JP3635254B2 - Powder molding method - Google Patents

Powder molding method Download PDF

Info

Publication number
JP3635254B2
JP3635254B2 JP2001279052A JP2001279052A JP3635254B2 JP 3635254 B2 JP3635254 B2 JP 3635254B2 JP 2001279052 A JP2001279052 A JP 2001279052A JP 2001279052 A JP2001279052 A JP 2001279052A JP 3635254 B2 JP3635254 B2 JP 3635254B2
Authority
JP
Japan
Prior art keywords
powder
iron oxide
moisture
molding
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001279052A
Other languages
Japanese (ja)
Other versions
JP2003082419A (en
Inventor
哲治 茨城
章次 井村
安部  洋一
茂樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001279052A priority Critical patent/JP3635254B2/en
Publication of JP2003082419A publication Critical patent/JP2003082419A/en
Application granted granted Critical
Publication of JP3635254B2 publication Critical patent/JP3635254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化鉄などを原料として、成形体を製造する方法と装置に関わる技術に関する。
【0002】
【従来の技術】
鉄鉱石粉、砂鉄、転炉ダスト等の酸化鉄を含む粉体を成形して、鉄鋼生産の原料とすることは、従来から盛んに実施されている。還元鉄や銑鉄の生産は、製鉄用高炉、天然ガスを用いる直接還元法、ロータリーキルンで焼成還元する方法、回転炉床法による方法などがある。これらの方法では、一部に、粉体を流動床で直接使用する方法があるものの、多くの場合は、数mmから百mmのサイズの成形体を原料として用いる。
【0003】
たとえば、高炉法では、粉鉱石を回転パン式の造粒機で成形した球形のペレットを使用する。また、回転炉床法では、同様の方法で製造したペレットや粉体を凹状の窪みのあるローラーで圧縮して製造するブリケットなどを使用することが行われている。このように、鉄鋼原料を成形することは従来からも行われており、世界中に存在する粉状の鉄鉱石や鉄鋼ダストなどを原料とするためには重要な技術である。
【0004】
一方、粉体を成形する手段の中に、押し出し型の成形方法がある。この方法は、陶器用の粘土を練りこんで、円柱型の成形体を製造したり、廃棄物である焼却炉の灰を成形することに用いられている。一般的には、酸化鉄粉の成形に用いられていないが、焼却灰などの一部の微粒ダストの成形などに用いられることもある。
【0005】
【発明が解決しようとする課題】
従来から、粉体を経済的に成形する方法として、前述したパン式ペレット造粒法、ブリケット成形法に加えて、押し出し式の粉体成形法がある。前者の2方式は、含有水分が7〜14%程度の粉体を成形することに有利な方法である。しかしながら、浮遊選鉱法で回収された含水の微粒鉱石や鉄鋼の生産工程で発生する高炉ガスの湿ダスト、転炉ガスの湿ダストや、酸洗の中和スラッジ等の水分が多く、粒径が小さい。これらの粉体は、通常は、含水率が20〜50%あり、粒径が2〜45μmである。また、これらの粉体を、特に優秀な脱水機で脱水しても、含有水分は20〜30%程度にしかならないため、脱水後に、乾燥させる必要がある。
【0006】
例えば、特開平11−193423号公報に示されるように、湿潤粉体をパン式造粒機やブリケット成形機で成形するためには、これらの粉体を脱水後に、更に乾燥していた。つまり、この方法を実施するためには、まず、粉体を脱水した後に、さらに乾燥して、水分を7〜14%程度にすることにより、実施が可能となる。しかし、この方法では、乾燥のための専用装置が必要であり、設備投資費用が多くなるとともに、乾燥熱源などの操業費用が増加する問題があった。
【0007】
一方、押し出し成形方法は、このような微粒子で比較的水分を多く含む粉体の成形には優れた方法である。押し出し成形機では、スクリュー式やローラー式の押し出し装置で、金属性のプレートに設置してある貫通穴型から、湿潤粉体を押し出す成形機である。しかしながら、押し出し成形機では、従来技術では、粉鉄鉱石や高炉ガスの湿ダストのような形状が不規則で、硬質の粉体を成形するための良い処理方法がなかった。まず、従来技術では、この方式の装置では、酸化鉄を含む粉体の場合は、機内での湿潤粉体の練り込みが難しかった。つまり、成形条件が未確立であったため、成形機内部の粉体の流れが悪化して、内部での摩擦が過大になったり、また、逆に流動性が高すぎて、製造された成形体が形をなさない場合もあり、成形の条件設定が不十分であり、成形を安定して実施できない問題があった。
【0008】
さらに、これらの酸化鉄を含む粉体は非常に硬いことから、成形機内部の磨耗が大きく、成形を長く続けることができない問題もあった。特に、水分調整が不十分で内部摩擦が多い成形の場合は、この現象が顕著であった。ひどい場合は、100〜150時間の成形処理で、部品を交換する必要があった。
【0009】
つまり、酸化鉄粉体を押し出し型成形機で成形する場合に、装置の損耗を防止して、かつ、安定して形状の良い成形体を製造する方法や装置がなかった。このように、押し出し式成形機での酸化鉄粉の成形をする新しい技術が求められていた。
【0010】
【課題を解決するための手段】
本発明は、前記問題点に鑑みなされたものであり、その要旨とするところは、
(1)湿潤粉体を、原料供給口を有する金属製の容器に入れて、当該容器の内部でスクリュー式押し込み装置を用いてエンドプレートの複数の貫通穴型から押し出す成形方法において、酸化鉄の含有率が30質量%以上の鉄化合物の粉体を含む平均粒子径が2〜45μmであって15〜30質量%の水分含有率の粉体を当該成形機に供給し、かつ、スクリュー式の押し込み装置の動力を計測して、成形体の製造速度1Kg/分あたりの当該動力を0.2〜0.8キロワットの範囲の適正な目標値を設定して、当該目標値から実績値が外れた場合は、当該粉体の水分を調整することにより、空隙率が33〜55%の範囲の成形体を製造することを特徴とする粉体の成形方法。
(2)酸化鉄含有粒子として、粉鉄鉱石、高炉ガスの集塵ダスト、転炉ガスの集塵ダスト、電気炉の集塵ダスト、製鉄業で発生する集塵ダスト、製鉄業で発生する酸化鉄スラッジ粒子、酸洗等の工程からでる水酸化鉄粒子等のうちの1又は2以上の発生物を用いる前記()に記載の酸化鉄含有粉体の成形方法、
(3)スクリュー式押し込み装置の羽根表面、金属製容器の内面、および、エンドプレートの貫通穴型内部の表面の損耗が大きい部分の少なくとも一部を、硬度がビッカース硬度4ギガパスカル以上の材質で表面硬質加工している押し込み式成形装置を用いて、酸化鉄含有粉体を成形する前記(1)又は(2)に記載の酸化鉄含有粉体の成形方法、である。
【0011】
【発明の実施の形態】
本発明での酸化鉄の成形体の製造では、図1に示す装置を用いる。図1の装置には、ケーシング1があり、この上部に原料供給口2が存在する。ケーシング1は、胴部の形状が円筒形、又は、上下がほぼ平板で側壁が円弧状の樽を横にした形状をしている。この内部には、回転軸3に接続する押し込みスクリュー4がある。押し込みスクリュー4、回転軸3、および、押し込みスクリュー4は、1式又は2式あることが一般的な押し込み式成形装置の構成である。図中に記載はないが、回転軸には電動機が接続されており、この電動機で駆動する。図1には、これらが1式あるものの例を示した。ケーシング1の出口方向にあるエンドプレート5には、複数の貫通穴型6が存在する。この貫通穴型6から、湿潤粉体が押し出されて、円柱形又は多角柱形の成形体が形成される。
【0012】
処理方法としては、まず、水分を含む粉体を原料供給口2から供給する。供給は連続的に行う。原料は、押し込みスクリュー4の推進力により、エンドプレート5に複数設置されている貫通穴型6から押し出される。押し出された成形体は、コンベアなどで、後工程の乾燥装置、焼成装置、梱包装置に送られる。
【0013】
本発明では、酸化鉄を主体として、一部に金属鉄や水酸化鉄を含む粉体を原料として、成形する。原料粉体は、ペレット用粉鉱石、高炉ガスの集塵ダスト、転炉ガスの集塵ダスト、電炉ガスの集塵ダスト、鋼材の酸洗工程で発生する中和スラジなどである。これらの粉体は、平均粒径が2〜45μmの粉体である。
【0014】
これらの粉体は微粒であるとともに、硬質である。この粉体で含有水分が低い場合は、原料の流動が悪くなり、ケーシング1の内部での押し込みスクリュー4部分での摩擦が大きくなる。この結果、原料が出口方向に押し出されなくなる。また、酸化鉄などは硬度が高く、ケーシング1の内面、押し込みスクリュー4の表面、および、貫通穴型6の内面との接触磨耗が起きやすい。この磨耗現象は水分が低い場合に顕著になる。したがって、鉄化合物の粉体を成形する場合には、他の種類の粉体を用いる場合に比べて、特に、水分が低くならないようにすることが重要である。
【0015】
また、水分が多すぎる場合は、原料の流動性が高くなりすぎる問題が生ずる。この結果、ケーシング1の内部での原料の抵抗が小さいため、貫通穴型6でも抵抗が少なく、成形体の圧密が不十分となる。また、水分が多いことから、成形体が粘着しやすい。その結果、製造された成形体が互いに粘着する問題があることから、含有水分には上限もある。
【0016】
つまり、水分を適正値にコントロールして、流動性が適正な状態となるようにする。適正な水分であれば、成形装置内部での摩擦が過大とならず、また、成形体の水分不足の角欠けや水分過多の粘着などの現象が起きない。したがって、原料水分の調整は非常に重要である。
【0017】
そこで、本発明者らは、酸化鉄などの鉄化合物の粉体を成形する時の適正な原料水分比率の研究を行った。この結果、原料の粒径分布により、若干の差はあるものの、粒子の空隙率が35〜55%である状態で、水がこの粒子の集合体の空間を埋める比率で含まれていることが、押し出し成形装置に適した原料条件であることを解明した。粒子の空隙率が35%以下と密に詰まった粒子の集合体では、成形体の流動が悪かった。この限界値は、粉体の粒径によってことなることも解明した。水と酸化鉄等の粉体の比重差を考慮すると、この充填率に相当する粉体の含有水分は、15質量%以下に相当する。また、空隙率が55%以上では、粉体粒子間の相互作用が小さく、成形体の形状保持が困難になるとともに、空隙を埋める水分による粘着性が高くなる問題が起きる。
【0018】
実験結果の一部を図2と図3に示す。図2には、平均粒径が7μmの粉体を成形した結果、また、図3には、31μmでの結果を示し、図中に含有水分と成形可能な範囲の関係を示した。図2の結果では、粒径が小さいことから、比較的高い水分での成形が望ましい。この粉体では、水分が17質量%以下では、成形機内部で詰まり現象がおきた。一方、水分が17〜30質量%では成形が継続できた。また、成形体の圧密と形状も良く、成形が安定した速度で行われる水分範囲は、18〜27質量%であった。また、図3に示されるように、平均粒径が31μmと比較的粗い粒子の場合は、成形可能な範囲は、15〜28質量%で、安定して成形体が良好な範囲は、水分が17〜25質量%であった。このように、平均粒径によって、成形しやすい水分の範囲は異なる。また、図2と図3に記載されてい水分と比動力の関係については後述する。
【0019】
これらの実験結果のように、粒径が比較的小さく、平均粒径が3〜8μmの粒子の場合は、空隙率が40〜55%と高空隙率側であることが良い。この結果、空隙の間に入り込む、水分比率は高いことが望ましい。水分と鉄化合物の比重差を考慮すると、水分は18〜30質量%程度の範囲とする。次に、中程度の粒径である平均粒径が8〜20μmの粒子の場合は、空隙率が38〜53%であり、水分は16〜27質量%の範囲とする。また、粒径の大きい、平均粒径が20〜45μmの粒子の場合は、空隙率が35〜52%であり、水分は15〜25質量%の範囲とする。
【0020】
したがって、事前に平均粒径などの粉体の性状の分析をして、適正な水分比率を調査しておくことが重要である。これらのデータを基に、原料の粉体の水分を調整することにより、安定した成形操作が行える。
【0021】
成形機に供給する前の水分の調整方法としては、乾燥した粉体に水を添加して、所定の水分となるように調整する方法、乾燥した粉体と水分を多く含むスラリー又はスラジ状の粉体を混合して水分を調整する方法、さらに、水分を多く含み流動性のあるスラリーを脱水して所定の水分とする方法がある。なお、ここで、スラジとは水分を含み、粘着性のある粘土状のもので、例えば、水分が20〜40質量%のもの、また、スラリーとは水分が多く、攪拌可能なほど流動のある状態のもの、例えば、水分を55〜90質量%含むものを言う。
【0022】
成形中に、原料の性状が変化したり、脱水機の条件が変化することが原因で、粉体の水分が変動することがあり、これが成形操作の障害となる。その場合は、赤外水分分析計などの連続又は間欠的な水分測定ができる装置で、原料の粉体もしくは成形体の水分を測定する。測定の結果、水分が不足の状態であれば、分析値と目標値の差分から計算される値に基づき、水又は60質量%以上の水分を含む酸化鉄粉体スラリーを添加する。また、水分が過多の場合は、水分が10質量%以下の酸化鉄粉体を添加する。
【0023】
このような操作を行うことにより、成形装置の内部での湿潤粉体の流動性を適正に保てる。この結果、水分が不足した場合の問題である、成形時の内部部品、駆動モーターの過負荷、また、貫通穴型の詰まりの発生のない成形操作が行える。また、水分が多すぎて、流動性が過剰となる場合の成形体の粘着現象や圧密の不足した成形体しかできない問題も解決できる。
【0024】
この際の成形機の動力は、原料の成形速度(1分間あたりの湿潤状態の成形体製造量)の1kg/分に対する動力値(比動力と称す)、0.2〜0.8キロワット、また、図2と図3に示されるように、好ましくは、比動力が0.26〜0.6キロワットである。
【0025】
前述した方法である、水分を連続的に測定することは有効であるが、水分を連続計測することは難しい場合がある。この場合には、押し出しスクリュー5を駆動する電動機の電力値を計測して、この結果を基に、比動力を求め、原料の水分を調整することにより、成形に適正な水分値とすることができる。このように、成形機の動力(計測値としては、電動機の電流値を求めて判断する)を連続的に測定して、これを制御変数として、水分を制御することが良い。また、材料の粉体の粒径分布などの影響で、圧密状態を良くできない場合には、貫通穴型6のテーパーを調整することにより、適正な比動力とすることにより、形状や圧密の良い成形体を製造することができる。したがって、比動力を適正な値とすることが有効な方法である。
【0026】
酸化鉄などの粉体は特に硬質であるため、水分が適正である場合でも、原料と接触する部分の損耗が大きい。これらの部分の内で、特に損耗が大きい部分は、ケーシング1の内面、押し込みスクリュー4の羽の部分、および、貫通穴型6の内面である。この部分は、通常の鉄鋼材料、例えばS45C、の場合は、わずか200〜300時間の稼動で損耗が大きくなってしまい、部品の交換が必要となる。本発明者らは、磨耗の原因を究明するために、損耗した材料の表面観察を行った。この結果、この損耗の原因は、腐食などが起因の化学的損耗ではなく、酸化鉄などの粒子の研磨による物理的磨耗現象が要因であることを突き止めた。
【0027】
そこで、本発明者らは、この問題を解決するためには、これらの部分の表面を硬質材料でコーティングすることが良いと考えて、種々の材料で実験を行った。この結果、表面硬度が高い材料であれば、磨耗が少なく、部品寿命が長いことを見出した。各種の材料を実験した結果では、表面を硬質加工する材料の硬度をビッカース硬度(Hv)で、4ギガパスカル以上のものであれば効果があることが判明した。この実験結果のグラフを図3に示す。
【0028】
まず、このような機械に一般的に用いられている鉄鋼材料であるS45Cは、Hvが2.0である。この材質では、実際の操業の際には、貫通穴型6の寿命が200〜300時間のものである。この材質を磨耗速度調査の標準(指数100)として、S45Cの表面硬化を行った数種類の材料の磨耗速度を指数として表記した。 S45Cをコバルト・クロム・タングステンからなるステライトで肉盛りした材料(材料1:Hv=4.4GPa)、高炭素・高クロム鋼の肉盛り加工した材料(材料2:Hv=6.4GPa)、 タングステンカーバイドとニッケルクロムの混合物で肉盛りした材料(材料3:Hv=8.8GPa)、高炭素ニッケル・クロム鋼で肉盛りした材料(材料4:Hv=7.2GPa)、アルミナを接着した材料(材料5:Hv=10.6GPa)、サイアロン(アルミニウムと珪素の酸化・窒化物)を接着した材料(材料6:Hv=15.2GPa)、および、S45Cの表面を窒化した材料(材料7:Hv=9.2GPa)を磨耗試験した。この結果、材料1と材料2では、ほぼS45Cの1/4〜1/5の磨耗速度であった。また、 S45Cの磨耗速度に対して、磨耗速度が、材料3と材料4で約1/10、材料5、材料6、および材料7では、1/20以下であった。
【0029】
この実験の結果で、ビッカース硬度が4ギガパスカル以上の材質では、800時間以上の部品寿命が得られることが判明した。したがって、磨耗の大きい部分である、ケーシング1の内面、押し込みスクリュー4の羽の部分、および、貫通穴型6の内面には、このような材質で、表面硬化した材料を使用する。特に、セラミックス材料での表面硬化の効果が大きい。
【0030】
このように、酸化鉄等を含む粉体の水分を適正に保って、押し出し式成形装置に供給することにより、安定して形状の良い成形体を製造する。本発明の方法を用いることが有効である条件としては、特に硬質である酸化鉄の含有率が30質量%以上の粉体を使用する場合である。これ以下の酸化鉄混合比率であっても、本発明は有効であるが、酸化鉄が30質量%以上の場合は特に有効な方法である。また、同様に硬質な粉体である粉コークスを混合してある場合は、本発明は特に効果が大きい。粉コークスの混合比が5質量%以上である場合にも効果が大きい。
【0031】
また、成形方法の項で述べた、図1の装置構成を基本とするとともに、ケーシング1の内面、押し込みスクリュー4の羽根の部分、および、貫通穴型6内面の材料表面のビッカース硬度を4ギガパスカル以上としてある成形装置も本発明の範囲である。この成形装置は、適正な水分比率の酸化鉄を含む粉原料を成形する際に、これらの部品寿命が長く、稼働率の高い装置となる。したがって、本発明は、これらの部品の表面高度を4ギガパスカル以上としたスクリュー押し込み型成形機を含むものである。この成形装置は、鉄化合物の中でも特に硬質の酸化鉄を含む粉体の成形に特に効果的なものである。
【0032】
【実施例】
本発明の装置である図1に示される成形装置を用いて、酸化鉄粉を含む湿潤粉体を成形した。装置の押し出しスクリュー5の羽根の表面と貫通穴型6の内面を、アルミナを接着して表面硬化した装置と実施例の成形操作に用いた。押し出しスクリュー5の直径は800mm、エンドプレートの内部径は900mmであった。出口内径が20mmの貫通穴型6を72個設置した。動力モーターは最大105キロワットのもので、成形体の製造速度(wet値)は、最大で毎分120kgであった。
【0033】
この成形結果を表1に示す。実施例1と2、比較例1と2の成形に用いた原料は、転炉ガスダスト、高炉ガスダスト、粉コークスの混合物であり、平均粒径は、7μmであった。実施例3の原料は、粉鉱石と粉コークスを混合したものであり、比較的粒径が大きいものった。
【0034】
混合した粉体に水分を添加して、湿式混合装置で均一に混合した原料を成形した。この結果、実施例1と2では、適正な水分範囲であるため、詰まり現象も起きずに、安定して一定速度で成形を継続できた。しかし、比較例1では、水分は低すぎたため、成形中に詰まり現象が多発して、継続的に成形を行うことができなかった。また、成形体の表面に凹凸があり、これがすぐに欠落して、粉となる現象が発生した。一方、比較例2では、水分が多すぎたため、成形操作は順調であったが、成形時の貫通穴型6での抵抗が少なすぎて、成形体の圧密が不足していた。この結果、搬送のベルトコンベア上で成形体が互いに粘着する問題が起きた。このように、本発明の水分範囲を外れると、成形操作が不安定になることや、成形体の形状等の問題があった。また、粒径の粗い原料の成形である実施例3でも、水分を23%と良好な範囲とすれば、問題なく成形できた。
【0035】
【表1】

Figure 0003635254
【0036】
また、磨耗の大きい部分をアルミナで硬化処理した本発明の装置と硬化処理を全くしていないS45Cをそのまま使用している従来装置を比較した。この結果、通常の材料であるS45Cを用いた装置での処理の場合は、押し出しスクリュー5の羽根部の寿命は270時間であったのに対して、本発明の装置では、3800時間と15倍以上の寿命となった。また、貫通穴型6の寿命も、従来装置で、320時間であったものが、4000時間とこれも10倍以上の寿命となった。
【0037】
【発明の効果】
本発明を実施することにより、押し出し式成形装置を用いて、酸化鉄などの鉄化合物を含む粉体を安定して、かつ、良好な形状と圧密状態の成形体を製造することができる。また、押し出し式成形機の内部の損耗の大きい部分の部品寿命を延ばすこともできた。
【図面の簡単な説明】
【図1】本発明を実施するスクリュー押し込み式の湿潤粉体の成形装置の図である。
【図2】平均粒径が7μmの酸化鉄を含む粉体を成形する際の成形可能範囲と成形時の電動機の比動力を示す図である。
【図3】平均粒径が31μmの酸化鉄を含む粉体を成形する際の成形可能範囲と成形時の電動機の比動力を示す図である。
【図4】図1に示す装置の磨耗が大きい部分での磨耗速度と材料のビッカース硬度の関係を示す図である。
【符号の説明】
1 ケーシング
2 原料供給口
3 回転軸
4 押し込みスクリュー
5 エンドプレート
6 貫通穴型[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique related to a method and an apparatus for producing a molded body using iron oxide or the like as a raw material.
[0002]
[Prior art]
Forming powders containing iron oxides such as iron ore powder, sand iron, converter dust, etc., and using them as raw materials for steel production has been widely practiced. The production of reduced iron and pig iron includes a blast furnace for iron making, a direct reduction method using natural gas, a method of calcination and reduction with a rotary kiln, and a method using a rotary hearth method. In some of these methods, there is a method in which powder is directly used in a fluidized bed, but in many cases, a molded body having a size of several mm to hundred mm is used as a raw material.
[0003]
For example, in the blast furnace method, spherical pellets obtained by molding powder ore with a rotary pan type granulator are used. In the rotary hearth method, a briquette or the like produced by compressing pellets or powder produced by the same method with a roller having a concave depression is used. Thus, forming steel raw materials has been conventionally performed, and is an important technique for using powdered iron ore, steel dust, and the like existing all over the world as raw materials.
[0004]
On the other hand, as a means for molding powder, there is an extrusion-type molding method. This method is used to knead clay for earthenware to produce a cylindrical shaped body or to form incinerator ash as waste. In general, it is not used for forming iron oxide powder, but it may be used for forming some fine dust such as incinerated ash.
[0005]
[Problems to be solved by the invention]
Conventionally, as a method for economically forming powder, in addition to the above-described bread pellet granulation method and briquette molding method, there is an extrusion type powder molding method. The former two methods are advantageous methods for forming a powder having a moisture content of about 7 to 14%. However, there is a lot of moisture such as wet dust of blast furnace gas, wet dust of converter gas, neutralized sludge of pickling, etc. generated in the production process of hydrous fine ore and steel recovered by the flotation method. small. These powders usually have a moisture content of 20 to 50% and a particle size of 2 to 45 μm. Further, even if these powders are dehydrated with a particularly excellent dehydrator, the water content is only about 20 to 30%, and therefore, it is necessary to dry them after dehydration.
[0006]
For example, as disclosed in JP-A-11-193423, in order to form wet powder with a bread granulator or briquette molding machine, these powders were further dried after dehydration. That is, in order to carry out this method, it is possible to carry out by first dehydrating the powder and then further drying it so that the water content is about 7 to 14%. However, this method requires a dedicated device for drying, which increases the capital investment cost and increases the operating cost of the drying heat source and the like.
[0007]
On the other hand, the extrusion molding method is an excellent method for molding such fine particles containing a relatively large amount of water. The extrusion molding machine is a molding machine that extrudes wet powder from a through-hole mold installed on a metal plate using a screw-type or roller-type extrusion device. However, in an extrusion molding machine, in the prior art, there is no good processing method for molding a hard powder with irregular shapes such as fine iron ore or blast furnace gas wet dust. First, in the prior art, in this type of apparatus, in the case of powder containing iron oxide, it was difficult to knead wet powder in the machine. In other words, because the molding conditions were not established, the flow of powder inside the molding machine deteriorated, the internal friction became excessive, and conversely, the fluidity was too high, and the molded body was manufactured. May not form, there is a problem that molding conditions are not sufficiently set, and molding cannot be performed stably.
[0008]
Furthermore, since these powders containing iron oxide are very hard, there is a problem that the wear inside the molding machine is large and the molding cannot be continued for a long time. In particular, in the case of molding with insufficient moisture adjustment and high internal friction, this phenomenon was remarkable. In severe cases, it was necessary to replace the parts in a molding process of 100 to 150 hours.
[0009]
That is, when iron oxide powder is molded by an extrusion molding machine, there has been no method or apparatus for preventing the wear of the apparatus and stably producing a molded article having a good shape. Thus, a new technique for forming iron oxide powder with an extrusion molding machine has been demanded.
[0010]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and the gist thereof is as follows.
(1) In a molding method in which wet powder is put into a metal container having a raw material supply port and extruded from a plurality of through-hole molds of an end plate using a screw-type pushing device inside the container. A powder having an average particle diameter of 2 to 45 μm including an iron compound powder having a content of 30% by mass or more is supplied to the molding machine with a water content of 15 to 30% by mass. Measure the power of the pushing device, set an appropriate target value in the range of 0.2 to 0.8 kilowatts for the power per 1 Kg / min of the molded body production, and the actual value will deviate from the target value In this case, a powder molding method is characterized in that a molded body having a porosity of 33 to 55% is manufactured by adjusting the moisture of the powder.
(2) As iron oxide-containing particles, fine iron ore, dust collected from blast furnace gas, dust collected from converter gas, dust collected from electric furnaces, dust collected from steel industry, oxidation produced by steel industry The method for forming an iron oxide-containing powder according to the above ( 1 ), using one or more products of iron sludge particles, iron hydroxide particles, etc. from the pickling step,
(3) At least a portion of the blade surface of the screw-type pushing device, the inner surface of the metal container, and the portion of the surface of the end plate through-hole mold with a large amount of wear is made of a material having a Vickers hardness of 4 gigapascal or more. The method for forming an iron oxide-containing powder according to the above (1) or (2) , wherein the iron oxide-containing powder is formed using a push-type forming device that has a hard surface.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the production of the iron oxide compact in the present invention, the apparatus shown in FIG. 1 is used. The apparatus shown in FIG. 1 includes a casing 1, and a raw material supply port 2 is present above the casing. The casing 1 has a cylindrical shape, or a shape in which a barrel having a substantially flat plate on the upper and lower sides and an arc-shaped side wall is placed sideways. Inside this is a push screw 4 connected to the rotary shaft 3. The push screw 4, the rotary shaft 3, and the push screw 4 are one type or two types of configurations of a general push type molding apparatus. Although not shown in the drawing, an electric motor is connected to the rotating shaft and is driven by this electric motor. FIG. 1 shows an example in which there is one set of these. A plurality of through-hole molds 6 exist in the end plate 5 in the outlet direction of the casing 1. The wet powder is extruded from the through-hole mold 6 to form a cylindrical or polygonal shaped compact.
[0012]
As a processing method, first, powder containing water is supplied from the raw material supply port 2. Supply is performed continuously. The raw material is pushed out from the through-hole molds 6 installed in the end plate 5 by the driving force of the push-in screw 4. The extruded molded body is sent to a drying device, a baking device, and a packing device in a subsequent process by a conveyor or the like.
[0013]
In this invention, it shape | molds by making into a raw material the powder which mainly contains iron oxide and contains metal iron and iron hydroxide in part. The raw material powder is pellet ore for dust, dust collected from blast furnace gas, dust collected from converter gas, dust collected from electric furnace gas, neutralized sludge generated in the pickling process of steel materials, and the like. These powders are powders having an average particle diameter of 2 to 45 μm.
[0014]
These powders are fine and hard. When this powder has a low moisture content, the flow of the raw material becomes poor and the friction at the portion of the push screw 4 inside the casing 1 increases. As a result, the raw material is not pushed out toward the outlet. Further, iron oxide or the like has high hardness, and contact wear with the inner surface of the casing 1, the surface of the push screw 4, and the inner surface of the through-hole mold 6 is likely to occur. This wear phenomenon becomes prominent when moisture is low. Therefore, when molding iron compound powder, it is particularly important that the moisture does not become lower than when other types of powder are used.
[0015]
Moreover, when there is too much moisture, the problem which the fluidity | liquidity of a raw material becomes high too much arises. As a result, since the resistance of the raw material inside the casing 1 is small, the resistance is low even in the through-hole mold 6 and the compacting of the molded body becomes insufficient. Moreover, since there is much water | moisture content, a molded object tends to stick. As a result, there is a problem that the molded bodies produced stick to each other, so there is an upper limit for the moisture content.
[0016]
That is, the moisture is controlled to an appropriate value so that the fluidity is in an appropriate state. If the moisture is appropriate, the friction inside the molding apparatus does not become excessive, and phenomena such as lack of corners due to insufficient moisture and excessive adhesion of moisture do not occur. Therefore, the adjustment of the raw material moisture is very important.
[0017]
Therefore, the present inventors conducted research on an appropriate raw material moisture ratio when molding a powder of an iron compound such as iron oxide. As a result, although there is a slight difference depending on the particle size distribution of the raw material, water is included in a ratio of filling the space of the aggregate of particles in a state where the porosity of the particles is 35 to 55%. It was clarified that the raw material conditions are suitable for extrusion molding equipment. In the aggregate of particles closely packed with a particle porosity of 35% or less, the flow of the molded product was poor. It was also clarified that this limit value varies depending on the particle size of the powder. Considering the specific gravity difference between water and iron oxide powder, the water content of the powder corresponding to this filling rate corresponds to 15% by mass or less. In addition, when the porosity is 55% or more, there is a problem that the interaction between the powder particles is small, it becomes difficult to maintain the shape of the molded body, and the adhesiveness due to moisture filling the voids is increased.
[0018]
A part of the experimental results is shown in FIGS. FIG. 2 shows the result of molding a powder having an average particle diameter of 7 μm, and FIG. 3 shows the result at 31 μm. The relationship between the moisture content and the moldable range is shown in the figure. In the result of FIG. 2, since the particle size is small, molding with relatively high moisture is desirable. In this powder, when the water content was 17% by mass or less, a clogging phenomenon occurred inside the molding machine. On the other hand, the molding could be continued at a moisture content of 17 to 30% by mass. Moreover, the compaction and shape of the molded body were good, and the moisture range in which the molding was performed at a stable speed was 18 to 27% by mass. Also, as shown in FIG. 3, in the case of relatively coarse particles having an average particle diameter of 31 μm, the moldable range is 15 to 28% by mass, and the range in which the molded article is stable and good is moisture. It was 17 to 25% by mass. Thus, the range of moisture that is easy to mold varies depending on the average particle diameter. The relationship between moisture and specific power described in FIGS. 2 and 3 will be described later.
[0019]
As shown in these experimental results, in the case of particles having a relatively small particle diameter and an average particle diameter of 3 to 8 μm, the porosity is preferably 40 to 55%, which is on the high porosity side. As a result, it is desirable that the moisture ratio entering between the voids is high. Considering the specific gravity difference between the moisture and the iron compound, the moisture is in the range of about 18 to 30% by mass. Next, in the case of particles having an average particle size of 8 to 20 μm, the porosity is 38 to 53% and the moisture is in the range of 16 to 27% by mass. Further, in the case of particles having a large particle diameter and an average particle diameter of 20 to 45 μm, the porosity is 35 to 52%, and the moisture is in the range of 15 to 25% by mass.
[0020]
Therefore, it is important to analyze the properties of the powder, such as the average particle diameter, and investigate the appropriate moisture ratio in advance. A stable molding operation can be performed by adjusting the water content of the raw material powder based on these data.
[0021]
As a method of adjusting the moisture before being supplied to the molding machine, a method of adding water to the dried powder to adjust to a predetermined moisture, a slurry or sludge-like slurry containing a large amount of the dried powder and moisture There are a method of adjusting moisture by mixing powder, and a method of dehydrating a slurry containing a large amount of moisture and having fluidity to obtain predetermined moisture. Here, sludge is a clay-like thing that contains moisture and is sticky, for example, has a moisture content of 20 to 40% by mass, and a slurry has a lot of moisture and is fluid enough to be stirred. The thing of a state, for example, the thing containing 55-90 mass% of water | moisture contents.
[0022]
During molding, the moisture content of the powder may fluctuate due to changes in the properties of the raw materials or changes in the conditions of the dehydrator, which hinders the molding operation. In that case, the moisture of the raw material powder or the molded body is measured with a device capable of continuous or intermittent moisture measurement such as an infrared moisture analyzer. As a result of the measurement, if water is insufficient, based on a value calculated from the difference between the analysis value and the target value, water or iron oxide powder slurry containing 60% by mass or more of water is added. Further, when the water content is excessive, iron oxide powder having a water content of 10% by mass or less is added.
[0023]
By performing such an operation, the fluidity of the wet powder inside the molding apparatus can be maintained appropriately. As a result, it is possible to perform a molding operation that does not cause clogging of internal parts during molding, overload of the drive motor, and clogging of the through-hole mold, which is a problem when moisture is insufficient. Further, it is possible to solve the problem that only the molded body in which there is too much moisture and the fluidity becomes excessive and the molded body has an adhesive phenomenon or insufficient compaction can be solved.
[0024]
The power of the molding machine at this time is the power value (referred to as specific power) for 1 kg / min of the molding speed of the raw material (the amount of the molded product produced in a wet state per minute), 0.2 to 0.8 kilowatt, As shown in FIGS. 2 and 3, the specific power is preferably 0.26 to 0.6 kilowatts.
[0025]
Although it is effective to continuously measure moisture as described above, it may be difficult to continuously measure moisture. In this case, the power value of the electric motor that drives the extrusion screw 5 is measured, and based on this result, the specific power is obtained and the moisture content of the raw material is adjusted to obtain a moisture value appropriate for molding. it can. As described above, it is preferable to continuously measure the power of the molding machine (measured value is obtained by determining the current value of the electric motor) and use this as a control variable to control moisture. In addition, when the compacted state cannot be improved due to the influence of the particle size distribution of the powder of the material, the shape and compactness are good by adjusting the taper of the through-hole mold 6 to obtain an appropriate specific power. A molded body can be produced. Therefore, it is an effective method to set the specific power to an appropriate value.
[0026]
Since powders such as iron oxide are particularly hard, even when moisture is appropriate, wear on the portion in contact with the raw material is large. Among these portions, the portions with particularly large wear are the inner surface of the casing 1, the wing portion of the push screw 4, and the inner surface of the through-hole mold 6. In the case of a normal steel material, for example, S45C, this portion becomes worn out only after operation for 200 to 300 hours, and the parts need to be replaced. In order to investigate the cause of wear, the present inventors have observed the surface of a worn material. As a result, it was found that the cause of this wear was not chemical wear due to corrosion or the like, but a physical wear phenomenon caused by polishing of particles such as iron oxide.
[0027]
Therefore, the present inventors have conducted experiments using various materials on the assumption that it is preferable to coat the surface of these portions with a hard material in order to solve this problem. As a result, it was found that a material having a high surface hardness has little wear and a long component life. As a result of experiments on various materials, it has been found that if the hardness of the material whose surface is hard-processed is Vickers hardness (Hv) of 4 gigapascals or more, it is effective. A graph of this experimental result is shown in FIG.
[0028]
First, SvC, which is a steel material generally used in such machines, has a Hv of 2.0. With this material, the life of the through hole mold 6 is 200 to 300 hours in actual operation. Using this material as the standard for wear rate investigation (index 100), the wear rate of several types of materials subjected to surface hardening of S45C was expressed as an index. S45C material made of stellite made of cobalt, chromium and tungsten (Material 1: Hv = 4.4GPa), material made of high carbon and high chromium steel (Material 2: Hv = 6.4GPa), tungsten carbide Material built up with a mixture of nickel chrome (Material 3: Hv = 8.8GPa), Material built up with high carbon nickel / chrome steel (Material 4: Hv = 7.2GPa), Material with alumina bonded (Material 5: Hv) = 10.6GPa), wear sialon (aluminum and silicon oxide / nitride) bonded material (Material 6: Hv = 15.2GPa), and S45C surface nitrided material (Material 7: Hv = 9.2GPa) Tested. As a result, the wear rate of materials 1 and 2 was about 1/4 to 1/5 that of S45C. In addition, the wear rate was about 1/10 for materials 3 and 4 and 1/20 or less for materials 5, 6 and 7 with respect to the wear rate of S45C.
[0029]
As a result of this experiment, it was found that a material life of 800 hours or longer can be obtained with a material having a Vickers hardness of 4 gigapascal or higher. Therefore, a material which is hardened by such a material is used for the inner surface of the casing 1, the wing portion of the push screw 4, and the inner surface of the through-hole mold 6, which are parts with high wear. In particular, the effect of surface hardening with a ceramic material is great.
[0030]
Thus, the moisture of the powder containing iron oxide or the like is appropriately maintained and supplied to the extrusion molding apparatus, thereby stably producing a molded body having a good shape. A condition in which it is effective to use the method of the present invention is a case where a powder having a hard iron oxide content of 30% by mass or more is used. The present invention is effective even when the iron oxide content is less than this, but it is a particularly effective method when the iron oxide content is 30% by mass or more. Similarly, the present invention is particularly effective when powder coke, which is a hard powder, is mixed. The effect is also great when the mixing ratio of the powder coke is 5% by mass or more.
[0031]
Further, the Vickers hardness of the material surface of the inner surface of the casing 1, the blade portion of the push screw 4 and the inner surface of the through-hole mold 6 described in the section of the molding method is 4 giga. A molding apparatus having a Pascal or higher is also within the scope of the present invention. This molding device is a device having a long service life and a high operating rate when molding a powder raw material containing iron oxide having an appropriate moisture ratio. Accordingly, the present invention includes a screw press molding machine in which the surface height of these parts is 4 gigapascal or higher. This forming apparatus is particularly effective for forming a powder containing particularly hard iron oxide among iron compounds.
[0032]
【Example】
A wet powder containing iron oxide powder was formed using the forming apparatus shown in FIG. 1 which is the apparatus of the present invention. The surface of the blade of the extrusion screw 5 of the apparatus and the inner surface of the through-hole mold 6 were used for the molding operation of the apparatus and examples in which alumina was bonded and surface-cured. The diameter of the extrusion screw 5 was 800 mm, and the inner diameter of the end plate was 900 mm. 72 through-hole molds 6 having an outlet inner diameter of 20 mm were installed. The power motor had a maximum capacity of 105 kilowatts, and the maximum production rate (wet value) of the compact was 120 kg / min.
[0033]
The molding results are shown in Table 1. The raw materials used in the molding of Examples 1 and 2 and Comparative Examples 1 and 2 were a mixture of converter gas dust, blast furnace gas dust, and powder coke, and the average particle size was 7 μm. The raw material of Example 3 was a mixture of fine ore and fine coke, and had a relatively large particle size.
[0034]
Water was added to the mixed powder, and a raw material uniformly mixed with a wet mixing apparatus was formed. As a result, in Examples 1 and 2, since the moisture range was appropriate, the molding could be continued stably at a constant speed without causing clogging. However, in Comparative Example 1, since the moisture was too low, clogging occurred frequently during the molding, and the molding could not be performed continuously. In addition, there was an unevenness on the surface of the molded body, and this phenomenon was lost immediately and a phenomenon that became powder occurred. On the other hand, in Comparative Example 2, since the moisture was too much, the molding operation was smooth, but the resistance in the through-hole mold 6 at the time of molding was too small, and the compacting of the molded body was insufficient. As a result, there arises a problem that the molded bodies stick to each other on the conveyor belt conveyor. As described above, when the moisture range of the present invention is not satisfied, the molding operation becomes unstable and there are problems such as the shape of the molded body. Further, even in Example 3, which is the molding of a raw material having a coarse particle diameter, molding was possible without any problems if the moisture content was 23%.
[0035]
[Table 1]
Figure 0003635254
[0036]
In addition, a comparison was made between the apparatus of the present invention in which a portion with high wear was hardened with alumina and the conventional apparatus using S45C that had not been hardened at all. As a result, in the case of treatment with an apparatus using S45C, which is a normal material, the life of the blade portion of the extrusion screw 5 was 270 hours, whereas in the apparatus of the present invention, it was 3800 hours and 15 times as long. It became the above life. Further, the life of the through-hole mold 6 was 320 hours in the conventional apparatus, but it was 4000 hours, which was also 10 times or more.
[0037]
【The invention's effect】
By carrying out the present invention, it is possible to stably produce a molded body having a good shape and a compacted state using an extrusion-type molding apparatus and containing a powder containing an iron compound such as iron oxide. In addition, it was possible to extend the service life of the parts with large wear inside the extrusion molding machine.
[Brief description of the drawings]
FIG. 1 is a diagram of a screw-in type wet powder molding apparatus embodying the present invention.
FIG. 2 is a diagram showing a moldable range when molding a powder containing iron oxide having an average particle diameter of 7 μm and a specific power of an electric motor during molding.
FIG. 3 is a diagram showing a moldable range when molding a powder containing iron oxide having an average particle size of 31 μm and a specific power of an electric motor at the time of molding.
4 is a diagram showing the relationship between the wear rate and the Vickers hardness of a material at a portion where the wear of the apparatus shown in FIG. 1 is large.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Casing 2 Raw material supply port 3 Rotating shaft 4 Push screw 5 End plate 6 Through-hole type

Claims (3)

湿潤粉体を、原料供給口を有する金属製の容器に入れて、当該容器の内部でスクリュー式押し込み装置を用いてエンドプレートの複数の貫通穴型から押し出す成形方法において、酸化鉄の含有率が30質量%以上の鉄化合物の粉体を含む平均粒子径が2〜45μmであって15〜30質量%の水分含有率の粉体を当該成形機に供給し、かつ、スクリュー式の押し込み装置の動力を計測して、成形体の製造速度1Kg/分あたりの当該動力を0.2〜0.8キロワットの範囲の適正な目標値を設定して、当該目標値から実績値が外れた場合は、当該粉体の水分を調整することにより、空隙率が33〜55%の範囲の成形体を製造することを特徴とする粉体の成形方法。In a molding method in which wet powder is put into a metal container having a raw material supply port and extruded from a plurality of through-hole molds of an end plate using a screw-type pushing device inside the container, the content of iron oxide is A powder having an average particle size of 2 to 45 μm including an iron compound powder of 30% by mass or more and supplying a moisture content of 15 to 30% by mass to the molding machine, and a screw-type pushing device When the power is measured and an appropriate target value in the range of 0.2 to 0.8 kilowatts is set for the power per 1 Kg / min of the molded body production, and the actual value deviates from the target value A method for forming a powder, characterized by producing a molded product having a porosity of 33 to 55% by adjusting the moisture of the powder. 酸化鉄含有粒子として、粉鉄鉱石、高炉ガスの集塵ダスト、転炉ガスの集塵ダスト、電気炉の集塵ダスト、製鉄業で発生する集塵ダスト、製鉄業で発生する酸化鉄スラッジ粒子、酸洗等の工程からでる水酸化鉄粒子のうちの1又は2以上を用いることを特徴とする請求項に記載の酸化鉄含有粉体の成形方法。As iron oxide-containing particles, powdered iron ore, blast furnace gas dust collection dust, converter gas dust collection dust, electric furnace dust collection dust, dust collection dust generated in the steel industry, iron oxide sludge particles generated in the steel industry The method for forming an iron oxide-containing powder according to claim 1 , wherein one or more of iron hydroxide particles produced from a step such as pickling are used. スクリュー式の押し込み装置の羽根表面、金属製の容器の内面、および、エンドプレートの貫通穴型の内部表面の少なくとも一部を、硬度がビッカース硬度4ギガパスカル以上の材質で表面硬質加工している押し込み式成形装置を用いて、酸化鉄含有粉体を成形することを特徴とする請求項1又は2に記載の酸化鉄含有粉体の成形方法。At least a part of the blade surface of the screw-type pushing device, the inner surface of the metal container, and the inner surface of the through hole mold of the end plate is hard-finished with a material having a Vickers hardness of 4 gigapascal or higher. The method for forming an iron oxide-containing powder according to claim 1 or 2 , wherein the iron oxide-containing powder is formed using a push-type forming device.
JP2001279052A 2001-09-14 2001-09-14 Powder molding method Expired - Fee Related JP3635254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279052A JP3635254B2 (en) 2001-09-14 2001-09-14 Powder molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279052A JP3635254B2 (en) 2001-09-14 2001-09-14 Powder molding method

Publications (2)

Publication Number Publication Date
JP2003082419A JP2003082419A (en) 2003-03-19
JP3635254B2 true JP3635254B2 (en) 2005-04-06

Family

ID=19103312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279052A Expired - Fee Related JP3635254B2 (en) 2001-09-14 2001-09-14 Powder molding method

Country Status (1)

Country Link
JP (1) JP3635254B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3806430B2 (en) * 2003-03-24 2006-08-09 新日本製鐵株式会社 Dehydrated molding method
JP4662197B2 (en) * 2004-02-10 2011-03-30 株式会社不二越 Method and apparatus for adjusting amount of coolant contained in grinding scrap or polishing scrap
JP2013059747A (en) * 2011-09-14 2013-04-04 Kakiuchi:Kk Die for granulator and method for manufacturing the same
JP2013059748A (en) * 2011-09-14 2013-04-04 Kakiuchi:Kk Die for granulator and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618685B2 (en) * 1984-10-05 1994-03-16 株式会社ノリタケカンパニ−リミテド Extruder screen
JPS61241105A (en) * 1985-04-18 1986-10-27 株式会社ノリタケカンパニーリミテド Screw type extruding machine or kneading machine
JP3924335B2 (en) * 1996-07-10 2007-06-06 浩寿 柳本 Incineration ash embedding solidification processing equipment
JP3781153B2 (en) * 1997-09-22 2006-05-31 株式会社 テツゲン Production method of cheap reduced iron from steelmaking dust
JP3779873B2 (en) * 1999-12-16 2006-05-31 新日本製鐵株式会社 Operation method of rotary hearth reduction furnace

Also Published As

Publication number Publication date
JP2003082419A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
KR101160746B1 (en) Method for producing briquette with carbonaceous material incorporated therein by use of oil-containing iron-making plant dust
JP3635254B2 (en) Powder molding method
KR20040029483A (en) Method for producing reduced iron compact in rotary hearth reducing furnace, reduced iron compact, and method for producing pig iron using the same
JP2009052138A (en) Process for producing carbonaceous-material-including metal oxide briquette
WO2001042516A1 (en) Facilities for reducing metal oxide, method for operating the facilities and moldings as law material to be charged to reduction furnace
CN107937731B (en) Laterite-nickel ore pretreatment method and device
JP3737928B2 (en) Operation method of rotary hearth type reduction furnace and metal oxide reduction equipment
JP2008036692A (en) Thrusting screw for roll compactor
JP3779873B2 (en) Operation method of rotary hearth reduction furnace
JP3579652B2 (en) Metal oxide reduction equipment
JP3806430B2 (en) Dehydrated molding method
JP5551347B2 (en) Manufacturing method of briquette with carbonaceous materials using oil-containing steelworks dust
CN102719665A (en) Process method and equipment for producing slag-forming agent for making steel by utilizing steel making sludge
JPH067915B2 (en) Method and apparatus for granulating fine powder
JPH0941047A (en) Production of lumpy material formed by using iron-containing fine powder and apparatus therefor
JP3631709B2 (en) Method for reducing metal oxide
JP4264190B2 (en) Reduced iron production method by rotary bed furnace
JP2003112296A (en) Powder forming machine
JP2002167624A (en) Method for producing agglomerated material for treating in rotary hearth furnace
CN219076660U (en) Ball pressing machine capable of continuously pressing balls
CN215591827U (en) Novel conveying device capable of improving clinker conveying capacity
RU2166488C1 (en) Method of manufacturing high-density carbon containing refractory
CN208964129U (en) Dosing device is used in refractory brick processing
JPS62252699A (en) Constant load operating method for granular particle compressing device
JP2002090071A (en) Method for supplying molding to baking reducing furnace and rotary hearth type reducing furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

R151 Written notification of patent or utility model registration

Ref document number: 3635254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees