JP3781153B2 - Production method of cheap reduced iron from steelmaking dust - Google Patents

Production method of cheap reduced iron from steelmaking dust Download PDF

Info

Publication number
JP3781153B2
JP3781153B2 JP25707197A JP25707197A JP3781153B2 JP 3781153 B2 JP3781153 B2 JP 3781153B2 JP 25707197 A JP25707197 A JP 25707197A JP 25707197 A JP25707197 A JP 25707197A JP 3781153 B2 JP3781153 B2 JP 3781153B2
Authority
JP
Japan
Prior art keywords
iron
dust
reduced iron
moisture
cheap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25707197A
Other languages
Japanese (ja)
Other versions
JPH1192810A (en
Inventor
恒男 池田
清 田中
修史 真島
俊治 高島
哲治 茨城
博史 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25707197A priority Critical patent/JP3781153B2/en
Publication of JPH1192810A publication Critical patent/JPH1192810A/en
Application granted granted Critical
Publication of JP3781153B2 publication Critical patent/JP3781153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄鉱石または製鉄所等で発生する種々のダストをリサイクルして再資源化を図る際の処理方法に関し、特に、製鉄ダストを原料として還元鉄を製造する場合、乾燥工程を短縮出来、かつ還元鉄製品の取扱が容易な還元鉄の製造方法に関するものである。
【0002】
従来、製鉄所では焼結、高炉、転炉、電気炉等の加工・精錬工程で種々のダストが発生する。これらの工程ではプロセスガスに随伴し集塵機で補集されるダストが中心であることから極めて微粒である。これをダストの原料として還元鉄を製造する場合、還元剤として炭材を配合し球状のペレットとし、還元用の焼成炉で還元する。以下、球状のペレットをペレットと称する。
このペレットは、水の表面張力を利用しダスト粒子間を接着させ、転動作用で粒子の集合体を球状にすると同時に粒子間をさらに近接させ水の表面張力を向上させペレットの圧潰強度を増すものである。
【0003】
このペレットの製造方法としては、ドラム型とディスク型がある。両者は転動方法に差がある。ドラム型では、ドラムを横に設置し回転させ、粒子を転動させる。ディスク型はディスクを約45度に傾斜させ、回転し、そのディスクの中で粒子を転動させる。いずれの方式でも、転動することによりペレット内部の空気がペレット外部へ押し出し、気孔が少なくなり圧潰強度を増す。
一般にこのようにして製造したペレットの付着水分は8〜25%となる。粒子が小さい程粒子表面積が増加して付着水分は増加する。
【0004】
【発明が解決しようとする課題】
上記の方法で製鉄ダストをペレットにする場合、微粒が多く、付着水分は20〜25%となる。付着水分が20〜25%のペレットを焼成炉で還元する場合、焼成炉の温度が1100〜1300℃と高いため、付着水分が20〜25%のペレットを直接投入すると、ペレット内部の付着水分が急激にガス化し、爆裂する。この爆裂を回避するには、事前にペレットを乾燥し爆裂の原因である水分をなくする。このため、実際の還元鉄製造設備では、焼成炉への投入工程で乾燥機を設置し水分を取り除く必要がある。このことは、乾燥用のエネルギーを多く必要とし、かつ設備費も高いという問題がある。その結果、製鉄ダストのリサイクルは経済的負担が大きく実現の障害となっている。
【0005】
【課題を解決するための手段】
上記、問題を解決するために、発明者らは鋭意開発を進めた結果、本発明は焼成炉の温度が1100〜1300℃の中に直接、被還元物を投入しても爆裂しない方法を提案するものである。その発明の要旨とするところは、
(1)鉄鉱石または製鉄ダストから還元鉄を製造するに際して、鉄鉱石または複数種のダスト及び炭剤で構成される混合物より直径8mmから20mm、長さ10mmから50mmの円柱状の造粒物を製造し、乾燥機で付着水分15%以下に乾燥した後、回転炉床方式の焼成炉で1100〜1300℃の温度で還元処理することを特徴とする製鉄ダスト等からの安価な還元鉄の製造方法。
(2)直径10mmから15mm、長さ20mmから40mmの円柱状の造粒物からなる前記(1)記載の製鉄ダスト等からの安価な還元鉄の製造方法にある。
【0006】
【発明の実施の形態】
以下、本発明について詳細に説明する。
焼成炉の温度が1100〜1300℃の中に直接、被還元物を投入しても爆裂を起こさせないことが必要である。そのためには、付着水分が急激にガス化してもガスを外部へ逃がすためのガス道、すなわち、気孔を作れば良い。
しかしながら、従来の転動作用を利用したペレットでは、緻密でしかも乾燥時に球状であるため収縮がどの方向にも一定となり、乾燥過程でクラックが出にくく、その結果としてガス道、すなわち、気孔を増加させることが難しい。
【0007】
そこで、気孔を増やし、ペレットと同様の圧潰強度を得る方法として、従来の球状をやめ、円柱状とすれば、乾燥時に収縮量が直径方向と長手方向で異なるため、長手方向に無数のクラックを生ずる。このクラックの生成が急激な付着水分のガス化の際のガス放散を助け爆裂を防止するのに有効であることが分かった。
このような知見に基づいて、原料としての鉄鉱石、または特に製鉄所で発生するダストを利用するものであるが、そのダストの主な成分としてはFe,Zn,Cr,C及びスラグから成り、かつその粒子径は殆どが1mm以下である。
【0008】
このような成分と粒子径を持つ原料を用いる場合には、この原料に還元用の炭素とバインダーを添加し混練する。しかも、この混練したものを、本発明においては、これを円柱状に造粒する必要がある。それのためには適正な付着水分が必要とする。従って、もし付着水分が適正値を越えている場合は原料を乾燥し、不足時は水を添加する必要がある。しかも、造粒は押し出し造粒機を使用して円柱状にする。そのときの造粒物の寸法は直径が8〜20mmで長さは10〜50mmとする。直径は還元時間と関係するもので、工業生産性を前提として、直径は8〜20が望ましく、20mmを超える直径となればその還元時間が伸びるため還元速度が低下することになる。さらに好ましくは、直径10mmから15mm、長さ20mmから40mmとする。
【0009】
前述のように、代表的な製鉄ダストを使用すると造粒時の適正な付着水分は20〜25%である。この造粒物を乾燥機で付着水分15%以下に乾燥する。造粒物にクラックが出来た状態で回転炉床へ投入する。投入する際に壊れないように押し出し圧力を上げ造粒物の落下強度を強くする。バインダーの添加量を増しても落下強度は強くなる。そして、回転炉床に供給された造粒物は炉の雰囲気が1100〜1300℃の中で、付着水分が急激にガス化し造粒物の系外へ排出される。その後、内装物であるCが還元剤としてFe等を還元する。還元された造粒物は系外へ排出され、冷却され、粉をスクリーンで取り除き製品とする。
【0010】
出来た製品は円柱状であるため、ベルトコンベア上輸送する場合、傾斜を大きくとっても、ベルトコンベア上で転動現象がなく効率良く運搬出来る。また、押し出し造粒機を使用し円柱状に造粒し、付着水分を15%以下に乾燥するだけで高温雰囲気の中に直接投入しても造粒物の爆裂現象を回避できる。このことは、乾燥機の設備容量が小さくてよく、かつ乾燥費用も安くなる大きな効果をもつ。
【0011】
【実施例】
以下実施例を示して、具体的に本発明について図面に従って説明する。
図1は本発明の還元鉄を製造するための設備フローを示す図である。製鉄で発生するダストに還元用の炭材を配合し、ベントナイト等のバインダーを添加する。これら配合原料を混練機で混練する。また、必要に応じて水分を添加し、押し出し造粒機で円柱状に造粒する。ダスト中に中和スラジのような微粒が多い場合、造粒時の適正水分は20〜25%になる。造粒物の落下強度を増すため押し出し圧力をアップすることが可能である。造粒物中の−5mm粉はスクリーンで除き乾燥機で付着水分を3%、8%、15%および22%の4水準のものに乾燥し回転炉床タイプの焼成炉に挿入し、1100〜1300℃、5〜10分の還元処理を行った。還元された造粒物は系外へ排出され、冷却され、粉をスクリーンで取除き残りは製品とする。
【0012】
図2は球状の造粒物の爆裂特性を示す図である。図2に示すように、造粒物の付着水分が3%〜22%の範囲では、爆裂ないしクラックが発生する。すなわち、付着水分が15%以上あると焼成温度がすでに1100℃で爆裂が生じ、1200℃では8%以上で爆裂が起こることが判る。また、8%未満、焼成温度1100℃でもクラックは発生し、1200℃では3%の付着水分でもクラックが生ずることが判明した。なお、ここで爆裂とは、造粒物が粉々になる状態を意味する。
【0013】
