JP3626558B2 - Pattern forming method and method for producing electrode plate for non-aqueous electrolyte secondary battery - Google Patents

Pattern forming method and method for producing electrode plate for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3626558B2
JP3626558B2 JP17750796A JP17750796A JP3626558B2 JP 3626558 B2 JP3626558 B2 JP 3626558B2 JP 17750796 A JP17750796 A JP 17750796A JP 17750796 A JP17750796 A JP 17750796A JP 3626558 B2 JP3626558 B2 JP 3626558B2
Authority
JP
Japan
Prior art keywords
coating film
electrode plate
active material
current collector
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17750796A
Other languages
Japanese (ja)
Other versions
JPH1012219A (en
Inventor
祐一 宮崎
伸 宮之脇
康志 佐藤
忠文 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP17750796A priority Critical patent/JP3626558B2/en
Priority to US08/876,983 priority patent/US6162264A/en
Priority to EP97304213A priority patent/EP0814521B1/en
Priority to DE69711269T priority patent/DE69711269T2/en
Publication of JPH1012219A publication Critical patent/JPH1012219A/en
Application granted granted Critical
Publication of JP3626558B2 publication Critical patent/JP3626558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、パターン形成方法及び非水電解液二次電池用電極板の製造方法に関し、例えば、リチウムイオン二次電池で代表される非水電解液二次電池用電極板の製造に有用であるパターン形成方法及び非水電解液二次電池用電極板の製造方法に関する。
【0002】
【従来の技術】
近年、電子機器や通信機器の小型化及び軽量化が急速に進んでおり、これらの駆動用電源として用いられる二次電池に対しても小型化及び軽量化の要求が強く、高エネルギー密度で且つ高電圧を有するリチウムイオン二次電池に代表される非水電解液二次電池が提案されている。
【0003】
又、二次電池の性能に大きく影響を及ぼす電極板に関しては、充放電サイクル寿命を延長させるために、又、高エネルギー密度化のために薄膜大面積化を図ることが提案されている。
例えば、特開昭63−10456号公報や特開平3−285262号公報等に記載されているように、金属酸化物、硫化物、ハロゲン化物等の正極活物質粉末に、導電剤及び結着剤(バインダー)を適当な湿潤剤(溶媒)に分散溶解させて、ペースト状の活物質塗工液を調製し、金属箔からなる集電体を基体とし、該基体上に上記塗工液を塗工して塗工膜(活物質塗工膜)を形成して得られる正極電極板が開示されている。この際、バインダーとして、例えば、ポリフッ化ビニリデン等のフッ素系樹脂、又はシリコーン・アクリル共重合体が用いられている。
【0004】
上記したような塗工型の電極板において、活物質を含有する塗工液の調製の際に用いられるバインダーは、非水電解液に対して電気化学的に安定であって、且つ電解液中に溶出することなく、更に、金属箔からなる基体上に塗工液を薄く塗工をすることができるように、何らかの溶媒に可溶である必要がある。又、塗工及び乾燥されて形成される活物質塗工膜(塗工膜)は、電池の組立工程において、剥離、脱落、ひび割れ等が生じることがないように可撓性を有するものであることが要求され、且つ金属箔からなる集電体との密着性にも優れた塗工膜であることが要求される。
【0005】
【発明が解決しようとする課題】
ここで電極板は通常、電流を取り出すための端子を付ける部分、或いは電池を作製する際に電極板を折り曲げる部分等には塗工膜が存在しないことが必要であって、少なからず非塗工部を有しており、その非塗工部のパターンは電池設計に従って任意に決定される。この非塗工部を作成する方法には、現状では電極塗工液を集電体上に塗工する際のコーターヘッドの機械的制御により、塗工部と非塗工部のパターンを直接形成する方法、乾燥後の塗工膜を機械的手段により剥離させて非塗工部を形成する方法がある。
【0006】
しかしながら、前者の方法は機械精度の問題から高速なパターン形成が困難であり、且つ塗工膜厚にばらつきが生じる。又、後者の方法は剥離に時間がかかる、パターニング精度が高くない、或いは剥離部のエッジからの粉落ち等の短所があり、現状では殆ど工業的実施は不可能である。
従って本発明の目的は、少なくとも活物質と結着剤とを含有する電極塗工液を集電体上に塗工及び乾燥して塗工膜を形成する非水電解液二次電池用電極板の製造において、全面ベタに塗工形成された乾燥後の塗工膜を任意の形状に剥離させることによって、塗工部の膜厚ばらつきが少なく、シャープな形状のパターンを形成することができるパターン形成方法及び非水電解液二次電池用電極板の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的は以下の本発明によって達成される。即ち、本発明は、基体上に形成された多孔質塗工膜に、固化後に上記塗工膜よりも凝集力が大となる液状物質として加熱融解させた熱可塑性樹脂を用い、該液状物質を上記基体面まで任意のパターン状に含浸させ、上記液状物質を固化させた後、該固化物質が含浸された上記塗工膜を剥離し、基体表面を露出させることを特徴とするパターン形成方法、及び少なくとも活物質と結着剤とを含有する電極塗工液を集電体上に塗工及び乾燥して形成された塗工膜に、上記のパターン形成方法を適用して、集電体面をパターン状に露出させることを特徴とする非水電解液二次電池用電極板の製造方法である。
【0008】
本発明者らは、前記従来技術の課題を解決するために鋭意検討の結果、電極塗工膜は多孔質の塗工膜であり、該膜中に存在する多くの微細な空隙に、固化後に上記塗工膜よりも凝集力が大となる液状物質(以下単に固化剤という)を任意のパターン状に含浸させると、該固化剤が冷却や化学反応によって固化する際に塗工膜を包み込む形で固化し、且つこの固化した塗工膜の部分のみを集電体表面から容易に剥離することができ、集電体表面に塗工膜を残すことなく、集電体面が精巧に露出され、剥離されなかった塗工膜との境界は非常にシャープであり、且つ剥離の際に粉落ち等の問題も発生しないことを知見して本発明に至った。
【0009】
【発明の実施の形態】
次に好ましい実施の形態を挙げて本発明を更に詳細に説明する。
本発明のパターン形成方法は、基体上に形成された多孔質塗工膜に、固化後に上記塗工膜よりも凝集力が大となる液状物質を任意のパターン状に含浸させ、上記液状物質を固化させた後、固化物質が含浸された上記塗工膜を剥離し、基体表面を露出させることを特徴としているが、この方法を非水電解液二次電池用電極板の製造に利用する方法を代表例として以下説明する。勿論、本発明は非水電解液二次電池用電極板の製造方法に限定されるものではない。
【0010】
本発明者は、非水電解液二次電池用電極板の製造において、活物質塗工膜をパターン状に形成する方法について種々研究していたところ、活物質塗工膜が大部分の活物質粒子と比較的少量の樹脂バインダーとから形成されている結果、該活物質塗工膜は多孔質であり、集電体に対する密着性が低く、又、樹脂バインダーの使用量が少ないことから、活物質塗工膜の横方向の凝集力(強度)が低いことに着目したものである。
【0011】
即ち、上記活物質塗工膜は、連通多孔質であることから液体が層の厚み方向にしみ込み易い。この活物質塗工膜に液体を含浸させる場合には、任意のパターン状に液体が含浸され、該含浸した液体を固化させると、含浸部分は他の非含浸部分と比較して著しく物理的強度が異なり、含浸固化部分のみを容易に集電体面から剥離することができ、集電体面に活物質塗工膜が全く残ることなく集電体面がパターン状に露出される。
【0012】
上記方法を図を参照して説明する。図1に示す如く、集電体表面に形成された活物質塗工膜に、ワックスの如き固化剤を加熱溶融させて滴下する。滴下されたワックスは活物質塗工膜にしみ込み、活物質塗工膜の空隙を充填する。この際液状の固化剤が集電体面に到達する前に固化することを防止するために、集電体及び/又は活物質塗工膜を加熱しておいてもよい。
