JP3640688B2 - Zn-Mg alloy plated steel sheet and manufacturing method - Google Patents

Zn-Mg alloy plated steel sheet and manufacturing method Download PDF

Info

Publication number
JP3640688B2
JP3640688B2 JP24335894A JP24335894A JP3640688B2 JP 3640688 B2 JP3640688 B2 JP 3640688B2 JP 24335894 A JP24335894 A JP 24335894A JP 24335894 A JP24335894 A JP 24335894A JP 3640688 B2 JP3640688 B2 JP 3640688B2
Authority
JP
Japan
Prior art keywords
layer
alloy
concentration
steel sheet
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24335894A
Other languages
Japanese (ja)
Other versions
JPH0881761A (en
Inventor
康 福居
宏 田中
雅典 松野
忠昭 三尾野
実 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP24335894A priority Critical patent/JP3640688B2/en
Publication of JPH0881761A publication Critical patent/JPH0881761A/en
Application granted granted Critical
Publication of JP3640688B2 publication Critical patent/JP3640688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、耐食性,耐パウダリング性,密着性,スポット溶接性,耐変色性等に優れたZn−Mg合金めっき鋼板及びその製造方法に関する。
【0002】
【従来の技術】
鋼板の耐食性を向上させるため、従来から各種の表面処理が採用されている。なかでも、代表的な表面処理方法であるZnめっきには、主として電気めっき法,溶融めっき法等が採用されている。
耐食性の向上に対する要求は年々高まる傾向にあり、これに伴って溶融めっき法,電気めっき法等において種々の改良が提案されている。
溶融めっき法でZnめっき鋼板の耐食性を向上させようとすると、Znめっき層の付着量を増加させることが先ず考えられる。しかし、製造面から付着量の上限が制約されるため、付着量の増加によって耐食性の向上を図ることには限界がある。また、付着量の増加、すなわちめっき層の厚膜化は、めっき鋼板をプレス成形するときにカジリ,フレーキング等の欠陥を発生させる原因になり易い。
【0003】
電気めっき法で同様に高付着量のめっき層を形成しようとすると、ラインスピードを遅くすることが必要になり、生産性が著しく損なわれる。そこで、電気めっき法では、Zn−Ni系等のZn合金めっきを施すことによって耐食性の向上を図っている。しかし、Zn−Ni合金めっき層は、硬質で脆いため、成形時にめっき層に割れや欠け等の欠陥を発生させ易い。このような欠陥がめっき層に発生すると、欠陥部を介して下地鋼が露出するため、めっき層本来の性能が発揮されず、欠陥部を起点とした腐食が進行する。
以上のような背景から、高耐食性のZn系合金めっき鋼板を蒸着で製造することが試みられている。なかでも、Zn−Mg合金めっきは、優れた防食作用を有する。たとえば、特開昭64−17853号公報では、0.5〜40重量%のMgを含むZn−Mg合金めっき層を形成することを開示している。また、Zn−Mg合金めっき層と下地鋼との間にZn,Ni,Cu,Mg,Al,Fe,Co,Ti等の中間層を介在させるとき、めっき層の密着性及び加工性が向上することが特開平2−141588号公報で紹介されている。
【0004】
【発明が解決しようとする課題】
高付着量のZn−Mg合金めっき鋼板では、プレス加工時にパウダリングが発生し易い欠点がある。特に、Mg濃度の上昇に伴ってめっき層にZn−Mgの金属間化合物が多くなった場合、Mgの平均濃度が低いときでも下地側に金属間化合物が存在する場合等において、この傾向が顕著になる。これは、Zn−Mg金属間化合物層が硬くて脆いためであり、高い延性をもつ下地鋼板の変形に追従できず、界面剥離や亀裂を起こすことに原因がある。
パウダリングは、Mg濃度の低下によってめっき層に含まれる金属間化合物の量を下げ、延性を高くすることによって解消される。しかし、Mg濃度の低下は、めっき層の防食作用を低下させる。また、表面側のみを高Mg濃度にしても耐パウダリング性が改善されるが、めっき層の表面がMg濃化によって黒色に変色し、めっき鋼板の商品価値を下げる。しかも、めっき層表面の高Mg濃度は、溶接電極に対するMgの拡散を促進させ、スポット溶接性を低下させる。
本発明は、このような問題を解消すべく案出されたものであり、Zn−Mg合金めっき層を特定組成の多層構造とすることにより、高Mg濃度に起因する欠陥を抑制し、耐食性,耐パウダリング性,密着性,スポット溶接性,耐変色性等に優れたZn−Mg合金めっき鋼板を得ること目的とする。
【0005】
【課題を解決するための手段】
本発明のZn−Mg合金めっき鋼板は、その目的を達成するため、図1に示す基本的な層構成をもっている。下地鋼の表面にはMg濃度0.5重量%以下のZn−Mg合金層があり、その上にMg濃度7重量%以上のZn−Mg合金層及びMg濃度0.5重量%以下のZn−Mg合金層が順次積層されている。
この基本層構成よりも高耐食性が要求される場合、図2に示すように、Mg濃度0.5重量%以下のZn−Mg合金層とMg濃度7重量%以上のZn−Mg合金層との間にMg濃度2〜7重量%のZn−Mg合金層を設ける。
Mg濃度7重量%以上のZn−Mg合金層は、高湿潤環境における耐食性を確保する観点から、Mg含有量の上限を20重量%にすることが好ましい。
【0006】
