel electrode
intermediate layer
electrolyte
electrolyte membrane
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000101448A
Other languages
Japanese (ja)
Other versions
JP2001283876A (en
Inventor
勇 安田
良雄 松崎
美由紀 浦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2000101448A priority Critical patent/JP3643006B2/en
Publication of JP2001283876A publication Critical patent/JP2001283876A/en
Application granted granted Critical
Publication of JP3643006B2 publication Critical patent/JP3643006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質型燃料電池の単電池に関し、特に発電性能を向上させた単電池とそれを用いた固体電解質型燃料電池に関する。
【0002】
【従来の技術】
固体電解質型燃料電池の単電池は、電解質の一方の面に空気極を設け、他方の面に燃料極を設けてあり、固体電解質型燃料電池はこのような単電池を複数積層し、空気極に酸化剤ガスを、燃料極に燃料ガスを供給して起電力を発生させる。
【0003】
次に、ディップ法を用いた支持膜式の単電池の製造方法について、図11に示す流れ図を用いて説明する。
【0004】
まず粉末状の燃料極の原料をプレスにより所定の形状に押し固め成形し(T1)、成形した燃料極(グリーン)を電気炉等により約100時間仮焼し、多孔体とする(T2)。次に、仮焼した燃料極を、電解質の原料をスラリ状にした電解質スラリの中に浸し(T3)、燃料極の表面全体に薄く電解質原料を付着させる。電解質スラリを付着させたなら、電解質スラリを適度に乾燥させ(T4)、再び燃料極を電解質スラリの中に浸し、電解質原料を表面に付着させ、再度乾燥させる。このような電解質原料の付着・乾燥作業を電解質原料が所定の厚みとなるまで(7回程度)繰り返し、電解質膜が燃料極の表面に所定の厚みに形成されたなら炉に入れ焼成(T5)する。
【0005】
次に電解質膜を研磨し、燃料極の周囲にある不要な電解質膜を除去して、所定の形状に仕上げる(T6)。そして、電解質膜の上に空気極を設け(T7)、再度焼成を行なう(T8)。
【0006】
このようにして従来は、電気的抵抗が高い電解質膜を10〜数10μmの薄膜とし電気抵抗を下げ、低温(約750℃)での作動を可能とし、コストや熱機械的信頼性等を向上させた固体電解質型燃料電池の単電池を製造していた。
【0007】
【発明が解決しようとする課題】
しかしながら、近年固体電解質型燃料電池は小型化、高出力化を図る必要があり、より高い発電性能が単電池に求められている。例えば、電解質膜と空気極、あるいは電解質膜と燃料極との間の電気的抵抗をより低下させ、発電性能を向上させることが求められている。
【0008】
また、燃料極を仮焼せずスクリーン印刷等によって電解質を塗布した場合には、原料をプレスにより押し固めて形成されているため燃料極の表面は平滑であり、燃料極と電解質膜との接触状態が十分でなく、それらの間に電気抵抗が生じ、更には燃料極と電解質膜の間に隙間や剥離が生じることもあり、単電池の発電性能を高くできなかった。仮に燃料極の表面に凹凸をプレス加工を用いて形成しようとした場合には、型に微細な凹凸を設けなければならず加工に手間とコストがかかり困難であった。
【0009】
【課題を解決するための手段】
本発明では、上記課題を解決するため、固体電解質型燃料電池の支持膜式単電池を次のようにして構成した。
【0010】
すなわち、燃料極を基板とし、燃料極の上に電解質膜を形成し、電解質膜の上に空気極を形成した単電池において、燃料極と電解質膜との間に中間層を設けた。中間層は、燃料極の成分と同等、もしくはそれより電気導電性の高い成分とし、例えば燃料極をNi−YSZサーメット(Ni分率40〜70%)とし、中間層をNi−YSZサーメット(Ni分率70〜80%)とし、中間層のNi分率を燃料極のより大きくして燃料極の表面に形成する。すると、燃料極と電解質膜との間の導電性が高まり、発電性能の良好な単電池が構成される。
【0011】
また、中間層は表面に凹凸が形成される方がよく、例えばスクリーン印刷法による塗布が好ましい。表面に凹凸が形成されることにより、電解質膜との接触面積が増大し、また密着性が高まることから燃料極との間の接触抵抗がより低減される。具体的には、原料をプレス等により形成した段階での燃料極(グリーン)に、スラリー状の燃料極成分をスクリーン印刷法により塗布し中間層を形成し、その上面に電解質を形成することとした。電解質も、中間層と同様にスクリーン印刷法により形成することが好ましい。
【0012】
このように燃料極と電解質との間に燃料極成分と同等の中間層を形成することにより、中間層とプレスにより成形した燃料極とは、成分がほぼ同一であることから両者間の接触状態や密着度はよく、また電解質と中間層との間は、中間層の表面に凹凸が形成されることから、物理的な接合状態がよく、良好ななじみが得られる。したがって、燃料極と電解質との界面での接合性が良好になり電気抵抗が低下し、また剥離を防止でき、高い発電性能を得ることができる。
【0013】