図2は、固化剤が活物質塗工膜内にしみ込み、冷却によって固化した状態を示している。この状態では、固化剤が含浸された領域はその密度が、他の領域に比べて著しく大となっており、又、該領域の凝集力も他の領域に比較して著しく大となっている。
【0013】
図3は、固化剤含浸領域を剥離した状態を示している。上記のように固化剤含浸領域は、固化剤の充填によって高密度及び高凝集力となっており、この領域の凝集力は固化剤が含浸されていない隣接する活物質塗工膜の凝集力に比較して著しく大となっている。従って固化剤含浸領域を適当な手段で剥離すると、活物質塗工膜は固化剤に包み込まれた状態でシャープに剥離し、剥離後にシャープなパターンの集電体面が露出される。
本発明により形成されるパターンの形状は自由自在であり、それらのパターンの形状の例を図4〜6に示す。
【0014】
本発明で使用する固化剤の例としては、常温で固体であり、加温によって液状となる物質、例えば、熱可塑性樹脂が挙げられ、本発明の目的には、固化剤は、その融点が60℃〜150℃程度がよい。融点が低すぎる場合には室温でも軟らかいために取り扱いが難しく、電極板の生産性に劣り、又、融点が高すぎるとエネルギー的に不経済である。又、固化剤の溶融粘度は300〜6000cP程度がよい。溶融粘度が高すぎると固化剤が塗工膜の微細な空隙にしみ込みにくく、電極板の生産性に劣り、又、固化剤の溶融粘度が低すぎると溶融状態にある固化剤が毛細管現象で塗工膜中で横方向に広がってしまい、シャープなパターニングが困難になる。更に、剥離時の作業性の点から、固化剤と集電体との密着強度はなるべく小さい方が好ましい。
【0015】
固化剤の具体例としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリスチレン、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、エチレン−塩化ビニル共重合体等の熱可塑性樹脂、低分子量ポリエチレン、低分子量ポリプロピレン、それらの共重合体、マイクロクリスタリンワックス、酸化ポリエチレンワックス又はそれらの混合物等の合成ワックス、カルナバワックス等の天然ワックス或いはそれらの誘導体又はそれらの混合物が挙げられる。
【0017】
以上の如き固化剤を塗工膜中に含浸させる場合には、固化剤が塗工膜中の微細な空隙を通り集電体面まで達する必要があり、液状の固化剤が集電体面まで達する前に固化してしまうと、固化剤が含浸された塗工膜と集電体との剥離の際に、集電体表面に塗工膜の一部が残ってしまう虞がある。これを防ぐためには、集電体或いは塗工膜若しくは両者を適当な温度に加温して固化剤の固化を遅らせてもよいし、或いは溶融粘度の低い固化剤を選択してしみ込む速度を速くしてもよく、或いは固化剤の温度を十分に高くしておき、液状固化剤が固化するまでの時間を遅らせてもよい。
【0018】
尚、負極の集電体として銅箔を用いる場合には、銅箔は140℃以上に加熱されると酸化されて表面が赤くなる傾向があるが、固化剤の塗布(滴下)時に塗工膜をホットプレートで加熱する場合には、銅箔の両面が塗工膜で被覆されており、加熱は固化剤が塗布されている面から行われるので、ホットプレートの温度を140℃以上としても銅箔の酸化の問題は発生しない。
又、電極板の両面の同一位置にパターンを形成する場合には、一方の面をパターン化した後、その反対面をパターン化する場合には、既にパターン化されて銅箔が露出している面の酸化を防止するために、新たにパターン化する面側から遠赤外線等によって塗工膜を加熱し、裏側の露出面が140℃以上には加熱されないようにすることが好ましい。
【0019】
又、固化剤を塗工膜にパターン状にしみ込ませる方法には、溶融した固化剤を塗工膜上にパターン状に塗工する方法、パターン状に成型した固化剤を塗工膜上に配置し、塗工膜を加熱することにより塗工膜に接した固化剤を溶融させて塗工膜に含浸させる方法、種々の抜きパターンを有する型を予め作製しておき、型の上から固化剤を塗布及び含浸させる方法等がある。溶融した固化剤を塗工する際には、ディスペンサー、グラビアロール、ダイヘッド等の一般的な塗工装置が使用可能である。例えば、図1に示す如き固化剤の滴下装置をX−Yプロッタ型の駆動装置に取り付け、X−Yプロッタの動きに合わせて任意のパターンに固化剤を滴下することができる。例えば、X−Yプロッタを文字や図形或いは模様を描くように動作させることによって、任意の文字や図形或いは模様を描くように固化剤を滴下することが可能である。
【0020】
固化した固化剤を含む塗工膜は通常、集電体に弱く付着しているために容易に剥離することができる。剥離の際には、集電体にテンションをかけて固化剤を含む塗工膜を浮き上がらせて集電体から剥離させてもよく、ヘラ状のもので集電体から掻きとってもよく、粘着テープで集電体から剥がしてもよく、或いはエアーで集電体から吹き飛ばしてもよい。
尚、上記の如く固化剤の塗工膜への含浸は、塗工膜を、後述する如くのプレス前の塗工膜に行ってもよく、プレス後の塗工膜に行ってもよい。
【0021】
以下、本発明を非水電解液二次電池用電極板の製造に使用する場合の、該電極板を構成する各材料について説明する。非水電解液二次電池とは、リチウム系二次電池で代表されるもので、電解液に非水有機溶媒を用いることを特徴とし、例えば、金属箔からなる集電体上に電極活物質を含有する塗工膜(活物質塗工膜)が形成されているものを電極板とし、電解液に非水有機溶媒を用い、正極及び負極の電極間をリチウムイオンが移動する際の電子のやり取りによって充放電が可能となるものである。
本発明の非水電解液二次電池用電極板を構成する活物質を含有する塗工膜は、少なくとも活物質と結着剤とからなる電極塗工液から形成される。本発明で用いられる正極活物質としては、例えば、LiCoO、LiMn等のリチウム酸化物、TiS、MnO、MoO、V等のカルコゲン化合物のうちの一種、或いはこれらの複数種が組み合わせて用いられる。
【0022】
一方、負極活物質としては、金属リチウム、リチウム合金、或いはグラファイト、カーボンブラック、アセチレンブラック等の炭素質材料が好んで用いられる。特に、LiCoOを正極活物質、炭素質材料を負極活物質として用いることにより、4ボルト程度の高い放電電圧のリチウム系二次電池が得られる。これらの活物質は形成される塗工膜中に均一に分散されるのが好ましい。このために、本発明においては、活物質として1〜100μmの範囲の粒径を有する平均粒径が10μm程度の粉体を用いるのが好ましい。
【0023】
又、本発明で用いられるバインダー(結着剤)としては、例えば、熱可塑性樹脂、即ち、ポリエステル樹脂、ポリアミド樹脂、ポリアクリル酸エステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、セルロース樹脂、ポリオレフィン樹脂、ポリビニル樹脂、フッ素系樹脂及びポリイミド樹脂等から任意に選択して使用することができる。この際に反応性官能基を導入した化合物(アクリレートモノマー又はオリゴマー)を同時に混入させる事も可能である。又、アクリレートオリゴマー単独であっても、オリゴマーとモノマーとの混合系等であっても利用することができる。
【0024】
本発明の非水電解液二次電池用電極板を構成する活物質を含有する塗工膜は、以下のような方法によって作成される。先ず、集電体上に塗工する塗工液を、上記に記載した材料を用いて作製する。即ち、上記の材料から適宜に選択された結着剤と粉末状の活物質とを適当な分散媒を用いて、混練或いは分散溶解して電極塗工液を作製する。
【0025】
次に、得られた塗工液を用いて、集電体上に塗工する。塗工する方法としては、グラビア、グラビアリバース、ダイコート及びスライドコート等の方式を用いる。その後、塗工した塗工液を乾燥させる乾燥工程を経て所望の膜厚の塗工膜を形成する。
本発明の非水電解液二次電池用電極板に用いられる集電体としては、例えば、アルミニウム、銅等の金属箔が好ましく用いられる。金属箔の厚さとしては、10〜30μm程度のものを用いる。
【0026】
以下、本発明で使用する活物質が含有された電極塗工液の具体的な調製方法について説明する。先ず、上記に挙げたような材料から適宜に選択されたバインダーと粉末状の活物質とを、トルエン等の有機溶媒からなる分散媒体中に入れ、更に必要に応じて導電剤を混合させた組成物を、従来公知のホモジナイザー、ボールミル、サンドミル、ロールミル等の分散機を用いて混合分散することによって調製する。
【0027】
この際、バインダーと活物質との配合割合は、従来行われているのと同様でよく、例えば、重量比でバインダー:活物質=2:8〜1:9程度とするのが好ましい。又、必要に応じて添加する導電剤としては、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質材料が用いられる。
上記のようにして調製された活物質が含有された電極塗工液は、アルミニウム、銅等の金属箔からなる集電体上に、グラビアコーター又はグラビアリバース、ダイコーター等を用いて複数回塗工及び乾燥処理して、乾燥膜厚が10〜200μm、好ましくは50〜170μmとなるような範囲で塗工する。
【0028】
更に、上記のようにして塗工及び乾燥処理して形成された塗工膜の均質性をより向上させるために、該塗工膜に金属ロール、加熱ロール、シートプレス機等を用いてプレス処理を施し、本発明の電極板を形成するのも好ましい。この際のプレス条件としては、500Kgf/cm〜7,500Kgf/cm、更に好ましくは、3,000〜5,000Kgf/cmの範囲とするのが好ましい。500Kgf/cmよりもプレスする力が小さいと塗工膜の均一性の向上が得られにくく、又、7,500Kgf/cmよりもプレスする力が大きいと、集電体を含めて電極板自体が破損してしまうために、好ましくない。