図3は円柱状の造粒物の爆裂特性を示す図である。図3に示すように、本発明に係る円柱状の造粒物であれば、付着水分が22%を超えない限りクラックの発生ならびに爆裂は発生しない。すなわち、15%以下であれば、試験炉の雰囲気温度が1100〜1300℃までのいずれの温度領域でも爆裂しないことが判明した。
【0014】
図4は円柱状と球状の造粒物の気孔率の測定結果を示す図である。図4に示すように、測定物はいずれも乾燥後で付着水分がないものを対象とした。気孔率は円柱状が球状に比較して約2倍高い。この気孔率が高いことにより内部からの急激なガス発生に対しても爆裂を起こさないものと考えられる。
図5は円柱状と球状の造粒後の落下強度の測定結果を示す図である。図5に示すように、円柱状については、押し出し圧力をアップすることにより、球状の造粒物は転動とともに落下強度が向上するが転動圧は造粒物の自重のみであり落下強度アップにも限界がある。落下強度が高いとハンドリング時の粉化が少なく、効果の良い還元鉄の製造が可能となる。
【0015】
【発明の効果】
以上述べたように、本発明によって、特に製鉄所で発生するダストを原料として還元鉄を造る場合、円柱状の造粒物にすると、付着水分を15%以下まで乾燥しておけば焼成炉での水分蒸発による爆裂を回避される。また、付着水分を15%以下までの乾燥であれば乾燥機の容量が小さく、かつ乾燥用のエネルギーも少なくてよい。その結果より安価に還元鉄の製造が可能となると共に、製品の形状が円柱のためベルトコンベアでの輸送時のこぼれも少ないという種々の優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の還元鉄を製造するための設備フローを示す図である。
【図2】球状の造粒物の爆裂特性を示す図である。
【図3】円柱状の造粒物の爆裂特性を示す図である。
【図4】円柱状と球状の造粒物の気孔率の測定結果を示す図である。
【図5】円柱状と球状の造粒後の落下強度の測定結果を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing method for recycling various kinds of dust generated in iron ore or steelworks, and in particular, when reducing iron is produced using ironmaking dust as a raw material, the drying process can be shortened. In addition, the present invention relates to a method for producing reduced iron that is easy to handle reduced iron products.
[0002]
Conventionally, various dusts are generated in processing and refining processes such as sintering, blast furnaces, converters, electric furnaces, etc. at steelworks. In these steps, the dust is extremely fine because it is mainly collected by the dust collector accompanying the process gas. When reducing iron is produced using this as a raw material for dust, a carbonaceous material is blended as a reducing agent to form spherical pellets, which are then reduced in a reduction firing furnace. Hereinafter, the spherical pellet is referred to as a pellet.
This pellet uses the surface tension of water to adhere the dust particles, makes the aggregate of particles spherical for rolling operation, and at the same time improves the surface tension of the water by increasing the surface tension of the particles and increasing the crushing strength of the pellet Is.
[0003]
As a manufacturing method of this pellet, there are a drum type and a disk type. Both have a difference in rolling method. In the drum type, the drum is placed sideways and rotated to roll the particles. The disc mold tilts the disc to about 45 degrees, rotates, and rolls the particles in the disc. In any method, rolling causes the air inside the pellet to be pushed out of the pellet, reducing the pores and increasing the crushing strength.
In general, the adhered moisture of the pellets thus produced is 8 to 25%. The smaller the particles, the greater the surface area of the particles and the greater the moisture attached.
[0004]
[Problems to be solved by the invention]
When iron-making dust is made into pellets by the above method, there are many fine particles and the adhering moisture is 20 to 25%. When reducing pellets with a moisture content of 20 to 25% in a firing furnace, the temperature of the firing furnace is as high as 1100 to 1300 ° C. Therefore, if pellets with a moisture content of 20 to 25% are directly charged, the moisture content inside the pellet is reduced. It rapidly gasifies and explodes. In order to avoid this explosion, the pellets are dried in advance to eliminate the moisture causing the explosion. For this reason, in an actual reduced iron production facility, it is necessary to install a dryer and remove moisture in the charging process into the firing furnace. This has the problem that a large amount of energy for drying is required and the equipment cost is high. As a result, recycling of steelmaking dust has a great economic burden and is an obstacle to realization.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have made extensive developments. As a result, the present invention proposes a method in which the material to be reduced does not explode even when the material to be reduced is directly placed in the firing furnace at 1100-1300 ° C. To do. The gist of the invention is that
(1) When producing reduced iron from iron ore or iron-making dust, a cylindrical granule having a diameter of 8 to 20 mm and a length of 10 to 50 mm is obtained from a mixture composed of iron ore or a plurality of types of dust and charcoal. After manufacturing and drying to a moisture content of 15% or less with a dryer, reduction treatment is performed at a temperature of 1100 to 1300 ° C. in a rotary hearth-type firing furnace. Method.
(2) The method for producing reduced reduced iron from iron-making dust or the like according to the above (1), which comprises a columnar granulated product having a diameter of 10 mm to 15 mm and a length of 20 mm to 40 mm.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
It is necessary not to cause explosion even if the material to be reduced is directly put into the temperature of the firing furnace of 1100 to 1300 ° C. For this purpose, a gas passage, that is, a pore for releasing the gas to the outside even if the adhering moisture is rapidly gasified may be formed.
However, the conventional pellets for rolling operation are dense and spherical when dried, so the shrinkage is constant in any direction, cracking is difficult to occur in the drying process, and as a result, the gas path, that is, the pores are increased. It is difficult to let
[0007]
Therefore, as a method of increasing the pores and obtaining the same crushing strength as the pellet, if the conventional spherical shape is stopped and the cylindrical shape is used, the shrinkage amount varies between the diameter direction and the longitudinal direction during drying. Arise. It has been found that the generation of cracks is effective in preventing gas explosion during gasification of the adhering moisture and preventing explosion.
Based on such knowledge, iron ore as a raw material, or in particular, the dust generated in the steel mill is used, the main components of the dust consists of Fe, Zn, Cr, C and slag, And the particle diameter is almost 1 mm or less.
[0008]
When a raw material having such a component and particle size is used, reducing carbon and a binder are added to the raw material and kneaded. Moreover, in the present invention, this kneaded product needs to be granulated into a columnar shape. For that purpose, proper adhesion moisture is required. Therefore, if the adhering moisture exceeds an appropriate value, the raw material must be dried, and if it is insufficient, water must be added. Moreover, the granulation is made into a cylindrical shape using an extrusion granulator. The dimensions of the granulated product at that time are 8-20 mm in diameter and 10-50 mm in length. The diameter is related to the reduction time. On the premise of industrial productivity, the diameter is preferably 8 to 20, and if the diameter exceeds 20 mm, the reduction time is extended and the reduction rate is lowered. More preferably, the diameter is 10 mm to 15 mm and the length is 20 mm to 40 mm.
[0009]
As described above, when a typical iron-making dust is used, the proper adhesion moisture at the time of granulation is 20 to 25%. This granulated product is dried to a moisture content of 15% or less with a dryer. The granulated material is put into the rotary hearth with cracks. The extrusion pressure is increased to increase the drop strength of the granulated material so that it does not break when thrown. Even if the amount of binder added is increased, the drop strength increases. And the granulated product supplied to the rotary hearth is gasified in the furnace atmosphere at 1100 to 1300 ° C., and the attached moisture is rapidly gasified and discharged out of the granulated product. Then, C which is an interior thing reduces Fe etc. as a reducing agent. The reduced granulated product is discharged out of the system, cooled, and the powder is removed with a screen to obtain a product.
[0010]
Since the finished product is cylindrical, it can be transported efficiently on the belt conveyor without any rolling phenomenon, even when it is tilted large. Moreover, even if it directly granulates into a high temperature atmosphere by granulating it into a cylindrical shape using an extrusion granulator and drying the adhering moisture to 15% or less, the explosion phenomenon of the granulated material can be avoided. This has the great effect that the installation capacity of the dryer may be small and the drying cost is reduced.
[0011]
【Example】
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is a diagram showing an equipment flow for producing reduced iron of the present invention. Carbonaceous material for reduction is added to dust generated by iron making, and a binder such as bentonite is added. These blended raw materials are kneaded with a kneader. Further, if necessary, water is added and granulated into a cylindrical shape by an extrusion granulator. When there are many fine particles such as neutralized sludge in the dust, the appropriate moisture during granulation is 20 to 25%. In order to increase the drop strength of the granulated product, it is possible to increase the extrusion pressure. The -5mm powder in the granulated product is removed with a screen and dried with a dryer to 4% of 3%, 8%, 15% and 22%, and inserted in a rotary hearth type firing furnace. Reduction treatment was performed at 1300 ° C. for 5 to 10 minutes. The reduced granulated product is discharged out of the system, cooled, the powder is removed with a screen, and the rest is made into a product.
[0012]
FIG. 2 is a diagram showing the explosion characteristics of a spherical granulated product. As shown in FIG. 2, explosions or cracks occur when the moisture content of the granulated material is in the range of 3% to 22%. That is, it can be seen that when the moisture content is 15% or more, explosion occurs when the firing temperature is already 1100 ° C., and explosion occurs when the firing temperature is 1200% and 8% or more. It was also found that cracks occurred even at less than 8% and a firing temperature of 1100 ° C., and cracks occurred at 1200 ° C. even with 3% attached moisture. Here, the explosion means a state where the granulated product is shattered.
[0013]
FIG. 3 is a diagram showing the explosion characteristics of a columnar granulated product. As shown in FIG. 3, in the case of a columnar granule according to the present invention, cracks and explosions do not occur unless the adhering moisture exceeds 22%. That is, it was found that if the temperature is 15% or less, the test furnace does not explode in any temperature range from 1100 to 1300 ° C.
[0014]
FIG. 4 is a diagram showing the measurement results of the porosity of columnar and spherical granules. As shown in FIG. 4, the measured objects were all those that had no adhered moisture after drying. The porosity is about twice as high as that of a cylindrical column. It is considered that the high porosity does not cause explosion even when the gas is rapidly generated from the inside.
FIG. 5 is a diagram showing the measurement results of the drop strength after columnar and spherical granulation. As shown in FIG. 5, in the case of a cylindrical shape, by increasing the extrusion pressure, the spherical granulated product improves the drop strength along with rolling, but the rolling pressure is only the weight of the granulated product and the drop strength is increased. There are also limitations. When the drop strength is high, powdering during handling is less and it is possible to produce reduced iron that is effective.
[0015]
【The invention's effect】
As described above, according to the present invention, in particular, when reducing iron is produced using dust generated at a steel mill as a raw material, if it is formed into a columnar granulated product, if the adhering moisture is dried to 15% or less, it can be used in a firing furnace. Explosion due to moisture evaporation is avoided. Further, if the adhering moisture is dried to 15% or less, the capacity of the dryer is small and the energy for drying may be small. As a result, reduced iron can be produced at a lower cost, and the product has a cylindrical shape, so that various excellent effects can be obtained such that there is little spillage during transportation on a belt conveyor.
[Brief description of the drawings]
FIG. 1 is a diagram showing an equipment flow for producing reduced iron of the present invention.
FIG. 2 is a diagram showing explosion characteristics of a spherical granulated product.
FIG. 3 is a diagram showing explosion characteristics of a cylindrical granulated product.
FIG. 4 is a diagram showing the measurement results of the porosity of cylindrical and spherical granules.
FIG. 5 is a diagram showing measurement results of drop strength after columnar and spherical granulation.

Claims (2)

鉄鉱石または製鉄ダストから還元鉄を製造するに際して、鉄鉱石または複数種のダスト及び炭剤で構成される混合物より直径8mmから20mm、長さ10mmから50mmの円柱状の造粒物を製造し、乾燥機で付着水分15%以下に乾燥した後、回転炉床方式の焼成炉で1100〜1300℃の温度で還元処理することを特徴とする製鉄ダスト等からの安価な還元鉄の製造方法。When producing reduced iron from iron ore or iron-making dust, a cylindrical granule having a diameter of 8 to 20 mm and a length of 10 to 50 mm is produced from a mixture composed of iron ore or a plurality of types of dust and charcoal, A method for producing cheap reduced iron from iron-making dust or the like, characterized in that after drying to a moisture content of 15% or less with a dryer, reduction treatment is performed at a temperature of 1100 to 1300 ° C. in a rotary hearth-type firing furnace. 直径10mmから15mm、長さ20mmから40mmの円柱状の造粒物からなる請求項1に記載の製鉄ダスト等からの安価な還元鉄の製造方法。The manufacturing method of cheap reduced iron from the iron-making dust etc. of Claim 1 which consists of a column-shaped granule of diameter 10mm to 15mm and length 20mm to 40mm.
JP25707197A 1997-09-22 1997-09-22 Production method of cheap reduced iron from steelmaking dust Expired - Fee Related JP3781153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25707197A JP3781153B2 (en) 1997-09-22 1997-09-22 Production method of cheap reduced iron from steelmaking dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25707197A JP3781153B2 (en) 1997-09-22 1997-09-22 Production method of cheap reduced iron from steelmaking dust

Publications (2)

Publication Number Publication Date
JPH1192810A JPH1192810A (en) 1999-04-06
JP3781153B2 true JP3781153B2 (en) 2006-05-31

Family

ID=17301350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25707197A Expired - Fee Related JP3781153B2 (en) 1997-09-22 1997-09-22 Production method of cheap reduced iron from steelmaking dust

Country Status (1)

Country Link
JP (1) JP3781153B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635254B2 (en) * 2001-09-14 2005-04-06 新日本製鐵株式会社 Powder molding method
KR101018931B1 (en) * 2005-12-02 2011-03-02 교오자이 고오교오 가부시끼가이샤 Method of granulating sintering raw material and process for producing sintered ore
CA3021181C (en) 2016-04-22 2020-11-10 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
JP7035322B2 (en) * 2017-03-09 2022-03-15 住友金属鉱山株式会社 Oxidized ore smelting method, pellet and container manufacturing method
AU2017257842B2 (en) 2016-04-27 2020-07-09 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method

Also Published As

Publication number Publication date
JPH1192810A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
EP1338660B1 (en) Metal oxide-containing green pellet for reducing furnace and method for production thereof, method for reduction thereof
TWI412602B (en) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
KR100607628B1 (en) Method for producing reduced iron compact in rotary hearth reducing furnace, reduced iron compact, and method for producing pig iron using the same
KR100673785B1 (en) Facilities for reducing metal oxide, method for operating the facilities and moldings as law material to be charged to reduction furnace
JP4589875B2 (en) Reduction method of metal oxide in rotary hearth type reduction furnace
JP3781153B2 (en) Production method of cheap reduced iron from steelmaking dust
EP1354646A1 (en) Method of treating heavy metal and/or organic compound
JP2003089823A (en) Converter dust recycling method to rotary hearth type reducing furnace
JP2004218019A (en) Production method of high-strength, iron-containing particulate material
JP4105856B2 (en) Reduced iron production method by rotary bed furnace
JP2015196896A (en) Method of regenerating oil-containing waste to useful material
CN106661667A (en) Method for smelting nickel oxide ore and method for charging pellets
JP6333770B2 (en) Method for producing ferronickel
JP3779873B2 (en) Operation method of rotary hearth reduction furnace
AU777336B2 (en) Method for utilizing activated carbon powder recovered from exhaust sintering gas treating apparatus
JP2003129140A (en) Method for manufacturing molded article designed for reducing rotary hearth
JP3837845B2 (en) Method for producing reduced iron
JP3756754B2 (en) Repair method for reduced iron rotary hearth
JP2002194410A (en) Method for operating rotary furnace hearth type reducing furnace, method for producing pig iron and granular iron oxide-reduced material
JP3856943B2 (en) Method for producing reduced iron
JP2002206119A (en) Method and equipment for reducing oxidized metal
JP4935384B2 (en) Method for producing reduced metal
JPH0660359B2 (en) Method for producing unfired agglomerated ore
JPS61207526A (en) Manufacture of raw material for iron manufacture excelling in reducing property
EP1439236A1 (en) METHOD FOR DRYING MOLDING CONTAINING OXIDIZED METAL, METHOD FOR REDUCING OXIDIZED METAL AND ROTARY HEARTH TYPE METAL REDUCTION FURNACE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees