JPH0978229A - Production of zinc-magnesium alloy plated steel sheet - Google Patents

Production of zinc-magnesium alloy plated steel sheet

Info

Publication number
JPH0978229A
JPH0978229A JP25815495A JP25815495A JPH0978229A JP H0978229 A JPH0978229 A JP H0978229A JP 25815495 A JP25815495 A JP 25815495A JP 25815495 A JP25815495 A JP 25815495A JP H0978229 A JPH0978229 A JP H0978229A
Authority
JP
Japan
Prior art keywords
layer
steel sheet
plating
alloy
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25815495A
Other languages
Japanese (ja)
Inventor
Kazuyuki Sakamoto
和志 坂本
Yasumi Ariyoshi
康実 有吉
Yasushi Fukui
康 福居
Minoru Saito
実 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP25815495A priority Critical patent/JPH0978229A/en
Publication of JPH0978229A publication Critical patent/JPH0978229A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Abstract

PROBLEM TO BE SOLVED: To produce a Zn-Mg alloy plated steel sheet totally excellent in various characteristics such as corrosion resistance, coating adhesion, workability, weldability or the like. SOLUTION: A continuously running steel sheet is introduced into a vacuum chamber and is applied with vapor deposition plating in the order of Zn, Mg and Zn. After that, the plated steel sheet is cooled under the conditions in which the steel sheet temp. immediately after the completion of the vapor deposition plating is regulated to <=370 deg.C, the steel sheet temp. after 10sec from the completion of the vapor deposition plating is regulated to <=340 deg.C, the steel sheet temp. after 20sec is regulated to <=320 deg.C and the steel sheet temp. after 40sec is regulated to <=300 deg.C. Thus, the diffusion of Zn and Mg is suitably controlled to form a Zn-Mg alloy plating layer having an optimum laminated structure of three layers or five layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐食性、塗装性、加工
性、溶接性等に優れ、建材、家電、自動車等の構造材,
部品材料として好適なZn−Mg合金めっき鋼板を製造
する方法に関する。
BACKGROUND OF THE INVENTION The present invention has excellent corrosion resistance, paintability, workability, weldability, etc., and is a structural material for building materials, home appliances, automobiles, etc.
The present invention relates to a method for producing a Zn-Mg alloy plated steel sheet suitable as a component material.

【0002】[0002]

【従来の技術】鋼板の耐食性を向上させるため、従来か
ら各種の表面処理が採用されている。なかでも、代表的
な表面処理方法であるZnめっきには、主として電気め
っき法、溶融めっき法が採用されている。耐食性の向上
に対する要求は年々高まる傾向にあり、これに伴って溶
融めっき法、電気めっき法において種々の改良が提案さ
れている。溶融めっき法でZnめっき鋼板の耐食性を向
上させようとすると、Znめっき層の付着量を増加させ
る、すなわち、めっき層を厚くすることが先ず考えられ
る。しかし、製造面からの制約により付着量には上限が
あり、付着量の増加によって耐食性の向上を図ることに
は限界がある。また、めっき層が厚くなると、めっき鋼
板をプレス形成するときにカジリ、フレーキング等の欠
陥を発生させる原因になりやすい。
2. Description of the Related Art Various surface treatments have conventionally been employed to improve the corrosion resistance of steel sheets. Among them, an electroplating method and a hot-dip plating method are mainly used for Zn plating, which is a typical surface treatment method. The demand for improvement in corrosion resistance tends to increase year by year, and accordingly, various improvements in hot-dip plating and electroplating have been proposed. In order to improve the corrosion resistance of the Zn-plated steel sheet by the hot dip coating method, it is first considered to increase the amount of the Zn-plated layer attached, that is, to thicken the plated layer. However, there is an upper limit to the amount of adhesion due to restrictions from the viewpoint of manufacturing, and there is a limit to improving the corrosion resistance by increasing the amount of adhesion. Further, if the plating layer becomes thick, it tends to cause defects such as galling and flaking when the plated steel sheet is press-formed.

【0003】一方、電気めっき法で同様に付着量を増加
させることも考えられる。しかし、電気めっき法で付着
量を増加させることは、めっき金属の折出に必要な電気
量を増加させ、めっき鋼板のコストを上昇させる原因と
なる。そこで、電気めっき法では、Zn−Ni合金めっ
き等のZn合金めっきを施すことによって耐食性の向上
を図っている。しかし、Zn−Ni合金めっき層は、硬
質で脆く、成形加工の際めっき層に割れや欠け等の欠陥
を発生させやすい。このような欠陥がめっき層に発生す
ると、欠陥部を介して下地鋼が露出するため、めっき層
本来の性能が発揮されず、欠陥部を起点とした腐食が進
行する。以上のような背景から、高耐食性のZn系合金
めっき鋼板を蒸着法で製造することが試みられている。
なかでも、Zn−Mg合金めっきは、優れた防食作用を
呈する材料として注目されている。たとえば、特開昭6
4−17853号公報では、0.5〜40重量%のMg
を含むZn−Mg合金めっき層を形成することを開示し
ている。また、Zn−Mg合金めっき層と下地鋼との間
にZn,Ni,Cu,Mg,Al,Fe,Co、Ti等
の中間層を介在させることによりめっき層の密着性及び
加工性が向上することが特開平2−141588号公報
で紹介されている。
On the other hand, it is conceivable that the amount of adhesion is similarly increased by electroplating. However, increasing the amount of adhesion by the electroplating method increases the amount of electricity required for depositing the plated metal, and causes an increase in the cost of the plated steel sheet. Therefore, in the electroplating method, the corrosion resistance is improved by applying a Zn alloy plating such as a Zn-Ni alloy plating. However, the Zn—Ni alloy plating layer is hard and brittle, and tends to generate defects such as cracks and chips in the plating layer during molding. When such a defect occurs in the plating layer, the underlying steel is exposed through the defective portion, so that the original performance of the plating layer is not exhibited, and corrosion starting from the defective portion proceeds. From the above background, it has been attempted to manufacture a Zn-based alloy plated steel sheet having high corrosion resistance by a vapor deposition method.
Among them, Zn-Mg alloy plating is drawing attention as a material exhibiting an excellent anticorrosion effect. For example, JP-A-6
In JP-A-4-17853, 0.5 to 40% by weight of Mg is used.
It is disclosed that a Zn-Mg alloy plating layer containing is formed. Further, by interposing an intermediate layer of Zn, Ni, Cu, Mg, Al, Fe, Co, Ti or the like between the Zn-Mg alloy plating layer and the base steel, the adhesion and workability of the plating layer are improved. This is introduced in Japanese Patent Laid-Open No. 2-141588.

【0004】本発明者等も、めっき層の中央部に高Mg
濃度層を形成し、その上下に低Mg濃度層を形成した積
層型構造のZn−Mg合金めっき鋼板が、耐パウダリン
グ性、耐食性、スポット溶接性、密着性、耐変色性等で
優れた特性を発揮することを見出し、特願平6−243
358号で提案した。更に塗装後の塗膜の二次密着性と
高耐食性を両立させたものとして、最表層である低Mg
濃度層の付着量を規定すると共に、最表層である低Mg
濃度層の付着量に対する第1層の低Mg濃度層の付着量
比率を規定したZn−Mg合金めっき鋼板を、特願平7
−65096号として出願した。また、積層構造を有す
るZn−Mg合金めっき鋼板の製造方法として、連続走
行する鋼板上にZn,Mg、Znの順に独立して順次蒸
着めっきを行い、蒸着終了後のめっき鋼板が持つ熱によ
ってZnとMgの拡散反応を進行させることを特願平6
−58624号,特願平6−205928号等で提案し
た。
The present inventors have also found that the high Mg content in the center of the plating layer
A Zn-Mg alloy plated steel sheet having a laminated structure in which a concentration layer is formed and low Mg concentration layers are formed above and below the layer has excellent properties such as powdering resistance, corrosion resistance, spot weldability, adhesion, and discoloration resistance. To find out that the Japanese Patent Application No. 6-243
Proposed in No. 358. Furthermore, as the one having both secondary adhesion and high corrosion resistance of the coating film after coating, low Mg which is the outermost layer.
The amount of adhesion of the concentration layer is regulated, and the outermost layer of low Mg
A Zn-Mg alloy plated steel sheet in which the ratio of the amount of the low Mg concentration layer of the first layer to the amount of the concentration layer adhered is regulated is disclosed in Japanese Patent Application No.
-65096 was filed. In addition, as a method for manufacturing a Zn-Mg alloy plated steel sheet having a laminated structure, Zn, Mg, and Zn are sequentially vapor-deposited on a continuously-run steel sheet in this order, and Zn is heated by the heat of the plated steel sheet after vapor deposition. Patent application No. 6
-58624 and Japanese Patent Application No. 6-205928.

【0005】[0005]

【発明が解決しようとする課題】Zn−Mg合金めっき
鋼板の製造に際し、蒸着終了後の鋼板の保有熱でZnと
Mgの拡散を進行させることにより、積層構造のZn−
Mg合金めっき層が形成される。しかし、蒸着終了後の
鋼板を冷却する冷却速度が小さいと、冷却中にもめっき
層内でZnとMgの拡散が進行する。その結果、最終的
にめっき層の断面構造が適正なものとならず、Zn−M
g合金めっき鋼板が有する本来の耐食性、塗装性などの
特性が発揮されないことがある。本発明は、このような
問題を解消べく案出されたものであり、蒸着めっき後の
冷却条件を規定することによって、常に適正な断面構造
を有するZn−Mg合金めっき鋼板を製造することを目
的とする。
When a Zn-Mg alloy plated steel sheet is manufactured, the diffusion of Zn and Mg is promoted by the retained heat of the steel sheet after the completion of vapor deposition, so that the Zn-Mg alloy sheet having a laminated structure is formed.
A Mg alloy plating layer is formed. However, if the cooling rate for cooling the steel sheet after vapor deposition is low, Zn and Mg diffuse in the plating layer even during cooling. As a result, the cross-sectional structure of the plating layer was not finally proper, and Zn-M
The original properties of the g-alloy plated steel sheet, such as corrosion resistance and paintability, may not be exhibited. The present invention has been devised to solve such a problem, and an object of the present invention is to always manufacture a Zn-Mg alloy plated steel sheet having an appropriate cross-sectional structure by defining cooling conditions after vapor deposition plating. And

【0006】[0006]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、連続して走行する鋼板を真空室
に導入し、Zn,Mg,Znの順に蒸着めっきした後、
蒸着めっき完了直後の鋼板温度が370℃以下、蒸着め
っき完了から10秒後の鋼板温度が340℃以下、20
秒後の鋼板温度が320℃以下、40秒後の鋼板温度が
300℃以下になる冷却条件下で、めっき後の鋼板を冷
却することを特徴とする。
In order to achieve the object, the manufacturing method of the present invention introduces a continuously running steel plate into a vacuum chamber, deposits Zn, Mg and Zn in order and then
Steel plate temperature immediately after completion of vapor deposition plating is 370 ° C. or lower, steel plate temperature 10 seconds after completion of vapor deposition plating is 340 ° C. or lower, 20
The steel sheet after plating is cooled under cooling conditions such that the steel sheet temperature after 3 seconds is 320 ° C. or less and the steel sheet temperature after 40 seconds is 300 ° C. or less.

【0007】[0007]

【作用】適正な断面構造のZn−Mg合金めっき鋼板と
は、本発明者等の調査・研究によるとき、3層(図1)
又は5層(図2)の積層構造をもつZn−Mg合金層が
鋼板の表面に順次積層されたものである。このような積
層構造により、Zn−Mg合金めっき本来の特性が十分
発揮され、耐食性、塗装密着性、加工性、溶接性などの
諸特性が総合的に優れたものとなる。図1の3層構造で
は、Mg濃度0.5重量%以下のZn−Mg合金層(第
1層),Mg濃度7重量%以上のZn−Mg合金層(第
2層),そして最表層にMg濃度0.5重量%以下のZ
n−Mg合金層(第3層)が鋼板上に順次積層された断
面構造のものを適正とする。
[Function] A Zn-Mg alloy plated steel sheet having an appropriate cross-sectional structure means three layers (Fig. 1) according to the investigation and research by the present inventors.
Alternatively, a Zn—Mg alloy layer having a laminated structure of 5 layers (FIG. 2) is sequentially laminated on the surface of the steel sheet. With such a laminated structure, the original characteristics of the Zn-Mg alloy plating are sufficiently exhibited, and various characteristics such as corrosion resistance, coating adhesion, workability, and weldability become comprehensively excellent. In the three-layer structure of FIG. 1, a Zn-Mg alloy layer having a Mg concentration of 0.5 wt% or less (first layer), a Zn-Mg alloy layer having a Mg concentration of 7 wt% or more (second layer), and an outermost layer are formed. Z with a Mg concentration of 0.5% by weight or less
An n-Mg alloy layer (third layer) having a cross-sectional structure sequentially laminated on a steel plate is appropriate.

【0008】図2の5層構造では、Mg濃度0.5重量
%以下のZn−Mg合金層(第1層),Mg濃度2〜7
重量%のZn−Mg合金層(第2層),Mg濃度7重量
%以上のZn−Mg合金層(第3層),Mg濃度2〜7
重量%のZn−Mg合金層(第4層),そして最表層に
Mg濃度0.5重量%以下のZn−Mg合金層(第5
層)が鋼板上に順次積層された断面構造のものを適正と
する。3層構造又は5層構造の何れの場合でも、最表層
のZn−Mg合金層は、塗装を施した場合のめっき層と
塗膜との間の密着強度を確保するために、付着量を0.
3g/m2 以上とすることが好ましい。Mg濃度が7重
量%以上の層は、それ自体の耐食性が高く、めっき層自
体の腐食寿命を長くする。また、Mg濃度が高い層から
溶け出したMgは、防食性に優れたZnの腐食生成物で
あるZnCl2 ・4Zn(OH)2 やZn(OH)2
生成を促進するので、更に耐食性が向上する。しかし、
Mg濃度7重量%以上の層が最表層として露出している
と、めっき鋼板の表面に塗料を塗布した場合に塗膜二次
密着性が得られないことがある。
In the five-layer structure of FIG. 2, a Zn-Mg alloy layer (first layer) having a Mg concentration of 0.5% by weight or less, and a Mg concentration of 2 to 7 are used.
Wt% Zn-Mg alloy layer (second layer), Mg concentration 7 wt% or more Zn-Mg alloy layer (third layer), Mg concentration 2 to 7
Wt% Zn-Mg alloy layer (fourth layer), and the outermost layer has a Mg concentration of 0.5 wt% or less Zn-Mg alloy layer (fifth layer).
A layer having a cross-sectional structure in which layers are sequentially laminated on a steel plate is appropriate. In either case of the three-layer structure or the five-layer structure, the Zn-Mg alloy layer of the outermost layer has an adhesion amount of 0 in order to secure the adhesion strength between the plating layer and the coating film when the coating is applied. .
It is preferably 3 g / m 2 or more. A layer having a Mg concentration of 7% by weight or more has high corrosion resistance of itself, and prolongs the corrosion life of the plating layer itself. Further, since Mg dissolved out from the layer having a high Mg concentration promotes the formation of ZnCl 2 .4Zn (OH) 2 and Zn (OH) 2 which are corrosion products of Zn having excellent corrosion resistance, the corrosion resistance is further improved. improves. But,
When a layer having a Mg concentration of 7% by weight or more is exposed as the outermost layer, the coating film secondary adhesion may not be obtained when a coating material is applied to the surface of the plated steel sheet.

【0009】具体的には、Mg濃度の高いZn−Mg合
金層は、塗料との界面に水や水蒸気の侵入があると塗膜
の密着強度が大幅に低下し、結果として塗装後の耐水二
次密着性が得られない。この問題を解消するためには、
めっき層の最表層として、Mg濃度0.5重量%以下の
Zn−Mg合金層を0.3g/m2 以上の付着量で形成
することが有効な手段である。また、めっき層の表層と
化成処理層又は塗料との間で反応層が生成する場合、M
g濃度0.5重量%以下のZn−Mg合金層が全て反応
層となってしまうことがあり、その場合にも耐水二次密
着性が低下する。以上のような理由から、最表層には、
Mg濃度0.5重量%以下のZn−Mg合金層を0.3
g/m2 以上の付着量で形成することが好ましい。最表
層にあるMg濃度0.5重量%以下のZn−Mg合金層
は、腐食に対する溶解速度が大きいことから犠牲防食作
用を呈する。すなわち、めっき鋼板に疵付き部等があっ
た場合、その部位からの赤錆発生が防止される。Zn−
Mg合金層により犠牲防食作用は、特に初期の赤錆発生
防止に有効である。
Specifically, in a Zn--Mg alloy layer having a high Mg concentration, the adhesion strength of the coating film is significantly reduced when water or water vapor enters the interface with the coating material, and as a result, the water resistance after coating is increased. Secondary adhesion cannot be obtained. To solve this problem,
As an outermost layer of the plating layer, it is an effective means to form a Zn—Mg alloy layer having a Mg concentration of 0.5% by weight or less with an adhesion amount of 0.3 g / m 2 or more. Further, when a reaction layer is formed between the surface layer of the plating layer and the chemical conversion treatment layer or the paint, M
All Zn-Mg alloy layers having a g concentration of 0.5% by weight or less may become a reaction layer, and in that case also, the water-resistant secondary adhesiveness decreases. For the above reasons, the outermost layer is
A Zn-Mg alloy layer having a Mg concentration of 0.5% by weight or less is 0.3
It is preferable to form with an adhesion amount of g / m 2 or more. The Zn-Mg alloy layer in the outermost layer having a Mg concentration of 0.5% by weight or less exhibits a sacrificial anticorrosion action because it has a high dissolution rate against corrosion. That is, when the plated steel sheet has a flawed portion or the like, the generation of red rust from that portion is prevented. Zn-
The sacrificial anticorrosive action by the Mg alloy layer is particularly effective for preventing the initial generation of red rust.

【0010】最表層のZn−Mg合金層は、スポット溶
接性を向上させる効果もある。すなわち、この合金層が
最表層としてあることにより、スポット溶接の電極は、
Mg濃度0.5重量%以下の層と接し、高Mg濃度の層
が直接電極と接触する場合に比較して電極へのMg拡散
を抑制し、電極寿命を長くする。更に、表面に高濃度の
Mgが存在すると、めっき鋼板表面に自然に生成するZ
nの酸化物や水酸化物が不飽和になり易く、黒変色が生
じ易い。この点、最表層をMg濃度0.5重量%以下の
Zn−Mg合金層とするとき、表面のMg濃度が低く抑
えられ、黒変色も防止される。Mg濃度7重量%以上の
層と下地鋼との間には、めっき鋼板の成形性を確保する
ため、第1層としてMg濃度0.5重量%以下のZn−
Mg合金層を形成することが望ましい。この第1層は、
延性を持っているため、めっき鋼板がプレス成形等の加
工により変形を受ける場合に、下地鋼と高Mg濃度層と
の間で変形量の差を吸収する作用を呈する。その結果、
パウダリングの発生が防止され、Zn−Mg合金めっき
鋼板の成形性が向上する。
The outermost Zn-Mg alloy layer also has the effect of improving spot weldability. That is, by this alloy layer as the outermost layer, the electrode of spot welding,
The contact with a layer having a Mg concentration of 0.5% by weight or less suppresses the diffusion of Mg into the electrode and prolongs the life of the electrode, as compared with the case where the layer having a high Mg concentration directly contacts the electrode. Furthermore, when a high concentration of Mg is present on the surface, Z that naturally forms on the surface of the plated steel sheet
The oxide or hydroxide of n is likely to be unsaturated, and black discoloration is likely to occur. In this respect, when the outermost layer is a Zn-Mg alloy layer having a Mg concentration of 0.5% by weight or less, the Mg concentration on the surface is suppressed to be low, and black discoloration is also prevented. Between the layer having a Mg concentration of 7% by weight or more and the base steel, Zn-containing a Mg concentration of 0.5% by weight or less as a first layer in order to secure the formability of the plated steel sheet.
It is desirable to form a Mg alloy layer. This first layer is
Since it has ductility, it exhibits an effect of absorbing the difference in deformation amount between the base steel and the high Mg concentration layer when the plated steel sheet is deformed by processing such as press forming. as a result,
Generation of powdering is prevented, and the formability of the Zn-Mg alloy plated steel sheet is improved.

【0011】更に、第1層のMg濃度0.5重量%以下
のZn−Mg合金層と下地鋼との間には、めっき層の密
着性を確保するためにZn−Fe合金層又はZn−Fe
−Mg合金層を形成することが好ましい。蒸着法によっ
て鋼板上にZn−Mg合金めっきを形成しようとする場
合、蒸着雰囲気中にガス成分として存在するO2 やH2
Oによって鋼板表面が酸化されると、めっき密着性が低
下することがある。また、鋼板表面を活性化した後、直
ちに蒸着めっきが行われないので、その間に表面が汚染
されて密着性が低下する虞れもある。このようなめっき
密着性の低下は、第1層と下地鋼との界面にZn−Fe
合金層又はZn−Fe−Mg合金層を形成することによ
り防止される。ただし、Zn−Fe合金層又はZn−F
e−Mg合金層の厚みは、加工成形時にパウダリングが
発生しないように0.5μm以下に抑えることが有効で
ある。このような理由から、図1に示した3層構造をも
つZn−Mg合金めっき鋼板は、耐食性,加工性,塗膜
密着性等において優れた特性を呈する。更に高耐食性が
要求される場合には、図2に示す5層構造にすることが
好ましい。5層構造は、3層構造と比較して、第2層及
び第4層にそれぞれMg濃度2〜7重量%のZnMg合
金層を設けたものである。
Further, between the Zn-Mg alloy layer having a Mg concentration of 0.5% by weight or less in the first layer and the base steel, a Zn-Fe alloy layer or a Zn-Fe alloy layer or a Zn-Fe alloy layer is provided in order to secure adhesion of the plating layer. Fe
-It is preferable to form a Mg alloy layer. When forming a Zn-Mg alloy plating on a steel sheet by a vapor deposition method, O 2 and H 2 existing as gas components in the vapor deposition atmosphere
If the surface of the steel sheet is oxidized by O, the plating adhesion may be reduced. Further, since vapor deposition plating is not carried out immediately after activating the surface of the steel sheet, there is a possibility that the surface is contaminated during that time and the adhesion is lowered. Such a decrease in plating adhesion is caused by Zn-Fe at the interface between the first layer and the base steel.
It is prevented by forming an alloy layer or a Zn-Fe-Mg alloy layer. However, Zn-Fe alloy layer or Zn-F
It is effective to suppress the thickness of the e-Mg alloy layer to 0.5 μm or less so that powdering does not occur during processing and molding. For these reasons, the Zn-Mg alloy plated steel sheet having the three-layer structure shown in FIG. 1 exhibits excellent characteristics in corrosion resistance, workability, coating adhesion, and the like. When higher corrosion resistance is required, it is preferable to use the five-layer structure shown in FIG. The five-layer structure is different from the three-layer structure in that a ZnMg alloy layer having a Mg concentration of 2 to 7 wt% is provided in each of the second layer and the fourth layer.

【0012】このような積層構造をもつZn−Mg合金
めっき鋼板は、蒸着めっき完了後にめっき鋼板が持つ熱
によってZnとMgとを拡散させることにより製造でき
る。しかし、めっき後の鋼板を冷却する際に、冷却が遅
く鋼板が高い温度に保持される時間が長いと、冷却中に
もZnとMgの拡散が過度に進行し、最終的には適正な
積層構造のZn−Mg合金めっきとならないことがあ
る。たとえば、拡散の進行によっては、3層又は5層の
積層構造にならず、図4〜6に示すようにMgがめっき
層全体にわたって拡散した1層めっき構造となる。しか
も、下地鋼からFeがめっき層中に拡散し、厚さ0.5
μm以上に成長したZn−Fe合金層が存在する場合も
ある(図5,6)。厚いZn−Fe合金層は、めっき鋼
板を加工した場合にパウダリングと呼ばれるめっき層の
剥離現象を起こし易い。
The Zn-Mg alloy plated steel sheet having such a laminated structure can be manufactured by diffusing Zn and Mg by the heat of the plated steel sheet after vapor deposition plating is completed. However, when cooling the steel sheet after plating, if the cooling is slow and the steel sheet is kept at a high temperature for a long time, the diffusion of Zn and Mg excessively progresses during the cooling, and finally the proper lamination is achieved. The structure may not be Zn-Mg alloy plating. For example, depending on the progress of diffusion, a three-layer or five-layer laminated structure is not formed, but a single-layer plated structure in which Mg is diffused over the entire plated layer as shown in FIGS. Moreover, Fe diffuses from the base steel into the plating layer, and the thickness is 0.5
There may be a Zn—Fe alloy layer grown to a thickness of μm or more (FIGS. 5 and 6). A thick Zn-Fe alloy layer is apt to cause a peeling phenomenon of the plating layer called powdering when the plated steel sheet is processed.

【0013】本発明では、図1又は図2に示した積層構
造を得るため、蒸着めっき完了直後及び蒸着めっき完了
後の経過時間に応じた鋼板温度を管理している。すなわ
ち、蒸着めっき完了直後の鋼板温度が370℃以下、蒸
着めっき完了から10秒後の鋼板温度が340℃以下、
20秒後の鋼板温度が320℃以下、40秒後の鋼板温
度が300℃以下となるように冷却する。この冷却条件
は、本発明者等による多数の実験結果から見出されたも
のであり、Mg及びZnの拡散を適正化し、図1又は図
2の積層構造をもつZn−Mg合金めっき層を安定的に
形成する。蒸着めっき完了直後の鋼板温度が370℃を
超えると、めっき層と下地鋼との界面に生成するZn−
Fe合金層又はZn−Fe−Mg合金層が厚くなり、
0.5μmを超えるので好ましくない。また、蒸着完了
から10秒後に340℃以下,20秒後に320℃以
下,40秒後に300℃以下となる条件の何れかでも満
足されないと、Zn−Mg合金めっき鋼板の断面構造
は、適正な3層又は5層にならず、図4〜6の1層構造
になりやすい。
In the present invention, in order to obtain the laminated structure shown in FIG. 1 or 2, the temperature of the steel sheet is controlled immediately after completion of vapor deposition plating and according to the elapsed time after completion of vapor deposition plating. That is, the steel plate temperature immediately after completion of vapor deposition plating is 370 ° C. or lower, and the steel plate temperature 10 seconds after completion of vapor deposition plating is 340 ° C. or lower,
It cools so that the steel plate temperature after 20 seconds may be 320 ° C. or lower and the steel plate temperature after 40 seconds may be 300 ° C. or lower. This cooling condition has been found out from a large number of experimental results by the present inventors, and optimized the diffusion of Mg and Zn to stabilize the Zn-Mg alloy plating layer having the laminated structure of FIG. 1 or 2. Form. When the temperature of the steel sheet immediately after the completion of vapor deposition plating exceeds 370 ° C., Zn− formed at the interface between the plating layer and the base steel.
The Fe alloy layer or the Zn-Fe-Mg alloy layer becomes thicker,
Since it exceeds 0.5 μm, it is not preferable. Further, if any of the conditions of 340 ° C. or less 10 seconds after the completion of vapor deposition, 320 ° C. or less after 20 seconds, and 300 ° C. or less after 40 seconds is not satisfied, the sectional structure of the Zn—Mg alloy plated steel sheet has an appropriate 3 The number of layers is not five or five, and the one-layer structure shown in FIGS.

【0014】本発明に従った冷却条件は、たとえば図2
に示す設備構成でZn−Mg合金めっき鋼板を製造する
とき、次のように管理される。めっき原板10は、ペイ
オフリール11から巻き戻され、無酸化炉20及び還元
焼鈍炉25で表面活性化及び焼鈍された後、鋼板温度制
御装置26を経て真空室30に導かれる。真空室30
は、入側真空シール部31及び出側真空シール部32を
備えた気密構造をもち、適宜の真空ポンプにより1Pa
程度の減圧雰囲気に維持される。真空室30の内部に
は、めっき原板10の搬送方向に沿って第1Zn蒸着室
33,Mg蒸着室34及び第2Zn蒸着室35が順次配
置されている。真空室30に導入されためっき原板10
は、第1Zn蒸着室33で先ずZn蒸着され、次いでM
g蒸着室34でMg蒸着され、更に第2Zn蒸着室35
でZn蒸着される。蒸着めっきは、必要に応じてめっき
原板10の片面又は両面に施される。
The cooling conditions according to the present invention are shown in FIG.
When a Zn-Mg alloy plated steel sheet is manufactured with the equipment configuration shown in (1), it is managed as follows. The original plating plate 10 is rewound from the payoff reel 11, surface-activated and annealed in the non-oxidizing furnace 20 and the reduction annealing furnace 25, and then introduced into the vacuum chamber 30 via the steel plate temperature control device 26. Vacuum chamber 30
Has an airtight structure including an inlet side vacuum seal portion 31 and an outlet side vacuum seal portion 32, and is 1 Pa by an appropriate vacuum pump.
It is maintained in a reduced pressure atmosphere. Inside the vacuum chamber 30, a first Zn vapor deposition chamber 33, a Mg vapor deposition chamber 34, and a second Zn vapor deposition chamber 35 are sequentially arranged along the transport direction of the original plating plate 10. The original plating plate 10 introduced into the vacuum chamber 30
Is first deposited by Zn in the first Zn deposition chamber 33, and then M
Mg is vapor-deposited in the g-vapor deposition chamber 34, and the second Zn vapor-deposition chamber 35 is further deposited.
Zn is vapor-deposited. The vapor deposition plating is performed on one side or both sides of the original plating plate 10 as necessary.

【0015】蒸着後のめっき鋼板10は、出側真空シー
ル部32を経て真空室30から送り出され、一次冷却装
置40及び二次冷却装置45を通り、最終的にめっき鋼
帯15として巻取りリール16に巻き取られる。めっき
鋼帯15は、一次冷却装置40において窒素ガス吹付け
により冷却され、二次冷却装置45において空気吹き付
けにより冷却される。冷却装置40,45の冷却能は、
吹き付ける窒素ガスや空気の温度及び流量によって調整
される。この蒸着めっきラインにおいて、第2Zn蒸着
室35の直後に温度計51を、真空室30の出側に温度
計52を、一次冷却装置40の出側に温度計53を、二
次冷却装置45の出側に温度計54を、巻取りリール1
6の上流側にある後処理装置(図示せず)の入側に温度
計55をそれぞれ設けている。温度計51〜55として
は、たとえば放射温度計が使用される。温度計51で測
定される温度は、蒸着めっき完了直後の鋼板温度であ
る。
The vapor-deposited plated steel sheet 10 is sent out from the vacuum chamber 30 through the outlet side vacuum seal portion 32, passes through the primary cooling device 40 and the secondary cooling device 45, and finally as a plated steel strip 15 as a take-up reel. It is wound up in 16. The galvanized steel strip 15 is cooled in the primary cooling device 40 by blowing nitrogen gas, and is cooled in the secondary cooling device 45 by blowing air. The cooling capacity of the cooling devices 40 and 45 is
It is adjusted by the temperature and flow rate of the sprayed nitrogen gas or air. In this vapor deposition plating line, a thermometer 51 is provided immediately after the second Zn vapor deposition chamber 35, a thermometer 52 is provided at the outlet side of the vacuum chamber 30, a thermometer 53 is provided at the outlet side of the primary cooling device 40, and a secondary cooling device 45 is provided. A thermometer 54 on the outlet side and a take-up reel 1
Thermometers 55 are provided on the inlet sides of the post-treatment devices (not shown) on the upstream side of 6. Radiation thermometers are used as the thermometers 51 to 55, for example. The temperature measured by the thermometer 51 is the steel plate temperature immediately after the completion of vapor deposition plating.

【0016】また、通板速度が60m/分の場合、温度
計52で蒸着めっき完了から10秒経過した時点の鋼板
温度,温度計53で20秒経過した時点の鋼板温度,温
度計54で40秒経過した時点の鋼板温度が測定され
る。また、通板速度が120m/分の場合、蒸着めっき
完了から40秒経過した時点の鋼板温度が温度計55で
測定されるように、温度計55の設置箇所を定めてい
る。温度計51,52の測定値に基づき、蒸着完了直後
の鋼板温度が370℃以下となるように鋼板温度制御装
置26を制御し、蒸着前の鋼板温度を制御する。また、
温度計55の測定値に基づき、一次冷却装置40及び二
次冷却装置41の冷却能力が制御される。このようにし
て、蒸着めっき完了直後の鋼板温度が370℃以下に、
蒸着めっき完了から10秒経過した時点の鋼板温度が3
40℃以下に、蒸着めっき完了から20秒経過した時点
の鋼板温度が320℃以下に、蒸着めっき完了から40
秒経過した時点の鋼板温度が300℃以下に制御され
る。
Further, when the sheet passing speed is 60 m / min, the temperature of the steel plate at 10 seconds after the completion of the vapor deposition plating by the thermometer 52, the temperature of the steel plate at 20 seconds by the thermometer 53, and the temperature at the thermometer 54 of 40 The steel plate temperature at the time when a second has elapsed is measured. Further, when the plate passing speed is 120 m / min, the installation location of the thermometer 55 is determined so that the steel plate temperature at the time of 40 seconds after the completion of vapor deposition plating is measured by the thermometer 55. Based on the measured values of the thermometers 51 and 52, the steel plate temperature control device 26 is controlled so that the steel plate temperature immediately after the completion of vapor deposition becomes 370 ° C. or less, and the steel plate temperature before vapor deposition is controlled. Also,
Based on the measurement value of the thermometer 55, the cooling capacities of the primary cooling device 40 and the secondary cooling device 41 are controlled. In this way, the steel plate temperature immediately after the completion of vapor deposition plating is 370 ° C. or less,
Steel plate temperature is 3 at 10 seconds after vapor deposition is completed
The temperature of the steel plate at 40 ° C. or lower is 20 ° C. after completion of the vapor deposition plating, and the steel plate temperature is 320 ° C. or lower at 40 ° C. from the completion of vapor deposition plating.
The steel plate temperature at the time when a second has elapsed is controlled to 300 ° C. or lower.

【0017】[0017]

【実施例】表1に示した成分をもつ板厚0.5mm,板
幅700mmの未焼鈍冷延鋼板をめっき原板として使用
し、図3に示す蒸着めっき装置によりZn−Mg合金め
っき鋼板を製造した。めっき付着量を片面あたり20〜
50g/m2 ,Mg濃度を3重量%に設定した。たとえ
ば、めっき付着量が20g/m2 のとき、Mg付着量は
0.6g/m2 となる。
Example A Zn-Mg alloy plated steel sheet having the components shown in Table 1 was prepared by using an unannealed cold rolled steel sheet having a sheet thickness of 0.5 mm and a sheet width of 700 mm as a plating original plate by the vapor deposition plating apparatus shown in FIG. did. The amount of plating applied is 20 ~ per side
50 g / m 2 and Mg concentration were set to 3% by weight. For example, when the coating weight is 20 g / m 2 , the Mg coating weight is 0.6 g / m 2 .

【0018】 [0018]

【0019】冷却条件を種々変更して製造したZn−M
g合金めっき鋼板について、めっき層の積層構造を電子
顕微鏡(SEM)により観察した。積層構造と冷却条件
との関係を調査したところ、両者の間に表2に示す関係
が成立していた。表2において、めっき層の断面が3層
構造(図1)又は5層構造(図2)になっており、下地
鋼とめっき層との界面に厚み0.5μmを超えるZn−
Fe合金層が生成していない場合を○,これらの条件の
何れかでも満足していない場合を×として評価した。
Zn-M produced by changing various cooling conditions
The laminated structure of the plated layer of the g-alloy-plated steel sheet was observed with an electron microscope (SEM). When the relationship between the laminated structure and the cooling conditions was investigated, the relationship shown in Table 2 was established between them. In Table 2, the cross section of the plating layer has a three-layer structure (Fig. 1) or a five-layer structure (Fig. 2), and Zn- having a thickness of more than 0.5 µm is formed at the interface between the base steel and the plating layer.
The case where the Fe alloy layer was not formed was evaluated as ◯, and the case where any of these conditions was not satisfied was evaluated as x.

【0020】 [0020]

【0021】表2に見られるように、蒸着めっき完了直
後の鋼板温度を370℃以下,蒸着めっき完了から10
秒経過した時点の鋼板温度を340℃以下,20秒経過
した時点の鋼板温度を320℃以下,40秒経過した時
点の鋼板温度を300℃以下にした製造番号1〜12で
は、何れも正常な3層又は5層構造をもつZn−Mg合
金めっき層が形成されていた。他方、めっき完了直後の
鋼板温度が370℃を超えた製造番号13〜15では、
何れも適正な積層構造をもっためっき層が形成されなか
った。製造番号13では、図4に示すように下地鋼の上
に厚みが1.3μmにも達するZn−Fe合金層が生成
しており、このZn−Fe合金層の上にめっき層の厚み
全体にわたってMgが拡散した1層状態のめっき層とな
っていた。製造番号14,15では、図5に示すように
何れも下地鋼の上に厚さ0.8μmのZn−Fe合金層
が生成していた。また、Zn−Fe合金層の上には、1
層状態のZn−Mg合金層が形成されていた。
As shown in Table 2, the steel sheet temperature immediately after the completion of the vapor deposition plating was 370 ° C. or less,
In the production numbers 1 to 12, in which the steel plate temperature after lapse of seconds was 340 ° C or less, the steel plate temperature after 20 seconds was 320 ° C or less, and the steel plate temperature after 40 seconds was 300 ° C or less, all were normal. A Zn-Mg alloy plating layer having a three-layer or five-layer structure was formed. On the other hand, in the production numbers 13 to 15 in which the steel plate temperature immediately after the completion of plating exceeded 370 ° C.,
In neither case, a plating layer having a proper laminated structure was formed. In Production No. 13, a Zn—Fe alloy layer having a thickness of 1.3 μm is formed on the base steel as shown in FIG. 4, and the Zn—Fe alloy layer is formed on the Zn—Fe alloy layer over the entire thickness of the plating layer. It was a single-layer plated layer in which Mg was diffused. In Production Nos. 14 and 15, as shown in FIG. 5, the Zn—Fe alloy layer having a thickness of 0.8 μm was formed on the base steel. Moreover, 1 is formed on the Zn-Fe alloy layer.
A layered Zn-Mg alloy layer was formed.

【0022】めっき完了から10秒経過した時点の鋼板
温度が340℃を超える製造番号16,20秒経過した
時点の鋼板温度が320℃を超える製造番号17,1
9,40秒経過した時点の鋼板温度が300℃を超える
製造番号18では、めっき層断面において、図6に示す
ようにMgが固溶したZn層と、ZnとMgの金属間化
合物層が粒状に混在した1層状態になっており、3層又
は5層の積層構造をもっていなかった。以上の結果か
ら、3層構造(図1)又は5層構造(図2)の積層構造
をもつZn−Mg合金めっき層を常に安定して形成する
ためには、完了直後の鋼板温度を370℃以下,蒸着め
っき完了から10秒経過した時点の鋼板温度を340℃
以下,20秒経過した時点の鋼板温度を320℃以下,
40秒経過した時点の鋼板温度を300℃以下にする必
要性があることが確認された。このようにして3層構造
(図1)又は5層構造(図2)の積層構造をもつZn−
Mg合金めっき層は、本来のZn〜Mg合金めっきの特
性を十分に発揮し、以下に説明するように耐食性,塗装
密着性,加工性,溶接性等の諸特性が総合的に優れたも
のとなる。
Production number 16 when the steel sheet temperature exceeds 340 ° C. 10 seconds after plating is completed, Production number 17 that the steel sheet temperature exceeds 320 ° C. when 20 seconds has elapsed
In Production No. 18 in which the steel sheet temperature exceeds 300 ° C. when 9,40 seconds have passed, in the cross section of the plating layer, as shown in FIG. 6, the Zn layer in which Mg was solid-solved and the intermetallic compound layer of Zn and Mg were granular. In the state of 1 layer mixed with the above, it did not have a laminated structure of 3 layers or 5 layers. From the above results, in order to always stably form the Zn-Mg alloy plating layer having the laminated structure of the three-layer structure (FIG. 1) or the five-layer structure (FIG. 2), the steel plate temperature immediately after completion is 370 ° C. Below, the temperature of the steel sheet at the time of 10 seconds from the completion of vapor deposition plating was 340 ° C.
Below, the temperature of the steel sheet at the time of 20 seconds elapsed is 320 ° C. or less,
It was confirmed that it was necessary to keep the temperature of the steel sheet at 300 seconds or less after 40 seconds had passed. In this way, Zn-- having a three-layer structure (FIG. 1) or a five-layer structure (FIG. 2) is laminated.
The Mg alloy plating layer fully exhibits the original characteristics of Zn to Mg alloy plating, and as described below, it is comprehensively excellent in various characteristics such as corrosion resistance, coating adhesion, workability, and weldability. Become.

【0023】塗膜二次密着性,黒変色性,スポット溶接
表2の条件で製造したZn−Mg合金めっき鋼板から試
験片を切り出し、塗膜二次密着性,黒変色性及びスポッ
ト溶接性を調査した。各試験片は、それぞれの試験前に
0.5%HCl水溶液で酸洗し、表面のMg濃化層を除
去して試験に供した。塗膜二次密着性試験では、前処理
として燐酸塩処理を施した後、アクリル系の電着塗装を
塗膜厚み20μmで施した。塗装した試験片を50℃の
蒸留水中に1000時間浸漬した後、カッターナイフに
より1mm間隔で碁盤目状の疵をつけ、テープ剥離試験
を行った。そして、テープに付着して試験片表面から剥
離しためっき層をカウントし、剥離面積が5%以下のも
のを○,5〜50%のものを△,50%を超えるものを
×として評価した。黒変色性は、温度50℃及び相対湿
度60%の促進試験機の中に試験片を1000時間放置
し、試験前後の明度差ΔL* によって評価した。スポッ
ト溶接性は、単相交流型の溶接機に先端径4.5mmの
CF型Cu−1%Cr電極を装着し、連続溶接が可能な
打点数によって評価した。
Secondary adhesion of coating film, black discoloration, spot welding
The test pieces were cut out from the Zn-Mg alloy-plated steel sheet produced under the conditions of Table 2 and the secondary adhesion of the coating film, black discoloration and spot weldability were investigated. Prior to each test, each test piece was pickled with a 0.5% HCl aqueous solution to remove the Mg concentrated layer on the surface and subjected to the test. In the coating film secondary adhesion test, after performing a phosphate treatment as a pretreatment, an acrylic electrodeposition coating was applied with a coating film thickness of 20 μm. The coated test piece was dipped in distilled water at 50 ° C. for 1000 hours, and then a checkerboard-like flaw was made at 1 mm intervals with a cutter knife to perform a tape peeling test. Then, the plating layers that adhered to the tape and peeled from the surface of the test piece were counted, and those having a peeled area of 5% or less were evaluated as ◯, 5 to 50% as Δ, and those exceeding 50% were evaluated as x. The black discoloration property was evaluated by the brightness difference ΔL * before and after the test, in which the test piece was left for 1000 hours in an accelerated tester at a temperature of 50 ° C. and a relative humidity of 60%. The spot weldability was evaluated by mounting a CF type Cu-1% Cr electrode having a tip diameter of 4.5 mm on a single-phase AC welding machine and evaluating the number of dots capable of continuous welding.

【0024】 [0024]

【0025】調査結果を示す表3で実施例として掲げた
二つの試験片は、Zn−Mg合金めっき鋼板として適正
な3層又は5層の適正な断面構造をもつものである。比
較例として掲げた試験片は、何れもMgを固溶したZn
層とZn−Mg金属間化合物層が粒状に混在した1層状
態になっており、Zn−Mg合金めっき鋼板の断面構成
としては不適正なものである。試験の結果、塗膜の二次
密着性,黒変色性及びスポット溶接性の何れについて
も、適正な断面構造をもつ実施例の試験片が優れた特性
を示した。これは、適正な断面構造をもつ試験片がめっ
き層の最表層にMg濃度0.5重量%以下のZn−Mg
合金層が形成されていることに由来する。これに対し、
比較例の試験片では、めっき層の最表層にMg濃度0.
5重量%以下のZn−Mg合金層がないため、良好な塗
膜二次密着性が得られず、表面の色も−20以上の大き
く黒変し、スポット溶接の連続打点寿命も実施例と比較
して半分程度に過ぎなかった。
The two test pieces listed as examples in Table 3 showing the investigation results have an appropriate cross-sectional structure of 3 layers or 5 layers suitable as a Zn-Mg alloy plated steel sheet. All the test pieces listed as comparative examples were Zn containing Mg as a solid solution.
The layer and the Zn-Mg intermetallic compound layer are mixed in a granular form to form a single layer, which is not appropriate as the cross-sectional structure of the Zn-Mg alloy plated steel sheet. As a result of the test, the test piece of the example having an appropriate cross-sectional structure exhibited excellent properties with respect to the secondary adhesion of the coating film, the black discoloration property, and the spot weldability. This is because the test piece having an appropriate cross-sectional structure was formed on the outermost surface of the plating layer with a Zn concentration of 0.5% by weight or less.
This is because the alloy layer is formed. In contrast,
In the test piece of the comparative example, the Mg concentration of 0.
Since there is no Zn-Mg alloy layer of 5% by weight or less, good secondary adhesion of the coating film cannot be obtained, the surface color is greatly blackened by -20 or more, and continuous spot welding life of spot welding is the same as that of the example. It was only about half of the comparison.

【0026】加工性 Zn−Mg合金めっき鋼板として、適正な3層又は5層
の断面構造をもつものと、1層構造になった不適性なも
のとで加工性の違いを比較した。各試験片は、それぞれ
の試験前に0.5%HCl水溶液で酸洗し、表面のMg
濃化層を除去して試験に供した。加工性試験では、パウ
ダリング発生量で加工性を評価した。パウダリング性
は、高さ4mm,R=0.5mmのビードをつけた金型
に試験片を挾み、金型への加圧力500kg及び引抜き
速度200m/分で金型から試験片を引抜くドロービー
ド法試験で調査した。
Workability The difference in workability between Zn-Mg alloy plated steel sheets having an appropriate three-layer or five-layer cross-sectional structure and inadequate one-layer structure was compared. Prior to each test, each test piece was pickled with a 0.5% HCl aqueous solution to remove Mg on the surface.
The concentrated layer was removed and used for the test. In the workability test, workability was evaluated by the amount of powdering generated. As for the powdering property, the test piece is sandwiched in a mold equipped with a bead having a height of 4 mm and R = 0.5 mm, and the test piece is pulled out from the mold at a pressing force of 500 kg and a drawing speed of 200 m / min. It was investigated by the draw bead method test.

【0027】 [0027]

【0028】試験結果を示す表4から明らかなように、
比較例の試験片は、何れもパウダリングの発生量が多
く、加工性に劣ったものであった。これは、製造時の冷
却条件が不適正であったため、延性に富む第1層がな
く、またZn−Fe合金層が厚く成長したことに原因が
ある。これに対し、適正な冷却条件で製造した実施例の
試験片では、第1層と下地鋼との間に薄いFe−Zn合
金層が観察され、良好な加工性を呈していた。
As is clear from Table 4 showing the test results,
The test pieces of the comparative examples all had a large amount of powdering and were inferior in workability. This is because the cooling conditions at the time of manufacture were improper, and thus there was no first layer rich in ductility, and the Zn—Fe alloy layer grew thick. On the other hand, in the test piece of the example manufactured under an appropriate cooling condition, a thin Fe—Zn alloy layer was observed between the first layer and the base steel, and exhibited good workability.

【0029】[0029]

【発明の効果】以上に説明したように、本発明において
は、蒸着めっき完了直後及び蒸着めっき完了からの経過
時間に応じて鋼板温度を制御することにより、Mg及び
Znの拡散を適正に管理し、Zn−Mg合金めっき層の
断面構造を常に適正な3層又は5層の積層構造にしてい
る。この3層又は5層の積層構造をもつZn−Mg合金
めっき鋼板は、本来のZn〜Mg合金めっきの特性を十
分に発揮し、耐食性,塗装密着性,加工性,溶接性等の
諸特性が総合的に優れた材料として広範な分野で使用さ
れる。
As described above, according to the present invention, the diffusion of Mg and Zn is properly controlled by controlling the steel sheet temperature immediately after the completion of vapor deposition plating and according to the elapsed time from the completion of vapor deposition plating. , Zn-Mg alloy plated layer has a cross-sectional structure that is always a proper three-layer or five-layer laminated structure. This Zn-Mg alloy plated steel sheet having a three-layer or five-layer laminated structure fully exhibits the original characteristics of Zn-Mg alloy plating and has various characteristics such as corrosion resistance, coating adhesion, workability, and weldability. It is used in a wide range of fields as a comprehensively superior material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 3層構造をもつZn−Mg合金めっき層FIG. 1 is a Zn-Mg alloy plating layer having a three-layer structure.

【図2】 5層構造をもつZn−Mg合金めっき層FIG. 2 Zn-Mg alloy plating layer having a five-layer structure

【図3】 本発明に従ってZn−Mg合金めっき鋼板を
製造するライン
FIG. 3 is a line for producing a Zn—Mg alloy plated steel sheet according to the present invention.

【図4】 Mgが固溶したZn層及びZn−Mgの金属
間化合物が混粒状で1層となった製造番号13のZn−
Mg合金めっき鋼板のめっき層構造
FIG. 4 is a Zn-layer of production number 13 in which a Zn layer in which Mg is dissolved and a Zn-Mg intermetallic compound are mixed to form one layer.
Mg alloy plated steel sheet plating layer structure

【図5】 Mgが固溶したZn層及びZn−Mgの金属
間化合物が混粒状で1層となった製造番号14,15の
Zn−Mg合金めっき鋼板のめっき層構造
FIG. 5 is a plating layer structure of Zn-Mg alloy-plated steel sheets of production numbers 14 and 15 in which a Zn layer in which Mg is dissolved and a Zn-Mg intermetallic compound are mixed and granular to form one layer.

【図6】 Mgが固溶したZn層及びZn−Mgの金属
間化合物が混粒状で1層となった製造番号16〜19の
Zn−Mg合金めっき鋼板のめっき層構造
FIG. 6 is a plating layer structure of a Zn-Mg alloy plated steel sheet of production numbers 16 to 19 in which a Mg solid solution Zn layer and a Zn-Mg intermetallic compound are mixed granules to form one layer.

【符号の説明】[Explanation of symbols]

10:めっき原板 11:ペイオフリール 15:
めっき鋼帯 16:巻取りリール 20:無酸化炉 25:還元焼鈍炉 26:鋼板温
度制御装置 30:真空室 31:入側真空シール部 32:出
側真空シール部 33:第1Zn蒸着室 34:Mg蒸着室 35:
第2Zn蒸着室 40:一次冷却装置 45:二次冷却装置 51〜
55:温度計
10: plating original plate 11: pay-off reel 15:
Plated steel strip 16: Take-up reel 20: Non-oxidizing furnace 25: Reduction annealing furnace 26: Steel plate temperature control device 30: Vacuum chamber 31: Incoming side vacuum seal part 32: Outgoing side vacuum seal part 33: First Zn vapor deposition chamber 34: Mg deposition chamber 35:
Second Zn vapor deposition chamber 40: Primary cooling device 45: Secondary cooling device 51-
55: Thermometer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 実 大阪府堺市石津西町5番地 日新製鋼株式 会社技術研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Minoru Saito 5th Ishizu Nishimachi, Sakai-shi, Osaka Nisshin Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連続して走行する鋼板を真空室に導入
し、Zn,Mg,Znの順に蒸着めっきした後、蒸着め
っき完了直後の鋼板温度が370℃以下、蒸着めっき完
了から10秒後の鋼板温度が340℃以下、20秒後の
鋼板温度が320℃以下、40秒後の鋼板温度が300
℃以下になる冷却条件下で、めっき後の鋼板を冷却する
ことを特徴とするZn−Mg合金めっき鋼板の製造方
法。
1. A continuously running steel plate is introduced into a vacuum chamber, and Zn, Mg, and Zn are vapor-deposited in this order, and the steel plate temperature immediately after completion of vapor deposition plating is 370 ° C. or lower, and 10 seconds after completion of vapor deposition plating. Steel plate temperature is 340 ° C. or lower, steel plate temperature after 20 seconds is 320 ° C. or lower, steel plate temperature after 40 seconds is 300
A method for producing a Zn-Mg alloy-plated steel sheet, which comprises cooling the steel sheet after plating under cooling conditions of not higher than 0 ° C.
JP25815495A 1995-09-11 1995-09-11 Production of zinc-magnesium alloy plated steel sheet Withdrawn JPH0978229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25815495A JPH0978229A (en) 1995-09-11 1995-09-11 Production of zinc-magnesium alloy plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25815495A JPH0978229A (en) 1995-09-11 1995-09-11 Production of zinc-magnesium alloy plated steel sheet

Publications (1)

Publication Number Publication Date
JPH0978229A true JPH0978229A (en) 1997-03-25

Family

ID=17316282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25815495A Withdrawn JPH0978229A (en) 1995-09-11 1995-09-11 Production of zinc-magnesium alloy plated steel sheet

Country Status (1)

Country Link
JP (1) JPH0978229A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054716A (en) * 2007-08-24 2009-03-12 Hitachi Metals Ltd RARE EARTH-BASED PERMANENT MAGNET HAVING Mg-CONTAINING Al COATING ON SURFACE THEREOF, AND MANUFACTURING METHOD THEREOF
EP2085492A1 (en) 2007-12-28 2009-08-05 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
JP2022514409A (en) * 2018-12-19 2022-02-10 ポスコ Plated steel material with excellent plating adhesion and corrosion resistance and its manufacturing method
WO2023110178A1 (en) * 2021-12-14 2023-06-22 Thyssenkrupp Steel Europe Ag Method for producing a flat steel product having cathodic corrosion protection, system for producing a flat steel product provided with cathodic corrosion protection, and use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054716A (en) * 2007-08-24 2009-03-12 Hitachi Metals Ltd RARE EARTH-BASED PERMANENT MAGNET HAVING Mg-CONTAINING Al COATING ON SURFACE THEREOF, AND MANUFACTURING METHOD THEREOF
EP2085492A1 (en) 2007-12-28 2009-08-05 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
JP2022514409A (en) * 2018-12-19 2022-02-10 ポスコ Plated steel material with excellent plating adhesion and corrosion resistance and its manufacturing method
WO2023110178A1 (en) * 2021-12-14 2023-06-22 Thyssenkrupp Steel Europe Ag Method for producing a flat steel product having cathodic corrosion protection, system for producing a flat steel product provided with cathodic corrosion protection, and use

Similar Documents

Publication Publication Date Title
KR100295174B1 (en) High corrosion resistance ZN-MG plated steel sheet and its manufacturing method
JP6025867B2 (en) High-strength hot-dip galvanized steel sheet excellent in plating surface quality and plating adhesion and method for producing the same
WO2012053694A1 (en) Galvanized steel sheet having excellent coatability, coating adhesion, and spot weldability, and method for manufacturing same
KR20150052376A (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
KR101665912B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
JP4555499B2 (en) Hot-dip Zn-Al-Mg-Si plated steel with excellent surface properties and method for producing the same
KR101115741B1 (en) Method for manufacturing high manganese hot dip galvanized steel sheet with superior weldability
JP2005256042A (en) Galvannealed steel sheet, and method for manufacturing the same
JPH0978229A (en) Production of zinc-magnesium alloy plated steel sheet
JPH083728A (en) Zinc-magnesium plated steel sheet excellent in corrosion resistance and its production
JP3130470B2 (en) High-strength hot-dip galvanized steel sheet with excellent press workability and plating adhesion
JP2023554307A (en) High-strength hot-dip galvanized steel sheet with excellent plating quality, steel sheet for plating, and manufacturing method thereof
JPH0621348B2 (en) Alloyed zinc plated steel sheet and its manufacturing method
JPH08134632A (en) Production of zinc-magnesium alloy plated steel sheet
KR0166099B1 (en) Al-si-cr plated steel sheet excellent in corrosion resistance and production thereof
KR101188065B1 (en) Galvanized steel sheet having excellent coating adhesion and spot weldability and method for manufacturing the same
JPS60116787A (en) Method and device for plating
JPH09143682A (en) Zinc-magnesium vapor deposition method using multiple duct and vapor deposition equipment
JP2912029B2 (en) Alloyed galvanized steel sheet
JP2938658B2 (en) Multi-layer alloy plated steel sheet and method for producing the same
JPH07268604A (en) Production of zn-mg vapor deposition-coated steel sheet
TWI687546B (en) Composite galvanized steel plate having heat-and oxidation-resistance, method of manufacturing the same and application thereof
JPH09256157A (en) Production of vapor deposition zinc-magnesium plated steel sheet
JPH0224911B2 (en)
JPH0860342A (en) Vapor deposited zinc-magnesium alloy plated steel sheet having excellent adhesion property and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203