更に、中間層を重ねて塗布する際、中間層の成分を徐々に変更して塗り重ねるとよい。例えば、燃料極の表面には燃料極の成分にほぼ等しい成分を塗布し、次に燃料極の成分より導電性の高い成分、例えば酸化ニッケル等の配合割合を高くした成分を塗布して中間層を形成する。このようにすると成分が徐々に変化し、燃料極とのなじみがよく、しかも導電性の高い中間層が形成できる。また、中間層と電解質膜との間の接着性が良くなるように中間層の上層の配合を選択しても良い。
【0014】
また、空気極を所定の成分から構成し、かつ電解質膜と空気極との間にSDC(サマリアをドープしたセリア)などの、Ce1-XX O(2-δ)の膜(AはCa、Y、Sm、Gd、La、Mg、Sc、Nd、Yb、Pr、Pb、Sr、Eu、Dy、Ba、Beのいずれか1つ又は2つ以上の組合せであり、0≦x≦0.50)を形成して単電池を構成した。
【0015】
SDC層(膜)などの形成は、例えば燃料極の上に電解質膜を形成した段階で、SDCのスラリを全体に塗布し、その後空気極を電解質膜の上に形成する。SDC層などは少なくとも電解質膜と空気極との間に形成すればよいが、更に燃料極の電解質膜を形成した面と逆側の面、つまり燃料極の表面側にもSDC層などを形成してもよい。これにより、高い電極活性が得られ、発電性能の高い単電池を得ることができる。
【0016】
【発明の実施の形態】
本発明にかかる単電池の一実施例について説明する。
【0017】
図1に単電池2を示す。単電池2は、支持体として構成された燃料極4の表面に中間層5が形成してあり、中間層5の上に電解質膜6が形成してある。さらに電解質膜6の表面にSDC膜7を介在させて空気極8が形成してある。この単電池2を図8に示すように合金セパレータ30とセラミックマニホールド32からなるセパレータ34で挟持し、セパレータ34と単電池2とを適宜積層して固体電解質型燃料電池1が構成してある。固体電解質型燃料電池1は、所定の条件、例えば作動温度750℃において燃料極4に燃料ガス(例えば水素)が、また空気極8に酸化剤ガス(例えば空気)が供給されることにより起電力を発生する。
【0018】
次に、単電池2の製造方法について図7の流れ図を用いて説明する。まず、粉末状の原料を所定の形状に成形し、支持体としての燃料極4を形成する(S1)。燃料極4の原料は、例えばニッケルとイットリア安定化ジルコニア(YSZ)のサーメットであり、原料を水溶性のバインダ、例えばポリビニルアルコールと混練し、プレス装置(図示せず)等により押し固め、成形する。燃料極4の原料には、グラファイト粉末等の造孔剤が所定量含有してあり、後述する焼成により造孔剤が焼失されると燃料極4の内部に多数の孔が形成される。
【0019】
プレス装置により成形された燃料極4は、未焼成のまま塗布装置18(図2参照)にて中間層5が塗布される。中間層5は、燃料極4の成分とほぼ同等の成分である。
【0020】
塗布装置18は図2に示すように、いわゆるスクリーン印刷法で印刷を行なう印刷機であり、中間層5に等しい形状の型がスクリーン版20に形成されている。燃料極4を、塗布装置18の所定の位置に配置したなら、スクリーン版20に沿ってスキージ22が移動して、中間層スラリ25が型を通して燃料極4の上面に塗布(S2)される。中間層スラリ25が所定の形状に塗布されたなら、中間層5の表面を適宜乾燥させる。中間層5が塗布された燃料極4を図3に示す。中間層5が形成されたら、電解質膜6を形成する。
【0021】
電解質膜6は、電解質スラリ24を表面に塗布して(S3)形成する。電解質スラリ24は、YSZからなる電解質(電解質膜6)の原料と非水溶性のバインダ、例えばポリビニルブチラールとを混練したものであり、所定の粘度に設定してある。尚、バインダとしては、上記以外に、メチルセルロース、ポリエチレン、ポリアクリル酸ソーダ、アラビアゴムなどがある。
【0022】
上記と同様に、塗布装置18のスクリーン版20には電解質膜6に等しい形状の型が形成されている。中間層5を塗布した燃料極4を、塗布装置18の所定の位置に配置したなら、スクリーン版20に沿ってスキージ22を移動させ、型を通して電解質スラリ24を燃料極4の上面に塗布(S3)する。電解質スラリ24が所定の形状に塗布されたなら、電解質の表面を適宜乾燥させる。乾燥作業は、電解質スラリ24を完全に乾燥させる必要はなく、塗布した電解質スラリ24に重ねて電解質スラリ24が塗布できる程度であればよい。電解質膜6が表面に形成された燃料極4を図4に示す。
【0023】
電解質スラリ24を適度に乾燥させたなら、上記と同様にして重ねて電解質スラリ24を塗布し、乾燥させる。そして電解質スラリ24が所定の厚さになるまで電解質スラリ24の塗布を繰り返す。電解質スラリ24が所定の厚みに積層されたなら、燃料極4とともに共焼結(電解質膜6と燃料極4とを一緒に焼成すること)する(S4)。
【0024】
次に、電解質膜6上にSDCを塗布して、SDC膜7を形成する。SDCは、サマリアをドープしたセリア(Ce1−xSm(2−δ粒子(径は約0.1〜5μm、x=0.3))であり、Ceゾルに分散、混合し、ディップ法等により少なくとも電解質膜6の表面に塗布する(S5)。塗布した状態を図5に示す。SDC膜7を塗布したなら、所定の温度でSDC膜7を焼成する。(S6)。SDC膜7を焼成したなら、次に空気極8をSDC膜7を介して電解質膜6の上にスクリーン印刷法により形成し(S7)、全体を焼成して完成させる(S8)。空気極8を電解質膜6の上に形成した単電池2の全体を図6に示す。
【0025】