蒸着時の雰囲気にO2 やH2 Oが含まれていると、鋼板表面が酸化され、めっき層の密着性が低下する。また、表面活性化後に直ちに蒸着が行われず、鋼板表面の汚染が予想される場合にあっても、めっき層の密着性が低下する虞れがある。このような場合、鋼板表面に対するZn−Mg合金めっき層の密着性を図るため、図3又は図4に示すようにZn−Fe合金層又はZn−Fe−Mg合金層を形成する。
Zn−Fe合金層又はZn−Fe−Mg合金層は、それらによる成形時のパウダリングを防止するため、層厚を0.5μm以下にすることが好ましい。また、Zn−Fe合金層又はZn−Fe−Mg合金層に含まれるFe濃度は、通常6重量%以上にする。
【0007】
これらのめっき鋼板は、鋼板表面にZn蒸着→Mg蒸着→Zn蒸着を順次行った後で加熱することによって形成される。或いは、蒸着割合を変えながら、Zn及びMgを同時蒸着することによっても、必要とする層構成をもつZn−Mg合金めっき層が形成される。
蒸着後の加熱温度,加熱時間等の条件を制御することにより、必要とする厚みをもったZn−Fe合金層又はZn−Fe−Mg合金層が下地鋼とめっき層との界面に形成される。たとえば、50秒以内の短時間加熱では加熱温度を270〜370℃に、1時間以上の長時間加熱では加熱温度を150〜250℃に設定する。また、加熱処理に代えて、蒸着終了時の鋼板温度が270〜370℃となるように条件を設定することによっても、所定の層構成をもったZn−Mg合金めっき層を形成することができる。
蒸着法で形成されたZn−Mg合金めっき層には、通常、酸化したMg濃化層が表面に存在する。初期の耐食性が重視される用途ではMg濃化層をそのまま残しておくが、スポット溶接性が重視される用途や表面の黒変色を防止する場合には、酸洗等によってMg濃化層を除去する。
【0008】
【作用】
本発明に従ったZn−Mg合金めっき層は、中心部にMg濃度の高い部分があり、その上下にある層のMg濃度が低くなった多層構成をもっている。Mg濃度が0.5重量%以下の低い層は、比較的溶出速度が大きく、犠牲防食作用を呈し、疵付き部等における鋼板露出部の赤錆発生を防止する。特に、初期の赤錆発生防止に有効である。Mg濃度が7重量%以上と高い層は、耐食性が高く、めっき層自体の腐食寿命を長くする。また、Mg濃度が高い層から溶け出したMgは、防食性に優れたZnの腐食生成物であるZnCl2・4Zn (OH)2やZn (OH)2の生成を促進させ、耐食性を向上させる。Mg濃度が2〜7重量%と中間濃度のZn−Mg合金層は、低Mg濃度層と高Mg濃度層との中間の性質を示し、更に耐食性を向上させる。このような各層の作用が相乗的に働き、従来にない優れた耐食性が発揮される。
【0009】
めっきされた鋼板をプレス加工等で変形させるとき、Mg濃度0.5重量%以下のZn−Mg合金層に延性があるため、ほとんど変形しない高Mg濃度のZn−Mg合金層と下地鋼との間の加工時における変形量の差を吸収する。その結果、パウダリングの発生が抑制される。
めっき層の表層は、めっき後の鋼板を酸洗し、表面の酸化したMg濃化層を除去することによって、スポット溶接時に溶接電極と接する面のMg濃度が0.5重量%以下になる。低Mg層は、溶接電極へのMg拡散を少なくし、スポット溶接性を向上させる。また、表面に多量のMgが存在すると、Znの酸化物や水酸化物が不飽和になり、黒変色が生じる。この黒変色も、表層のMg濃度を0.5重量%以下にすることによって防止できる。
【0010】
【実施例】
本発明に従っためっき鋼板の作製
めっき原板として、C:0.002重量%,Si:0.02重量%,Mn:0.21重量%,P:0.007重量%,S:0.001重量%,Ti:0.076重量%,Al:0.031重量%の組成を持ち、板厚0.8mmの鋼板を使用した。めっき原板をN2 −50%H2 ガス雰囲気中で還元加熱することにより表面の酸化膜を除去した後、真空室にセットした。真空室は、ポンプで排気しながら露点−60℃のN2 ガスを導入し、N2 分圧を5×10-2トールに維持した。この真空室内で、次の手順で蒸着した。
Zn→Mg→Znの順番で蒸着し、トータルで片面当り100g/m2 の蒸着量に設定し、最初に蒸着するZn量と最後に蒸着するZn量を同一にした。
【0011】
下地鋼とめっき層との界面にZn−Fe合金層又はZn−Fe−Mg合金層がある3層構造(図3)又は5層構造(図4)のめっき鋼板を製造する場合、200℃に保持した鋼板表面にZn→Mg→Znの順番で蒸着した後、真空室を700トールのN2 で満たし、5〜10秒間加熱した。加熱温度は、3層構造(図3)のめっき層を形成する場合には270〜330℃、5層構造(図4)のめっき層を形成する場合には330〜370℃とした。これにより、Zn−Fe合金層又はZn−Fe−Mg合金層は、約0.2μmの厚みとなった。これにより、中心付近のMg濃度が最も高い層では約10重量%のMg濃度となり、上下層のMg濃度は0.5重量%以下になった。また、中間にある層のMg濃度は、約4重量%であった。
また、蒸着割合を変化させながらZn及びMgを同時に蒸着することにより、図1及び図2に示す層構成をもった片面当りのZn付着量が100g/m2 のZn−Mg合金めっき層を形成した。各層の濃度は、先のもの(図3,4)と同じにした。このとき、蒸着時の鋼板を板温120℃に保持した。なお、蒸着後に、加熱処理は行わなかった。
【0012】
以上の各めっき鋼板を0.5%HCl水溶液で酸洗し、表面のMg濃化層を除去した。酸洗後のめっき鋼板は、十分に水洗した。得られためっき鋼板を観察したところ、表1に示す層構成をもつめっき層となっていた。
各めっき鋼板の特性を調査した。耐食性は、JIS Z2371に準拠した塩水噴霧試験を行い、赤錆発生時間で評価した。パウダリング性は、高さ4mm,R=0.5mmのビードを付けた金型に試験片を挟み、金型への加圧力500kgf及び引抜き速度200m/分で金型から試験片を引き抜くド−ロービード試験を行い、発生したパウダリングの量で評価した。スポット溶接性は、単相交流型の溶接機に先端径4.5mmのCF型Cu−1%Cr電極を装着し、連続溶接が可能な打点数によって評価した。黒変色は、温度50℃及び相対湿度60%の促進試験機の中に試験片を1000時間放置し、試験前後の明度差ΔL* によって評価した。
試験結果を示す表1から明らかなように、本発明に従った3層構造又は5層構造をもつZn−Mg合金めっき鋼板は、耐食性,耐パウダリング性,スポット溶接性,耐黒変色性の何れにおいても優れていた。また、図3及び図4の構造をもつめっき層が形成されたものでは、H2 OやO2 が数十ppm存在する酸化性の雰囲気で蒸着した場合でも、めっき層の密着性が良好であった。
【0013】
【表1】

Figure 0003640688
【0014】
比較例1
同じめっき原板を120℃に保持し、Zn及びMgの同時蒸着によって、片面当りの付着量が100g/mで均一組成をもつZn−Mg合金めっき層を形成した。
比較例2
鋼板温度を200℃に保持し、Zn→Mgの順に蒸着した後、270〜330℃に加熱することによって、下層がMg濃度0.5重量%以下のZn−Mg合金層,上層がMg濃度10重量%のZn−Mg合金層からなる2層構造のZn−Mg合金めっき鋼板をも作製した。このとき、付着量を片面当り100g/mに設定し、界面にZn−Fe合金層又はZn−Fe−Mg合金層が形成されるように温度管理した。
【0015】
比較例3
片面当り100g/m2 の付着量でMg→Znの順に蒸着し、270〜330℃に加熱することにより、Mg濃度約10重量%の下層とMg濃度0.5重量%の上層からなる2層構造のZn−Mg合金めっき鋼板を作製した。
比較例4
鋼板温度を90℃に保持し、Zn蒸着→Zn,Mg同時蒸着→Zn蒸着を順次行い、下層からZn層,Mg濃度約10重量%のZn−Mg合金層及びZn層の3層が積層したZn−Mg合金めっき鋼板を作製した。この場合も、付着量を片面当り100g/m2 に設定した。
めっき層表面にあるMg濃化層を除去するため、各めっき鋼板を0.5%HCl水溶液で10秒間酸洗し、十分に水洗した。得られたZn−Mg合金めっき鋼板について、同様な特性調査試験を行った結果を表2に示す。
【0016】
【表2】
Figure 0003640688
【0017】
表2の結果から明らかなように、比較例のめっき鋼板は、耐食性,耐パウダリング性,スポット溶接性及び黒変性の何れにおいても劣っていた。特に表層までMg濃度が高い比較例1,2では、明度変化 (ΔL*)が大きく、良好な表面状態が維持されなかった。比較例3のめっき鋼板は、表層のMg濃度が低いものの、パウダリングが多量に発生し、加工性に劣っていた。
【0018】
【発明の効果】
以上に説明したように、本発明のZn−Mg合金めっき鋼板は、下地鋼と高Mg濃度のZn−Mg合金層との間に延性のある低Mg濃度のZn−Mg合金層を介在させることにより、高Mg濃度のZn−Mg合金層の耐食性を維持し、且つ硬質な高Mg濃度のZn−Mg合金層と下地鋼との間で加工時に生じる変形量の差を低Mg濃度のZn−Mg合金層で吸収している。これにより、Zn−Mg合金めっき層本来の高耐食性が活用され、加工性が良好なめっき鋼板が得られる。しかも、表層のMg濃度が低下しているので、スポット溶接性も向上しためっき鋼板となる。
【図面の簡単な説明】
【図1】 3層構造をもつZn−Mg合金めっき層
【図2】 5層構造をもつZn−Mg合金めっき層
【図3】 下地鋼とめっき層との界面にZn−Fe合金層又はZn−Fe−Mg合金層を形成させた3層構造のZn−Mg合金めっき層
【図4】 下地鋼とめっき層との界面にZn−Fe合金層又はZn−Fe−Mg合金層を形成させた5層構造のZn−Mg合金めっき層[0001]
[Industrial application fields]
The present invention relates to a Zn-Mg alloy-plated steel sheet excellent in corrosion resistance, powdering resistance, adhesion, spot weldability, discoloration resistance, and the like, and a method for producing the same.
[0002]
[Prior art]
Conventionally, various surface treatments have been adopted to improve the corrosion resistance of the steel sheet. In particular, electroplating, hot dipping, etc. are mainly employed for Zn plating, which is a typical surface treatment method.
The demand for improved corrosion resistance tends to increase year by year, and various improvements have been proposed in the hot dipping method, electroplating method, and the like.
In order to improve the corrosion resistance of the Zn-plated steel sheet by the hot dipping method, it is considered firstly to increase the adhesion amount of the Zn plating layer. However, since the upper limit of the adhesion amount is restricted from the manufacturing aspect, there is a limit in improving the corrosion resistance by increasing the adhesion amount. Further, the increase in the amount of adhesion, that is, the thickening of the plating layer tends to cause defects such as galling and flaking when the plated steel sheet is press-formed.
[0003]
Similarly, when an electroplating method is used to form a plating layer having a high adhesion amount, it is necessary to reduce the line speed, and productivity is significantly impaired. Therefore, in the electroplating method, corrosion resistance is improved by applying Zn alloy plating such as Zn—Ni. However, since the Zn—Ni alloy plating layer is hard and brittle, defects such as cracks and chips are easily generated in the plating layer during molding. When such a defect occurs in the plated layer, the base steel is exposed through the defective portion, so that the original performance of the plated layer is not exhibited, and corrosion starts from the defective portion.
From the above background, it has been attempted to produce a highly corrosion-resistant Zn-based alloy-plated steel sheet by vapor deposition. Among these, the Zn—Mg alloy plating has an excellent anticorrosive action. For example, Japanese Patent Application Laid-Open No. 64-17853 discloses forming a Zn—Mg alloy plating layer containing 0.5 to 40% by weight of Mg. Further, when an intermediate layer such as Zn, Ni, Cu, Mg, Al, Fe, Co, Ti or the like is interposed between the Zn—Mg alloy plating layer and the base steel, the adhesion and workability of the plating layer are improved. This is introduced in Japanese Patent Laid-Open No. 2-141588.
[0004]
[Problems to be solved by the invention]
A Zn-Mg alloy-plated steel sheet with a high adhesion amount has a drawback that powdering is likely to occur during press working. In particular, when the Zn-Mg intermetallic compound increases in the plating layer as the Mg concentration increases, this tendency is remarkable when the intermetallic compound is present on the underlayer even when the average Mg concentration is low. become. This is because the Zn—Mg intermetallic compound layer is hard and brittle, and cannot follow the deformation of the underlying steel sheet having high ductility, and causes interfacial peeling and cracking.
Powdering is eliminated by lowering the amount of intermetallic compounds contained in the plating layer by increasing the Mg concentration and increasing ductility. However, a decrease in Mg concentration reduces the anticorrosive action of the plating layer. Further, even if only the surface side has a high Mg concentration, the powdering resistance is improved, but the surface of the plating layer turns black due to the Mg concentration, and the commercial value of the plated steel sheet is lowered. In addition, the high Mg concentration on the surface of the plating layer promotes the diffusion of Mg to the welding electrode and reduces spot weldability.
The present invention has been devised to solve such problems, and by making the Zn-Mg alloy plating layer a multilayer structure of a specific composition, defects due to high Mg concentration are suppressed, corrosion resistance, The object is to obtain a Zn-Mg alloy-plated steel sheet excellent in powdering resistance, adhesion, spot weldability, discoloration resistance and the like.
[0005]
[Means for Solving the Problems]
The Zn—Mg alloy plated steel sheet of the present invention has the basic layer structure shown in FIG. 1 in order to achieve the object. On the surface of the base steel, there is a Zn—Mg alloy layer with an Mg concentration of 0.5% by weight or less, and a Zn—Mg alloy layer with an Mg concentration of 7% by weight or more and a Zn—Mg alloy layer with an Mg concentration of 0.5% by weight or less. Mg alloy layers are sequentially stacked.
When higher corrosion resistance is required than the basic layer structure, as shown in FIG. 2, a Zn—Mg alloy layer having an Mg concentration of 0.5 wt% or less and a Zn—Mg alloy layer having an Mg concentration of 7 wt% or more are used. A Zn—Mg alloy layer having an Mg concentration of 2 to 7% by weight is provided therebetween.
In the Zn-Mg alloy layer having an Mg concentration of 7% by weight or more, the upper limit of the Mg content is preferably 20% by weight from the viewpoint of ensuring corrosion resistance in a highly humid environment.
[0006]
When the atmosphere at the time of vapor deposition contains O 2 or H 2 O, the surface of the steel sheet is oxidized and the adhesion of the plating layer is lowered. Further, even if the deposition is not performed immediately after the surface activation and the steel plate surface is expected to be contaminated, the adhesion of the plating layer may be lowered. In such a case, a Zn—Fe alloy layer or a Zn—Fe—Mg alloy layer is formed as shown in FIG. 3 or FIG. 4 in order to achieve adhesion of the Zn—Mg alloy plating layer to the steel sheet surface.
The Zn—Fe alloy layer or the Zn—Fe—Mg alloy layer preferably has a layer thickness of 0.5 μm or less in order to prevent powdering during molding. Moreover, the Fe concentration contained in the Zn—Fe alloy layer or Zn—Fe—Mg alloy layer is usually 6 wt% or more.
[0007]
These plated steel sheets are formed by heating after sequentially performing Zn deposition → Mg deposition → Zn deposition on the steel sheet surface. Alternatively, a Zn—Mg alloy plating layer having a required layer structure can be formed by simultaneously depositing Zn and Mg while changing the deposition rate.
By controlling conditions such as heating temperature and heating time after vapor deposition, a Zn-Fe alloy layer or Zn-Fe-Mg alloy layer having the required thickness is formed at the interface between the base steel and the plating layer. . For example, the heating temperature is set to 270 to 370 ° C. for short time heating within 50 seconds, and the heating temperature is set to 150 to 250 ° C. for long time heating for 1 hour or more. Moreover, it can replace with heat processing and can form the Zn-Mg alloy plating layer with a predetermined | prescribed layer structure also by setting conditions so that the steel plate temperature at the time of completion | finish of vapor deposition may be 270-370 degreeC. .
In the Zn—Mg alloy plating layer formed by the vapor deposition method, an oxidized Mg concentrated layer is usually present on the surface. In applications where the initial corrosion resistance is important, the Mg-concentrated layer is left as it is. However, in cases where spot weldability is important or when the surface is prevented from blackening, the Mg-concentrated layer is removed by pickling or the like. To do.
[0008]
[Action]
The Zn—Mg alloy plating layer according to the present invention has a multilayer structure in which there is a portion with a high Mg concentration at the center, and the Mg concentration of the layers above and below it is low. A layer having a low Mg concentration of 0.5% by weight or less has a relatively high elution rate, exhibits a sacrificial anticorrosive action, and prevents red rust from appearing on the exposed portion of the steel sheet in the brazed portion or the like. In particular, it is effective for preventing the initial occurrence of red rust. A layer having a high Mg concentration of 7% by weight or more has high corrosion resistance and extends the corrosion life of the plating layer itself. In addition, Mg dissolved from a layer having a high Mg concentration promotes the generation of ZnCl 2 .4Zn (OH) 2 and Zn (OH) 2 which are corrosion products of Zn having excellent anticorrosion properties, and improves corrosion resistance. . A Zn—Mg alloy layer having an Mg concentration of 2 to 7 wt% and an intermediate concentration exhibits intermediate properties between the low Mg concentration layer and the high Mg concentration layer, and further improves the corrosion resistance. Such an action of each layer works synergistically, and excellent corrosion resistance unprecedented is exhibited.
[0009]
When a plated steel sheet is deformed by press working or the like, the Zn-Mg alloy layer having an Mg concentration of 0.5 wt% or less is ductile, so there is little deformation between the high Mg concentration Zn-Mg alloy layer and the underlying steel. Absorbs the difference in deformation during machining. As a result, the occurrence of powdering is suppressed.
As for the surface layer of the plating layer, the plated steel sheet is pickled, and the oxidized Mg concentrated layer on the surface is removed, so that the Mg concentration on the surface in contact with the welding electrode during spot welding becomes 0.5% by weight or less. The low Mg layer reduces Mg diffusion to the welding electrode and improves spot weldability. Further, when a large amount of Mg is present on the surface, the oxide or hydroxide of Zn becomes unsaturated and black discoloration occurs. This black discoloration can also be prevented by setting the Mg concentration in the surface layer to 0.5% by weight or less.
[0010]
【Example】
Production of Plated Steel Sheet According to the Present Invention As a plating base plate, C: 0.002 wt%, Si: 0.02 wt%, Mn: 0.21 wt%, P: 0.007 wt%, S: 0.001 A steel plate having a composition of wt%, Ti: 0.076 wt%, Al: 0.031 wt% and a plate thickness of 0.8 mm was used. The plating original plate was reduced and heated in an N 2 -50% H 2 gas atmosphere to remove the surface oxide film, and then set in a vacuum chamber. In the vacuum chamber, N 2 gas having a dew point of −60 ° C. was introduced while evacuating with a pump, and the N 2 partial pressure was maintained at 5 × 10 −2 Torr. In this vacuum chamber, vapor deposition was performed by the following procedure.
Evaporation was performed in the order of Zn → Mg → Zn, and the total deposition amount was set to 100 g / m 2 per side, and the Zn amount deposited first and the Zn amount deposited last were the same.
[0011]
When manufacturing a plated steel sheet having a three-layer structure (FIG. 3) or a five-layer structure (FIG. 4) having a Zn—Fe alloy layer or a Zn—Fe—Mg alloy layer at the interface between the base steel and the plated layer, the temperature is set to 200 ° C. After vapor deposition in the order of Zn → Mg → Zn on the retained steel plate surface, the vacuum chamber was filled with N 2 of 700 Torr and heated for 5 to 10 seconds. The heating temperature was set to 270 to 330 ° C. when forming a plating layer having a three-layer structure (FIG. 3) and 330 to 370 ° C. when forming a plating layer having a five-layer structure (FIG. 4). Thereby, the thickness of the Zn—Fe alloy layer or the Zn—Fe—Mg alloy layer was about 0.2 μm. As a result, the Mg concentration in the vicinity of the center with the highest Mg concentration was about 10 wt%, and the Mg concentration in the upper and lower layers was 0.5 wt% or less. Further, the Mg concentration of the intermediate layer was about 4% by weight.
Further, by simultaneously depositing Zn and Mg while changing the deposition rate, a Zn-Mg alloy plating layer having a layer structure shown in FIGS. 1 and 2 and having a Zn deposition amount of 100 g / m 2 per side is formed. did. The concentration of each layer was the same as the previous one (FIGS. 3 and 4). At this time, the steel plate during vapor deposition was kept at a plate temperature of 120 ° C. Note that no heat treatment was performed after vapor deposition.
[0012]
Each of the above plated steel sheets was pickled with a 0.5% HCl aqueous solution to remove the Mg concentrated layer on the surface. The plated steel sheet after pickling was thoroughly washed with water. When the obtained plated steel sheet was observed, it was a plated layer having the layer structure shown in Table 1.
The characteristics of each plated steel sheet were investigated. Corrosion resistance was evaluated by a red rust occurrence time by performing a salt spray test based on JIS Z2371. The powdering property is such that a test piece is sandwiched between a mold having a bead with a height of 4 mm and R = 0.5 mm, and the test piece is pulled out of the mold at a pressure of 500 kgf and a drawing speed of 200 m / min. A low bead test was performed and the amount of generated powdering was evaluated. Spot weldability was evaluated based on the number of striking points on which a CF-type Cu-1% Cr electrode having a tip diameter of 4.5 mm was attached to a single-phase AC type welding machine and continuous welding was possible. The black discoloration was evaluated by a lightness difference ΔL * before and after the test, which was left for 1000 hours in an accelerated tester at a temperature of 50 ° C. and a relative humidity of 60%.
As is apparent from Table 1 showing the test results, the Zn-Mg alloy-plated steel sheet having a three-layer structure or a five-layer structure according to the present invention has corrosion resistance, powdering resistance, spot weldability, and black discoloration resistance. Both were excellent. Further, in the case where the plating layer having the structure of FIGS. 3 and 4 is formed, the adhesion of the plating layer is good even when vapor deposition is performed in an oxidizing atmosphere where H 2 O or O 2 is present at several tens of ppm. there were.
[0013]
[Table 1]
Figure 0003640688
[0014]
Comparative Example 1
The same plating base plate was kept at 120 ° C., and a Zn—Mg alloy plating layer having a uniform composition with an adhesion amount per side of 100 g / m 2 was formed by simultaneous vapor deposition of Zn and Mg.
Comparative Example 2
The steel plate temperature is maintained at 200 ° C., and after vapor deposition in the order of Zn → Mg, the lower layer is heated to 270 to 330 ° C., so that the lower layer is a Zn—Mg alloy layer having an Mg concentration of 0.5 wt% or less, and the upper layer has an Mg concentration of 10 A Zn-Mg alloy-plated steel sheet having a two-layer structure consisting of a wt% Zn-Mg alloy layer was also produced. At this time, the adhesion amount was set to 100 g / m 2 per side, and the temperature was controlled so that a Zn—Fe alloy layer or a Zn—Fe—Mg alloy layer was formed at the interface.
[0015]
Comparative Example 3
Two layers consisting of a lower layer with an Mg concentration of about 10% by weight and an upper layer with an Mg concentration of 0.5% by weight are deposited in the order of Mg → Zn in an adhesion amount of 100 g / m 2 per side and heated to 270 to 330 ° C. A Zn—Mg alloy-plated steel sheet having a structure was prepared.
Comparative Example 4
The steel plate temperature was maintained at 90 ° C., and Zn vapor deposition → Zn and Mg simultaneous vapor deposition → Zn vapor deposition were sequentially performed, and a Zn layer, a Zn—Mg alloy layer having an Mg concentration of about 10 wt%, and a Zn layer were laminated from the lower layer. A Zn-Mg alloy plated steel sheet was prepared. Also in this case, the adhesion amount was set to 100 g / m 2 per side.
In order to remove the Mg concentrated layer on the surface of the plating layer, each plated steel sheet was pickled with a 0.5% HCl aqueous solution for 10 seconds and sufficiently washed with water. Table 2 shows the results of a similar characteristic investigation test performed on the obtained Zn-Mg alloy-plated steel sheet.
[0016]
[Table 2]
Figure 0003640688
[0017]
As is clear from the results in Table 2, the plated steel sheet of the comparative example was inferior in all of corrosion resistance, powdering resistance, spot weldability and blackening. Particularly in Comparative Examples 1 and 2 where the Mg concentration was high up to the surface layer, the brightness change (ΔL * ) was large, and a good surface state was not maintained. Although the plated steel sheet of Comparative Example 3 had a low surface layer Mg concentration, a large amount of powdering occurred and the workability was poor.
[0018]
【The invention's effect】
As explained above, the Zn-Mg alloy plated steel sheet of the present invention has a ductile low Mg concentration Zn-Mg alloy layer interposed between the base steel and the high Mg concentration Zn-Mg alloy layer. Thus, the corrosion resistance of the Zn-Mg alloy layer having a high Mg concentration is maintained, and the difference in deformation caused during processing between the hard Zn-Mg alloy layer having a high Mg concentration and the base steel is reduced by Zn- having a low Mg concentration. It is absorbed by the Mg alloy layer. Thereby, the high corrosion resistance inherent in the Zn—Mg alloy plating layer is utilized, and a plated steel sheet having good workability can be obtained. And since the Mg density | concentration of surface layer is falling, it becomes a plated steel plate which also improved the spot weldability.
[Brief description of the drawings]
[Fig. 1] Zn-Mg alloy plating layer having a three-layer structure [Fig. 2] Zn-Mg alloy plating layer having a five-layer structure [Fig. 3] Zn-Fe alloy layer or Zn at the interface between the base steel and the plating layer A Zn-Mg alloy plating layer having a three-layer structure in which a -Fe-Mg alloy layer is formed. Fig. 4 A Zn-Fe alloy layer or a Zn-Fe-Mg alloy layer is formed at the interface between the base steel and the plating layer. 5-layer Zn-Mg alloy plating layer

Claims (4)

Mg濃度0.5重量%以下のZn−Mg合金層,Mg濃度7重量%以上のZn−Mg合金層及びMg濃度0.5重量%以下のZn−Mg合金層が順次積層されているZn−Mg合金めっき鋼板。A Zn—Mg alloy layer having an Mg concentration of 0.5 wt% or less, a Zn—Mg alloy layer having an Mg concentration of 7 wt% or more, and a Zn—Mg alloy layer having an Mg concentration of 0.5 wt% or less are sequentially laminated. Mg alloy plated steel sheet. Mg濃度0.5重量%以下のZn−Mg合金層,Mg濃度2〜7重量%のZn−Mg合金層,Mg濃度7重量%以上のZn−Mg合金層,Mg濃度7重量%以上のZn−Mg合金層,Mg濃度2〜7重量%のZn−Mg合金層及びMg濃度0.5重量%以下のZn−Mg合金層が順次積層されているZn−Mg合金めっき鋼板。Zn-Mg alloy layer with Mg concentration of 0.5 wt% or less, Zn-Mg alloy layer with Mg concentration of 2-7 wt%, Zn-Mg alloy layer with Mg concentration of 7 wt% or more, Zn with Mg concentration of 7 wt% or more A Zn-Mg alloy-plated steel sheet in which a Mg alloy layer, a Zn-Mg alloy layer with a Mg concentration of 2 to 7% by weight, and a Zn-Mg alloy layer with a Mg concentration of 0.5% by weight or less are sequentially laminated. 下地鋼との界面にZn−Fe合金層又はZn−Fe−Mg合金層が形成されている請求項1又は2記載のZn−Mg合金めっき鋼板。The Zn-Mg alloy plated steel sheet according to claim 1 or 2, wherein a Zn-Fe alloy layer or a Zn-Fe-Mg alloy layer is formed at an interface with the base steel. 鋼板にZn,Mg及びZnを順次蒸着し、次いで加熱することを特徴とする請求項1〜3の何れかに記載のZn−Mg合金めっき鋼板の製造方法。The method for producing a Zn-Mg alloy-plated steel sheet according to any one of claims 1 to 3, wherein Zn, Mg and Zn are sequentially deposited on the steel sheet and then heated.
JP24335894A 1994-09-12 1994-09-12 Zn-Mg alloy plated steel sheet and manufacturing method Expired - Fee Related JP3640688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24335894A JP3640688B2 (en) 1994-09-12 1994-09-12 Zn-Mg alloy plated steel sheet and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24335894A JP3640688B2 (en) 1994-09-12 1994-09-12 Zn-Mg alloy plated steel sheet and manufacturing method

Publications (2)

Publication Number Publication Date
JPH0881761A JPH0881761A (en) 1996-03-26
JP3640688B2 true JP3640688B2 (en) 2005-04-20

Family

ID=17102655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24335894A Expired - Fee Related JP3640688B2 (en) 1994-09-12 1994-09-12 Zn-Mg alloy plated steel sheet and manufacturing method

Country Status (1)

Country Link
JP (1) JP3640688B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW359688B (en) * 1995-02-28 1999-06-01 Nisshin Steel Co Ltd High anticorrosion Zn-Mg series-plated steel sheet and method of manufacture it
KR101439694B1 (en) 2012-12-26 2014-09-12 주식회사 포스코 Zn-Mg ALLOY COATED STEEL SHEET AND MEHTDOD FOR MANUFACTURING THE SAME
KR101867732B1 (en) 2016-12-22 2018-06-14 주식회사 포스코 Coated steel sheet having multi-layers and method for manufacturing the same
KR101819394B1 (en) 2016-12-23 2018-01-16 주식회사 포스코 Zinc-magnesium alloy plated steel material having excellent adhesion to plating
CN110114501B (en) 2016-12-26 2022-02-08 Posco公司 Multilayer zinc alloy-plated steel material having excellent spot weldability and corrosion resistance
KR102109242B1 (en) * 2017-12-26 2020-05-11 주식회사 포스코 Multi-layered zinc alloy plated steel material having excellent spot weldability and corrosion resistance

Also Published As

Publication number Publication date
JPH0881761A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
KR100295174B1 (en) High corrosion resistance ZN-MG plated steel sheet and its manufacturing method
TWI394658B (en) Steel sheet for containers
EP0036778B1 (en) Steel member plated with pb-sn alloy and a method of making same
EP2071055B1 (en) Steel plate for container, and method for production thereof
JP2009001854A (en) Steel sheet for vessel
JPH04214895A (en) Surface treated steel sheet excellent in plating performance and weldability and manufacture thereof
JP3640688B2 (en) Zn-Mg alloy plated steel sheet and manufacturing method
US5849423A (en) Zinciferous plated steel sheet and method for manufacturing same
KR20120041619A (en) Galvanizing steel sheet having good galvanizabilty and adhesion and method for manufacturing the same
JPH09228030A (en) High workability zinc-magnesium alloy plated steel sheet having low magnesium concentration and its production
JPH08239754A (en) Zn-mg alloy plated steel sheet excellent in secondary adhesion and corrosion resistance
JP3111903B2 (en) Manufacturing method of galvanized steel sheet
JPH0841627A (en) Zn-mg alloy plated steel sheet excellent in spot weldability
JPH03287786A (en) Zinc plated steel sheet having superior press formability, chemical convertibility and weldability
JPH09137267A (en) Alloyed zinc-magnesium base plated steel sheet excellent in corrosion resistance and its production
JPH0978229A (en) Production of zinc-magnesium alloy plated steel sheet
JPH09111438A (en) Zinc-magnesium alloy plated steel sheet excellent in corrosion resistance in edge face and its production
JP2724045B2 (en) Method for producing chromium-containing steel sheet plated with hot-dip zinc or zinc alloy
WO1993016210A1 (en) Al-Si-Cr-PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND PRODUCTION THEREOF
JPH07207430A (en) Zn-mg alloy plated steel sheet excellent in corrosion resistance after coating and corrosion resistance at exposed part
JP3207958B2 (en) Composite Al alloy plated steel sheet and method for producing the same
JPH09143792A (en) Production of galvanized steel sheet
JPS6323277B2 (en)
JPH0713308B2 (en) Galvanized steel sheet with excellent press formability, chemical conversion treatment and weldability
KR20200063837A (en) Alloyed aluminium coated steel sheet having excellent weldability and phosphating properties and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees