JP2001283877A - Unit cell for solid electrolytic fuel battery and its manufacturing method - Google Patents

Unit cell for solid electrolytic fuel battery and its manufacturing method

Info

Publication number
JP2001283877A
JP2001283877A JP2000101471A JP2000101471A JP2001283877A JP 2001283877 A JP2001283877 A JP 2001283877A JP 2000101471 A JP2000101471 A JP 2000101471A JP 2000101471 A JP2000101471 A JP 2000101471A JP 2001283877 A JP2001283877 A JP 2001283877A
Authority
JP
Japan
Prior art keywords
electrolyte
fuel electrode
unit cell
electrode
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000101471A
Other languages
Japanese (ja)
Inventor
Isamu Yasuda
勇 安田
Yoshio Matsuzaki
良雄 松崎
Miyuki Uratani
美由紀 浦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2000101471A priority Critical patent/JP2001283877A/en
Publication of JP2001283877A publication Critical patent/JP2001283877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a unit cell for a solid electrolytic fuel battery which has a high power generation performance. SOLUTION: A layer of SDC(samara-doped ceria) or the like is at least set between an electrolyte film and an air pole. By the setting of the SDC layer, an electrical resistance can be reduced between the electrolyte film and the air pole, and a unit cell with a high power generation performance can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料極を支持体と
して構成した支持膜型の固体電解質型燃料電池の単電池
に関し、特に発電性能を向上させた固体電解質型燃料電
池の単電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a unit cell of a solid oxide fuel cell of a support membrane type having a fuel electrode as a support, and more particularly to a solid electrolyte fuel cell unit having improved power generation performance.

【0002】[0002]

【従来の技術】固体電解質型燃料電池の単電池は、電解
質の一方の面に空気極を設け、他方の面に燃料極を設け
てあり、固体電解質型燃料電池はこのような単電池を複
数積層し、空気極に酸化剤ガスを、燃料極に燃料ガスを
供給して起電力を発生させている。
2. Description of the Related Art A cell of a solid oxide fuel cell has an air electrode provided on one side of an electrolyte and a fuel electrode provided on the other side. A solid oxide fuel cell comprises a plurality of such cells. The layers are stacked, and an oxidizing gas is supplied to the air electrode and a fuel gas is supplied to the fuel electrode to generate an electromotive force.

【0003】次に、ディップ法を用いた支持膜式の単電
池の製造方法について、図12に示す流れ図を用いて説
明する。
Next, a method for manufacturing a single cell of a supporting film type using a dip method will be described with reference to a flowchart shown in FIG.

【0004】まず粉末状の燃料極の原料をプレスにより
所定の形状に押し固め成形し(T1)、成形した燃料極
(グリーン)を電気炉等により約100時間仮焼し、多
孔体とする(T2)。次に、仮焼した燃料極を、電解質
の原料をスラリ状にした電解質スラリの中に浸し(T
3)、燃料極の表面全体に薄く電解質原料を付着させ
る。電解質スラリを付着させたなら、電解質スラリを適
度に乾燥させ(T4)、再び燃料極を電解質スラリの中
に浸し、電解質原料を表面に付着させ、再度乾燥を行な
う。このような電解質原料の付着・乾燥作業を電解質原
料が所定の厚みとなるまで(7回程度)繰り返し、電解
質膜が燃料極の表面に所定の厚みに形成されたなら炉に
入れ焼成(T5)する。
[0004] First, the raw material of the powdery fuel electrode is pressed and formed into a predetermined shape by a press (T1), and the formed fuel electrode (green) is calcined for about 100 hours in an electric furnace or the like to obtain a porous body ( T2). Next, the calcined fuel electrode is immersed in an electrolyte slurry in which the raw material of the electrolyte is formed into a slurry (T
3) A thin electrolyte material is attached to the entire surface of the fuel electrode. After the electrolyte slurry is attached, the electrolyte slurry is dried appropriately (T4), the fuel electrode is immersed in the electrolyte slurry again, the electrolyte material is attached to the surface, and drying is performed again. Such an operation of depositing and drying the electrolyte material is repeated until the electrolyte material has a predetermined thickness (about 7 times). When the electrolyte membrane is formed to a predetermined thickness on the surface of the fuel electrode, it is placed in a furnace and fired (T5). I do.

【0005】次に電解質膜を研磨し、燃料極の周囲に形
成された不要な電解質膜を除去して、所定の形状に仕上
げる(T6)。そして、電解質膜の上に空気極を設け
(T7)、焼成を行なっていた(T8)。
[0005] Next, the electrolyte membrane is polished to remove unnecessary electrolyte membranes formed around the fuel electrode, thereby completing a predetermined shape (T6). Then, an air electrode was provided on the electrolyte membrane (T7), and firing was performed (T8).

【0006】このようにして従来は、電気的抵抗が高い
電解質膜を10〜数10μmの薄膜として抵抗を低減さ
せ、単電池の作動温度を低くして、固体電解質型燃料電
池の単電池のコストや熱機械的信頼性等を向上させてい
た。
As described above, conventionally, an electrolyte membrane having a high electric resistance is formed as a thin film having a thickness of 10 to several tens of μm to reduce the resistance, lower the operating temperature of the cell, and reduce the cost of the cell of the solid oxide fuel cell. And improved thermomechanical reliability.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、近年固
体電解質型燃料電池は小型化、高出力化を図る必要があ
り、より高い発電性能が単電池に求められている。例え
ば、電解質膜と空気極、あるいは電解質膜と燃料極との
間の電気抵抗をより低減させ、より高い発電性能を実現
することが求められている。
However, in recent years, it has been necessary to reduce the size and output of a solid oxide fuel cell, and a higher power generation performance is required for a unit cell. For example, it is required to further reduce the electric resistance between the electrolyte membrane and the air electrode or between the electrolyte membrane and the fuel electrode to realize higher power generation performance.

【0008】[0008]

【課題を解決するための手段】本発明では、上記課題を
解決するため、単電池を次のようにして構成した。
According to the present invention, in order to solve the above problems, a unit cell is constituted as follows.

【0009】すなわち、電解質膜と空気極との間にSD
C(サマリアをドープしたセリア)の層(膜)などCe
1-XX O(2-δ)の膜(FはCa、Y、Sm、Gd、L
a、Mg、Sc、Nd、Yb、Pr、Pb、Sr、E
u、Dy、Ba、Beのいずれか1つ又は2つ以上の組
合せであり、0≦x≦0.50)を形成して単電池を構
成した。
That is, SD between the electrolyte membrane and the air electrode
Ce (Camarium doped ceria) layer (film) such as Ce
1-X F X O ( 2- δ) film (F is Ca, Y, Sm, Gd, L
a, Mg, Sc, Nd, Yb, Pr, Pb, Sr, E
u, Dy, Ba, and Be are one or a combination of two or more, and 0 ≦ x ≦ 0.50) was formed to constitute a unit cell.

【0010】その塗布方法は例えば、燃料極の上に電解
質膜を形成した段階で、電解質膜の上にSDCのスラリ
等を塗布し、そののち空気極を電解質膜の上に形成する
こととした。これにより、電解質膜と空気極との間の電
気抵抗を低減でき、発電性能の高い単電池を得ることが
できる。SDC膜等は、少なくとも電解質膜側の面に塗
布すればよいが、電解質膜を形成した面の裏面の燃料極
表面に塗布してもよい。
[0010] For example, at the stage of forming an electrolyte membrane on the fuel electrode, SDC slurry or the like is applied on the electrolyte membrane, and then the air electrode is formed on the electrolyte membrane. . Thereby, the electric resistance between the electrolyte membrane and the air electrode can be reduced, and a unit cell having high power generation performance can be obtained. The SDC film or the like may be applied on at least the surface on the electrolyte membrane side, but may be applied on the fuel electrode surface on the back surface of the surface on which the electrolyte film is formed.

【0011】[0011]

【発明の実施の形態】本発明にかかる単電池の一実施例
について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a unit cell according to the present invention will be described.

【0012】図1に単電池2を示す。単電池2は、支持
体としての燃料極4の表面に電解質膜6が形成してあ
り、さらに電解質膜6の表面にSDC膜7を介在させて
空気極8が形成してある。この単電池2を図10に示す
ように合金セパレータ30とセラミックマニホールド3
2からなるセパレータ34で挟持し、セパレータ34と
単電池2とを適宜積層して固体電解質型燃料電池1が構
成してある。固体電解質型燃料電池1は、所定の条件
(例えば温度750℃等)において燃料極4に燃料ガス
を、また空気極8に酸化剤ガスを供給することにより起
電力を発生する。
FIG. 1 shows a cell 2. In the unit cell 2, an electrolyte membrane 6 is formed on the surface of the fuel electrode 4 as a support, and an air electrode 8 is formed on the surface of the electrolyte membrane 6 with an SDC film 7 interposed. As shown in FIG. 10, the cell 2 was divided into an alloy separator 30 and a ceramic manifold 3.
The solid oxide fuel cell 1 is configured by sandwiching the separator 34 and the unit cell 2 as appropriate, while sandwiching the separator 34 made of the fuel cell 2. The solid oxide fuel cell 1 generates an electromotive force by supplying a fuel gas to the fuel electrode 4 and an oxidant gas to the air electrode 8 under predetermined conditions (for example, a temperature of 750 ° C.).

【0013】次に、単電池2の製造方法について図7の
流れ図を用いて説明する。まず、粉末状の原料を所定の
形状に成形し、支持体としての燃料極4を形成する(S
1)。燃料極4の原料は、例えばニッケルとイットリア
安定化ジルコニア(YSZ)のサーメットであり、原料
を水溶性のバインダ、例えばポリビニルアルコールと混
練し、プレス装置(図示せず)等により押し固め、成形
する。所定の形状に成形した燃料極4を図3に示す。燃
料極4の原料には、造孔剤(図示せず)が所定量含有し
てあり、後述する焼成により造孔剤が焼失されると燃料
極4の内部に多数の孔が形成される。
Next, a method of manufacturing the unit cell 2 will be described with reference to a flowchart of FIG. First, a powdery raw material is formed into a predetermined shape to form a fuel electrode 4 as a support (S4).
1). The raw material of the fuel electrode 4 is, for example, a cermet of nickel and yttria-stabilized zirconia (YSZ). The raw material is kneaded with a water-soluble binder, for example, polyvinyl alcohol, and is compacted by a press device (not shown) and molded. . FIG. 3 shows the fuel electrode 4 formed into a predetermined shape. The raw material of the fuel electrode 4 contains a predetermined amount of a pore-forming agent (not shown), and when the pore-forming agent is burned out by firing described later, a large number of holes are formed inside the fuel electrode 4.

【0014】プレス装置により成形された未焼成の燃料
極4は、そのままの状態で塗布装置18(図2参照)に
配置され、電解質スラリ24が表面に塗布される(S
2)。電解質スラリ24は、YSZからなる電解質(電
解質膜6)の原料と非水溶性のバインダ、例えばポリビ
ニルブチラールとを混練したものであり、所定の粘度に
設定してある。尚、バインダとしては、上記以外に、メ
チルセルロース、ポリエチレン、ポリアクリル酸ソー
ダ、アラビアゴムなどがある。
The unfired fuel electrode 4 formed by the pressing device is placed as it is in the coating device 18 (see FIG. 2), and the electrolyte slurry 24 is coated on the surface (S).
2). The electrolyte slurry 24 is obtained by kneading a raw material of an electrolyte (electrolyte membrane 6) made of YSZ and a water-insoluble binder, for example, polyvinyl butyral, and has a predetermined viscosity. As the binder, other than the above, there are methylcellulose, polyethylene, sodium polyacrylate, gum arabic and the like.

【0015】図2に示すように塗布装置18は、いわゆ
るスクリーン印刷法で印刷を行なう印刷機であり、スク
リーン版20には電解質膜6に等しい形状の型が形成さ
れている。燃料極4を、塗布装置18の所定の位置に配
置したなら、スクリーン版20に沿ってスキージ22を
移動させることにより、型を通して電解質スラリ24が
燃料極4の上面に塗布(S2)される。電解質スラリ2
4が所定の形状に塗布されたなら、電解質の表面を適宜
乾燥させる。乾燥作業は、電解質スラリ24を完全に乾
燥させる必要はなく、塗布した電解質スラリ24上に重
ねて電解質スラリ24が塗布できる程度であればよい。
電解質膜6が表面に形成された燃料極4を図4に示す。
As shown in FIG. 2, the coating device 18 is a printing machine for performing printing by a so-called screen printing method, and a screen plate 20 is formed with a mold having the same shape as the electrolyte membrane 6. When the fuel electrode 4 is disposed at a predetermined position of the coating device 18, the squeegee 22 is moved along the screen plate 20, so that the electrolyte slurry 24 is coated on the upper surface of the fuel electrode 4 through the mold (S2). Electrolyte slurry 2
When 4 is applied in a predetermined shape, the surface of the electrolyte is appropriately dried. It is not necessary to completely dry the electrolyte slurry 24, and the drying operation may be performed as long as the electrolyte slurry 24 can be applied over the applied electrolyte slurry 24.
FIG. 4 shows the fuel electrode 4 on which the electrolyte membrane 6 is formed.

【0016】電解質スラリ24を適度に乾燥させたな
ら、上記と同様にして重ねて電解質スラリ24を塗布
し、乾燥させる。そして電解質スラリ24が所定の厚さ
になるまで電解質スラリ24の塗布を繰り返す。電解質
スラリ24が所定の厚みに積層されたなら、燃料極4と
ともに共焼結(電解質膜6と燃料極4とを一緒に焼成す
ること)する(S3)。
After the electrolyte slurry 24 has been properly dried, the electrolyte slurry 24 is applied and dried in the same manner as described above. Then, the application of the electrolyte slurry 24 is repeated until the electrolyte slurry 24 has a predetermined thickness. When the electrolyte slurry 24 is laminated to a predetermined thickness, it is co-sintered with the fuel electrode 4 (the electrolyte film 6 and the fuel electrode 4 are fired together) (S3).

【0017】そして、電解質膜6にSDCを塗布して、
SDC膜7を形成する。SDCは、サマリアをドープし
たセリア(Ce1−xSm(2−δ)であり、粒
径が0.1〜5μm程度で、x=0.3である。SDC
は、その粉末をCeゾルに分散、混合してSDCスラリ
を形成し、ディップ法等により電解質膜6の表面全体に
4μmの厚さに塗布する(S4)。SDC膜7が塗布さ
れた状態を図5に示す。次に塗布したSDC膜7を所定
の温度で焼成する(S5)。焼成したなら、空気極8を
SDC膜7を介して電解質膜6の上に塗布し(S6)、
全体を焼成して完成させる(S7)。空気極8は、平均
粒径が0.60μmのLa0.6Sr0.4Co0.8Fe0.2
3と、この粒子の周囲を取り囲む粒径が0.1μmのC
0.8 Sm0.21.9の組成を有する粒子(LSCF−S
DC)からなり、Ce0.8 Sm0. 21.9は0.5〜60
wt%含まれている。空気極8を電解質膜6の上に形成
した単電池2の全体を図6に示す。
Then, SDC is applied to the electrolyte membrane 6,
An SDC film 7 is formed. SDC is a doped ceria Samaritan (Ce 1-x Sm x O (2- δ)), particle size of about 0.1 to 5 [mu] m, a x = 0.3. SDC
The SDC slurry is formed by dispersing and mixing the powder in a Ce sol, and applied to the entire surface of the electrolyte membrane 6 to a thickness of 4 μm by a dipping method or the like (S4). FIG. 5 shows a state where the SDC film 7 is applied. Next, the applied SDC film 7 is fired at a predetermined temperature (S5). After firing, the air electrode 8 is applied on the electrolyte membrane 6 via the SDC membrane 7 (S6),
The whole is fired and completed (S7). The air electrode 8 is made of La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O having an average particle size of 0.60 μm.
3 and C having a particle diameter of 0.1 μm surrounding the particle.
Particles having a composition of e 0.8 Sm 0.2 O 1.9 (LSCF-S
Consists of DC), Ce 0.8 Sm 0. 2 O 1.9 0.5 to 60
wt%. FIG. 6 shows the entire unit cell 2 in which the air electrode 8 is formed on the electrolyte membrane 6.

【0018】尚、空気極8は、(A1-xx)(C1-y
y)O(3+δ) の組成を有する粒子と、Ce1-XX
(2-δ)の組成を有する粒子(AはLa、Y、Sm、G
d、Pr、Caのいずれか1つ又は2つ以上の組合せ、
BはSr、Ba、Caのいずれか1つ又は2つ以上の組
合せ、CはMn、Co、Ceのいずれか1つ又は2つ以
上の組合せ、DはCr、Ni、Mg、Zr、Ce、F
e、Alのいずれか1つ又は2つ以上の組合せ、EはC
a、Y、Sm、Gd、La、Mg、Sc、Nd、Yb、
Pr、Pb、Sr、Eu、Dy、Ba、Beのいずれか
1つ又は2つ以上の組合せであり、0≦x≦0.50、
0≦y≦0.50)とから構成すればよく、また(A
1-xx)(C1-yy)O(3+δ) の組成を有する粒子
は、径が0.1〜20μm、Ce1-XX O(2-δ)の組
成を有する粒子は、径が0.1〜5μmであればよい。
The air electrode 8 is (A 1 -xB x ) (C 1 -y
And particles having a composition of D y) O (3+ δ) , Ce 1-X E X O
Particles having the composition of ( 2- δ) (A is La, Y, Sm, G
d, Pr, one or a combination of two or more of Ca,
B is any one or a combination of two or more of Sr, Ba, Ca, C is a combination of any one or two or more of Mn, Co, Ce, D is Cr, Ni, Mg, Zr, Ce, F
e, any combination of two or more of Al, E is C
a, Y, Sm, Gd, La, Mg, Sc, Nd, Yb,
Any one or a combination of two or more of Pr, Pb, Sr, Eu, Dy, Ba, Be, and 0 ≦ x ≦ 0.50;
0 ≦ y ≦ 0.50), and (A
1-x B x) (C 1-y D y) O ( particles having a composition of 3+ [delta]) has a diameter 0.1 to 20 [mu] m, a composition of Ce 1-X E X O ( 2- δ) The particles may have a diameter of 0.1 to 5 μm.

【0019】更に電解質膜6と空気極8との間にはSD
C膜7でなく、Ce1-XX O(2-δ)の膜(FはCa、
Y、Sm、Gd、La、Mg、Sc、Nd、Yb、P
r、Pb、Sr、Eu、Dy、Ba、Beのいずれか1
つ又は2つ以上の組合せであり、0≦x≦0.50)を
形成してもよい。またその粒径は0.1〜2μm程度で
あればよい。更に、酸素分圧やそれぞれの膜の熱膨張の
差などの観点から、電解質膜6とSDC膜7等との膜厚
の比率は、実質的に10以上であればよい。
Further, an SD is provided between the electrolyte membrane 6 and the air electrode 8.
Instead of the C film 7, a film of Ce 1-x F x O ( 2- δ) (F is Ca,
Y, Sm, Gd, La, Mg, Sc, Nd, Yb, P
any one of r, Pb, Sr, Eu, Dy, Ba, Be
Or a combination of two or more, and 0 ≦ x ≦ 0.50) may be formed. The particle size may be about 0.1 to 2 μm. Further, from the viewpoint of the oxygen partial pressure and the difference in thermal expansion between the respective films, the ratio of the film thickness between the electrolyte film 6 and the SDC film 7 or the like may be substantially 10 or more.

【0020】このように、電解質膜6と空気極8との間
に導電性の高いSDC膜7を設けたことにより、空気極
8と電解質膜6との界面の電気抵抗が低減され、高い発
電性能を得ることができる。また、スクリーン印刷法を
用いて電解質膜6を形成したことにより表面に凹凸が形
成され、電解質膜6と空気極8との間の接触面積が増大
し、密着性が向上する。
As described above, by providing the highly conductive SDC film 7 between the electrolyte membrane 6 and the air electrode 8, the electric resistance at the interface between the air electrode 8 and the electrolyte membrane 6 is reduced, and high power generation is achieved. Performance can be obtained. In addition, since the electrolyte membrane 6 is formed by using the screen printing method, irregularities are formed on the surface, the contact area between the electrolyte membrane 6 and the air electrode 8 is increased, and the adhesion is improved.

【0021】さらに、支持体である燃料極4に所定の形
状、厚みの電解質膜6を簡易、迅速に塗布、形成するこ
とができ、また、燃料極4を仮焼することなく、燃料極
4の原料を成形した後直接電解質スラリ24を燃料極4
に塗布できることから、手間とコストを大幅に削減する
ことができる。また、スクリーン版20を通過させて電
解質スラリ24を塗布することから、適度な凹凸が形成
され、良好な電解質膜6を形成することができる。
Further, the electrolyte membrane 6 having a predetermined shape and thickness can be easily and quickly applied and formed on the fuel electrode 4 as a support, and the fuel electrode 4 can be formed without calcining the fuel electrode 4. The electrolyte slurry 24 is directly applied to the fuel electrode 4
, The labor and cost can be greatly reduced. Further, since the electrolyte slurry 24 is applied by passing through the screen plate 20, moderate unevenness is formed, and a good electrolyte membrane 6 can be formed.

【0022】また、燃料極4と電解質スラリ24それぞ
れのバインダの性質、すなわちバインダが水溶性か非水
溶性かの組み合わせを適宜選択することにより、燃料極
4に電解質スラリ24を塗布した際の両者間に形成され
る界面の状態を調整でき、焼成した後緻密で、不純物の
少ない良好な電解質膜6を形成できる。更に、両者のバ
インダを水溶性か非水溶性か等の組み合わせ以外の組み
あわせで適宜選択することにより電解質膜6の表面や電
解質膜6と燃料極4の界面を所望の構造にすることがで
きる。
The properties of the binder of the fuel electrode 4 and the electrolyte slurry 24, that is, the combination of the binder being water-soluble and the water-insoluble, are appropriately selected so that both the properties when the electrolyte slurry 24 is coated on the fuel electrode 4 can be improved. The state of the interface formed therebetween can be adjusted, and after baking, it is possible to form a dense and favorable electrolyte membrane 6 with few impurities. Furthermore, the surface of the electrolyte membrane 6 and the interface between the electrolyte membrane 6 and the fuel electrode 4 can have a desired structure by appropriately selecting a binder other than a combination of water-soluble and water-insoluble. .

【0023】尚、SDC膜7は、電解質膜6の全体表面
でなく、図8および図9に示すように、燃料極4と電解
質膜6の外表面全体に塗布してもよい。また空気極8は
従来の空気極でよく、空気極8を電解質膜6の上に形成
する製造方法も従来どおりでよい。
The SDC film 7 may be applied not to the entire surface of the electrolyte membrane 6 but to the entire outer surfaces of the fuel electrode 4 and the electrolyte membrane 6 as shown in FIGS. The air electrode 8 may be a conventional air electrode, and the manufacturing method for forming the air electrode 8 on the electrolyte membrane 6 may be the same as the conventional method.

【0024】尚、上記例ではスクリーン印刷法によって
電解質スラリを塗布して電解質膜を形成することとした
が、本発明では、スクリーン印刷に限らず、他の印刷法
でもよく、更にディップ法により電解質膜を形成しても
よい。
In the above-described example, the electrolyte slurry is applied by the screen printing method to form the electrolyte membrane. However, the present invention is not limited to the screen printing, but may be another printing method. A film may be formed.

【0025】またバインダの性質は、上記例に限らず他
の種類の組み合わせでもよい。
The nature of the binder is not limited to the above example, but may be other types of combinations.

【0026】実験例 図11に本件発明にかかる実験結果を示す。実験に用い
た単電池は、燃料極をNiとYSZのサーメット、電解
質をYSZ、空気極を平均0.6μmの(La 1−x
)(Co1−yFe)O(3+δ粒子(x=
0.4、y=0.2)と、0.1μmのCe1−xSm
(2−δ粒子(x=0.2)から構成し、燃料極
に電解質膜を形成した状態で、一方は全体に、他方は電
解質膜と空気極の間にのみSDC(Ce0.7Sm
0.3(2−δ)膜を設け、それぞれ空気極をSD
C膜の上に形成した。
Experimental Example FIG. 11 shows an experimental result according to the present invention. Used for experiment
The cell has a fuel electrode of Ni and YSZ cermet, electrolytic
The quality is YSZ and the cathode is 0.6 μm on average (La 1-xS
rx) (Co1-yFey) O(3+δ)Particles (x =
0.4, y = 0.2) and 0.1 μm Ce1-xSm
xO(2-δ)Composed of particles (x = 0.2)
With the electrolyte membrane formed on one side, one is the whole and the other is the
The SDC (Ce0.7Sm
0.3O(2-δ)) A membrane is provided and the air electrode is set to SD
It was formed on the C film.

【0027】これら単電池を、750℃の作動温度で、
燃料ガスと酸化剤ガスとを供給し、発電を開始させ、電
流密度に対する電圧を計測した。これにより、電流密度
が上昇しても電圧の降下が少なく、高い発電性能が得ら
れ、しかもSDC膜を燃料極と電解質膜との間のみでな
く電解質膜の逆側、すなわち燃料極の表面側にも形成し
た方が良い結果が得られることがわかる。
These cells were operated at an operating temperature of 750 ° C.
The fuel gas and the oxidizing gas were supplied, power generation was started, and the voltage with respect to the current density was measured. As a result, even if the current density increases, the voltage drop is small and high power generation performance can be obtained. In addition, the SDC film is formed not only between the fuel electrode and the electrolyte film but also on the opposite side of the electrolyte film, that is, on the surface side of the fuel electrode. It can be seen that better results can be obtained by forming them.

【0028】[0028]

【発明の効果】本発明の単電池によれば、少なくとも電
解質膜と空気極との間にSDC膜などCe1-XX O(
2-δ)の膜(FはCa、Y、Sm、Gd、La、Mg、
Sc、Nd、Yb、Pr、Pb、Sr、Eu、Dy、B
a、Beのいずれか1つ又は2つ以上の組合せであり、
0≦x≦0.50)を形成したことにより、電解質膜と
空気極との電気抵抗を低減し、高い発電性能の単電池を
得ることができる。
According to the unit cell of the present invention, Ce 1-X F X O (SDC film or the like) is provided at least between the electrolyte membrane and the air electrode.
2- δ) film (F is Ca, Y, Sm, Gd, La, Mg,
Sc, Nd, Yb, Pr, Pb, Sr, Eu, Dy, B
a, Be or a combination of two or more of Be,
(0 ≦ x ≦ 0.50), the electric resistance between the electrolyte membrane and the air electrode is reduced, and a unit cell with high power generation performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる単電池を示す図である。FIG. 1 is a diagram showing a unit cell according to the present invention.

【図2】塗布装置を示す図である。FIG. 2 is a view showing a coating apparatus.

【図3】燃料極を示す図である。FIG. 3 is a diagram showing a fuel electrode.

【図4】電解質膜を形成した燃料極を示す図である。FIG. 4 is a view showing a fuel electrode on which an electrolyte membrane is formed.

【図5】SDC膜を形成した燃料極を示す図である。FIG. 5 is a view showing a fuel electrode on which an SDC film is formed.

【図6】単電池を示す図である。FIG. 6 is a diagram showing a unit cell.

【図7】本発明にかかる製造方法の手順を示す図であ
る。
FIG. 7 is a diagram showing a procedure of a manufacturing method according to the present invention.

【図8】SDC膜を形成した電解質膜と燃料極の断面図
である。
FIG. 8 is a sectional view of an electrolyte membrane on which an SDC membrane is formed and a fuel electrode.

【図9】SDC膜を形成した単電池を示す断面図であ
る。
FIG. 9 is a cross-sectional view showing a unit cell on which an SDC film is formed.

【図10】固体電解質型燃料電池を示す図である。FIG. 10 is a diagram showing a solid oxide fuel cell.

【図11】実験結果を示す図である。FIG. 11 is a view showing an experimental result.

【図12】従来の製造方法の手順を示す図である。FIG. 12 is a diagram showing a procedure of a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

2 単電池 4 燃料極 6 電解質膜 7 SDC膜 8 空気極 18 塗布装置 20 スクリーン版 22 スキージ 24 電解質スラリ 30 合金セパレータ 32 セラミックマニホールド 34 セパレータ Reference Signs List 2 cell 4 fuel electrode 6 electrolyte membrane 7 SDC membrane 8 air electrode 18 coating device 20 screen plate 22 squeegee 24 electrolyte slurry 30 alloy separator 32 ceramic manifold 34 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浦谷 美由紀 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 Fターム(参考) 5H018 AA06 AS02 AS03 BB08 EE13 HH05 5H026 AA06 BB04 EE13 HH05  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Miyuki Uraya 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd. F-term (reference) 5H018 AA06 AS02 AS03 BB08 EE13 HH05 5H026 AA06 BB04 EE13 HH05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃料極を基板とし、該燃料極の上に電解
質膜を形成し、該電解質膜の上に空気極を形成し、前記
空気極に酸化剤ガス、前記燃料極に燃料ガスを供給し、
両者間で起電力を発生させて電力を得る固体電解質型燃
料電池の単電池において、 前記電解質膜と前記空気極との間にCe1-XX O(2-
δ)の膜(FはCa、Y、Sm、Gd、La、Mg、S
c、Nd、Yb、Pr、Pb、Sr、Eu、Dy、B
a、Beのいずれか1つ又は2つ以上の組合せであり、
0≦x≦0.50)を形成したことを特徴とした固体電
解質型燃料電池の単電池。
A fuel electrode is used as a substrate, an electrolyte film is formed on the fuel electrode, an air electrode is formed on the electrolyte film, an oxidant gas is supplied to the air electrode, and a fuel gas is supplied to the fuel electrode. Supply,
In a unit cell of a solid oxide fuel cell that obtains electric power by generating electromotive force between the two, a Ce 1-X F X O ( 2−) is provided between the electrolyte membrane and the air electrode.
δ) film (F is Ca, Y, Sm, Gd, La, Mg, S
c, Nd, Yb, Pr, Pb, Sr, Eu, Dy, B
a, Be or a combination of two or more of Be,
0 ≦ x ≦ 0.50). A solid electrolyte fuel cell unit cell.
【請求項2】 前記Ce1-XX O(2-δ)の膜を、前記
燃料極の表面全体に形成したことを特徴とする請求項1
記載の固体電解質型燃料電池の単電池。
2. A method according to claim membrane of the Ce 1-X F X O ( 2- δ), characterized in that formed on the entire surface of the fuel electrode 1
A unit cell of the solid oxide fuel cell according to the above.
【請求項3】 前記Ce1-XX O(2-δ)の膜は、サマ
リアをドープしたセリア膜であることを特徴とする請求
項1または2記載の固体電解質型燃料電池の単電池。
Wherein membrane of the Ce 1-X F X O ( 2- δ) is a single cell of the solid oxide fuel cell according to claim 1 or 2, wherein the ceria film doped with samaria .
【請求項4】 前記電解質膜は、印刷法を用いて前記燃
料極に形成したことを特徴とする請求項1〜3のいずれ
か1項に記載の固体電解質型燃料電池の単電池の製造方
法。
4. The method for manufacturing a unit cell of a solid oxide fuel cell according to claim 1, wherein said electrolyte membrane is formed on said fuel electrode by a printing method. .
【請求項5】 前記印刷法は、スクリーン印刷法である
請求項4に記載の固体電解質型燃料電池の単電池の製造
方法。
5. The method of manufacturing a solid oxide fuel cell according to claim 4, wherein the printing method is a screen printing method.
JP2000101471A 2000-04-03 2000-04-03 Unit cell for solid electrolytic fuel battery and its manufacturing method Pending JP2001283877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101471A JP2001283877A (en) 2000-04-03 2000-04-03 Unit cell for solid electrolytic fuel battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101471A JP2001283877A (en) 2000-04-03 2000-04-03 Unit cell for solid electrolytic fuel battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001283877A true JP2001283877A (en) 2001-10-12

Family

ID=18615516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101471A Pending JP2001283877A (en) 2000-04-03 2000-04-03 Unit cell for solid electrolytic fuel battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001283877A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055326A (en) * 2002-07-19 2004-02-19 Toho Gas Co Ltd Unit cell of solid oxide fuel cell and solid oxide fuel cell using the unit cell
JP2004119161A (en) * 2002-09-25 2004-04-15 Ngk Spark Plug Co Ltd Unit cell for solid electrolyte fuel battery, fuel battery therewith and manufacturing method thereof
JP2005196981A (en) * 2003-12-26 2005-07-21 Ngk Spark Plug Co Ltd Intermediate body of fuel electrode supporting film type fuel cell, and manufacturing method of the same
JP2005216761A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel battery cell and fuel battery
JP2005327637A (en) * 2004-05-14 2005-11-24 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2006134597A (en) * 2004-11-02 2006-05-25 Honda Motor Co Ltd Fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2007005186A (en) * 2005-06-24 2007-01-11 Honda Motor Co Ltd Fuel cell and fuel cell stack
WO2007061043A1 (en) * 2005-11-25 2007-05-31 Nippon Telegraph And Telephone Corporation Solid oxide fuel cell
CN100456544C (en) * 2006-08-18 2009-01-28 中国科学院上海硅酸盐研究所 Anode supporting solid electrolyte compound film for solid oxide fuel battery and its preparing method
JP2009140694A (en) * 2007-12-05 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2009245603A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Manufacturing method for solid oxide fuel cell, and the solid oxide fuel cell manufactured by the manufacturing method
JP2009295521A (en) * 2008-06-09 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2010177096A (en) * 2009-01-30 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing air electrode for solid oxide fuel cell and solid oxide fuel cell
JP2014123520A (en) * 2012-12-21 2014-07-03 Agc Seimi Chemical Co Ltd Gallate complex oxide, and solid oxide fuel cell using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567473A (en) * 1991-09-09 1993-03-19 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
JPH05166530A (en) * 1991-12-12 1993-07-02 Yoshida Kogyo Kk <Ykk> Battery member for solid electrolyte fuel cell
JPH09129252A (en) * 1995-11-06 1997-05-16 Tokyo Gas Co Ltd Highly durable solid electrlyte fuel cell and manufacture thereof
JPH1173982A (en) * 1997-08-28 1999-03-16 Toto Ltd Solid electrolyte fuel cell and its manufacture
JPH11162483A (en) * 1997-11-25 1999-06-18 Meidensha Corp Solid electrolyte fuel cell
JPH11228136A (en) * 1998-02-06 1999-08-24 Tokyo Gas Co Ltd Ion conductive oxide material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567473A (en) * 1991-09-09 1993-03-19 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
JPH05166530A (en) * 1991-12-12 1993-07-02 Yoshida Kogyo Kk <Ykk> Battery member for solid electrolyte fuel cell
JPH09129252A (en) * 1995-11-06 1997-05-16 Tokyo Gas Co Ltd Highly durable solid electrlyte fuel cell and manufacture thereof
JPH1173982A (en) * 1997-08-28 1999-03-16 Toto Ltd Solid electrolyte fuel cell and its manufacture
JPH11162483A (en) * 1997-11-25 1999-06-18 Meidensha Corp Solid electrolyte fuel cell
JPH11228136A (en) * 1998-02-06 1999-08-24 Tokyo Gas Co Ltd Ion conductive oxide material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055326A (en) * 2002-07-19 2004-02-19 Toho Gas Co Ltd Unit cell of solid oxide fuel cell and solid oxide fuel cell using the unit cell
US7108938B2 (en) 2002-07-19 2006-09-19 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
JP2004119161A (en) * 2002-09-25 2004-04-15 Ngk Spark Plug Co Ltd Unit cell for solid electrolyte fuel battery, fuel battery therewith and manufacturing method thereof
JP2005196981A (en) * 2003-12-26 2005-07-21 Ngk Spark Plug Co Ltd Intermediate body of fuel electrode supporting film type fuel cell, and manufacturing method of the same
JP4559068B2 (en) * 2003-12-26 2010-10-06 日本特殊陶業株式会社 Method for producing solid oxide fuel cell
JP2005216761A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel battery cell and fuel battery
JP2005327637A (en) * 2004-05-14 2005-11-24 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP4555050B2 (en) * 2004-11-02 2010-09-29 本田技研工業株式会社 Fuel cell
JP2006134597A (en) * 2004-11-02 2006-05-25 Honda Motor Co Ltd Fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2007005186A (en) * 2005-06-24 2007-01-11 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP4555173B2 (en) * 2005-06-24 2010-09-29 本田技研工業株式会社 Fuel cell and fuel cell stack
WO2007061043A1 (en) * 2005-11-25 2007-05-31 Nippon Telegraph And Telephone Corporation Solid oxide fuel cell
JP5065046B2 (en) * 2005-11-25 2012-10-31 日本電信電話株式会社 Solid oxide fuel cell
CN100456544C (en) * 2006-08-18 2009-01-28 中国科学院上海硅酸盐研究所 Anode supporting solid electrolyte compound film for solid oxide fuel battery and its preparing method
JP2009140694A (en) * 2007-12-05 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2009245603A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Manufacturing method for solid oxide fuel cell, and the solid oxide fuel cell manufactured by the manufacturing method
JP2009295521A (en) * 2008-06-09 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP2010177096A (en) * 2009-01-30 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing air electrode for solid oxide fuel cell and solid oxide fuel cell
JP2014123520A (en) * 2012-12-21 2014-07-03 Agc Seimi Chemical Co Ltd Gallate complex oxide, and solid oxide fuel cell using the same

Similar Documents

Publication Publication Date Title
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP5469795B2 (en) Anode-supported solid oxide fuel cell using cermet electrolyte
WO2016080019A1 (en) Anode for solid oxide fuel cell and manufacturing method therefor, and manufacturing method for electrolyte layer-electrode assembly for fuel cell
JP4252453B2 (en) Electrochemical cell and method for producing the same
JP2001283877A (en) Unit cell for solid electrolytic fuel battery and its manufacturing method
JP2000200614A (en) Electrode for solid-oxide fuel cell and its manufacture
JP2001351647A (en) Solid electrolyte fuel cell
KR20100050687A (en) Fabrication method of metal supported solid oxide fuel cell
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP2007200664A (en) Method of manufacturing solid oxide fuel cell
JP3643006B2 (en) Solid oxide fuel cell cell
JP4462727B2 (en) Solid electrolyte fuel cell
KR101146349B1 (en) Fabrication Method of Metal Supported Solid Oxide Fuel Cell
JP3434883B2 (en) Method for manufacturing fuel cell
JP2004186119A (en) Electrode forming method
JP2006059611A (en) Ceria based solid electrolyte fuel cell and its manufacturing method
JP4367843B2 (en) Fuel electrode, electrochemical cell, and method of manufacturing fuel electrode
JP3342621B2 (en) Solid oxide fuel cell
JP2006059610A (en) Solid electrolyte fuel cell and its manufacturing method
JP3342610B2 (en) Solid oxide fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JPWO2011001930A1 (en) Manufacturing method of electrolyte / electrode assembly
CN110088952B (en) Anode for an electrochemical cell and method for manufacturing an electrochemical cell comprising such an anode
JP2009245896A (en) Spacer for manufacturing solid oxide fuel cell, manufacturing method of member for solid oxide fuel cell using this, and manufacturing method of solid oxide fuel cell
JPH09129245A (en) Cell for solid electrolyte fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130