空気極8は、例えば0.6μmの(La1−xSr)(Co1−yFe)O(3+δ粒子(x=0.4、y=0.2)と、0.1μmのCe1−xSm(2−δ粒子(x=0.2)から構成してある。尚、(La1−xSr)(Co1−yFe)O(3+δ粒子は、径が0.1〜20μm、0≦x≦0.5、0≦y≦0.5であればよく、またCe1−xSm(2−δ粒子のxの値は0.3でなく、0≦x≦0.5でよい。
【0026】
以上説明したように上記方法によれば、プレス加工で形成した支持体である燃料極4に中間層5を形成し、その上に電解質膜6をスクリーン印刷法等により形成することとしたので、所定の形状、厚みの電解質膜6を簡易、迅速に塗布、形成することができ、また、燃料極4を仮焼することなく、燃料極4の原料を成形した後中間層5を介して直接電解質スラリ24を燃料極4に塗布することから、手間とコストを大幅に削減することができる。また、スクリーン版20を通過させて燃料極スラリ25を塗布することから、中間層5の表面に適度な凹凸が形成され、電解質膜6との密着性、接合性等を良好にすることができる。
【0027】
また、燃料極4や燃料極スラリ25と電解質スラリ24のバインダの性質を適宜選択して組み合わせる、すなわちバインダの性質を水溶性と非水溶性とするなど組み合わせを適宜選択することにより、中間層5の上に電解質スラリ24を塗布した際の両者間に生じる界面状態を調整でき、焼成した後緻密で、不純物の少ない良好な電解質膜6を燃料極4上に形成できる。更に、両者のバインダを水溶性と非水溶性とする等の組み合わせ以外の組み合わせを適宜選択することにより電解質膜6と中間層5との界面を所望の構造にすることができる。
(実験例)
次に、実験例について説明する。
【0028】
燃料極を6:4の割合で構成したNiOとYSZのサーメット、中間層を8:2の割合のNiOとYSZ、電解質をYSZ、空気極を径が0.6μm程度の(La1−xSr)(Co1−yFe)O(3+δ粒子(x=0.4、y=0.2)と、径が0.1μm程度のCe1−xSm(2−δ粒子(x=0.2)とからそれぞれ構成し、燃料極に電解質膜を形成した状態で全体にSDC膜を設け、空気極をSDC膜の上に形成した。
【0029】
また、燃料極と中間層には、PVA(ポリビニルアルコール系)等の水溶性バインダを、また電解質スラリには、PVB(ポリビニルブチラール系)等の有機系バインダを用いた。単電池の形成は、上記実施形態と同様、水溶性バインダを用いた燃料極と中間層とを成形し、それに有機系バインダを用いた電解質をスクリーン印刷法により所定の厚みに塗布して、焼成した。
【0030】
燃料極と電解質膜との界面の電子顕微鏡写真の図を図9に示す。上述したように、燃料極に燃料極スラリを塗布して電解質膜との間に中間層を形成したので、プレスにより成形した燃料極と中間層とは、成分が近似しているため接触状態はよく、また電解質と中間層との間は、中間層がスクリーン印刷法によって塗布されることから、図9に示すように表面に細かい凹凸が形成され、電解質膜との接触面積が増大し、また電解質膜とのなじみが良好となる。したがって、燃料極と電解質との接合状態、導電性等が向上し、単電池の発電性能を高くすることができる。
【0031】
また本発明にかかる中間層を有する単電池と、比較例としての中間層を形成しない単電池について、それぞれ750℃の作動温度で、燃料ガスと酸化剤ガスとを供給して発電を行なわせ、電流密度に対する電圧を計測した。実験結果を図10に示す。図10の実験結果から、中間層を有する本件発明にかかる単電池は、中間層を有さない比較例である単電池に対してより高い電圧を得ることができる。
【0032】
尚、上記例ではスクリーン印刷法によって中間層や、電解質膜を形成することとしたが、本発明では、印刷法はスクリーン印刷に限らず、他の印刷法でもよい。またバインダの性質は、上記例に限らず他の組み合わせでもよい。
【0033】
【発明の効果】
本発明の単電池によれば、プレスにより形成した支持体となる燃料極に、スクリーン印刷法等の印刷方法により燃料極と同等成分のスラリを塗布して中間層を形成し、その中間層の上に電解質膜を形成することとしたので、中間層の表面に適度な凹凸が形成され、中間層を介して燃料極と電解質膜の接触面積が増加でき、かつ密着性を高めることができ、高い発電性能を実現することができる。
【図面の簡単な説明】
【図1】本発明にかかる単電池を示す図である。
【図2】スクリーン印刷法を示す図である。
【図3】中間層を形成した燃料極を示す図である。
【図4】電解質膜を形成した燃料極を示す図である。
【図5】SDC膜を形成した燃料極を示す図である。
【図6】空気極を形成した燃料極を示す図である。
【図7】本発明にかかる製造方法の手順を示す図である。
【図8】固体電解質型燃料電池を示す断面図である。
【図9】単電池の断面を示す図である。
【図10】実験結果を示す図である。
【図11】従来の製造方法の手順を示す図である。
【符号の説明】
1 固体電解質型燃料電池
2 単電池
4 燃料極
5 中間層
6 電解質膜
7 SDC膜
8 空気極
18 塗布装置
20 スクリーン版
22 スキージ
24 電解質スラリ
25 燃料極スラリ
30 合金セパレータ
32 セラミックマニホールド
34 セパレータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a unit cell of a solid oxide fuel cell, and more particularly to a unit cell with improved power generation performance and a solid oxide fuel cell using the unit cell.
[0002]
[Prior art]
A unit cell of a solid oxide fuel cell has an air electrode on one side of the electrolyte and a fuel electrode on the other side. The solid oxide fuel cell has a plurality of such unit cells stacked, An oxidant gas is supplied to the fuel electrode and a fuel gas is supplied to the fuel electrode to generate an electromotive force.
[0003]
Next, a method for manufacturing a supporting membrane type unit cell using the dip method will be described with reference to the flowchart shown in FIG.
[0004]
First, the raw material of the powdered fuel electrode is pressed into a predetermined shape by pressing (T1), and the molded fuel electrode (green) is calcined by an electric furnace or the like for about 100 hours to form a porous body (T2). Next, the calcined fuel electrode is immersed in an electrolyte slurry in which the electrolyte material is made into a slurry (T3), and the electrolyte material is attached thinly to the entire surface of the fuel electrode. When the electrolyte slurry is adhered, the electrolyte slurry is appropriately dried (T4), the fuel electrode is again immersed in the electrolyte slurry, the electrolyte raw material is adhered to the surface, and dried again. Such attachment / drying operation of the electrolyte material is repeated until the electrolyte material reaches a predetermined thickness (about 7 times). When the electrolyte film is formed on the surface of the fuel electrode to a predetermined thickness, it is placed in a furnace and fired (T5). To do.
[0005]
Next, the electrolyte membrane is polished, and unnecessary electrolyte membrane around the fuel electrode is removed and finished in a predetermined shape (T6). Then, an air electrode is provided on the electrolyte membrane (T7) and fired again (T8).
[0006]
In this way, conventionally, an electrolyte membrane with high electrical resistance is made a thin film of 10 to several tens of μm, lowering the electrical resistance, enabling operation at a low temperature (about 750 ° C.), and improving cost, thermomechanical reliability, etc. A unit cell of a solid oxide fuel cell was manufactured.
[0007]
[Problems to be solved by the invention]
However, in recent years, solid oxide fuel cells need to be reduced in size and output, and higher power generation performance is required for single cells. For example, it is required to improve the power generation performance by further reducing the electrical resistance between the electrolyte membrane and the air electrode or between the electrolyte membrane and the fuel electrode.
[0008]
In addition, when the electrolyte is applied by screen printing or the like without calcining the fuel electrode, the surface of the fuel electrode is smooth because it is formed by pressing the raw material with a press, and the contact between the fuel electrode and the electrolyte membrane The state was not sufficient, electrical resistance was generated between them, and gaps or separations were sometimes generated between the fuel electrode and the electrolyte membrane, so that the power generation performance of the unit cell could not be improved. If it is attempted to form irregularities on the surface of the fuel electrode by press working, fine irregularities must be provided on the mold, which is difficult and costly for processing.
[0009]
[Means for Solving the Problems]
In the present invention, in order to solve the above problems, a support membrane type unit cell of a solid oxide fuel cell is configured as follows.
[0010]
That is, in a single cell in which a fuel electrode is used as a substrate, an electrolyte membrane is formed on the fuel electrode, and an air electrode is formed on the electrolyte membrane, an intermediate layer is provided between the fuel electrode and the electrolyte membrane. The intermediate layer is a component equivalent to or higher in electrical conductivity than the component of the fuel electrode. For example, the fuel electrode is Ni-YSZ cermet (Ni fraction 40 to 70%), and the intermediate layer is Ni-YSZ cermet (Ni And the Ni fraction of the intermediate layer is made larger than that of the fuel electrode and formed on the surface of the fuel electrode. Then, the electrical conductivity between the fuel electrode and the electrolyte membrane is increased, and a unit cell with good power generation performance is configured.
[0011]
Further, the intermediate layer is preferably formed with unevenness on the surface, and for example, application by a screen printing method is preferable. By forming irregularities on the surface, the contact area with the electrolyte membrane is increased and the adhesion is increased, so that the contact resistance with the fuel electrode is further reduced. Specifically, a slurry-like fuel electrode component is applied to the fuel electrode (green) at the stage where the raw material is formed by pressing or the like by a screen printing method to form an intermediate layer, and an electrolyte is formed on the upper surface thereof. did. The electrolyte is preferably formed by a screen printing method in the same manner as the intermediate layer.
[0012]
By forming an intermediate layer equivalent to the fuel electrode component between the fuel electrode and the electrolyte in this way, the intermediate layer and the fuel electrode formed by pressing are almost the same components, so the contact state between the two In addition, since the unevenness is formed on the surface of the intermediate layer between the electrolyte and the intermediate layer, the physical bonding state is good and good familiarity is obtained. Therefore, the bondability at the interface between the fuel electrode and the electrolyte is improved, the electric resistance is lowered, peeling can be prevented, and high power generation performance can be obtained.
[0013]
Further, when the intermediate layer is applied in layers, the components of the intermediate layer may be gradually changed and applied repeatedly. For example, a component substantially equal to the component of the fuel electrode is applied to the surface of the fuel electrode, and then a component having a higher conductivity than the component of the fuel electrode, such as a component having a higher blending ratio such as nickel oxide, is applied to the intermediate layer. Form. In this way, the components gradually change, and the intermediate layer having good conductivity with the fuel electrode and high conductivity can be formed. Further, the composition of the upper layer of the intermediate layer may be selected so that the adhesion between the intermediate layer and the electrolyte membrane is improved.
[0014]
In addition, the air electrode is composed of a predetermined component, and a Ce 1-X A X O ( 2- δ) film such as SDC (ceria doped with samaria) between the electrolyte film and the air electrode (A is Ca, Y, Sm, Gd, La, Mg, Sc, Nd, Yb, Pr, Pb, Sr, Eu, Dy, Ba, Be, or a combination of two or more, 0 ≦ x ≦ 0 .50) to form a single cell.
[0015]
In the formation of the SDC layer (membrane), for example, when an electrolyte membrane is formed on the fuel electrode, a slurry of SDC is applied to the whole, and then an air electrode is formed on the electrolyte membrane. The SDC layer or the like may be formed at least between the electrolyte membrane and the air electrode, but an SDC layer or the like is also formed on the surface of the fuel electrode opposite to the surface on which the electrolyte membrane is formed, that is, on the surface side of the fuel electrode. May be. Thereby, high electrode activity is obtained and a unit cell with high power generation performance can be obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the cell according to the present invention will be described.
[0017]
FIG. 1 shows a single cell 2. In the unit cell 2, an intermediate layer 5 is formed on the surface of a fuel electrode 4 configured as a support, and an electrolyte membrane 6 is formed on the intermediate layer 5. Further, an air electrode 8 is formed on the surface of the electrolyte membrane 6 with an SDC film 7 interposed. As shown in FIG. 8, the unit cell 2 is sandwiched between separators 34 each made of an alloy separator 30 and a ceramic manifold 32, and the separator 34 and the unit cell 2 are appropriately stacked to constitute the solid oxide fuel cell 1. The solid oxide fuel cell 1 has an electromotive force generated by supplying a fuel gas (for example, hydrogen) to the fuel electrode 4 and an oxidant gas (for example, air) to the air electrode 8 at a predetermined condition, for example, an operating temperature of 750 ° C. Is generated.
[0018]
Next, the manufacturing method of the cell 2 will be described with reference to the flowchart of FIG. First, a powdery raw material is formed into a predetermined shape to form a fuel electrode 4 as a support (S1). The raw material of the fuel electrode 4 is, for example, cermet of nickel and yttria stabilized zirconia (YSZ). The raw material is kneaded with a water-soluble binder, for example, polyvinyl alcohol, and is pressed and molded by a press device (not shown) or the like. . The raw material for the fuel electrode 4 contains a predetermined amount of a pore-forming agent such as graphite powder. When the pore-forming agent is burned off by firing, which will be described later, a large number of holes are formed inside the fuel electrode 4.
[0019]
The intermediate layer 5 is applied to the fuel electrode 4 formed by the pressing device with the coating device 18 (see FIG. 2) without being fired. The intermediate layer 5 is a component substantially equivalent to the component of the fuel electrode 4.
[0020]
As shown in FIG. 2, the coating device 18 is a printing machine that performs printing by a so-called screen printing method, and a mold having a shape equal to the intermediate layer 5 is formed on the screen plate 20. When the fuel electrode 4 is disposed at a predetermined position of the coating device 18, the squeegee 22 moves along the screen plate 20, and the intermediate layer slurry 25 is applied to the upper surface of the fuel electrode 4 through the mold (S2). If the intermediate layer slurry 25 is applied in a predetermined shape, the surface of the intermediate layer 5 is appropriately dried. The fuel electrode 4 to which the intermediate layer 5 is applied is shown in FIG. When the intermediate layer 5 is formed, the electrolyte membrane 6 is formed.
[0021]
The electrolyte membrane 6 is formed by applying an electrolyte slurry 24 to the surface (S3). The electrolyte slurry 24 is obtained by kneading a raw material of an electrolyte (electrolyte film 6) made of YSZ and a water-insoluble binder, for example, polyvinyl butyral, and has a predetermined viscosity. In addition to the above, the binder includes methyl cellulose, polyethylene, sodium polyacrylate, gum arabic, and the like.
[0022]
Similarly to the above, the screen plate 20 of the coating device 18 is formed with a mold having the same shape as the electrolyte membrane 6. When the fuel electrode 4 coated with the intermediate layer 5 is disposed at a predetermined position of the coating device 18, the squeegee 22 is moved along the screen plate 20, and the electrolyte slurry 24 is coated on the upper surface of the fuel electrode 4 through the mold (S3). ) When the electrolyte slurry 24 is applied in a predetermined shape, the surface of the electrolyte is appropriately dried. The drying operation is not required to completely dry the electrolyte slurry 24, and may be performed to the extent that the electrolyte slurry 24 can be applied over the applied electrolyte slurry 24. FIG. 4 shows the fuel electrode 4 on which the electrolyte membrane 6 is formed.
[0023]
When the electrolyte slurry 24 has been appropriately dried, the electrolyte slurry 24 is applied again and dried in the same manner as described above. The application of the electrolyte slurry 24 is repeated until the electrolyte slurry 24 reaches a predetermined thickness. If the electrolyte slurry 24 is laminated to a predetermined thickness, it is co-sintered with the fuel electrode 4 (the electrolyte membrane 6 and the fuel electrode 4 are fired together) (S4).
[0024]
Next, SDC is applied on the electrolyte film 6 to form the SDC film 7. SDC is ceria (Ce 1-x Sm x O (2- δ ) particles (diameter is about 0.1 to 5 μm, x = 0.3)) doped with samaria, dispersed and mixed in Ce sol, It is applied to at least the surface of the electrolyte membrane 6 by dipping or the like (S5). The applied state is shown in FIG. If the SDC film 7 is applied, the SDC film 7 is baked at a predetermined temperature. (S6). If the SDC film 7 is baked, the air electrode 8 is then formed on the electrolyte film 6 via the SDC film 7 by screen printing (S7), and the whole is baked and completed (S8). FIG. 6 shows the entire unit cell 2 in which the air electrode 8 is formed on the electrolyte membrane 6.
[0025]
The air electrode 8 includes, for example, 0.6 μm (La 1-x Sr x ) (Co 1-y Fe y ) O (3 + δ ) particles (x = 0.4, y = 0.2) and 0.1 μm. Ce 1-x Sm x O (2- δ ) particles (x = 0.2). The (La 1-x Sr x ) (Co 1-y Fe y ) O (3 + δ ) particles have a diameter of 0.1 to 20 μm, 0 ≦ x ≦ 0.5, and 0 ≦ y ≦ 0.5. The x value of the Ce 1-x Sm x O (2- δ ) particles may not be 0.3 but 0 ≦ x ≦ 0.5.
[0026]
As described above, according to the above method, the intermediate layer 5 is formed on the fuel electrode 4 that is a support formed by pressing, and the electrolyte membrane 6 is formed thereon by a screen printing method or the like. The electrolyte membrane 6 having a predetermined shape and thickness can be applied and formed easily and quickly, and the raw material of the fuel electrode 4 can be directly formed via the intermediate layer 5 after the fuel electrode 4 is formed without calcining the fuel electrode 4. Since the electrolyte slurry 24 is applied to the fuel electrode 4, labor and cost can be significantly reduced. Further, since the fuel electrode slurry 25 is applied by passing through the screen plate 20, moderate unevenness is formed on the surface of the intermediate layer 5, and adhesion with the electrolyte membrane 6, bonding properties, etc. can be improved. .
[0027]
Further, by appropriately selecting and combining the binder properties of the fuel electrode 4, the fuel electrode slurry 25, and the electrolyte slurry 24, that is, by appropriately selecting a combination such as making the binder properties water-soluble and water-insoluble, the intermediate layer 5 is selected. The interface state generated between the two when the electrolyte slurry 24 is applied onto the electrode can be adjusted, and a good electrolyte film 6 that is dense and has few impurities after firing can be formed on the fuel electrode 4. Furthermore, the interface between the electrolyte membrane 6 and the intermediate layer 5 can have a desired structure by appropriately selecting a combination other than the combination of making both binders water-soluble and water-insoluble.
(Experimental example)
Next, experimental examples will be described.
[0028]
The cermet of NiO and YSZ having a fuel electrode ratio of 6: 4, the intermediate layer of NiO and YSZ ratio of 8: 2, the electrolyte is YSZ, and the air electrode has a diameter of about 0.6 μm (La 1-x Sr x ) (Co 1-y Fe y ) O (3 + δ ) particles (x = 0.4, y = 0.2) and Ce 1-x Sm x O (2- δ ) having a diameter of about 0.1 μm. Each was composed of particles (x = 0.2), and an SDC film was provided on the whole with an electrolyte membrane formed on the fuel electrode, and an air electrode was formed on the SDC membrane.
[0029]
A water-soluble binder such as PVA (polyvinyl alcohol) was used for the fuel electrode and the intermediate layer, and an organic binder such as PVB (polyvinyl butyral) was used for the electrolyte slurry. As in the above embodiment, the unit cell is formed by forming a fuel electrode and an intermediate layer using a water-soluble binder, applying an electrolyte using an organic binder to a predetermined thickness by screen printing, and firing. did.
[0030]
An electron micrograph of the interface between the fuel electrode and the electrolyte membrane is shown in FIG. As described above, since the fuel electrode slurry is applied to the fuel electrode and the intermediate layer is formed between the electrolyte membrane and the fuel electrode and the intermediate layer formed by pressing, the contact state is In addition, since the intermediate layer is applied by screen printing between the electrolyte and the intermediate layer, fine irregularities are formed on the surface as shown in FIG. 9, and the contact area with the electrolyte membrane is increased. Familiarity with the electrolyte membrane is improved. Therefore, the joining state between the fuel electrode and the electrolyte, conductivity, and the like are improved, and the power generation performance of the unit cell can be increased.
[0031]
Further, each of the unit cell having the intermediate layer according to the present invention and the unit cell not forming the intermediate layer as a comparative example is supplied with fuel gas and oxidant gas at an operating temperature of 750 ° C. The voltage against the current density was measured. The experimental results are shown in FIG. From the experimental result of FIG. 10, the unit cell according to the present invention having the intermediate layer can obtain a higher voltage than the unit cell which is a comparative example having no intermediate layer.
[0032]
In the above example, the intermediate layer and the electrolyte membrane are formed by the screen printing method. However, in the present invention, the printing method is not limited to the screen printing, and other printing methods may be used. The properties of the binder are not limited to the above example, and other combinations may be used.
[0033]
【The invention's effect】
According to the unit cell of the present invention, an intermediate layer is formed on a fuel electrode to be a support formed by pressing by applying a slurry having the same component as the fuel electrode by a printing method such as a screen printing method. Since it was decided to form the electrolyte membrane on top, moderate irregularities were formed on the surface of the intermediate layer, the contact area between the fuel electrode and the electrolyte membrane could be increased through the intermediate layer, and the adhesion could be improved, High power generation performance can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a single cell according to the present invention.
FIG. 2 is a diagram illustrating a screen printing method.
FIG. 3 is a view showing a fuel electrode in which an intermediate layer is formed.
FIG. 4 is a view showing a fuel electrode on which an electrolyte membrane is formed.
FIG. 5 is a view showing a fuel electrode on which an SDC film is formed.
FIG. 6 is a view showing a fuel electrode in which an air electrode is formed.
FIG. 7 is a diagram showing a procedure of a manufacturing method according to the present invention.
FIG. 8 is a cross-sectional view showing a solid oxide fuel cell.
FIG. 9 is a view showing a cross section of a unit cell.
FIG. 10 is a diagram showing experimental results.
FIG. 11 is a diagram showing a procedure of a conventional manufacturing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solid electrolyte type fuel cell 2 Single cell 4 Fuel electrode 5 Intermediate layer 6 Electrolyte membrane 7 SDC film 8 Air electrode 18 Coating device 20 Screen plate 22 Squeegee 24 Electrolyte slurry 25 Fuel electrode slurry 30 Alloy separator 32 Ceramic manifold 34 Separator

Claims (7)

燃料極を基板とし、該燃料極の上に電解質膜を形成し、該電解質膜の上に空気極を形成し、前記空気極に酸化剤ガス、前記燃料極に燃料ガスを供給し、両者間で起電力を発生させて電力を得る固体電解質型燃料電池の単電池において、
前記燃料極と前記電解質膜との間に中間層を形成し、
前記燃料極はNi−YSZサーメット(Ni分率40〜70%)、前記中間層はNi−YSZサーメット(Ni分率70〜80%)とした
ことを特徴とする固体電解質型燃料電池の単電池。
A fuel electrode is used as a substrate, an electrolyte membrane is formed on the fuel electrode, an air electrode is formed on the electrolyte membrane, an oxidant gas is supplied to the air electrode, and a fuel gas is supplied to the fuel electrode. In a unit cell of a solid oxide fuel cell that generates electromotive force at
Forming an intermediate layer between the fuel electrode and the electrolyte membrane;
The solid electrolyte fuel characterized in that the fuel electrode is Ni-YSZ cermet (Ni fraction 40-70%) and the intermediate layer is Ni-YSZ cermet (Ni fraction 70-80%). A battery cell.
前記中間層のNi分率を、前記燃料極のNi分率より同等、もしくは大きくしたことを特徴とする請求項1に記載の固体電解質型燃料電池の単電池。2. The unit cell of a solid oxide fuel cell according to claim 1 , wherein the Ni fraction of the intermediate layer is equal to or greater than the Ni fraction of the fuel electrode. 前記中間層は、スクリーン印刷法により前記燃料極に塗布したことを特徴とする請求項1または2に記載の固体電解質型燃料電池の単電池。The unit cell of a solid oxide fuel cell according to claim 1 or 2, wherein the intermediate layer is applied to the fuel electrode by a screen printing method. 少なくとも前記電解質膜上にCe1-XX O(2-δ)の膜(AはCa、Y、Sm、Gd、La、Mg、Sc、Nd、Yb、Pr、Pb、Sr、Eu、Dy、Ba、Beのいずれか1つ又は2つ以上の組合せであり、0≦x≦0.50)を設けたことを特徴とする請求項1〜3のいずれか1項に記載の固体電解質型燃料電池の単電池。At least a film of Ce 1-X A X O ( 2- δ) on the electrolyte film (A is Ca, Y, Sm, Gd, La, Mg, Sc, Nd, Yb, Pr, Pb, Sr, Eu, Dy Solid electrolyte type according to any one of claims 1 to 3, characterized in that any one of,, Ba, or Be, or a combination of two or more thereof, and 0 ≦ x ≦ 0.50) is provided. Fuel cell single cell. 前記電解質膜は、スクリーン印刷法により塗布したことを特徴とした請求項1〜4のいずれか1項に記載の固体電解質型燃料電池の単電池。The unit cell of the solid oxide fuel cell according to any one of claims 1 to 4, wherein the electrolyte membrane is applied by a screen printing method. 請求項1〜5のいずれか1項に記載の固体電解質型燃料電池の単電池を用いて構成したことを特徴とする固体電解質型燃料電池。A solid oxide fuel cell comprising the unit cell of the solid oxide fuel cell according to any one of claims 1 to 5 . 燃料極上にスクリーン印刷法によって中間層を形成する工程と、Forming an intermediate layer on the fuel electrode by screen printing;
前記中間層の上からスクリーン印刷法によって電解質膜を形成する工程と、  Forming an electrolyte membrane by screen printing from above the intermediate layer;
前記電解質膜が形成された燃料極を該電解質膜とともに共焼結する工程と、  Co-sintering the fuel electrode on which the electrolyte membrane is formed together with the electrolyte membrane;
前記共焼結された電解質膜上にSDC膜を塗布する工程と、  Applying an SDC film on the co-sintered electrolyte film;
前記SDC膜を焼成する工程と、  Baking the SDC film;
前記焼成したSDC膜上にスクリーン印刷法によって空気極を形成する工程と、  Forming an air electrode on the fired SDC film by screen printing;
前記空気極を形成した全体を焼成する工程と  Firing the whole of the air electrode;
を備えてなることを特徴とする固体電解質型燃料電池の単電池の製造方法。A method for producing a unit cell of a solid oxide fuel cell, comprising:
JP2000101448A 2000-04-03 2000-04-03 Solid oxide fuel cell cell Expired - Fee Related JP3643006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101448A JP3643006B2 (en) 2000-04-03 2000-04-03 Solid oxide fuel cell cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101448A JP3643006B2 (en) 2000-04-03 2000-04-03 Solid oxide fuel cell cell

Publications (2)

Publication Number Publication Date
JP2001283876A JP2001283876A (en) 2001-10-12
JP3643006B2 true JP3643006B2 (en) 2005-04-27

Family

ID=18615495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101448A Expired - Fee Related JP3643006B2 (en) 2000-04-03 2000-04-03 Solid oxide fuel cell cell

Country Status (1)

Country Link
JP (1) JP3643006B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524791B2 (en) * 2002-08-06 2010-08-18 Toto株式会社 Solid oxide fuel cell
JP2004303713A (en) * 2002-09-13 2004-10-28 Toto Ltd Solid oxide fuel cell
JP4931361B2 (en) * 2005-03-29 2012-05-16 京セラ株式会社 Fuel cell and fuel cell
JP2006344543A (en) * 2005-06-10 2006-12-21 Tokyo Electric Power Co Inc:The Manufacturing method of cell for solid oxide fuel battery
JP5448382B2 (en) * 2008-07-22 2014-03-19 三菱重工業株式会社 Method for producing power generation membrane of solid oxide fuel cell
WO2017014069A1 (en) * 2015-07-17 2017-01-26 住友電気工業株式会社 Electrolyte layer-anode composite member for fuel cell and method for manufacturing said member
KR101875684B1 (en) * 2016-08-29 2018-08-02 영남대학교 산학협력단 Cylinderical Fuel Cell and Manufacturing Method Thereof
CN114420986A (en) * 2022-01-14 2022-04-29 清华大学 Solid oxide monomer electrolytic cell, preparation method thereof and electric pile

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567473A (en) * 1991-09-09 1993-03-19 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
JP2780885B2 (en) * 1991-12-12 1998-07-30 ワイケイケイ株式会社 Solid electrolyte fuel cell
JP3609146B2 (en) * 1995-03-31 2005-01-12 株式会社フジクラ Fuel electrode of solid oxide fuel cell
JPH0982347A (en) * 1995-09-13 1997-03-28 Meidensha Corp Solid electrolyte fuel cell
JPH09129252A (en) * 1995-11-06 1997-05-16 Tokyo Gas Co Ltd Highly durable solid electrlyte fuel cell and manufacture thereof
JPH1173982A (en) * 1997-08-28 1999-03-16 Toto Ltd Solid electrolyte fuel cell and its manufacture
JPH11162483A (en) * 1997-11-25 1999-06-18 Meidensha Corp Solid electrolyte fuel cell
JP4119511B2 (en) * 1998-02-06 2008-07-16 東京瓦斯株式会社 Oxide ion conductive material

Also Published As

Publication number Publication date
JP2001283876A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP5469795B2 (en) Anode-supported solid oxide fuel cell using cermet electrolyte
JP4252453B2 (en) Electrochemical cell and method for producing the same
JP2001351647A (en) Solid electrolyte fuel cell
KR20100050687A (en) Fabrication method of metal supported solid oxide fuel cell
JP2001283877A (en) Unit cell for solid electrolytic fuel battery and its manufacturing method
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP3643006B2 (en) Solid oxide fuel cell cell
JP5294649B2 (en) Cell stack and fuel cell module
KR101146349B1 (en) Fabrication Method of Metal Supported Solid Oxide Fuel Cell
JP5547188B2 (en) Manufacturing method of electrolyte / electrode assembly
JP3342621B2 (en) Solid oxide fuel cell
JP2006059611A (en) Ceria based solid electrolyte fuel cell and its manufacturing method
JP4508592B2 (en) Fuel cell manufacturing method
JP3652195B2 (en) Solid oxide fuel cell
JP2006059610A (en) Solid electrolyte fuel cell and its manufacturing method
JP2009245896A (en) Spacer for manufacturing solid oxide fuel cell, manufacturing method of member for solid oxide fuel cell using this, and manufacturing method of solid oxide fuel cell
JP2011009173A (en) Method of manufacturing electrolyte-electrode assembly
JP3336171B2 (en) Solid oxide fuel cell
JP2009087539A (en) Fuel battery cell and fuel battery cell stack, as well as fuel battery
JP2005166455A (en) Solid oxide fuel battery cell, cell plate, and its manufacturing method
JPH09129245A (en) Cell for solid electrolyte fuel cell
KR101276690B1 (en) Solid oxide fuel cell having the improved electrodes and its preparation
JP2003092113A (en) Fuel electrode membrane for solid electrolyte fuel cell and its manufacturing method
JPH06283179A (en) Manufacture of electrolytic film for solid electrolytic fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3643006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees