JPH0881761A - Zn-mg alloy plated steel sheet and production thereof - Google Patents

Zn-mg alloy plated steel sheet and production thereof

Info

Publication number
JPH0881761A
JPH0881761A JP24335894A JP24335894A JPH0881761A JP H0881761 A JPH0881761 A JP H0881761A JP 24335894 A JP24335894 A JP 24335894A JP 24335894 A JP24335894 A JP 24335894A JP H0881761 A JPH0881761 A JP H0881761A
Authority
JP
Japan
Prior art keywords
layer
concentration
alloy
steel sheet
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24335894A
Other languages
Japanese (ja)
Other versions
JP3640688B2 (en
Inventor
Yasushi Fukui
康 福居
Hiroshi Tanaka
宏 田中
Masanori Matsuno
雅典 松野
Tadaaki Miono
忠昭 三尾野
Minoru Saito
実 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP24335894A priority Critical patent/JP3640688B2/en
Publication of JPH0881761A publication Critical patent/JPH0881761A/en
Application granted granted Critical
Publication of JP3640688B2 publication Critical patent/JP3640688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To improve the workability and weldability of a Zn-Mg plated steel sheet. CONSTITUTION: This steel sheet has a Zn-Mg alloy plating layer having a three layer structure, in which a Zn-Mg alloy layer of <=0.5%, by weight, Mg concentration, a Zn-Mg alloy layer of >=7% Mg concentration, and a Zn-Mg alloy layer of <=0.5% Mg concentration are successively laminated, or having a five layer structure in which a Zn-Mg alloy layer of <=0.5% Mg concentration, a Zn-Mg alloy layer of 2-7% Mg concentration, a Zn-Mg alloy layer of >=7% Mg concentration, a Zn-Mg alloy layer of 2-7% Mg concentration, and a Zn-Mg alloy layer of <=0.5% Mg concentration are successively laminated. Moreover, a Zn-Fe alloy layer or a Zn-Fe-Mg alloy layer can be formed in the interface of a substrate steel and the plating layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐食性,耐パウダリン
グ性,密着性,スポット溶接性,耐変色性等に優れたZ
n−Mg合金めっき鋼板及びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention is a Z excellent in corrosion resistance, powdering resistance, adhesion, spot weldability, discoloration resistance and the like.
The present invention relates to an n-Mg alloy plated steel sheet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】鋼板の耐食性を向上させるため、従来か
ら各種の表面処理が採用されている。なかでも、代表的
な表面処理方法であるZnめっきには、主として電気め
っき法,溶融めっき法等が採用されている。耐食性の向
上に対する要求は年々高まる傾向にあり、これに伴って
溶融めっき法,電気めっき法等において種々の改良が提
案されている。溶融めっき法でZnめっき鋼板の耐食性
を向上させようとすると、Znめっき層の付着量を増加
させることが先ず考えられる。しかし、製造面から付着
量の上限が制約されるため、付着量の増加によって耐食
性の向上を図ることには限界がある。また、付着量の増
加、すなわちめっき層の厚膜化は、めっき鋼板をプレス
成形するときにカジリ,フレーキング等の欠陥を発生さ
せる原因になり易い。
2. Description of the Related Art Various surface treatments have been conventionally used to improve the corrosion resistance of steel sheets. Among them, electroplating, hot dipping and the like are mainly used for Zn plating which is a typical surface treatment method. The demand for improved corrosion resistance tends to increase year by year, and various improvements have been proposed in hot dipping, electroplating, and the like. When attempting to improve the corrosion resistance of a Zn-plated steel sheet by the hot dip coating method, it is first thought that the amount of the Zn-plated layer deposited is increased. However, since the upper limit of the adhered amount is limited from the manufacturing aspect, there is a limit in improving the corrosion resistance by increasing the adhered amount. Further, an increase in the amount of adhesion, that is, an increase in the thickness of the plated layer, tends to cause defects such as galling and flaking when press-forming the plated steel sheet.

【0003】電気めっき法で同様に高付着量のめっき層
を形成しようとすると、ラインスピードを遅くすること
が必要になり、生産性が著しく損なわれる。そこで、電
気めっき法では、Zn−Ni系等のZn合金めっきを施
すことによって耐食性の向上を図っている。しかし、Z
n−Ni合金めっき層は、硬質で脆いため、成形時にめ
っき層に割れや欠け等の欠陥を発生させ易い。このよう
な欠陥がめっき層に発生すると、欠陥部を介して下地鋼
が露出するため、めっき層本来の性能が発揮されず、欠
陥部を起点とした腐食が進行する。以上のような背景か
ら、高耐食性のZn系合金めっき鋼板を蒸着で製造する
ことが試みられている。なかでも、Zn−Mg合金めっ
きは、優れた防食作用を有する。たとえば、特開昭64
−17853号公報では、0.5〜40重量%のMgを
含むZn−Mg合金めっき層を形成することを開示して
いる。また、Zn−Mg合金めっき層と下地鋼との間に
Zn,Ni,Cu,Mg,Al,Fe,Co,Ti等の
中間層を介在させるとき、めっき層の密着性及び加工性
が向上することが特開平2−141588号公報で紹介
されている。
If an electroplating method is used to form a plating layer having a high adhesion amount, it is necessary to slow down the line speed, and productivity is significantly impaired. Therefore, in the electroplating method, Zn-Ni-based Zn alloy plating is applied to improve the corrosion resistance. But Z
Since the n-Ni alloy plating layer is hard and brittle, defects such as cracks and chips are likely to occur in the plating layer during molding. When such a defect occurs in the plating layer, the underlying steel is exposed through the defect portion, so that the original performance of the plating layer is not exhibited and corrosion starting from the defect portion proceeds. From the background described above, it has been attempted to produce a Zn-based alloy plated steel sheet having high corrosion resistance by vapor deposition. Among them, Zn-Mg alloy plating has an excellent anticorrosion effect. For example, JP-A-64
Japanese Patent Laid-Open No. 17853 discloses forming a Zn-Mg alloy plating layer containing 0.5 to 40% by weight of Mg. Further, when an intermediate layer of Zn, Ni, Cu, Mg, Al, Fe, Co, Ti or the like is interposed between the Zn-Mg alloy plating layer and the base steel, the adhesion and workability of the plating layer are improved. This is introduced in Japanese Patent Laid-Open No. 2-141588.

【0004】[0004]

【発明が解決しようとする課題】高付着量のZn−Mg
合金めっき鋼板では、プレス加工時にパウダリングが発
生し易い欠点がある。特に、Mg濃度の上昇に伴ってめ
っき層にZn−Mgの金属間化合物が多くなった場合、
Mgの平均濃度が低いときでも下地側に金属間化合物が
存在する場合等において、この傾向が顕著になる。これ
は、Zn−Mg金属間化合物層が硬くて脆いためであ
り、高い延性をもつ下地鋼板の変形に追従できず、界面
剥離や亀裂を起こすことに原因がある。パウダリング
は、Mg濃度の低下によってめっき層に含まれる金属間
化合物の量を下げ、延性を高くすることによって解消さ
れる。しかし、Mg濃度の低下は、めっき層の防食作用
を低下させる。また、表面側のみを高Mg濃度にしても
耐パウダリング性が改善されるが、めっき層の表面がM
g濃化によって黒色に変色し、めっき鋼板の商品価値を
下げる。しかも、めっき層表面の高Mg濃度は、溶接電
極に対するMgの拡散を促進させ、スポット溶接性を低
下させる。本発明は、このような問題を解消すべく案出
されたものであり、Zn−Mg合金めっき層を特定組成
の多層構造とすることにより、高Mg濃度に起因する欠
陥を抑制し、耐食性,耐パウダリング性,密着性,スポ
ット溶接性,耐変色性等に優れたZn−Mg合金めっき
鋼板を得ること目的とする。
Zn-Mg with high deposition amount
The alloy-plated steel sheet has a drawback that powdering is likely to occur during press working. In particular, when the Zn-Mg intermetallic compound increases in the plating layer as the Mg concentration increases,
Even when the average concentration of Mg is low, this tendency becomes remarkable when the intermetallic compound is present on the base side. This is because the Zn-Mg intermetallic compound layer is hard and brittle, and it cannot follow the deformation of the base steel sheet having high ductility and causes interfacial peeling or cracking. The powdering is eliminated by reducing the amount of the intermetallic compound contained in the plating layer by increasing the Mg concentration and increasing the ductility. However, the reduction of the Mg concentration reduces the anticorrosion effect of the plating layer. Also, even if only the surface side has a high Mg concentration, the powdering resistance is improved, but the surface of the plating layer is M
It will turn black due to thickening and reduce the commercial value of plated steel sheets. Moreover, the high Mg concentration on the surface of the plating layer promotes the diffusion of Mg to the welding electrode and reduces the spot weldability. The present invention has been devised to solve such a problem, and by forming the Zn-Mg alloy plating layer into a multilayer structure having a specific composition, suppresses defects caused by a high Mg concentration, and improves corrosion resistance, It is an object to obtain a Zn-Mg alloy plated steel sheet having excellent powdering resistance, adhesiveness, spot weldability, discoloration resistance and the like.

【0005】[0005]

【課題を解決するための手段】本発明のZn−Mg合金
めっき鋼板は、その目的を達成するため、図1に示す基
本的な層構成をもっている。下地鋼の表面にはMg濃度
0.5重量%以下のZn−Mg合金層があり、その上に
Mg濃度7重量%以上のZn−Mg合金層及びMg濃度
0.5重量%以下のZn−Mg合金層が順次積層されて
いる。この基本層構成よりも高耐食性が要求される場
合、図2に示すように、Mg濃度0.5重量%以下のZ
n−Mg合金層とMg濃度7重量%以上のZn−Mg合
金層との間にMg濃度2〜7重量%のZn−Mg合金層
を設ける。Mg濃度7重量%以上のZn−Mg合金層
は、高湿潤環境における耐食性を確保する観点から、M
g含有量の上限を20重量%にすることが好ましい。
The Zn-Mg alloy plated steel sheet of the present invention has a basic layer structure shown in FIG. 1 in order to achieve the object. A Zn-Mg alloy layer having a Mg concentration of 0.5 wt% or less is present on the surface of the base steel, and a Zn-Mg alloy layer having a Mg concentration of 7 wt% or more and a Zn-Mg concentration of 0.5 wt% or less is formed on the Zn-Mg alloy layer. Mg alloy layers are sequentially stacked. When higher corrosion resistance than this basic layer structure is required, as shown in FIG. 2, Z with a Mg concentration of 0.5 wt% or less is used.
A Zn-Mg alloy layer having a Mg concentration of 2 to 7 wt% is provided between the n-Mg alloy layer and a Zn-Mg alloy layer having a Mg concentration of 7 wt% or more. The Zn-Mg alloy layer having a Mg concentration of 7 wt% or more is M from the viewpoint of ensuring corrosion resistance in a high-humidity environment.
The upper limit of the g content is preferably 20% by weight.

【0006】蒸着時の雰囲気にO2 やH2 Oが含まれて
いると、鋼板表面が酸化され、めっき層の密着性が低下
する。また、表面活性化後に直ちに蒸着が行われず、鋼
板表面の汚染が予想される場合にあっても、めっき層の
密着性が低下する虞れがある。このような場合、鋼板表
面に対するZn−Mg合金めっき層の密着性を図るた
め、図3又は図4に示すようにZn−Fe合金層又はZ
n−Fe−Mg合金層を形成する。Zn−Fe合金層又
はZn−Fe−Mg合金層は、それらによる成形時のパ
ウダリングを防止するため、層厚を0.5μm以下にす
ることが好ましい。また、Zn−Fe合金層又はZn−
Fe−Mg合金層に含まれるFe濃度は、通常6重量%
以上にする。
If the atmosphere during vapor deposition contains O 2 or H 2 O, the surface of the steel sheet will be oxidized and the adhesion of the plating layer will decrease. Further, even if vapor deposition is not performed immediately after surface activation and the surface of the steel sheet is expected to be contaminated, the adhesion of the plating layer may be reduced. In such a case, in order to improve the adhesion of the Zn-Mg alloy plating layer to the surface of the steel sheet, as shown in FIG.
An n-Fe-Mg alloy layer is formed. The Zn—Fe alloy layer or the Zn—Fe—Mg alloy layer preferably has a layer thickness of 0.5 μm or less in order to prevent powdering during molding by the Zn—Fe alloy layer. In addition, a Zn-Fe alloy layer or Zn-
The Fe concentration contained in the Fe-Mg alloy layer is usually 6% by weight.
More than that.

【0007】これらのめっき鋼板は、鋼板表面にZn蒸
着→Mg蒸着→Zn蒸着を順次行った後で加熱すること
によって形成される。或いは、蒸着割合を変えながら、
Zn及びMgを同時蒸着することによっても、必要とす
る層構成をもつZn−Mg合金めっき層が形成される。
蒸着後の加熱温度,加熱時間等の条件を制御することに
より、必要とする厚みをもったZn−Fe合金層又はZ
n−Fe−Mg合金層が下地鋼とめっき層との界面に形
成される。たとえば、50秒以内の短時間加熱では加熱
温度を270〜370℃に、1時間以上の長時間加熱で
は加熱温度を150〜250℃に設定する。また、加熱
処理に代えて、蒸着終了時の鋼板温度が270〜370
℃となるように条件を設定することによっても、所定の
層構成をもったZn−Mg合金めっき層を形成すること
ができる。蒸着法で形成されたZn−Mg合金めっき層
には、通常、酸化したMg濃化層が表面に存在する。初
期の耐食性が重視される用途ではMg濃化層をそのまま
残しておくが、スポット溶接性が重視される用途や表面
の黒変色を防止する場合には、酸洗等によってMg濃化
層を除去する。
These plated steel sheets are formed by sequentially performing Zn vapor deposition → Mg vapor deposition → Zn vapor deposition on the steel sheet surface and then heating. Or while changing the deposition rate,
A Zn-Mg alloy plated layer having a required layer structure is also formed by simultaneous vapor deposition of Zn and Mg.
By controlling conditions such as heating temperature and heating time after vapor deposition, a Zn-Fe alloy layer or Z having a required thickness is obtained.
An n-Fe-Mg alloy layer is formed at the interface between the base steel and the plating layer. For example, the heating temperature is set to 270 to 370 ° C. for short time heating within 50 seconds, and the heating temperature is set to 150 to 250 ° C. for long time heating for 1 hour or more. Further, instead of the heat treatment, the steel plate temperature at the end of vapor deposition is 270 to 370.
The Zn-Mg alloy plating layer having a predetermined layer structure can also be formed by setting the conditions so that the temperature becomes ° C. The Zn-Mg alloy plated layer formed by the vapor deposition method usually has an oxidized Mg concentrated layer on its surface. The Mg-enriched layer is left as it is in applications where the initial corrosion resistance is important, but the Mg-enriched layer is removed by pickling or the like when the spot weldability is important or when black discoloration of the surface is to be prevented. To do.

【0008】[0008]

【作用】本発明に従ったZn−Mg合金めっき層は、中
心部にMg濃度の高い部分があり、その上下にある層の
Mg濃度が低くなった多層構成をもっている。Mg濃度
が0.5重量%以下の低い層は、比較的溶出速度が大き
く、犠牲防食作用を呈し、疵付き部等における鋼板露出
部の赤錆発生を防止する。特に、初期の赤錆発生防止に
有効である。Mg濃度が7重量%以上と高い層は、耐食
性が高く、めっき層自体の腐食寿命を長くする。また、
Mg濃度が高い層から溶け出したMgは、防食性に優れ
たZnの腐食生成物であるZnCl2・4Zn (OH)2
Zn (OH)2の生成を促進させ、耐食性を向上させる。
Mg濃度が2〜7重量%と中間濃度のZn−Mg合金層
は、低Mg濃度層と高Mg濃度層との中間の性質を示
し、更に耐食性を向上させる。このような各層の作用が
相乗的に働き、従来にない優れた耐食性が発揮される。
The Zn-Mg alloy plated layer according to the present invention has a multi-layered structure in which the central portion has a high Mg concentration portion and the layers above and below it have a low Mg concentration. A layer having a low Mg concentration of 0.5% by weight or less has a relatively high elution rate, exhibits a sacrificial anticorrosion action, and prevents the occurrence of red rust on the exposed portion of the steel sheet in a flawed portion or the like. In particular, it is effective in preventing the occurrence of red rust in the initial stage. A layer having a high Mg concentration of 7% by weight or more has high corrosion resistance and prolongs the corrosion life of the plating layer itself. Also,
The Mg dissolved out from the layer having a high Mg concentration promotes the formation of ZnCl 2 .4Zn (OH) 2 and Zn (OH) 2 which are corrosion products of Zn having excellent corrosion resistance, and improves the corrosion resistance.
A Zn-Mg alloy layer having an Mg concentration of 2 to 7% by weight and an intermediate concentration exhibits intermediate properties between the low Mg concentration layer and the high Mg concentration layer, and further improves the corrosion resistance. The action of each layer works synergistically, and excellent corrosion resistance which has never been obtained is exhibited.

【0009】めっきされた鋼板をプレス加工等で変形さ
せるとき、Mg濃度0.5重量%以下のZn−Mg合金
層に延性があるため、ほとんど変形しない高Mg濃度の
Zn−Mg合金層と下地鋼との間の加工時における変形
量の差を吸収する。その結果、パウダリングの発生が抑
制される。めっき層の表層は、めっき後の鋼板を酸洗
し、表面の酸化したMg濃化層を除去することによっ
て、スポット溶接時に溶接電極と接する面のMg濃度が
0.5重量%以下になる。低Mg層は、溶接電極へのM
g拡散を少なくし、スポット溶接性を向上させる。ま
た、表面に多量のMgが存在すると、Znの酸化物や水
酸化物が不飽和になり、黒変色が生じる。この黒変色
も、表層のMg濃度を0.5重量%以下にすることによ
って防止できる。
When the plated steel sheet is deformed by pressing or the like, since the Zn-Mg alloy layer having a Mg concentration of 0.5% by weight or less has ductility, the Zn-Mg alloy layer having a high Mg concentration which hardly deforms and the base Absorbs the difference in deformation amount between steel and steel during processing. As a result, the occurrence of powdering is suppressed. In the surface layer of the plating layer, the steel sheet after plating is pickled and the oxidized Mg concentrated layer on the surface is removed, so that the Mg concentration on the surface in contact with the welding electrode during spot welding becomes 0.5% by weight or less. Low Mg layer is M for welding electrode
Reduces g diffusion and improves spot weldability. In addition, when a large amount of Mg is present on the surface, the Zn oxide or hydroxide becomes unsaturated and black discoloration occurs. This black discoloration can also be prevented by setting the Mg concentration in the surface layer to 0.5% by weight or less.

【0010】[0010]

【実施例】【Example】

本発明に従っためっき鋼板の作製 めっき原板として、C:0.002重量%,Si:0.
02重量%,Mn:0.21重量%,P:0.007重
量%,S:0.001重量%,Ti:0.076重量
%,Al:0.031重量%の組成を持ち、板厚0.8
mmの鋼板を使用した。めっき原板をN2 −50%H2
ガス雰囲気中で還元加熱することにより表面の酸化膜を
除去した後、真空室にセットした。真空室は、ポンプで
排気しながら露点−60℃のN2 ガスを導入し、N2
圧を5×10-2トールに維持した。この真空室内で、次
の手順で蒸着した。Zn→Mg→Znの順番で蒸着し、
トータルで片面当り100g/m2 の蒸着量に設定し、
最初に蒸着するZn量と最後に蒸着するZn量を同一に
した。これにより、中心付近のMg濃度が最も高い層で
は約10重量のMg濃度となり、上下層のMg濃度は
0.5重量%以下になった。また、中間にある層のMg
濃度は、約4重量%であった。
Production of Plated Steel Sheet According to the Present Invention As a plating original plate, C: 0.002% by weight, Si: 0.
02% by weight, Mn: 0.21% by weight, P: 0.007% by weight, S: 0.001% by weight, Ti: 0.076% by weight, Al: 0.031% by weight, and a plate thickness. 0.8
A mm steel plate was used. Plate the plating base plate with N 2 -50% H 2
After removing the oxide film on the surface by reducing and heating in a gas atmosphere, it was set in a vacuum chamber. In the vacuum chamber, N 2 gas having a dew point of −60 ° C. was introduced while exhausting with a pump, and the N 2 partial pressure was maintained at 5 × 10 −2 Torr. In this vacuum chamber, vapor deposition was performed by the following procedure. Zn → Mg → Zn is deposited in this order,
Set a total deposition amount of 100 g / m 2 per side,
The amount of Zn deposited first and the amount of Zn deposited last were the same. As a result, the Mg concentration near the center was about 10 wt% in the highest Mg concentration, and the Mg concentration in the upper and lower layers was 0.5 wt% or less. In addition, the Mg in the middle layer
The concentration was about 4% by weight.

【0011】下地鋼とめっき層との界面にZn−Fe合
金層又はZn−Fe−Mg合金層がある3層構造(図
3)又は5層構造(図4)のめっき鋼板を製造する場
合、200℃に保持した鋼板表面にZn→Mg→Znの
順番で蒸着した後、真空室を700トールのN2 で満た
し、5〜10秒間加熱した。加熱温度は、3層構造(図
3)のめっき層を形成する場合には270〜330℃、
5層構造(図4)のめっき層を形成する場合には330
〜370℃とした。これにより、Zn−Fe合金層又は
Zn−Fe−Mg合金層は、約0.2μmの厚みとなっ
た。また、蒸着割合を変化させながらZn及びMgを同
時に蒸着することにより、図1及び図2に示す層構成を
もった片面当りのZn付着量が100g/m2 のZn−
Mg合金めっき層を形成した。このとき、蒸着時の鋼板
を板温120℃に保持した。なお、蒸着後に、加熱処理
は行わなかった。
When a plated steel sheet having a three-layer structure (FIG. 3) or a five-layer structure (FIG. 4) having a Zn--Fe alloy layer or a Zn--Fe--Mg alloy layer at the interface between the base steel and the plating layer is produced, After vapor deposition in the order of Zn → Mg → Zn on the surface of the steel sheet kept at 200 ° C., the vacuum chamber was filled with 700 Torr of N 2 and heated for 5 to 10 seconds. The heating temperature is 270 to 330 ° C. when a plating layer having a three-layer structure (FIG. 3) is formed,
330 when forming a 5-layer structure (FIG. 4) plating layer
Was set to 370 ° C. As a result, the Zn-Fe alloy layer or the Zn-Fe-Mg alloy layer had a thickness of about 0.2 μm. In addition, by simultaneously depositing Zn and Mg while changing the deposition rate, the amount of Zn deposited on one surface having the layer structure shown in FIGS. 1 and 2 is 100 g / m 2 Zn-.
A Mg alloy plating layer was formed. At this time, the steel plate during vapor deposition was kept at a plate temperature of 120 ° C. Note that heat treatment was not performed after vapor deposition.

【0012】以上の各めっき鋼板を0.5%HCl水溶
液で酸洗し、表面のMg濃化層を除去した。酸洗後のめ
っき鋼板は、十分に水洗した。得られためっき鋼板を観
察したところ、表1に示す層構成をもつめっき層となっ
ていた。各めっき鋼板の特性を調査した。耐食性は、J
IS Z2371に準拠した塩水噴霧試験を行い、赤錆
発生時間で評価した。パウダリング性は、高さ4mm,
R=0.5mmのビードを付けた金型に試験片を挟み、
金型への加圧力500kgf及び引抜き速度200m/
分で金型から試験片を引き抜くド−ロービード試験を行
い、発生したパウダリングの量で評価した。スポット溶
接性は、単相交流型の溶接機に先端径4.5mmのCF
型Cu−1%Cr電極を装着し、連続溶接が可能な打点
数によって評価した。黒変色は、温度50℃及び相対湿
度60%の促進試験機の中に試験片を1000時間放置
し、試験前後の明度差ΔL* によって評価した。試験結
果を示す表1から明らかなように、本発明に従った3層
構造又は5層構造をもつZn−Mg合金めっき鋼板は、
耐食性,耐パウダリング性,スポット溶接性,耐黒変色
性の何れにおいても優れていた。また、図3及び図4の
構造をもつめっき層が形成されたものでは、H2 OやO
2 が数十ppm存在する酸化性の雰囲気で蒸着した場合
でも、めっき層の密着性が良好であった。
The above plated steel sheets were pickled with a 0.5% HCl aqueous solution to remove the Mg concentrated layer on the surface. The plated steel sheet after pickling was thoroughly washed with water. When the obtained plated steel sheet was observed, it was a plated layer having the layer structure shown in Table 1. The characteristics of each plated steel sheet were investigated. Corrosion resistance is J
A salt spray test according to IS Z2371 was performed, and the time of occurrence of red rust was evaluated. The powdering property is 4mm in height,
Place the test piece in a mold with a bead of R = 0.5 mm,
Pressing force to the mold is 500kgf and drawing speed is 200m /
The draw-bead test of pulling out the test piece from the mold in minutes was performed, and the amount of powdering generated was evaluated. Spot weldability is a single-phase AC welding machine with a CF of 4.5 mm tip diameter.
A Cu-1% Cr type electrode was attached, and evaluation was made by the number of spots at which continuous welding was possible. The black discoloration was evaluated by allowing the test piece to stand in an accelerated tester at a temperature of 50 ° C. and a relative humidity of 60% for 1000 hours and measuring the difference in lightness ΔL * before and after the test. As is clear from Table 1 showing the test results, the Zn-Mg alloy plated steel sheet having a three-layer structure or a five-layer structure according to the present invention is
It was excellent in all of corrosion resistance, powdering resistance, spot weldability, and black discoloration resistance. Further, in the case where the plating layer having the structure of FIGS. 3 and 4 is formed, H 2 O or O
Even when vapor deposition was carried out in an oxidizing atmosphere in which several tens of ppm of 2 existed, the adhesion of the plating layer was good.

【0013】[0013]

【表1】 [Table 1]

【0014】比較例1 同じめっき原板を120℃に保持し、Zn及びMgの同
時蒸着によって、片面当りの付着量が100g/m2
均一組成をもつZn−Mg合金めっき層を形成した。 比較例2 鋼板温度を200℃に保持し、Zn→Mgの順に蒸着し
た後、270〜330℃に加熱することによって、下層
がMg濃度0.5重量%以下のZn−Mg合金層,上層
がMg濃度10重量%のZn−Mg合金層からなる2層
構造のZn−Mg合金めっき鋼板をも作製した。このと
き、付着量を片面当り100g/m2 (めっき厚みとし
て約0.2μm)に設定し、界面にZn−Fe合金層又
はZn−Fe−Mg合金層が形成されるように温度管理
した。
Comparative Example 1 The same original plating plate was held at 120 ° C., and Zn and Mg were co-evaporated to form a Zn—Mg alloy plating layer having a uniform composition with an adhesion amount per one side of 100 g / m 2 . Comparative Example 2 A steel sheet temperature was kept at 200 ° C., vapor deposition was carried out in the order of Zn → Mg, and thereafter heating was carried out at 270 to 330 ° C., whereby the lower layer was a Zn—Mg alloy layer having a Mg concentration of 0.5 wt% or less, and the upper layer was A Zn-Mg alloy plated steel sheet having a two-layer structure composed of a Zn-Mg alloy layer having a Mg concentration of 10% by weight was also produced. At this time, the amount of adhesion was set to 100 g / m 2 per side (plating thickness was about 0.2 μm), and the temperature was controlled so that a Zn—Fe alloy layer or a Zn—Fe—Mg alloy layer was formed at the interface.

【0015】比較例3 片面当り100g/m2 の付着量でMg→Znの順に蒸
着し、270〜330℃に加熱することにより、Mg濃
度約10重量%の下層とMg濃度0.5重量%の上層か
らなる2層構造のZn−Mg合金めっき鋼板を作製し
た。 比較例4 鋼板温度を90℃に保持し、Zn蒸着→Zn,Mg同時
蒸着→Zn蒸着を順次行い、下層からZn層,Mg濃度
約10重量%のZn−Mg合金層及びZn層の3層が積
層したZn−Mg合金めっき鋼板を作製した。この場合
も、付着量を片面当り100g/m2 に設定した。めっ
き層表面にあるMg濃化層を除去するため、各めっき鋼
板を0.5%HCl水溶液で10秒間酸洗し、十分に水
洗した。得られたZn−Mg合金めっき鋼板について、
同様な特性調査試験を行った結果を表2に示す。
Comparative Example 3 Mg → Zn was vapor-deposited in the order of 100 g / m 2 on one side and heated to 270 to 330 ° C. to form a lower layer with a Mg concentration of about 10 wt% and a Mg concentration of 0.5 wt%. A Zn-Mg alloy plated steel sheet having a two-layer structure consisting of the upper layer was prepared. Comparative Example 4 While maintaining the steel plate temperature at 90 ° C., Zn vapor deposition → Zn, Mg simultaneous vapor deposition → Zn vapor deposition were sequentially performed, and a Zn layer, a Zn—Mg alloy layer having a Mg concentration of about 10 wt%, and a Zn layer were formed in three layers from the lower layer. To prepare a Zn-Mg alloy plated steel sheet. Also in this case, the adhesion amount was set to 100 g / m 2 per side. In order to remove the Mg concentrated layer on the surface of the plated layer, each plated steel sheet was pickled with a 0.5% HCl aqueous solution for 10 seconds and then sufficiently washed with water. About the obtained Zn-Mg alloy plated steel sheet,
Table 2 shows the results of a similar characteristic investigation test.

【0016】[0016]

【表2】 [Table 2]

【0017】表2の結果から明らかなように、比較例の
めっき鋼板は、耐食性,耐パウダリング性,スポット溶
接性及び黒変性の何れにおいても劣っていた。特に表層
までMg濃度が高い比較例1,2では、明度変化 (ΔL
*)が大きく、良好な表面状態が維持されなかった。比較
例3のめっき鋼板は、表層のMg濃度が低いものの、パ
ウダリングが多量に発生し、加工性に劣っていた。
As is clear from the results shown in Table 2, the plated steel sheets of Comparative Examples were inferior in any of corrosion resistance, powdering resistance, spot weldability and blackening. In particular, in Comparative Examples 1 and 2 in which the Mg concentration is high up to the surface layer, the brightness change (ΔL
* ) Was large and a good surface condition was not maintained. The plated steel sheet of Comparative Example 3 had a low Mg concentration in the surface layer, but suffered a large amount of powdering and was inferior in workability.

【0018】[0018]

【発明の効果】以上に説明したように、本発明のZn−
Mg合金めっき鋼板は、下地鋼と高Mg濃度のZn−M
g合金層との間に延性のある低Mg濃度のZn−Mg合
金層を介在させることにより、高Mg濃度のZn−Mg
合金層の耐食性を維持し、且つ硬質な高Mg濃度のZn
−Mg合金層と下地鋼との間で加工時に生じる変形量の
差を低Mg濃度のZn−Mg合金層で吸収している。こ
れにより、Zn−Mg合金めっき層本来の高耐食性が活
用され、加工性が良好なめっき鋼板が得られる。しか
も、表層のMg濃度が低下しているので、スポット溶接
性も向上しためっき鋼板となる。
As described above, according to the present invention, the Zn-
Mg alloy plated steel sheet is a base steel and Zn-M with high Mg concentration.
By interposing a ductile Zn-Mg alloy layer having a low Mg concentration with the g alloy layer, a Zn-Mg having a high Mg concentration is formed.
Zn with a high Mg concentration that maintains the corrosion resistance of the alloy layer and is hard
The difference in the amount of deformation generated during working between the -Mg alloy layer and the base steel is absorbed by the Zn-Mg alloy layer having a low Mg concentration. Thereby, the high corrosion resistance inherent in the Zn-Mg alloy plating layer is utilized, and a plated steel sheet having good workability can be obtained. Moreover, since the Mg concentration in the surface layer is reduced, the plated steel sheet has improved spot weldability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 3層構造をもつZn−Mg合金めっき層FIG. 1 is a Zn-Mg alloy plating layer having a three-layer structure.

【図2】 5層構造をもつZn−Mg合金めっき層FIG. 2 Zn-Mg alloy plating layer having a five-layer structure

【図3】 下地鋼とめっき層との界面にZn−Fe合金
層又はZn−Fe−Mg合金層を形成させた3層構造の
Zn−Mg合金めっき層
FIG. 3 is a Zn-Mg alloy plating layer having a three-layer structure in which a Zn-Fe alloy layer or a Zn-Fe-Mg alloy layer is formed at the interface between the base steel and the plating layer.

【図4】 下地鋼とめっき層との界面にZn−Fe合金
層又はZn−Fe−Mg合金層を形成させた5層構造の
Zn−Mg合金めっき層
FIG. 4 is a Zn-Mg alloy plating layer having a five-layer structure in which a Zn-Fe alloy layer or a Zn-Fe-Mg alloy layer is formed at the interface between the base steel and the plating layer.

【手続補正書】[Procedure amendment]

【提出日】平成7年2月7日[Submission date] February 7, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】[0010]

【実施例】 本発明に従っためっき鋼板の作製 めっき原板として、C:0.002重量%,Si:0.
02重量%,Mn:0.21重量%,P:0.007重
量%,S:0.001重量%,Ti:0.076重量
%,Al:0.031重量%の組成を持ち、板厚0.8
mmの鋼板を使用した。めっき原板をN2 −50%H2
ガス雰囲気中で還元加熱することにより表面の酸化膜を
除去した後、真空室にセットした。真空室は、ポンプで
排気しながら露点−60℃のN2 ガスを導入し、N2
圧を5×10-2トールに維持した。この真空室内で、次
の手順で蒸着した。Zn→Mg→Znの順番で蒸着し、
トータルで片面当り100g/m2 の蒸着量に設定し、
最初に蒸着するZn量と最後に蒸着するZn量を同一に
した。
Example Production of plated steel sheet according to the present invention As a plating original plate, C: 0.002% by weight, Si: 0.
02% by weight, Mn: 0.21% by weight, P: 0.007% by weight, S: 0.001% by weight, Ti: 0.076% by weight, Al: 0.031% by weight, and a plate thickness. 0.8
A mm steel plate was used. Plate the plating base plate with N 2 -50% H 2
After removing the oxide film on the surface by reducing and heating in a gas atmosphere, it was set in a vacuum chamber. In the vacuum chamber, N 2 gas having a dew point of −60 ° C. was introduced while exhausting with a pump, and the N 2 partial pressure was maintained at 5 × 10 −2 Torr. In this vacuum chamber, vapor deposition was performed by the following procedure. Zn → Mg → Zn is deposited in this order,
Set a total deposition amount of 100 g / m 2 per side,
The amount of Zn deposited first and the amount of Zn deposited last were the same.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】下地鋼とめっき層との界面にZn−Fe合
金層又はZn−Fe−Mg合金層がある3層構造(図
3)又は5層構造(図4)のめっき鋼板を製造する場
合、200℃に保持した鋼板表面にZn→Mg→Znの
順番で蒸着した後、真空室を700トールのN2 で満た
し、5〜10秒間加熱した。加熱温度は、3層構造(図
3)のめっき層を形成する場合には270〜330℃、
5層構造(図4)のめっき層を形成する場合には330
〜370℃とした。これにより、Zn−Fe合金層又は
Zn−Fe−Mg合金層は、約0.2μmの厚みとなっ
た。これにより、中心付近のMg濃度が最も高い層では
約10重量%のMg濃度となり、上下層のMg濃度は
0.5重量%以下になった。また、中間にある層のMg
濃度は、約4重量%であった。また、蒸着割合を変化さ
せながらZn及びMgを同時に蒸着することにより、図
1及び図2に示す層構成をもった片面当りのZn付着量
が100g/m2 のZn−Mg合金めっき層を形成し
た。各層の濃度は、先のもの(図3,4)と同じにし
た。このとき、蒸着時の鋼板を板温120℃に保持し
た。なお、蒸着後に、加熱処理は行わなかった。 ─────────────────────────────────────────────────────
When a plated steel sheet having a three-layer structure (FIG. 3) or a five-layer structure (FIG. 4) having a Zn--Fe alloy layer or a Zn--Fe--Mg alloy layer at the interface between the base steel and the plating layer is produced, After vapor deposition in the order of Zn → Mg → Zn on the surface of the steel sheet kept at 200 ° C., the vacuum chamber was filled with 700 Torr of N 2 and heated for 5 to 10 seconds. The heating temperature is 270 to 330 ° C. when a plating layer having a three-layer structure (FIG. 3) is formed,
330 when forming a 5-layer structure (FIG. 4) plating layer
It was set to ˜370 ° C. As a result, the Zn-Fe alloy layer or the Zn-Fe-Mg alloy layer had a thickness of about 0.2 μm. As a result, the Mg concentration in the highest Mg concentration near the center was about 10% by weight, and the Mg concentrations in the upper and lower layers were 0.5% by weight or less. In addition, the Mg in the middle layer
The concentration was about 4% by weight. Further, by simultaneously depositing Zn and Mg while changing the deposition rate, a Zn—Mg alloy plating layer having a layer structure shown in FIGS. 1 and 2 and having a Zn deposition amount on one side of 100 g / m 2 is formed. did. The concentration of each layer was the same as the previous one (FIGS. 3 and 4). At this time, the steel plate during vapor deposition was kept at a plate temperature of 120 ° C. Note that heat treatment was not performed after vapor deposition. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年8月30日[Submission date] August 30, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】比較例1 同じめっき原板を120℃に保持し、Zn及びMgの同
時蒸着によって、片面当りの付着量が100g/m
均一組成をもつZn−Mg合金めっき層を形成した。 比較例2 鋼板温度を200℃に保持し、Zn→Mgの順に蒸着し
た後、270〜330℃に加熱することによって、下層
がMg濃度0.5重量%以下のZn−Mg合金層,上層
がMg濃度10重量%のZn−Mg合金層からなる2層
構造のZn−Mg合金めっき鋼板をも作製した。このと
き、付着量を片面当り100g/mに設定し、界面に
Zn−Fe合金層又はZn−Fe−Mg合金層が形成さ
れるように温度管理した。
Comparative Example 1 The same original plating plate was held at 120 ° C., and Zn and Mg were co-evaporated to form a Zn—Mg alloy plating layer having a uniform composition with an adhesion amount per one side of 100 g / m 2 . Comparative Example 2 A steel sheet temperature was kept at 200 ° C., vapor deposition was carried out in the order of Zn → Mg, and thereafter heating was carried out at 270 to 330 ° C., whereby the lower layer was a Zn—Mg alloy layer having a Mg concentration of 0.5 wt% or less, and the upper layer was A Zn-Mg alloy plated steel sheet having a two-layer structure composed of a Zn-Mg alloy layer having a Mg concentration of 10% by weight was also produced. At this time, the adhesion amount was set to 100 g / m 2 on one side, and the temperature was controlled so that the Zn—Fe alloy layer or the Zn—Fe—Mg alloy layer was formed at the interface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三尾野 忠昭 大阪府堺市石津西町5番地 日新製鋼株式 会社鉄鋼研究所内 (72)発明者 斎藤 実 大阪府堺市石津西町5番地 日新製鋼株式 会社鉄鋼研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadaaki Miono 5 Ishizu Nishimachi, Sakai City, Osaka Prefecture Nisshin Steel Co., Ltd. Steel Research Laboratories (72) Minor Saito 5 5 Ishizu Nishimachi, Sakai City, Osaka Nisshin Steel Co., Ltd. Company Steel Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Mg濃度0.5重量%以下のZn−Mg
合金層,Mg濃度7重量%以上のZn−Mg合金層及び
Mg濃度0.5重量%以下のZn−Mg合金層が順次積
層されているZn−Mg合金めっき鋼板。
1. A Zn-Mg having a Mg concentration of 0.5% by weight or less.
A Zn-Mg alloy plated steel sheet in which an alloy layer, a Zn-Mg alloy layer having a Mg concentration of 7% by weight or more, and a Zn-Mg alloy layer having a Mg concentration of 0.5% by weight or less are sequentially stacked.
【請求項2】 Mg濃度0.5重量%以下のZn−Mg
合金層,Mg濃度2〜7重量%のZn−Mg合金層,M
g濃度7重量%以上のZn−Mg合金層,Mg濃度7重
量%以上のZn−Mg合金層,Mg濃度2〜7重量%の
Zn−Mg合金層及びMg濃度0.5重量%以下のZn
−Mg合金層が順次積層されているZn−Mg合金めっ
き鋼板。
2. Zn-Mg having a Mg concentration of 0.5% by weight or less.
Alloy layer, Zn-Mg alloy layer with Mg concentration of 2 to 7% by weight, M
Zn-Mg alloy layer with g concentration of 7 wt% or more, Zn-Mg alloy layer with Mg concentration of 7 wt% or more, Zn-Mg alloy layer with Mg concentration of 2-7 wt%, and Zn with Mg concentration of 0.5 wt% or less
-A Zn-Mg alloy plated steel sheet in which Mg alloy layers are sequentially laminated.
【請求項3】 下地鋼との界面にZn−Fe合金層又は
Zn−Fe−Mg合金層が形成されている請求項1又は
2記載のZn−Mg合金めっき鋼板。
3. The Zn—Mg alloy plated steel sheet according to claim 1, wherein a Zn—Fe alloy layer or a Zn—Fe—Mg alloy layer is formed at the interface with the base steel.
【請求項4】 鋼板にZn,Mg及びZnを順次蒸着
し、次いで加熱することを特徴とする請求項1〜3の何
れかに記載のZn−Mg合金めっき鋼板の製造方法。
4. The method for producing a Zn—Mg alloy plated steel sheet according to claim 1, wherein Zn, Mg and Zn are sequentially vapor-deposited on the steel sheet and then heated.
JP24335894A 1994-09-12 1994-09-12 Zn-Mg alloy plated steel sheet and manufacturing method Expired - Fee Related JP3640688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24335894A JP3640688B2 (en) 1994-09-12 1994-09-12 Zn-Mg alloy plated steel sheet and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24335894A JP3640688B2 (en) 1994-09-12 1994-09-12 Zn-Mg alloy plated steel sheet and manufacturing method

Publications (2)

Publication Number Publication Date
JPH0881761A true JPH0881761A (en) 1996-03-26
JP3640688B2 JP3640688B2 (en) 2005-04-20

Family

ID=17102655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24335894A Expired - Fee Related JP3640688B2 (en) 1994-09-12 1994-09-12 Zn-Mg alloy plated steel sheet and manufacturing method

Country Status (1)

Country Link
JP (1) JP3640688B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730045A2 (en) * 1995-02-28 1996-09-04 Nisshin Steel Co., Ltd. Steel sheet with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
US9744743B2 (en) 2012-12-26 2017-08-29 Posco Zn—Mg alloy plated steel sheet, and method for manufacturing same
WO2018124649A1 (en) * 2016-12-26 2018-07-05 주식회사 포스코 Zinc alloy plated steel having excellent weldability and corrosion resistance
CN111527235A (en) * 2017-12-26 2020-08-11 Posco公司 Multilayer zinc alloy plated steel material having excellent spot weldability and corrosion resistance
US10988845B2 (en) 2016-12-22 2021-04-27 Posco Plated steel sheet having multilayer structure and manufacturing method therefor
US11136651B2 (en) 2016-12-23 2021-10-05 Posco Zn-Mg alloy plated steel material having excellent corrosion resistance and plating adhesion

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730045A2 (en) * 1995-02-28 1996-09-04 Nisshin Steel Co., Ltd. Steel sheet with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
EP0730045A3 (en) * 1995-02-28 1997-09-17 Nisshin Steel Co Ltd Steel sheet with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
US5747111A (en) * 1995-02-28 1998-05-05 Nisshin Steel Co., Ltd. Steel sheet coated with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
US9744743B2 (en) 2012-12-26 2017-08-29 Posco Zn—Mg alloy plated steel sheet, and method for manufacturing same
US10988845B2 (en) 2016-12-22 2021-04-27 Posco Plated steel sheet having multilayer structure and manufacturing method therefor
US11136651B2 (en) 2016-12-23 2021-10-05 Posco Zn-Mg alloy plated steel material having excellent corrosion resistance and plating adhesion
WO2018124649A1 (en) * 2016-12-26 2018-07-05 주식회사 포스코 Zinc alloy plated steel having excellent weldability and corrosion resistance
EP3561147A4 (en) * 2016-12-26 2020-03-25 Posco Zinc alloy plated steel having excellent weldability and corrosion resistance
US11208716B2 (en) 2016-12-26 2021-12-28 Posco Multi-layered zinc alloy plated steel having excellent spot weldability and corrosion resistance
US11649542B2 (en) 2016-12-26 2023-05-16 Posco Co., Ltd Multi-layered zinc alloy plated steel having excellent spot weldability and corrosion resistance
CN111527235A (en) * 2017-12-26 2020-08-11 Posco公司 Multilayer zinc alloy plated steel material having excellent spot weldability and corrosion resistance
US11414743B2 (en) 2017-12-26 2022-08-16 Posco Multilayered zinc alloy plated steel material having excellent spot weldability and corrosion resistance

Also Published As

Publication number Publication date
JP3640688B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
EP0730045B1 (en) Steel sheet with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
TWI394658B (en) Steel sheet for containers
EP2071055B1 (en) Steel plate for container, and method for production thereof
JPH0881761A (en) Zn-mg alloy plated steel sheet and production thereof
JP3545051B2 (en) Zn-Mg based plated steel sheet excellent in corrosion resistance and manufacturing method
JPH073417A (en) Highly corrosion resistant galvannealed steel sheet
JPH09228030A (en) High workability zinc-magnesium alloy plated steel sheet having low magnesium concentration and its production
JPH08239754A (en) Zn-mg alloy plated steel sheet excellent in secondary adhesion and corrosion resistance
JPH0841627A (en) Zn-mg alloy plated steel sheet excellent in spot weldability
JPH1068063A (en) Zinc-magnesium series plated steel sheet excellent in blackening treatability and production of black zinc-magnesium series plated steel sheet
JPH03287786A (en) Zinc plated steel sheet having superior press formability, chemical convertibility and weldability
JPH09137267A (en) Alloyed zinc-magnesium base plated steel sheet excellent in corrosion resistance and its production
JPH07207430A (en) Zn-mg alloy plated steel sheet excellent in corrosion resistance after coating and corrosion resistance at exposed part
JPH09111438A (en) Zinc-magnesium alloy plated steel sheet excellent in corrosion resistance in edge face and its production
JP3704323B2 (en) Manufacturing method of Ni-plated steel sheet for battery can
JPH0978229A (en) Production of zinc-magnesium alloy plated steel sheet
JPH07188903A (en) Zn-mg alloy plated steel sheet excellent in adhesion of coating film and its production
JPH03287784A (en) Zinc plated steel sheet having superior press formability, chemical convertibility and weldability
JP3207958B2 (en) Composite Al alloy plated steel sheet and method for producing the same
JP2001192797A (en) Method of manufacturing for high tensile strength hot- dip aluminum coated steel sheet
JPH05320951A (en) Method for modifying surface of aluminum sheet
JPH09143792A (en) Production of galvanized steel sheet
JP2020122198A (en) Multi-layer plated steel sheet and manufacturing method thereof
JPH03287788A (en) Zinc plated steel sheet having superior press formability, chemical convertibility and weldability
JPH03287787A (en) Zinc plated steel sheet having superior press formability, chemical convertibility and weldability

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040325

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Effective date: 20050119

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110128

LAPS Cancellation because of no payment of annual fees