JP2001351647A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JP2001351647A
JP2001351647A JP2000174348A JP2000174348A JP2001351647A JP 2001351647 A JP2001351647 A JP 2001351647A JP 2000174348 A JP2000174348 A JP 2000174348A JP 2000174348 A JP2000174348 A JP 2000174348A JP 2001351647 A JP2001351647 A JP 2001351647A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrolyte
fuel cell
membrane
fuel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000174348A
Other languages
Japanese (ja)
Inventor
Isamu Yasuda
勇 安田
Yoshio Matsuzaki
良雄 松崎
Miyuki Uratani
美由紀 浦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2000174348A priority Critical patent/JP2001351647A/en
Publication of JP2001351647A publication Critical patent/JP2001351647A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell that has a supporting membrane of high coordination between electrolyte membrane and fuel pole. SOLUTION: The electrolyte membrane is formed of particles having plural different particle sizes and the coordination at the firing of the electrolyte membrane and the fuel pole is improved. For example, the material of the electrolyte is composed of a rough powder of an average particle size of 1-5 μm and a fine powder of an average particle size of around 0.10-1 μm, and the weight ratio between the rough powder and the fine powder is made 90:1. When the slurry material of this electrolyte is coated on the fuel pole and fired together, their shrinkage or the like is matched and so breakage or separation of the electrolyte membrane and bending of the fuel pole do not occur and a solid electrolyte fuel cell of high performance is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温活性電極を有
する支持膜式固体電解質型燃料電池に関する。
The present invention relates to a solid oxide fuel cell having a low-temperature active electrode.

【0002】[0002]

【従来の技術】最近、例えば空気と水素をそれぞれ、酸
化剤ガスおよび燃料ガスとして、燃料が有している化学
エネルギーを直接電気エネルギーに変換する燃料電池
が、省資源、環境保護の観点から注目されており、特に
固体電解質型燃料電池は発電効率が高く、廃熱を有効に
利用できるなど多くの利点を有するため研究、開発が進
んでいる。
2. Description of the Related Art Recently, fuel cells that directly convert chemical energy of fuel into electric energy by using, for example, air and hydrogen as an oxidant gas and a fuel gas, respectively, have attracted attention from the viewpoint of resource saving and environmental protection. Research and development are progressing in particular because solid oxide fuel cells have many advantages such as high power generation efficiency and effective use of waste heat.

【0003】固体電解質型燃料電池は、電解質の厚みを
厚くした自立膜式と、電極板に強度を持たせ電極板に電
解質膜を成膜した支持膜式とに大きく分類される。自立
膜式の固体電解質型燃料電池は、電解質厚みが100μ
m程度と厚くなり、電解質の内部抵抗を小さくして十分
な発電特性を得るためには、電池の作動温度を900〜
1000℃程度まで上げる必要があり、高温のため構成
材料に制約があり、使用可能な材料の選択が限られ、ま
た、長期にわたっての安定性に問題を及ぼすことが考え
られる。
[0003] Solid oxide fuel cells are broadly classified into a self-supporting membrane type in which the thickness of the electrolyte is increased, and a supporting membrane type in which an electrode plate is provided with strength and an electrolyte membrane is formed on the electrode plate. The self-standing membrane solid oxide fuel cell has an electrolyte thickness of 100 μm.
m, and in order to obtain sufficient power generation characteristics by reducing the internal resistance of the electrolyte, the operating temperature of the battery must be 900 to 900.
It is necessary to raise the temperature up to about 1000 ° C., and the constituent materials are limited due to the high temperature, the selection of usable materials is limited, and there is a possibility that a long-term stability may be affected.

【0004】一方支持膜式の固体電解質型燃料電池は、
例えばNi/YSZサーメットの燃料極を基板とし、こ
の燃料極にイットリアなどをドープしたジルコニア焼結
体(YSZ)からなる厚み20μm程度の電解質膜を成
膜し、この電解質膜の上に空気極を成膜して単電池を構
成し、この単電池の各電極面にそれぞれ燃料ガスと酸化
剤ガスとを接触させることにより起電力を発生するよう
にしており、電解質厚みを薄くできるため、電池の作動
温度を低下させることができる利点を有している。
On the other hand, a solid oxide fuel cell of a support membrane type is
For example, a fuel electrode of Ni / YSZ cermet is used as a substrate, and an electrolyte film having a thickness of about 20 μm made of a zirconia sintered body (YSZ) doped with yttria or the like is formed on the fuel electrode, and an air electrode is formed on the electrolyte film. A single cell is formed by film formation, and an electromotive force is generated by bringing a fuel gas and an oxidizing gas into contact with each electrode surface of the single cell, and the thickness of the electrolyte can be reduced. This has the advantage that the operating temperature can be reduced.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来電解質
膜を燃料極上に塗布し共焼成すると、燃料極と電解質膜
との収縮率の相違により電解質膜にクラックや空孔、剥
離が生じたり、あるいは燃料極に反りが発生し、変形を
起こすことがあった。
However, when a conventional electrolyte membrane is coated on a fuel electrode and co-fired, cracks, vacancies, and peeling occur in the electrolyte membrane due to the difference in shrinkage between the fuel electrode and the electrolyte membrane, or The fuel electrode was sometimes warped and deformed.

【0006】本発明は上述の点に鑑みてなされたもの
で、燃料極と電解質膜との間にある収縮率の相違を解消
し、電解質膜の剥離や燃料極の変形等を生じさせない支
持膜式の固体電解質型燃料電池を提供することを目的と
する。
The present invention has been made in view of the above points, and eliminates the difference in shrinkage between the fuel electrode and the electrolyte membrane, and does not cause separation of the electrolyte membrane or deformation of the fuel electrode. It is an object of the present invention to provide a solid oxide fuel cell of the formula.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明者らは、燃料極を基板とし、燃料極の上に成膜さ
れた電解質膜と、電解質膜の上に成膜された空気極とか
らなる単電池を有する支持膜式の固体電解質型燃料電池
において、電解質膜を形成する原料に着目し、これを適
宜選択することにより収縮率の差を解消することとし
た。すなわち、電解質膜を形成する原料を、複数の異な
る粒径の粉末粒子から形成することとした。たとえば、
細粒としての平均粒径が0.5μmの粒子を約10%、
粗粒としての平均粒径が2μmの粒子を約90%の配合
比率で構成することとした。
Means for Solving the Problems In order to achieve the above object, the present inventors use an anode as a substrate, and provide an electrolyte film formed on the anode and an air film formed on the electrolyte film. In a solid oxide fuel cell of a support membrane type having a unit cell composed of electrodes, attention has been paid to raw materials for forming an electrolyte membrane, and the difference in shrinkage has been eliminated by appropriately selecting the raw materials. That is, the raw material for forming the electrolyte membrane is formed from a plurality of powder particles having different particle diameters. For example,
About 10% of particles having an average particle size of 0.5 μm as fine particles,
Particles having an average particle size of 2 μm as coarse particles are constituted at a blending ratio of about 90%.

【0008】このように電解質膜の原料の粒径を適宜選
択し、焼成時における燃料極の収縮性等と電解質膜の収
縮性等とを整合させることにより、電解質膜と燃料極と
を共焼成した際、電解質膜の亀裂や剥離、燃料極の反り
等を生じさせることを防止できる。
As described above, by appropriately selecting the particle size of the raw material of the electrolyte membrane and matching the contraction property of the fuel electrode during firing with the contraction property of the electrolyte membrane, the electrolyte membrane and the fuel electrode are co-fired. In this case, it is possible to prevent the electrolyte membrane from being cracked or peeled off, or the fuel electrode from being warped.

【0009】また、電解質膜と空気極との間にSDC
(サマリアをドープしたセリア)膜を備え、かつ空気極
が、平均粒径が0.1〜20μmである(A1-xx
(C1-yy)O(3+δ)の組成を有する粒子と、この粒子
の周囲を取り囲む状態の平均粒径が0.1〜5μmであ
るCe1-XX O(2-δ)の組成を有する粒子とからな
り、Ce1-XX O(2-δ)を0.5〜60wt%の範囲
で含せて構成した。
Further, an SDC is provided between the electrolyte membrane and the air electrode.
(Samalia doped ceria) film and the air electrode has an average particle size of 0.1 to 20 μm (A 1−x B x )
(C 1-y D y) O (3+ δ) and particles having a composition of, Ce 1-X E X O is the average particle size in the state surrounding the periphery of the particles 0.1 to 5 [mu] m (2- consists of a particle having a composition of [delta]), was constructed containing allowed Ce 1-X E X O a (2-[delta]) in the range of 0.5~60wt%.

【0010】ここで、AはLa、Y、Sm、Gd、P
r、Caのいずれか1つ又は2つ以上の組合せ、BはS
r、Ba、Caのいずれか1つ又は2つ以上の組合せ、
CはMn、Co、Ceのいずれか1つ又は2つ以上の組
合せ、DはCr、Ni、Mg、Zr、Ce、Fe、Al
のいずれか1つ又は2つ以上の組合せ、EはCa、Y、
Sm、Gd、La、Mg、Sc、Nd、Yb、Pr、P
b、Sr、Eu、Dy、Ba、Beのいずれか1つ又は
2つ以上の組合せであり、0≦x≦0.50、0≦y≦
0.50 であることとした。
Here, A is La, Y, Sm, Gd, P
r is one or a combination of two or more of Ca, B is S
r, Ba, one or a combination of two or more of Ca,
C is any one or a combination of two or more of Mn, Co, and Ce; D is Cr, Ni, Mg, Zr, Ce, Fe, Al
Any one or a combination of two or more, E is Ca, Y,
Sm, Gd, La, Mg, Sc, Nd, Yb, Pr, P
any one of b, Sr, Eu, Dy, Ba, Be or a combination of two or more thereof, 0 ≦ x ≦ 0.50, 0 ≦ y ≦
0.50.

【0011】また、AをLaとし、BをSrとし、Cを
Moとし、DをFeとし、EをSmで構成した。
A is La, B is Sr, C is Mo, D is Fe, and E is Sm.

【0012】このように、電解質膜の原料の粒径を所定
の割合として、電解質膜と燃料極との焼結時の収縮性等
とを整合させることにより、亀裂や剥離また反り等を防
止でき、かつSDC膜を電解質膜と空気極との間に形成
することにより発電性能の高い固体電解質型燃料電池の
単電池を得ることができる。
As described above, by setting the particle size of the raw material of the electrolyte membrane to a predetermined ratio and matching the shrinkage during sintering between the electrolyte membrane and the fuel electrode, it is possible to prevent cracks, peeling and warping. By forming the SDC membrane between the electrolyte membrane and the air electrode, a single cell of a solid oxide fuel cell having high power generation performance can be obtained.

【0013】[0013]

【発明の実施の形態】本発明にかかる支持膜式の固体電
解質型燃料電池の単電池を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A unit cell of a solid oxide fuel cell of a support membrane type according to the present invention will be described.

【0014】図1に単電池2を示す。単電池2は、支持
体としての燃料極4の表面に電解質膜6が厚み20μm
程度に形成してあり、さらに電解質膜6の表面にSDC
膜7を介在させて空気極8が形成してある。この単電池
2を図10に示すように合金セパレータ30とセラミッ
クマニホールド32からなるセパレータ34で挟持し、
セパレータ34と単電池2とを適宜積層して固体電解質
型燃料電池1が構成してある。固体電解質型燃料電池1
は、所定の条件において燃料極4に燃料ガスが、また空
気極8に酸化剤ガスが供給されることにより起電力を発
生する。
FIG. 1 shows a cell 2. The cell 2 has a thickness of 20 μm in the electrolyte membrane 6 on the surface of the fuel electrode 4 as a support.
SDC is formed on the surface of the electrolyte membrane 6.
The air electrode 8 is formed with the film 7 interposed. As shown in FIG. 10, the cell 2 is sandwiched between a separator 34 composed of an alloy separator 30 and a ceramic manifold 32,
The solid oxide fuel cell 1 is constituted by appropriately laminating the separator 34 and the unit cell 2. Solid oxide fuel cell 1
Generates an electromotive force by supplying a fuel gas to the fuel electrode 4 and an oxidizing gas to the air electrode 8 under predetermined conditions.

【0015】次に、単電池2の製造方法について図7を
用いて説明する。
Next, a method of manufacturing the cell 2 will be described with reference to FIG.

【0016】まず、粉末状の原料をプレス加工により所
定の形状に成形し、支持体としての燃料極4を形成する
(S1)。燃料極4の原料は、例えばニッケルとイット
リア安定化ジルコニア(YSZ)のサーメットであり、
原料を水溶性のバインダ、例えばポリビニルアルコール
と混練し、プレス装置(図示せず)等により押し固め、
成形する。所定の形状に成形した燃料極4を図3に示
す。燃料極4の原料には、グラファイト粉末等の造孔剤
が所定量含有してあり、後述する焼成により造孔剤が焼
失されると燃料極4の内部に多数の孔が形成される。
First, a powdery raw material is formed into a predetermined shape by press working to form a fuel electrode 4 as a support (S1). The raw material of the fuel electrode 4 is, for example, a cermet of nickel and yttria-stabilized zirconia (YSZ),
The raw materials are kneaded with a water-soluble binder, for example, polyvinyl alcohol, and compacted with a press device (not shown) or the like,
Molding. FIG. 3 shows the fuel electrode 4 formed into a predetermined shape. The raw material of the fuel electrode 4 contains a predetermined amount of a pore-forming agent such as graphite powder, and when the pore-forming agent is burned out by firing described later, a large number of holes are formed inside the fuel electrode 4.

【0017】プレス装置により成形された未焼成の燃料
極4は、そのままの状態で塗布装置18(図2参照)に
配置され、電解質スラリ24が表面に塗布される(S
2)。電解質スラリ24は、イットリアなどをドープし
たジルコニア焼結体(YSZ)からなる電解質(電解質
膜6)の原料と非水溶性のバインダ、例えばポリビニル
ブチラールとを混練したものであり、所定の粘度に設定
してある。電解質膜6の原料は、粗粉と細粉とからな
り、粗粉と細粉との重量比を90:10にしてある。
尚、粗粉と細粉との重量比は90:10に限らず、適宜
調整し、変更し得るものである。粗粉とは、平均粒径が
1〜5μmの粉体をいい、細粉とは、平均粒径が0.1
〜1μm程度の粉体をいう。またバインダとしては、上
記以外に、メチルセルロース、ポリエチレン、ポリアク
リル酸ソーダ、アラビアゴムなどがある。
The unfired fuel electrode 4 formed by the pressing device is placed as it is in the coating device 18 (see FIG. 2), and the electrolyte slurry 24 is coated on the surface (S).
2). The electrolyte slurry 24 is obtained by kneading a raw material of an electrolyte (electrolyte membrane 6) composed of a zirconia sintered body (YSZ) doped with yttria and a water-insoluble binder, for example, polyvinyl butyral, and has a predetermined viscosity. I have. The raw material of the electrolyte membrane 6 is composed of coarse powder and fine powder, and the weight ratio of coarse powder to fine powder is set to 90:10.
The weight ratio between the coarse powder and the fine powder is not limited to 90:10, but may be appropriately adjusted and changed. Coarse powder refers to powder having an average particle diameter of 1 to 5 μm, and fine powder refers to powder having an average particle diameter of 0.1 μm.
粉体 1 μm. As the binder, other than the above, there are methylcellulose, polyethylene, sodium polyacrylate, gum arabic and the like.

【0018】図2に示すように塗布装置18は、いわゆ
るスクリーン印刷法で印刷を行なう印刷機であり、スク
リーン版20には電解質膜6に等しい形状の型が形成さ
れている。燃料極4を、塗布装置18の所定の位置に配
置したなら、スクリーン版20に沿ってスキージ22を
移動させることにより、型を通して電解質スラリ24が
燃料極4の上面に塗布(S2)される。電解質スラリ2
4が所定の形状に塗布されたなら、電解質の表面を適宜
乾燥させる。乾燥作業は、電解質スラリ24を完全に乾
燥させる必要はなく、塗布した電解質スラリ24上に重
ねて電解質スラリ24が塗布できる程度であればよい。
電解質膜6が表面に形成された燃料極4を図4に示す。
As shown in FIG. 2, the coating device 18 is a printing machine for performing printing by a so-called screen printing method, and a screen plate 20 is formed with a mold having the same shape as the electrolyte membrane 6. When the fuel electrode 4 is disposed at a predetermined position of the coating device 18, the squeegee 22 is moved along the screen plate 20, so that the electrolyte slurry 24 is coated on the upper surface of the fuel electrode 4 through the mold (S2). Electrolyte slurry 2
When 4 is applied in a predetermined shape, the surface of the electrolyte is appropriately dried. It is not necessary to completely dry the electrolyte slurry 24, and the drying operation may be performed as long as the electrolyte slurry 24 can be applied over the applied electrolyte slurry 24.
FIG. 4 shows the fuel electrode 4 on which the electrolyte membrane 6 is formed.

【0019】電解質スラリ24を適度に乾燥させたな
ら、上記と同様にして重ねて電解質スラリ24を塗布
し、乾燥させる。そして電解質スラリ24が所定の厚さ
になるまで電解質スラリ24の塗布を繰り返す。電解質
スラリ24が所定の厚みに積層されたなら、燃料極4と
ともに共焼結(電解質膜6と燃料極4とを一緒に焼成す
ること)する(S3)。
After the electrolyte slurry 24 has been dried appropriately, the electrolyte slurry 24 is applied and dried in the same manner as described above. Then, the application of the electrolyte slurry 24 is repeated until the electrolyte slurry 24 has a predetermined thickness. When the electrolyte slurry 24 is laminated to a predetermined thickness, it is co-sintered with the fuel electrode 4 (the electrolyte film 6 and the fuel electrode 4 are fired together) (S3).

【0020】そして、電解質膜6にSDCスラリを塗布
して、SDC膜7を形成する(S4)。SDCは、サマ
リアをドープしたセリア(Ce1−x Sm(2−
δ)であり、粒径が0.1〜5μm、x=0.3で、
Ceゾルに分散、混合させたスラリをディップ法等によ
り少なくとも電解質膜6の表面全体に塗布する。塗布し
た状態を図5に示す。塗布したSDC膜7を焼成し(S
5)、空気極8をSDC膜7を介して電解質膜6の上に
形成する(S6)。
Then, an SDC slurry is applied to the electrolyte membrane 6 to form an SDC membrane 7 (S4). SDC is doped ceria Samaritan (Ce 1-x Sm x O (2-
δ ) ), the particle size is 0.1 to 5 μm, x = 0.3,
The slurry dispersed and mixed in the Ce sol is applied to at least the entire surface of the electrolyte membrane 6 by a dipping method or the like. FIG. 5 shows the state after the application. The applied SDC film 7 is baked (S
5) The air electrode 8 is formed on the electrolyte membrane 6 via the SDC membrane 7 (S6).

【0021】空気極8は、La0.6Sr0.4Co0.8Fe
0.23−Ce0.8 Sm0.21.9(LSCF−SDC)か
らなり、この成分のスラリ(空気極スラリ)をスクリー
ン印刷法により電解質膜6の上に所定の厚さに塗布し、
全体を焼成して完成させる(S7)。空気極8を電解質
膜6の上に形成した単電池2の全体を図6に示す。
The air electrode 8 is made of La 0.6 Sr 0.4 Co 0.8 Fe
0.2 O 3 -Ce 0.8 Sm 0.2 O 1.9 (LSCF-SDC), and a slurry of this component (air electrode slurry) is applied on the electrolyte membrane 6 to a predetermined thickness by a screen printing method.
The whole is fired and completed (S7). FIG. 6 shows the entire unit cell 2 in which the air electrode 8 is formed on the electrolyte membrane 6.

【0022】このように、電解質膜6を複数の異なる粒
径の原料を用い、電解質膜6の焼結性と燃料極4の焼結
性とを整合させることができるため、燃料極4と電解質
膜6とを共焼結した場合、両者間に膨張率や収縮率の相
違が発生せず、電解質膜6の亀裂や燃料極4からの剥
離、更に燃料極4の反りなどを生じさせることがない。
更に電解質膜6は、表面に粗粉が現われることによって
適度な凹凸が形成され、しかも粗粉の隙間に細粉が入り
込むので緻密でかつ適度な空間を備えた膜に形成され
る。
As described above, since the sintering property of the electrolyte membrane 6 and the sintering property of the fuel electrode 4 can be matched by using a plurality of raw materials having different particle diameters for the electrolyte membrane 6, When the membrane 6 is co-sintered, there is no difference in the expansion coefficient and the contraction rate between the two, and cracking of the electrolyte membrane 6, separation from the fuel electrode 4, and warpage of the fuel electrode 4 may occur. Absent.
Further, the electrolyte membrane 6 is formed into a membrane having a fine and appropriate space since coarse powder appears on the surface to form appropriate irregularities and fine powder enters gaps between the coarse powder.

【0023】また、スクリーン印刷により電解質膜6、
および空気極8を形成することにより、スクリーン版2
0を通過させて電解質スラリ24等を塗布することから
も、適度な凹凸が形成され、燃料極4と電解質膜6、お
よび電解質膜6と空気極8との間の密着性を高めること
ができる。さらに、支持体である燃料極4に所定の形
状、厚みの電解質膜6や空気極8を簡易、迅速に塗布、
形成することができ、また、燃料極4を仮焼することな
く、燃料極4の原料を成形した後直接電解質スラリ24
を燃料極4に塗布できることから、手間とコストを大幅
に削減することができる。
Also, the electrolyte membrane 6,
And the air electrode 8 to form the screen plate 2
Also, since the electrolyte slurry 24 and the like are applied by passing through zero, appropriate irregularities are formed, and the adhesion between the fuel electrode 4 and the electrolyte membrane 6 and between the electrolyte membrane 6 and the air electrode 8 can be improved. . Further, an electrolyte membrane 6 and an air electrode 8 having a predetermined shape and thickness are easily and quickly applied to the fuel electrode 4 as a support.
The electrolyte slurry 24 can be formed directly after forming the raw material of the anode 4 without calcining the anode 4.
Can be applied to the fuel electrode 4, so that labor and cost can be significantly reduced.

【0024】また、燃料極4と電解質スラリ24それぞ
れのバインダの性質、すなわちバインダが水溶性か非水
溶性かの組み合わせを適宜選択することにより、燃料極
4に電解質スラリ24を塗布した際に両者間に生じる界
面状態を調整でき、焼成した後緻密で、不純物の少ない
良好な電解質膜6を形成できる。更に、両者のバインダ
を水溶性か非水溶性か等の組み合わせ以外の組みあわせ
で適宜選択することにより電解質膜6と燃料極4(SD
C膜7)の界面を所望の構造にすることができる。
By appropriately selecting the properties of the binder of the anode 4 and the electrolyte slurry 24, that is, a combination of the binder being water-soluble and the one being non-water-soluble, the two can be used when the electrolyte slurry 24 is applied to the anode 4. It is possible to adjust the interfacial state occurring therebetween, and to form a good electrolyte film 6 which is dense and has few impurities after firing. Further, by appropriately selecting a binder other than a combination such as water-soluble or water-insoluble, the electrolyte membrane 6 and the fuel electrode 4 (SD
The interface of the C film 7) can have a desired structure.

【0025】尚、SDC膜7は、電解質膜6の全体表面
でなく、図8および図9に示すように、燃料極4と電解
質膜6の表面全体、つまり燃料極4の表面にも塗布して
もよい。上記例ではスクリーン印刷法によって電解質ス
ラリ24を塗布して電解質膜6を形成することとした
が、本発明では、スクリーン印刷に限らず、他の印刷法
でもよく、更にディップ法により電解質膜を形成しても
よい。
The SDC film 7 is applied not only on the entire surface of the electrolyte membrane 6 but also on the entire surface of the fuel electrode 4 and the electrolyte membrane 6, ie, the surface of the fuel electrode 4, as shown in FIGS. You may. In the above example, the electrolyte slurry 24 is applied by the screen printing method to form the electrolyte membrane 6. However, the present invention is not limited to the screen printing, and other printing methods may be used. Further, the electrolyte membrane may be formed by the dipping method. May be.

【0026】またバインダの性質は、上記例に限らず他
の種類の組み合わせでもよい。
The nature of the binder is not limited to the above example, but may be other types of combinations.

【0027】また、空気極8を、La0.6Sr0.4Co
0.8Fe0.23−Ce0.8 Sm0.21. 9(LSCF−S
DC)で形成し、また電解質膜6と空気極8との間のS
DC膜7を設けたことにより、空気極8の電極活性、界
面での導電性が向上し、低温作動においても高い発電性
能を実現することができる。高い導電性は、空気極8に
接するSDC膜7の電気的抵抗が電解質膜6より小さい
ため実現される。
The air electrode 8 is made of La 0.6 Sr 0.4 Co
0.8 Fe 0.2 O 3 -Ce 0.8 Sm 0.2 O 1. 9 (LSCF-S
DC), and S between the electrolyte membrane 6 and the air electrode 8.
By providing the DC film 7, the electrode activity of the air electrode 8 and the conductivity at the interface are improved, and high power generation performance can be realized even at low temperature operation. High conductivity is realized because the electrical resistance of the SDC film 7 in contact with the air electrode 8 is smaller than that of the electrolyte film 6.

【0028】実験例 実験は、本発明にかかる電解質膜と、比較例として従来
の電解質膜とをそれぞれ形成し、その表面形状を観察し
た。
Experimental Examples In the experiments, an electrolyte membrane according to the present invention and a conventional electrolyte membrane as a comparative example were formed, and their surface shapes were observed.

【0029】双方の燃料極は、NiO粉末およびイット
リア安定化ジルコニア粉末(YSZ)を重量比60:4
0で混合したサーメットであり、造孔材としてグラファ
イト粉末を添加してスプレードライ法により造粒し、水
溶性のバインダで混錬し、プレスにより5cm角に成形
した。
Both fuel electrodes were composed of NiO powder and yttria-stabilized zirconia powder (YSZ) in a weight ratio of 60: 4.
The cermet was mixed at 0, and graphite powder was added as a pore-forming material, granulated by a spray drying method, kneaded with a water-soluble binder, and formed into a 5 cm square by pressing.

【0030】本発明にかかる電解質膜は、原料として、
イットリア安定化ジルコニア(YSZ)の粒子を用い、
更に粗粉として2μmの粒径の粒子と細粉として0.5
μmの粒径の粒子とをそれぞれ重量比で9:1の割合と
なるよう混合したものである。かかる原料に非水溶性の
バインダを添加し、スクリーン印刷法により燃料極上に
塗布した。
The electrolyte membrane according to the present invention comprises
Using yttria-stabilized zirconia (YSZ) particles,
Further, particles having a particle diameter of 2 μm as coarse powder and 0.5
In this case, particles having a particle size of μm are mixed at a weight ratio of 9: 1. A water-insoluble binder was added to the raw material, and the raw material was applied on the fuel electrode by a screen printing method.

【0031】一方従来例としての単電池の電解質膜は、
原料として、平均粒径0.02μmのイットリア安定化
ジルコニア(YSZ)の粒子を用いており、燃料極に同
様にスクリーン印刷法で塗布した。
On the other hand, the electrolyte membrane of a unit cell as a conventional example is
As a raw material, particles of yttria-stabilized zirconia (YSZ) having an average particle diameter of 0.02 μm were used, and the particles were similarly applied to the fuel electrode by screen printing.

【0032】電解質の原料を塗布した燃料極は、それぞ
れ所定の温度(約1400〜1500℃)で共焼結し
た。
The fuel electrodes coated with the electrolyte material were co-sintered at a predetermined temperature (about 1400 to 1500 ° C.).

【0033】結果は、本発明の燃料極では、電解質膜の
剥離や亀裂、反り等は発生せず、良好な電解質膜が得ら
れたが、従来例は、電解質膜の表面に亀裂が発生し、燃
料極からの剥離も見られた。また、図11と図12に表
面状態を示す。図11は、本発明にかかる電解質膜の表
面を示す電子顕微鏡写真であり、図12は、従来例にか
かる電解質膜の表面を示す電子顕微鏡写真である。本発
明にかかる電解質膜は、表面に粗粉により形成された適
度な凹凸が見られる一方、従来例の電解質膜は、表面が
平坦に形成され、本発明の電解質膜に比較して表面積が
小さく、反応性が低く、かつ燃料極や空気極との密着度
が小さいことがわかる。
As a result, in the fuel electrode of the present invention, a good electrolyte membrane was obtained without peeling, cracking, warping or the like of the electrolyte membrane. However, in the conventional example, cracks were generated on the surface of the electrolyte membrane. Also, separation from the fuel electrode was observed. 11 and 12 show surface states. FIG. 11 is an electron micrograph showing the surface of the electrolyte membrane according to the present invention, and FIG. 12 is an electron micrograph showing the surface of the electrolyte membrane according to the conventional example. The electrolyte membrane according to the present invention has moderate irregularities formed by coarse powder on the surface, while the conventional electrolyte membrane has a flat surface and a small surface area compared to the electrolyte membrane of the present invention. It can be seen that the reactivity is low and the degree of adhesion to the fuel electrode and the air electrode is small.

【0034】このように支持膜式の固体電解質型燃料電
池は、電解質膜を薄膜化して低温作動が可能であり、各
構成部材の耐久性、信頼性の向上や、材料選択上の制限
の緩和が図られ、特に電解質膜を上記のように構成する
ことにより電解質膜の亀裂や剥離、燃料極の反りなどを
生じさせることのない高い出力密度が得られる、発電性
能の高い固体電解質型燃料電池を提供することができ
る。
As described above, the solid oxide fuel cell of the support membrane type can operate at a low temperature by making the electrolyte membrane thinner, thereby improving the durability and reliability of each constituent member, and relaxing the restrictions on material selection. In particular, the solid electrolyte fuel cell with high power generation performance that can obtain a high output density without causing cracking or peeling of the electrolyte membrane and warpage of the fuel electrode by configuring the electrolyte membrane as described above. Can be provided.

【0035】[0035]

【発明の効果】本発明の固体電解質型燃料電池の単電池
によれば、電解質を異なる粒径の原料粒子から、粒径の
割合が所定の数値となるよう構成したことにより、電解
質膜の亀裂や剥離、燃料極の反りなどを生じさせること
のない高い性能を有する固体電解質型燃料電池を提供す
ることができる。
According to the single cell of the solid oxide fuel cell of the present invention, the electrolyte is formed so that the ratio of the particle diameters from the raw material particles having different particle diameters becomes a predetermined numerical value. It is possible to provide a solid oxide fuel cell having high performance without causing delamination, fuel electrode warpage, and the like.

【0036】また、低温においても分極が小さく、且つ
高い安定性を有し、したがつて、作動温度が低く電池性
能の良い固体電解質型燃料電池を提供することができ
る。
Further, a solid oxide fuel cell having low polarization and high stability even at a low temperature, and having a low operating temperature and good cell performance can be provided.

【0037】[0037]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる単電池を示す図である。FIG. 1 is a diagram showing a unit cell according to the present invention.

【図2】スクリーン印刷法を示す図である。FIG. 2 is a diagram illustrating a screen printing method.

【図3】燃料極を示す図である。FIG. 3 is a diagram showing a fuel electrode.

【図4】電解質膜を形成した燃料極を示す図である。FIG. 4 is a view showing a fuel electrode on which an electrolyte membrane is formed.

【図5】SDC膜を形成した燃料極を示す図である。FIG. 5 is a view showing a fuel electrode on which an SDC film is formed.

【図6】空気極を形成した燃料極を示す図である。FIG. 6 is a diagram showing a fuel electrode on which an air electrode is formed.

【図7】本発明にかかる製造方法の手順を示す図であ
る。
FIG. 7 is a diagram showing a procedure of a manufacturing method according to the present invention.

【図8】電解質膜を有する燃料極の断面図である。FIG. 8 is a sectional view of a fuel electrode having an electrolyte membrane.

【図9】単電池の断面を示す図である。FIG. 9 is a diagram showing a cross section of a unit cell.

【図10】固体電解質型燃料電池を示す断面図である。FIG. 10 is a sectional view showing a solid oxide fuel cell.

【図11】実験結果を示す電子顕微鏡写真の図である。FIG. 11 is an electron micrograph showing the results of the experiment.

【図12】実験結果を示す電子顕微鏡写真の図である。FIG. 12 is an electron micrograph showing the results of the experiment.

【符号の説明】 1 固体電解質型燃料電池 2 単電池 4 燃料極 6 電解質膜 7 SDC膜 8 空気極 18 塗布装置 20 スクリーン版 22 スキージ 24 電解質スラリ 25 燃料極スラリ 30 合金セパレータ 32 セラミックマニホールド 34 セパレータDESCRIPTION OF SYMBOLS 1 solid oxide fuel cell 2 cell 4 fuel electrode 6 electrolyte membrane 7 SDC membrane 8 air electrode 18 coating device 20 screen plate 22 squeegee 24 electrolyte slurry 25 fuel electrode slurry 30 alloy separator 32 ceramic manifold 34 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浦谷 美由紀 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 Fターム(参考) 5H018 AA06 AS03 BB12 EE13 HH01 HH05 5H026 AA06 BB00 BB04 BB08 EE13 HH01 HH05  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Miyuki Uratani F-term (reference) 5H018 AA06 AS03 BB12 EE13 HH01 HH05 5H026 AA06 BB00 BB04 BB08 EE13 HH01 HH05 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃料極を基板とし、該燃料極の上に成膜
された電解質膜と、該電解質膜の上に成膜された空気極
とからなる単電池を有する固体電解質型燃料電池におい
て、 前記電解質膜を、平均粒径が0.1〜1μmの範囲の細
粒と、平均粒径が1〜5μmの範囲の粗粒とを原料と
し、前記細粒と前記粗粒の比率を1〜3:9〜7に混合
して構成したことを特徴とする固体電解質型燃料電池。
1. A solid electrolyte fuel cell having a unit cell comprising an anode as a substrate, an electrolyte membrane formed on the anode, and an air electrode formed on the electrolyte membrane. The electrolyte membrane is made from fine particles having an average particle diameter in the range of 0.1 to 1 μm and coarse particles having an average particle diameter in the range of 1 to 5 μm, and the ratio of the fine particles to the coarse particles is 1 3: Solid electrolyte fuel cell characterized by being mixed with 9 to 7.
【請求項2】 前記電解質膜と前記空気極との間にCe
1-XX O(2-δ)(FはCa、Y、Sm、Gd、La、
Mg、Sc、Nd、Yb、Pr、Pb、Sr、Eu、D
y、Ba、Beのいずれか1つ又は2つ以上の組合せで
あり、0≦x≦0.50)からなる膜を備えたことを特
徴とする請求項1に記載の固体電解質型燃料電池。
2. Ce between the electrolyte membrane and the air electrode.
1-X F X O ( 2- δ) (F is Ca, Y, Sm, Gd, La,
Mg, Sc, Nd, Yb, Pr, Pb, Sr, Eu, D
2. The solid oxide fuel cell according to claim 1, further comprising a membrane that is one or a combination of two or more of y, Ba, and Be, and that satisfies 0 ≦ x ≦ 0.50). 3.
【請求項3】 前記空気極は、平均粒径が0.1〜20
μmの範囲にある(A1-xx)(C1-yy)O(3+δ)
の組成を有する粒子と、この粒子の周囲を取り囲む平
均粒径が0.1〜5μmの範囲にあるCe1-XX O(
2-δ) の組成を有する粒子(AはLa、Y、Sm、G
d、Pr、Caのいずれか1つ又は2つ以上の組合せ、
BはSr、Ba、Caのいずれか1つ又は2つ以上の組
合せ、CはMn、Co、Ceのいずれか1つ又は2つ以
上の組合せ、DはCr、Ni、Mg、Zr、Ce、F
e、Alのいずれか1つ又は2つ以上の組合せ、EはC
a、Y、Sm、Gd、La、Mg、Sc、Nd、Yb、
Pr、Pb、Sr、Eu、Dy、Ba、Beのいずれか
1つ又は2つ以上の組合せであり、0≦x≦0.50、
0≦y≦0.50)とからなり、前記Ce1-XX O(
2-δ)を0.5〜60wt%の範囲で含むことを特徴と
する請求項1また2に記載の固体電解質型燃料電池。
3. The air electrode has an average particle size of 0.1 to 20.
(A 1−x B x ) (C 1−y D y ) O ( 3 + δ) in the range of μm
And particles having a composition of, Ce 1-X E X O with an average particle size surrounding the periphery of the particles is in the range of 0.1 to 5 [mu] m (
Particles having the composition of 2- δ) (A is La, Y, Sm, G
d, Pr, one or a combination of two or more of Ca,
B is any one or a combination of two or more of Sr, Ba, Ca, C is a combination of any one or two or more of Mn, Co, Ce, D is Cr, Ni, Mg, Zr, Ce, F
e, any combination of two or more of Al, E is C
a, Y, Sm, Gd, La, Mg, Sc, Nd, Yb,
Any one or a combination of two or more of Pr, Pb, Sr, Eu, Dy, Ba, Be, and 0 ≦ x ≦ 0.50;
0 becomes because ≦ y ≦ 0.50) and the Ce 1-X E X O (
3. The solid oxide fuel cell according to claim 1, wherein ( 2- δ) is contained in a range of 0.5 to 60 wt%.
【請求項4】 前記電解質膜は、印刷法を用いて前記燃
料極に形成したことを特徴とする請求項1〜3のいずれ
か1項に記載の固体電解質型燃料電池。
4. The solid oxide fuel cell according to claim 1, wherein the electrolyte membrane is formed on the fuel electrode by using a printing method.
【請求項5】 前記印刷法は、スクリーン印刷法である
請求項4に記載の固体電解質型燃料電池。
5. The solid oxide fuel cell according to claim 4, wherein the printing method is a screen printing method.
JP2000174348A 2000-06-09 2000-06-09 Solid electrolyte fuel cell Pending JP2001351647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000174348A JP2001351647A (en) 2000-06-09 2000-06-09 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000174348A JP2001351647A (en) 2000-06-09 2000-06-09 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2001351647A true JP2001351647A (en) 2001-12-21

Family

ID=18676407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000174348A Pending JP2001351647A (en) 2000-06-09 2000-06-09 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2001351647A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119161A (en) * 2002-09-25 2004-04-15 Ngk Spark Plug Co Ltd Unit cell for solid electrolyte fuel battery, fuel battery therewith and manufacturing method thereof
JP2005100816A (en) * 2003-09-25 2005-04-14 Kyocera Corp Manufacturing method of cell of fuel cell
JP2005216761A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel battery cell and fuel battery
JP2006139955A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2006139966A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2007115536A (en) * 2005-10-20 2007-05-10 Tokyo Electric Power Co Inc:The Manufacturing method of electrode for porous solid oxide fuel cell
JP2007149439A (en) * 2005-11-25 2007-06-14 Shinko Electric Ind Co Ltd Solid electrolyte fuel cell
JP2007335193A (en) * 2006-06-14 2007-12-27 Nippon Telegr & Teleph Corp <Ntt> Ceria layer for air electrode of solid oxide fuel cell, and its manufacturing method
US7422822B2 (en) 2004-05-11 2008-09-09 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
KR100886239B1 (en) 2007-12-12 2009-02-27 한국생산기술연구원 Preventing method of generating by-product and solid oxide fuel cell using the preventing method and method of the solid oxide fuel cell
JP2009140694A (en) * 2007-12-05 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
WO2009122768A1 (en) * 2008-04-04 2009-10-08 株式会社 村田製作所 Solid electrolyte fuel cell and method for producing the same
JP2009295521A (en) * 2008-06-09 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2010135283A (en) * 2008-11-07 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell, and manufacturing method thereof
JP2010177096A (en) * 2009-01-30 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing air electrode for solid oxide fuel cell and solid oxide fuel cell
JP2011129264A (en) * 2009-12-15 2011-06-30 Ngk Insulators Ltd Manufacturing method of fuel cell
JP2012009461A (en) * 2011-10-13 2012-01-12 Dainippon Printing Co Ltd Solid oxide fuel cell
WO2015037727A1 (en) * 2013-09-13 2015-03-19 株式会社デンソー Single cell of fuel cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119161A (en) * 2002-09-25 2004-04-15 Ngk Spark Plug Co Ltd Unit cell for solid electrolyte fuel battery, fuel battery therewith and manufacturing method thereof
JP2005100816A (en) * 2003-09-25 2005-04-14 Kyocera Corp Manufacturing method of cell of fuel cell
JP4508592B2 (en) * 2003-09-25 2010-07-21 京セラ株式会社 Fuel cell manufacturing method
JP2005216761A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel battery cell and fuel battery
US7422822B2 (en) 2004-05-11 2008-09-09 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
JP2006139955A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2006139966A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2007115536A (en) * 2005-10-20 2007-05-10 Tokyo Electric Power Co Inc:The Manufacturing method of electrode for porous solid oxide fuel cell
JP2007149439A (en) * 2005-11-25 2007-06-14 Shinko Electric Ind Co Ltd Solid electrolyte fuel cell
JP2007335193A (en) * 2006-06-14 2007-12-27 Nippon Telegr & Teleph Corp <Ntt> Ceria layer for air electrode of solid oxide fuel cell, and its manufacturing method
JP2009140694A (en) * 2007-12-05 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
KR100886239B1 (en) 2007-12-12 2009-02-27 한국생산기술연구원 Preventing method of generating by-product and solid oxide fuel cell using the preventing method and method of the solid oxide fuel cell
WO2009122768A1 (en) * 2008-04-04 2009-10-08 株式会社 村田製作所 Solid electrolyte fuel cell and method for producing the same
JP2009295521A (en) * 2008-06-09 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2010135283A (en) * 2008-11-07 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell, and manufacturing method thereof
JP2010177096A (en) * 2009-01-30 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing air electrode for solid oxide fuel cell and solid oxide fuel cell
JP2011129264A (en) * 2009-12-15 2011-06-30 Ngk Insulators Ltd Manufacturing method of fuel cell
JP2012009461A (en) * 2011-10-13 2012-01-12 Dainippon Printing Co Ltd Solid oxide fuel cell
WO2015037727A1 (en) * 2013-09-13 2015-03-19 株式会社デンソー Single cell of fuel cell

Similar Documents

Publication Publication Date Title
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
KR101083701B1 (en) Reversible Solid Oxide Fuel Cell Stack and Method for Preparing Same
JP2001351647A (en) Solid electrolyte fuel cell
JP3976181B2 (en) Solid oxide fuel cell single cell and solid oxide fuel cell using the same
JP3230156B2 (en) Electrode of solid oxide fuel cell and method of manufacturing the same
WO2016080019A1 (en) Anode for solid oxide fuel cell and manufacturing method therefor, and manufacturing method for electrolyte layer-electrode assembly for fuel cell
AU5407901A (en) Solid oxide fuel cell
KR20100050687A (en) Fabrication method of metal supported solid oxide fuel cell
JP2001283877A (en) Unit cell for solid electrolytic fuel battery and its manufacturing method
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP2005228740A (en) Manufacturing method of solid oxide fuel cell
JP4462727B2 (en) Solid electrolyte fuel cell
JP6174577B2 (en) Cell and cell stack device, electrochemical module, and electrochemical device
JP3643006B2 (en) Solid oxide fuel cell cell
JP2005216760A (en) Fuel cell and its manufacturing method
JPH10172590A (en) Solid electrolyte type fuel cell
KR101146349B1 (en) Fabrication Method of Metal Supported Solid Oxide Fuel Cell
JP2003045446A (en) Cell of solid electrolyte fuel cell, method for manufacturing it, and fuel cell
JP4367843B2 (en) Fuel electrode, electrochemical cell, and method of manufacturing fuel electrode
JP2006059611A (en) Ceria based solid electrolyte fuel cell and its manufacturing method
JP4508592B2 (en) Fuel cell manufacturing method
JP2004362849A (en) Base plate for electrochemical cell and electrochemical cell
JP3336171B2 (en) Solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP2006059610A (en) Solid electrolyte fuel cell and its manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021217