【0029】
更に、上記のようにして作製した本発明の電極板を用いて二次電池を作製する場合に、電池の組立工程に移る前に、電極板の活物質が含有されている塗工膜中の水分を除去するために、更に加熱処理、減圧処理等を行うことが好ましい。本発明は、以上の如き電極板に前記本発明のパターニング方法を適用するものである。
又、以上のようにして作製した本発明の正極及び負極の非水電解液二次電池用電極板を用いて、例えば、リチウム系二次電池を作製する場合には、電解液として、溶質のリチウム塩を有機溶媒に溶かした非水電解液が用いられる。
【0030】
この際に使用される有機溶媒としては、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類等があり、例えば、環状エステル類としては、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、ビニレンカーボネート、2メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン等があり、又、鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等があり、又、環状エーテル類としては、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン等があり、又、鎖状エーテル類としては、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル等が挙げられる。
【0031】
又、上記の有機溶媒と共に非水電解液を形成する溶質のリチウム塩としてはLiClO、LiBF、LiPF、LiAsF、LiCl、LiBr等の無機リチウム塩、及びLiB(C、LiN(SOCF、LiC(SOCF、LiOSOCF、LiOSO、 LiOSO、LiOSO、LiOSO11、 LiOSO13、LiOSO15等の有機リチウム塩等が用いられる。
【0032】
以上、本発明のパターン形成方法を電極板の製造を例に挙げて説明したが、本発明のパターン形成方法は、上記方法に限定されず、他の目的にも使用することができることは勿論である。
他の用途の1例を挙げると、本発明はプラズマディスプレイパネルの基板の作製に応用することができる。例えば、プラズマディスプレイパネルにおける背面板はガラス基板の表面に下地層を介して電極(通常は金)が形成されている。下地層はガラス基板の端面の汚れを防止するために、カラス基板の端面よりも0.5mm程度内側に塗布形成することが必要である。この下地層は、例えば、鉛ガラスのフリット80重量%、エチルセルロース等の樹脂バインダー1重量%及び残量の溶剤からなり、粘度80,000cP程度のペーストを塗布及び乾燥させ、焼成して形成される。
【0033】
上記ペーストの塗工方法において下地層を正確にガラス基板端面から0.5mm程度内側に形成することは困難であるが、本発明の方法を応用すれば、下地層塗工液をガラス基板全面に塗布及び乾燥した後、焼成前にガラス基板端面から0.5mm程度の幅で下地塗工層を剥離除去することが容易であり、その後に下地層を焼成することによって、ガラス基板面に正確なパターンの下地層を形成することが可能である。
【0034】
【実施例】
次に実施例及び比較例を挙げて本発明を更に具体的に説明する。
実施例1
先ず、本実施例で用いた正極活物質を含む正極塗工液を以下の方法により作製した。正極塗工液の材料としては、1〜100μmの粒径を持つ平均粒径10μmのLiCoO粉末を40重量部、導電材としてグラファイト粉末を5.0重量部、結着剤としてポリフッ化ビニリデン樹脂(ネオフロンVDF、VP−850 ダイキン工業(株)製)を4重量部、N−メチルピロリドン20重量部の配合比で用いた。
【0035】
これらの材料のうち、ポリフッ化ビニリデンをN−メチルピロリドンにて溶解して予めワニスを作製し、得られたワニスに他の粉末材料を入れた後、プラネタリーミキサー((株)小平製作所製)にて30分間撹拌混合することにより、スラリー状の正極活物質を含む正極塗工液を得た。
上記で得られた正極塗工液を用い、厚さ20μm及び幅300mmのアルミ箔からなる集電体上にダイコーターにて正極活物質塗工液の第1回目の塗工を行った。その後、140℃で2分間乾燥処理してアルミ箔上に乾燥膜厚が100μmの正極活物質を含む塗工膜を形成した。更に、上記で得られた正極活物質を含む塗工膜を80℃の真空オーブン中で、48時間エージングして水分を除去し、本実施例の正極用の電極板を作製した。
【0036】
次に、本実施例で用いた負極活物質を含む負極塗工液を以下の方法により作製した。負極塗工液の材料として、グラファイト粉末を85重量部、ポリフッ化ビニリデン樹脂(ネオフロンVDF、VP−850 ダイキン工業(株)製)を15重量部、分散媒体としてN−メチルピロリドンを225重量部の配合比で用い、正極塗工液を作製した場合と同様の分散機及び分散方法を用いて粉体を分散させ、スラリー状の負極塗工液を得た。
【0037】
上記で得られた負極塗工液を用い、厚さ15μmの圧延銅箔の集電体上にダイコーターを用いて負極塗工液の第1回目の塗工を行った。その後、140℃で2分間乾燥処理して、銅箔上に乾燥膜厚が100μmの負極活物質を含む塗工膜を形成した。更に、正極電極板の形成の場合と同様の方法で水分を除去し、本実施例の負極用の電極板を作製した。
【0038】
上述のようにして得られた正極板及び負極板を90℃のホットプレートの上に乗せ、250℃に加熱融解させたポリプロピレン(三洋化成工業(株)ビスコール550P)をディスペンサーで幅10mm及び長さ200mmの帯状に塗工した後、ホットプレートを取り去りポリプロピレンを固化させた。固化したポリプロピレンは硬く折れやすく、集電体にテンションをかけることで自然に浮き上がり、集電体から容易に剥離した。又、このようにして形成されたパターンのエッジはシャープであり、塗工膜の粉落ち等は認められなかった。
【0039】
実施例2
実施例1と同様の塗工液及び乾燥条件にて電極を作製した。得られた正極板及び負極板を120℃のホットプレートの上に乗せ、250℃に加熱融解させたポリエチレン(三洋化成工業(株)サンワックス161P)をディスペンサーで幅10mm及び長さ200mmの帯状に塗工した後、ホットプレートを取り去りポリエチレンを固化させた。固化したポリエチレンは強靭であり、端部を摘んで引き上げると固化したポリエチレン部分は形状を保ったまま集電体上から容易に剥離した。又、このようにして形成されたパターンのエッジはシャープであり、塗工膜の粉落ち等は認められなかった。
【0040】
実施例3
実施例1と同様の塗工液及び乾燥条件にて電極を作製した。得られた正極板及び負極板を赤外線ランプによって70℃に加熱し、160℃に加熱融解させたワックス(三菱化成工業(株)、ダイヤカルナ30L)をディスペンサーで幅10mm及び長さ200mmの帯状に塗工した後、赤外線ランプを取り去りワックスを固化させた。固化したワックスは硬く折れやすく、集電体にテンションをかけることで固化したワックス部分は自然に浮き上がり、容易に剥離した。又、このようにして形成されたパターンのエッジはシャープであり、塗工膜の粉落ち等は認められなかった。
【0041】
実施例4
実施例1と同様の塗工液及び乾燥条件にて電極を作製した。この正極板及び負極板の塗工膜の表面に幅30mm、長さ200mm及び厚み5mmのリボン状に溶融成型したポリエチレン(三洋化成工業(株)サンワックス161P)を乗せ、そのまま電極の裏から250℃のホットプレートを約1秒間接触させた後取り去った。ポリエチレンは塗工膜に接した面のみが融解して塗工膜にしみこんだまま固化しており、ポリエチレンリボンの端部を摘んで引き上げると該ポリエチレンリボンは形状を保ったまま容易に剥離した。又、このようにして形成されたパターンのエッジはシャープであり、塗工膜の粉落ち等は認められなかった。
【0042】
実施例5
実施例1と同様の塗工液及び乾燥条件にて電極を作製した。得られた正極板及び負極板をロールプレスにて3000Kgf/cmでプレスした後、90℃のホットプレートの上に乗せ、250℃に加熱融解させたポリプロピレン(三洋化成工業(株)ビスコール550P)をディスペンサーで幅10mm及び長さ200mmの帯状に塗工した後、ホットプレートを取り去りポリプロピレンを固化させた。固化したポリプロピレンは硬く折れやすく、集電体にテンションをかけることで自然に浮き上がり、容易に剥離した。又、このようにして形成されたパターンのエッジはシャープであり、塗工膜の粉落ち等は認められなかった。
【0043】
実施例6
プラズマディスプレイパネルの基板であるガラス板の全面に、鉛ガラスのフリット80重量%、エチルセルロース1重量%、ブチルカルビトールアセテート10重量%及びα−パーチネオール9重量%からなり、粘度80,000cPペーストを塗布及び乾燥させた。この塗工層の表面に、矩形のガラス基板より4辺が0.5mm短い非浸透性のプラスチック枠を重ね、該枠からはみ出している乾燥塗工膜にポリプロピレンワックス(三洋化成製、ビスコール550P)を250℃に加熱した融解液を塗布して塗工層に含浸させた。冷却後含浸部分の塗工膜を剥離したところ、塗工膜はガラス基板の端面より正確に0.5mmの幅で剥離され、奇麗なガラス面が露出した。その後常法により焼成して下地層を形成した。
【0044】
比較例1
実施例1と同様の塗工液及び乾燥条件にて電極を作製した。得られた正極板及び負極板の上に幅10mm及び長さ200mmの粘着テープを貼り、剥がすことによって非塗工部を作製した。剥離面には多量の塗工膜が残り、又、このようにして形成されたパターンのエッジはシャープでなく、塗工膜の粉落ちが認められた。又、このように粘着テープを用いて剥離することは工業的には事実上不可能である。
【0045】
比較例2
実施例1と同様の塗工液及び乾燥条件にて電極を作製した。得られた正極板及び負極板の塗工膜をヘラでこすり落とすことでに幅10mm及び長さ200mmの非塗工部を作製した。剥離面には多量の塗工膜が残り、パターンを形成するのは困難であった。又、集電体に傷が付いてしまった。
【0046】
比較例3
実施例1と同様の塗工液及び乾燥条件にて電極を作製した。得られた正極板及び負極板を室温に保ち、250℃に加熱融解させたポリプロピレン(三洋化成工業(株)ビスコール550P)をディスペンサーで幅10mm及び長さ200mmの帯状に塗工した後、空冷により完全に固化させた。塗工したポリプロピレンは塗工膜内部にしみこむ前に塗工膜表面で固化しており、ポリプロピレンを除去しても塗工膜は集電体に付着して残るために非塗工部は作製できなかった。
【0048】
【発明の効果】
以上の如き本発明によれば、塗工部の膜厚ばらつきが少なく、シャープな形状のパターンを形成することができる。
【0046】
【図面の簡単な説明】
【図1】本発明の方法を図解的に説明する図。
【図2】本発明の方法を図解的に説明する図。
【図3】本発明の方法を図解的に説明する図。
【図4】本発明の方法により形成されるパターンの例を図解的に説明する図。
【図5】本発明の方法により形成されるパターンの例を図解的に説明する図。
【図6】本発明の方法により形成されるパターンの例を図解的に説明する図。
[0001]
[Technical field to which the invention belongs]
The present invention relates to a pattern forming method and a method for producing a non-aqueous electrolyte secondary battery electrode plate, and is useful, for example, in producing a non-aqueous electrolyte secondary battery electrode plate represented by a lithium ion secondary battery. The present invention relates to a pattern forming method and a method for producing an electrode plate for a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, electronic devices and communication devices have been rapidly reduced in size and weight, and there is a strong demand for downsizing and weight reduction for secondary batteries used as power sources for driving. Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries having high voltage have been proposed.
[0003]
In addition, regarding the electrode plate that greatly affects the performance of the secondary battery, it has been proposed to increase the area of the thin film in order to extend the charge / discharge cycle life and to increase the energy density.
For example, as described in JP-A-63-10456 and JP-A-3-285262, etc., a conductive agent and a binder are added to a positive electrode active material powder such as a metal oxide, sulfide, or halide. (Binder) is dispersed and dissolved in an appropriate wetting agent (solvent) to prepare a paste-like active material coating solution. A current collector made of metal foil is used as a substrate, and the coating solution is applied onto the substrate. A positive electrode plate obtained by processing to form a coating film (active material coating film) is disclosed. In this case, as the binder, for example, a fluorine-based resin such as polyvinylidene fluoride or a silicone / acrylic copolymer is used.
[0004]
In the coating type electrode plate as described above, the binder used in the preparation of the coating liquid containing the active material is electrochemically stable with respect to the nonaqueous electrolytic solution, and in the electrolytic solution. In addition, it is necessary to be soluble in some solvent so that the coating liquid can be applied thinly on a base made of a metal foil. Further, the active material coating film (coating film) formed by coating and drying has flexibility so that peeling, dropping, cracking, etc. do not occur in the battery assembly process. In addition, the coating film is required to have excellent adhesion to a current collector made of a metal foil.
[0005]
[Problems to be solved by the invention]
Here, the electrode plate usually needs to have no coating film on the part where the terminal for taking out the current is attached, or the part where the electrode plate is bent when manufacturing the battery, and it is not uncoated. The pattern of the non-coated part is arbitrarily determined according to the battery design. The method of creating this non-coated part is that the pattern of the coated part and the non-coated part is directly formed by mechanical control of the coater head when the electrode coating solution is applied on the current collector. And a method of forming a non-coated portion by peeling the coated film after drying by mechanical means.
[0006]
However, the former method makes it difficult to form a high-speed pattern due to a problem of mechanical accuracy, and the coating film thickness varies. In addition, the latter method takes time for peeling, does not have high patterning accuracy, or has disadvantages such as powder falling from the edge of the peeling portion, and is currently almost impossible to implement industrially.
Accordingly, an object of the present invention is to provide an electrode plate for a non-aqueous electrolyte secondary battery in which an electrode coating solution containing at least an active material and a binder is coated on a current collector and dried to form a coating film. In the production of the pattern, by peeling off the dried coating film formed on the entire surface into an arbitrary shape, there is little variation in the film thickness of the coating part, and a pattern that can form a sharp shape pattern It is in providing the formation method and the manufacturing method of the electrode plate for nonaqueous electrolyte secondary batteries.
[0007]
[Means for Solving the Problems]
The above object is achieved by the present invention described below. That is, the present invention provides a porous coating film formed on a substrate. As a liquid substance that has higher cohesion than the above coating film after solidification Heated and melted thermoplastic resin Use the liquid material Impregnating the substrate surface in an arbitrary pattern, solidifying the liquid material, and then peeling the coating film impregnated with the solidified material to expose the substrate surface, And applying the pattern forming method described above to a coating film formed by applying and drying an electrode coating liquid containing at least an active material and a binder on a current collector, thereby forming a current collector surface. It is a manufacturing method of the electrode plate for nonaqueous electrolyte secondary batteries characterized by exposing in a pattern form.
[0008]
As a result of intensive studies to solve the problems of the prior art, the present inventors have determined that the electrode coating film is a porous coating film, and after solidifying into many fine voids existing in the film. When a liquid substance (hereinafter simply referred to as a solidifying agent) having a cohesive force larger than that of the coating film is impregnated in an arbitrary pattern, the solidifying agent wraps the coating film when solidified by cooling or chemical reaction. And only the part of the solidified coating film can be easily peeled off from the current collector surface, and the current collector surface is finely exposed without leaving the coating film on the current collector surface. The present inventors have found that the boundary with the coating film that has not been peeled off is very sharp and that problems such as powder falling do not occur during the peeling.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to preferred embodiments.
In the pattern forming method of the present invention, a porous coating film formed on a substrate is impregnated with a liquid substance having a cohesive force larger than that of the coating film after solidification in an arbitrary pattern, and the liquid substance is impregnated. After solidifying, the coating film impregnated with the solidifying substance is peeled off to expose the surface of the substrate, and this method is used for manufacturing an electrode plate for a non-aqueous electrolyte secondary battery. Will be described below as a representative example. Of course, this invention is not limited to the manufacturing method of the electrode plate for nonaqueous electrolyte secondary batteries.
[0010]
The present inventor has made various studies on a method for forming an active material coating film in a pattern in the production of an electrode plate for a non-aqueous electrolyte secondary battery, and the active material coating film is the most active material. As a result of being formed from particles and a relatively small amount of resin binder, the active material coating film is porous, has low adhesion to the current collector, and uses less resin binder. This is because the lateral cohesive force (strength) of the material coating film is low.
[0011]
That is, since the active material coating film is a continuous porous material, the liquid easily penetrates in the thickness direction of the layer. When this active material coating film is impregnated with a liquid, the liquid is impregnated in an arbitrary pattern, and when the impregnated liquid is solidified, the impregnated part has a significant physical strength compared to other non-impregnated parts. However, only the impregnated solidified portion can be easily peeled off from the current collector surface, and the current collector surface is exposed in a pattern without any active material coating film remaining on the current collector surface.
[0012]
The above method will be described with reference to the drawings. As shown in FIG. 1, a solidifying agent such as wax is heated and melted and dropped onto an active material coating film formed on the surface of the current collector. The dropped wax soaks into the active material coating film and fills the gaps in the active material coating film. At this time, in order to prevent the liquid solidifying agent from solidifying before reaching the current collector surface, the current collector and / or the active material coating film may be heated.
FIG. 2 shows a state in which the solidifying agent has soaked into the active material coating film and solidified by cooling. In this state, the density of the region impregnated with the solidifying agent is significantly higher than that of the other regions, and the cohesive force of the region is also significantly higher than that of the other regions.
[0013]
FIG. 3 shows a state where the solidifying agent-impregnated region is peeled off. As described above, the solidifying agent-impregnated region has a high density and high cohesive force due to the filling of the solidifying agent, and the cohesive force of this region is the cohesive force of the adjacent active material coating film not impregnated with the solidifying agent. In comparison, it is significantly larger. Accordingly, when the solidifying agent-impregnated region is peeled off by an appropriate means, the active material coating film is sharply peeled while being encased in the solidifying agent, and the current collector surface having a sharp pattern is exposed after peeling.
The shape of the pattern formed by the present invention is arbitrary, and examples of the shape of these patterns are shown in FIGS.
[0014]
Examples of solidifying agents used in the present invention include substances that are solid at room temperature and become liquid upon heating, such as thermoplastic resin. Fat For the purposes of the present invention, the solidifying agent has its melting point 6 It is preferably about 0 ° C to 150 ° C. If the melting point is too low, it is soft at room temperature and difficult to handle, resulting in poor electrode plate productivity. If the melting point is too high, it is uneconomical. Also, the melt viscosity of the solidifying agent Is 3 It is preferably about 00 to 6000 cP. If the melt viscosity is too high, the solidifying agent will not easily penetrate into the fine gaps of the coating film, resulting in poor productivity of the electrode plate. It spreads in the lateral direction in the coating film, making sharp patterning difficult. Furthermore, from the viewpoint of workability at the time of peeling, it is preferable that the adhesion strength between the solidifying agent and the current collector is as small as possible.
[0015]
Specific examples of the solidifying agent include, for example, polyolefin resins such as polyethylene and polypropylene, polyvinyl chloride resins, polystyrene, polyvinyl acetate, ethylene-vinyl acetate copolymers, thermoplastic resins such as ethylene-vinyl chloride copolymers, Examples include low molecular weight polyethylene, low molecular weight polypropylene, copolymers thereof, synthetic waxes such as microcrystalline wax, oxidized polyethylene wax or mixtures thereof, natural waxes such as carnauba wax, derivatives thereof or mixtures thereof.
[0017]
When the coating film is impregnated with the above-mentioned solidifying agent, it is necessary for the solidifying agent to reach the current collector surface through fine voids in the coating film, and before the liquid solidifying agent reaches the current collector surface. If solidified, the coating film impregnated with the solidifying agent and the current collector may be partly left on the surface of the current collector when the current collector is peeled off. In order to prevent this, the current collector or the coating film or both may be heated to an appropriate temperature to delay the solidification of the solidifying agent, or the solidifying agent having a low melt viscosity may be selected to increase the penetration rate. Alternatively, the temperature of the solidifying agent may be set sufficiently high to delay the time until the liquid solidifying agent is solidified.
[0018]
When copper foil is used as the current collector for the negative electrode, the copper foil tends to oxidize and become red when heated to 140 ° C. or higher. When heating the hot plate with a hot plate, both sides of the copper foil are coated with a coating film, and the heating is performed from the surface coated with the solidifying agent. The problem of foil oxidation does not occur.
Moreover, when forming a pattern in the same position of both surfaces of an electrode plate, after patterning one surface, when patterning the opposite surface, it is already patterned and copper foil is exposed. In order to prevent oxidation of the surface, it is preferable that the coating film is heated from the newly patterned surface side by far infrared rays or the like so that the exposed surface on the back side is not heated to 140 ° C. or higher.
[0019]
In addition, for the method of soaking the solidifying agent in a pattern in the coating film, a method of coating the melted solidifying agent in a pattern on the coating film, and placing the solidifying agent molded in a pattern on the coating film A method of melting the solidifying agent in contact with the coating film by heating the coating film and impregnating the coating film, preparing molds having various punching patterns in advance, There is a method of applying and impregnating. When coating the melted solidifying agent, a general coating apparatus such as a dispenser, a gravure roll, or a die head can be used. For example, a solidifying agent dropping device as shown in FIG. 1 is attached to an XY plotter type driving device, and the solidifying agent can be dropped in an arbitrary pattern in accordance with the movement of the XY plotter. For example, by operating the XY plotter to draw characters, figures, or patterns, it is possible to drop the solidifying agent so as to draw arbitrary letters, figures, or patterns.
[0020]
Since the coating film containing the solidified solidifying agent is usually weakly attached to the current collector, it can be easily peeled off. At the time of peeling, the current collector may be tensioned to lift the coating film containing the solidifying agent to lift off the current collector, or it may be scraped off from the current collector with a spatula, adhesive tape May be peeled off from the current collector, or may be blown off from the current collector with air.
The impregnation of the coating agent with the solidifying agent as described above may be performed on the coating film before pressing as described later or on the coating film after pressing.
[0021]
Hereinafter, each material which comprises this electrode plate in the case of using this invention for manufacture of the electrode plate for nonaqueous electrolyte secondary batteries is demonstrated. Non-aqueous electrolyte secondary batteries are typified by lithium-based secondary batteries, and are characterized by using a non-aqueous organic solvent for the electrolyte solution. For example, an electrode active material on a current collector made of metal foil The electrode plate is formed with a coating film containing active material (active material coating film), and a non-aqueous organic solvent is used as the electrolytic solution. When lithium ions move between the positive and negative electrodes, Charging / discharging becomes possible by exchange.
The coating film containing the active material constituting the electrode plate for a non-aqueous electrolyte secondary battery of the present invention is formed from an electrode coating solution comprising at least an active material and a binder. Examples of the positive electrode active material used in the present invention include LiCoO. 2 , LiMn 2 O 4 Lithium oxide such as TiS 2 , MnO 2 , MoO 3 , V 2 O 5 One kind of chalcogen compounds such as these, or a plurality of these may be used in combination.
[0022]
On the other hand, as the negative electrode active material, metallic lithium, lithium alloy, or carbonaceous materials such as graphite, carbon black, and acetylene black are preferably used. In particular, LiCoO 2 Is used as the positive electrode active material and the carbonaceous material is used as the negative electrode active material, a lithium secondary battery having a high discharge voltage of about 4 volts can be obtained. These active materials are preferably uniformly dispersed in the coating film to be formed. Therefore, in the present invention, it is preferable to use a powder having an average particle size of about 10 μm having a particle size in the range of 1 to 100 μm as the active material.
[0023]
Examples of the binder (binder) used in the present invention include thermoplastic resins, that is, polyester resins, polyamide resins, polyacrylate resins, polycarbonate resins, polyurethane resins, cellulose resins, polyolefin resins, and polyvinyl resins. , Fluorine resin and polyimide resin can be arbitrarily selected and used. At this time, it is also possible to mix a compound (acrylate monomer or oligomer) into which a reactive functional group is introduced at the same time. Moreover, even if it is an acrylate oligomer alone, it can utilize even if it is a mixed system etc. of an oligomer and a monomer.
[0024]
The coating film containing the active material constituting the electrode plate for a non-aqueous electrolyte secondary battery of the present invention is prepared by the following method. First, a coating solution for coating on the current collector is prepared using the materials described above. That is, an electrode coating solution is prepared by kneading or dispersing and dissolving a binder appropriately selected from the above materials and a powdery active material using an appropriate dispersion medium.
[0025]
Next, it coats on a collector using the obtained coating liquid. As a method of coating, methods such as gravure, gravure reverse, die coating and slide coating are used. Thereafter, a coating film having a desired film thickness is formed through a drying process for drying the applied coating liquid.
As the current collector used in the electrode plate for a nonaqueous electrolyte secondary battery of the present invention, for example, a metal foil such as aluminum or copper is preferably used. The thickness of the metal foil is about 10 to 30 μm.
[0026]
Hereinafter, the specific preparation method of the electrode coating liquid containing the active material used by this invention is demonstrated. First, a composition in which a binder appropriately selected from the materials listed above and a powdered active material are placed in a dispersion medium composed of an organic solvent such as toluene, and a conductive agent is mixed as necessary. The product is prepared by mixing and dispersing using a conventional dispersing machine such as a homogenizer, ball mill, sand mill, roll mill or the like.
[0027]
At this time, the blending ratio of the binder and the active material may be the same as that conventionally performed. For example, it is preferable that the weight ratio is about binder: active material = 2: 8 to 1: 9. In addition, as a conductive agent added as necessary, for example, a carbonaceous material such as graphite, carbon black, and acetylene black is used.
The electrode coating liquid containing the active material prepared as described above is applied to a current collector made of a metal foil such as aluminum or copper a plurality of times using a gravure coater, a gravure reverse, a die coater or the like. The coating is performed in such a range that the dry film thickness is 10 to 200 μm, preferably 50 to 170 μm.
[0028]
Furthermore, in order to further improve the homogeneity of the coating film formed by coating and drying as described above, the coating film is pressed using a metal roll, a heating roll, a sheet press machine, or the like. To form the electrode plate of the present invention. The press conditions at this time are 500 kgf / cm. 2 ~ 7,500Kgf / cm 2 More preferably, 3,000 to 5,000 Kgf / cm 2 It is preferable to be in the range. 500Kgf / cm 2 If the pressing force is smaller than the above, it is difficult to improve the uniformity of the coating film, and 7,500 kgf / cm. 2 If the pressing force is larger than that, the electrode plate itself including the current collector is damaged, which is not preferable.
[0029]
Furthermore, when producing a secondary battery using the electrode plate of the present invention produced as described above, before moving to the battery assembly process, the electrode plate in the coating film containing the active material is contained. In order to remove moisture, it is preferable to further perform heat treatment, reduced pressure treatment, or the like. The present invention applies the patterning method of the present invention to the electrode plate as described above.
In addition, for example, in the case of producing a lithium secondary battery using the positive electrode and negative electrode nonaqueous electrolyte secondary battery electrode plates of the present invention prepared as described above, a solute of A nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent is used.
[0030]
Examples of the organic solvent used at this time include cyclic esters, chain esters, cyclic ethers, chain ethers, and the like. Examples of the cyclic esters include propylene carbonate, butylene carbonate, γ-butyrolactone, There are vinylene carbonate, 2methyl-γ-butyrolactone, acetyl-γ-butyrolactone, γ-valerolactone and the like, and chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, Methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, propionic acid alkyl ester, malonic acid dialkyl Examples of the cyclic ethers include tetrahydrofuran, alkyltetrahydrofuran, dialkylalkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4. -Dioxolane and the like, and chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, tetraethylene Examples include glycol dialkyl ether.
[0031]
Further, LiClO is used as a solute lithium salt that forms a non-aqueous electrolyte with the above organic solvent. 4 , LiBF 4 , LiPF 6 , LiAsF 6 Inorganic lithium salts such as LiCl, LiBr, and LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C 3 F 7 , LiOSO 2 C 4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 C 6 F 13 , LiOSO 2 C 7 F 15 An organic lithium salt such as is used.
[0032]
The pattern forming method of the present invention has been described by taking the production of an electrode plate as an example. However, the pattern forming method of the present invention is not limited to the above method, and can be used for other purposes as well. is there.
As one example of other applications, the present invention can be applied to the production of a substrate of a plasma display panel. For example, a back plate in a plasma display panel has an electrode (usually gold) formed on the surface of a glass substrate via a base layer. In order to prevent the end surface of the glass substrate from being soiled, the base layer needs to be applied and formed on the inner side by about 0.5 mm from the end surface of the glass substrate. This underlayer is formed by, for example, applying 80% by weight of a lead glass frit, 1% by weight of a resin binder such as ethyl cellulose and the remaining solvent, applying and drying a paste having a viscosity of about 80,000 cP, and baking. .
[0033]
In the paste coating method, it is difficult to accurately form the underlayer about 0.5 mm from the end surface of the glass substrate. However, if the method of the present invention is applied, the underlayer coating solution is applied to the entire surface of the glass substrate. After coating and drying, it is easy to peel and remove the undercoating layer with a width of about 0.5 mm from the end face of the glass substrate before firing, and by firing the underlayer thereafter, the surface of the glass substrate is accurate. It is possible to form an underlayer of the pattern.
[0034]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples.
Example 1
First, the positive electrode coating liquid containing the positive electrode active material used in the present Example was produced by the following method. As a material of the positive electrode coating liquid, LiCoO having a particle diameter of 1 to 100 μm and an average particle diameter of 10 μm. 2 40 parts by weight of powder, 5.0 parts by weight of graphite powder as a conductive material, 4 parts by weight of polyvinylidene fluoride resin (neoflon VDF, VP-850 manufactured by Daikin Industries, Ltd.) as a binder, 20 N-methylpyrrolidone It was used at a blending ratio of parts by weight.
[0035]
Among these materials, polyvinylidene fluoride is dissolved in N-methylpyrrolidone to prepare a varnish in advance, and after putting other powder materials into the obtained varnish, a planetary mixer (manufactured by Kodaira Seisakusho) The mixture was stirred and mixed for 30 minutes to obtain a positive electrode coating liquid containing a slurry-like positive electrode active material.
Using the positive electrode coating liquid obtained above, the positive electrode active material coating liquid was applied for the first time with a die coater on a current collector made of aluminum foil having a thickness of 20 μm and a width of 300 mm. Thereafter, the coating film was dried at 140 ° C. for 2 minutes to form a coating film containing a positive electrode active material having a dry film thickness of 100 μm on the aluminum foil. Furthermore, the coating film containing the positive electrode active material obtained above was aged in a vacuum oven at 80 ° C. for 48 hours to remove moisture, and a positive electrode plate of this example was produced.
[0036]
Next, a negative electrode coating liquid containing the negative electrode active material used in this example was prepared by the following method. As a material of the negative electrode coating liquid, 85 parts by weight of graphite powder, 15 parts by weight of polyvinylidene fluoride resin (neoflon VDF, VP-850 manufactured by Daikin Industries, Ltd.), and 225 parts by weight of N-methylpyrrolidone as a dispersion medium Using the mixing ratio, the powder was dispersed using the same disperser and dispersion method as in the case of producing the positive electrode coating liquid, to obtain a slurry-like negative electrode coating liquid.
[0037]
Using the negative electrode coating liquid obtained above, the first coating of the negative electrode coating liquid was performed on a current collector of a rolled copper foil having a thickness of 15 μm using a die coater. Then, it dried at 140 degreeC for 2 minute (s), and the coating film containing the negative electrode active material whose dry film thickness is 100 micrometers was formed on copper foil. Furthermore, moisture was removed in the same manner as in the formation of the positive electrode plate, and the negative electrode plate of this example was produced.
[0038]
The positive electrode plate and the negative electrode plate obtained as described above were placed on a 90 ° C. hot plate, and polypropylene (Sanyo Chemical Industries Co., Ltd. Viscol 550P) heated and melted at 250 ° C. was 10 mm wide and long using a dispenser. After coating in a 200 mm strip, the hot plate was removed to solidify the polypropylene. The solidified polypropylene was hard and easy to break, and was lifted up naturally by applying tension to the current collector, and easily separated from the current collector. Further, the edge of the pattern formed in this way was sharp, and no powder falling off of the coating film was observed.
[0039]
Example 2
An electrode was produced under the same coating solution and drying conditions as in Example 1. The obtained positive electrode plate and negative electrode plate were placed on a 120 ° C. hot plate, and polyethylene melted at 250 ° C. (Sanyo Chemical Industry Co., Ltd., Sun Wax 161P) was dispensed into a strip with a width of 10 mm and a length of 200 mm. After coating, the hot plate was removed to solidify the polyethylene. The solidified polyethylene was tough, and when the end portion was picked and pulled up, the solidified polyethylene portion was easily peeled off from the current collector while maintaining its shape. Further, the edge of the pattern formed in this way was sharp, and no powder falling off of the coating film was observed.
[0040]
Example 3
An electrode was produced under the same coating solution and drying conditions as in Example 1. The obtained positive electrode plate and negative electrode plate were heated to 70 ° C. with an infrared lamp, and wax (Mitsubishi Kasei Kogyo Co., Ltd., Diacarna 30L) heated and melted to 160 ° C. was formed into a strip having a width of 10 mm and a length of 200 mm with a dispenser. After coating, the infrared lamp was removed to solidify the wax. The solidified wax was hard and easy to break, and the portion of the wax solidified by applying tension to the current collector floated naturally and peeled off easily. Further, the edge of the pattern formed in this way was sharp, and no powder falling off of the coating film was observed.
[0041]
Example 4
An electrode was produced under the same coating solution and drying conditions as in Example 1. Polyethylene (Sanyo Chemical Industries, Ltd. Sun Wax 161P) melt-molded in a ribbon shape having a width of 30 mm, a length of 200 mm, and a thickness of 5 mm is placed on the surface of the coating film of the positive electrode plate and the negative electrode plate, and 250 250 from the back of the electrode. The hot plate at 0 ° C. was contacted for about 1 second and then removed. Only the surface in contact with the coating film was melted and solidified with the polyethylene film soaked into the coating film, and when the end of the polyethylene ribbon was picked up and pulled up, the polyethylene ribbon was easily peeled while maintaining its shape. Further, the edge of the pattern formed in this way was sharp, and no powder falling off of the coating film was observed.
[0042]
Example 5
An electrode was produced under the same coating solution and drying conditions as in Example 1. The obtained positive electrode plate and negative electrode plate were rolled at 3000 Kgf / cm. 2 After pressing at 90 ° C., a polypropylene (Sanyo Kasei Kogyo Co., Ltd. Biscol 550P) melted and heated to 250 ° C. was coated with a dispenser in a strip shape having a width of 10 mm and a length of 200 mm, The hot plate was removed to solidify the polypropylene. The solidified polypropylene was hard and easy to break. When tension was applied to the current collector, it floated naturally and peeled off easily. Further, the edge of the pattern formed in this way was sharp, and no powder falling off of the coating film was observed.
[0043]
Example 6
The entire surface of the glass plate that is the substrate of the plasma display panel is composed of 80% by weight of lead glass frit, 1% by weight of ethyl cellulose, 10% by weight of butyl carbitol acetate, and 9% by weight of α-pertineol. And dried. On the surface of this coating layer, an impervious plastic frame having a length of 0.5 mm shorter than a rectangular glass substrate is layered, and polypropylene wax (Viscol 550P, manufactured by Sanyo Chemical Industries) is applied to the dry coating film protruding from the frame. A melt heated to 250 ° C. was applied to impregnate the coating layer. When the coating film of the impregnated portion was peeled off after cooling, the coating film was peeled off with an accurate width of 0.5 mm from the end face of the glass substrate, and a beautiful glass surface was exposed. Thereafter, the base layer was formed by firing by a conventional method.
[0044]
Comparative Example 1
An electrode was produced under the same coating solution and drying conditions as in Example 1. A non-coated part was produced by applying and peeling an adhesive tape having a width of 10 mm and a length of 200 mm on the obtained positive electrode plate and negative electrode plate. A large amount of the coating film remained on the peeled surface, and the edge of the pattern formed in this way was not sharp, and powder coating of the coating film was observed. In addition, it is practically impossible to peel using an adhesive tape in this manner.
[0045]
Comparative Example 2
An electrode was produced under the same coating solution and drying conditions as in Example 1. The coated film of the obtained positive electrode plate and negative electrode plate was scraped off with a spatula to produce a non-coated part having a width of 10 mm and a length of 200 mm. A large amount of coating film remained on the peeled surface, and it was difficult to form a pattern. Also, the current collector was scratched.
[0046]
Comparative Example 3
An electrode was produced under the same coating solution and drying conditions as in Example 1. The obtained positive electrode plate and negative electrode plate were kept at room temperature, and polypropylene (Sanyo Kasei Kogyo Co., Ltd. Viscol 550P) heated and melted at 250 ° C. was coated with a dispenser in a strip shape having a width of 10 mm and a length of 200 mm. Completely solidified. The coated polypropylene is solidified on the surface of the coating film before it penetrates into the coating film, and even if the polypropylene is removed, the coating film remains attached to the current collector. There wasn't.
[0048]
【The invention's effect】
According to the present invention as described above, a sharply shaped pattern can be formed with little variation in the film thickness of the coated portion.
[0046]
[Brief description of the drawings]
FIG. 1 is a diagram schematically illustrating a method of the present invention.
FIG. 2 is a diagram schematically illustrating the method of the present invention.
FIG. 3 is a diagram schematically illustrating the method of the present invention.
FIG. 4 is a diagram schematically illustrating an example of a pattern formed by the method of the present invention.
FIG. 5 is a diagram schematically illustrating an example of a pattern formed by the method of the present invention.
FIG. 6 is a diagram schematically illustrating an example of a pattern formed by the method of the present invention.

Claims (6)

基体上に形成された多孔質塗工膜に、固化後に上記塗工膜よりも凝集力が大となる液状物質として加熱融解させた熱可塑性樹脂を用い、該液状物質を上記基体面まで任意のパターン状に含浸させ、上記液状物質を固化させた後、該固化物質が含浸された上記塗工膜を剥離し、基体表面を露出させることを特徴とするパターン形成方法。For the porous coating film formed on the substrate, a thermoplastic resin heated and melted as a liquid material having a cohesive force larger than that of the coating film after solidification is used. A pattern forming method comprising impregnating in a pattern and solidifying the liquid substance, and then peeling off the coating film impregnated with the solidified substance to expose the substrate surface. 熱可塑性樹脂が、ポリエチレン、ポリプロピレン、低分子量ポリエチレン、低分子量ポリプロピレン、それらの誘導体或いはそれらの混合物である請求項1に記載のパターン形成方法。The pattern forming method according to claim 1, wherein the thermoplastic resin is polyethylene, polypropylene, low molecular weight polyethylene, low molecular weight polypropylene, a derivative thereof, or a mixture thereof. 基体が、リチウム電池の集電体である請求項1に記載のパターン形成方法。The pattern forming method according to claim 1, wherein the substrate is a current collector of a lithium battery. 多孔質塗工膜が、少なくとも活物質と結着剤とからなる塗工膜である請求項1に記載のパターン形成方法。The pattern forming method according to claim 1, wherein the porous coating film is a coating film composed of at least an active material and a binder. 少なくとも活物質と結着剤とを含有する電極塗工液を集電体上に塗工及び乾燥して形成された塗工膜に、請求項1〜4のいずれか1項に記載のパターン形成方法を適用して、集電体面をパターン状に露出させることを特徴とする非水電解液二次電池用電極板の製造方法。The pattern formation of any one of Claims 1-4 in the coating film formed by applying and drying the electrode coating liquid containing an active material and a binder on a collector. A method of manufacturing an electrode plate for a nonaqueous electrolyte secondary battery, wherein the method is applied to expose the current collector surface in a pattern. 結着剤が、フッ素系樹脂である請求項5に記載の非水電解液二次電池用電極板の製造方法。The method for producing an electrode plate for a nonaqueous electrolyte secondary battery according to claim 5, wherein the binder is a fluororesin.
JP17750796A 1996-06-17 1996-06-17 Pattern forming method and method for producing electrode plate for non-aqueous electrolyte secondary battery Expired - Fee Related JP3626558B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17750796A JP3626558B2 (en) 1996-06-17 1996-06-17 Pattern forming method and method for producing electrode plate for non-aqueous electrolyte secondary battery
US08/876,983 US6162264A (en) 1996-06-17 1997-06-16 Process for producing porous coating layer electrode plate for secondary battery with nonaqueous electrolyte process for producing same and sheet for peeling active material layer
EP97304213A EP0814521B1 (en) 1996-06-17 1997-06-16 Process for producing porous coating layer and process for producing electrode plate for secondary battery with nonaqueous electrolyte
DE69711269T DE69711269T2 (en) 1996-06-17 1997-06-16 Process for producing porous coating and process for producing an electrode plate for secondary battery with non-aqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17750796A JP3626558B2 (en) 1996-06-17 1996-06-17 Pattern forming method and method for producing electrode plate for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1012219A JPH1012219A (en) 1998-01-16
JP3626558B2 true JP3626558B2 (en) 2005-03-09

Family

ID=16032122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17750796A Expired - Fee Related JP3626558B2 (en) 1996-06-17 1996-06-17 Pattern forming method and method for producing electrode plate for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3626558B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995791B2 (en) * 1998-03-26 2007-10-24 Tdk株式会社 Method for producing electrode for non-aqueous electrolyte battery
JP4619465B2 (en) * 1998-07-13 2011-01-26 大日本印刷株式会社 Method for producing electrode plate for non-aqueous electrolyte secondary battery
JP4612132B2 (en) * 1999-05-20 2011-01-12 大日本印刷株式会社 Non-aqueous electrolyte secondary battery electrode plate, intermediate product of the electrode plate, and manufacturing method thereof
JP4249527B2 (en) * 2002-12-27 2009-04-02 パナソニック株式会社 Method for producing electrochemical element
TWI429127B (en) * 2006-05-12 2014-03-01 A123 Systems Inc Apparatus and method for processing a coated sheet
CN112670434B (en) * 2019-11-15 2022-11-25 华中科技大学 Method for preparing flexible film electrode on large scale by integrated working platform

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422473A (en) * 1990-05-16 1992-01-27 Sunstar Eng Inc Masking method
JPH08138655A (en) * 1994-11-11 1996-05-31 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for battery

Also Published As

Publication number Publication date
JPH1012219A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
JP3553244B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
US6162264A (en) Process for producing porous coating layer electrode plate for secondary battery with nonaqueous electrolyte process for producing same and sheet for peeling active material layer
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
US6315801B1 (en) Process for producing an electrode plate with a terminal mounting portion and/or an identification mark
US6423446B1 (en) Electrode plate for secondary battery with nonaqueous electrolyte and process for producing same
US6152971A (en) Electrode plate for secondary battery with nonaqueous electrolyte and process for producing same
JP4643780B2 (en) Non-aqueous electrolyte secondary battery electrode plate and method for producing the same
CN103682254A (en) Method for manufacturing electrode for battery
JP2000040506A (en) Electrode plate for nonaqueous electrolyte secondary battery and its manufacture
JPH1064525A (en) Electrode plate for nonaqueous electrolyte secondary battery and manufacture thereof
JP3626558B2 (en) Pattern forming method and method for producing electrode plate for non-aqueous electrolyte secondary battery
JP4612132B2 (en) Non-aqueous electrolyte secondary battery electrode plate, intermediate product of the electrode plate, and manufacturing method thereof
JP4619465B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
JPH09298058A (en) Manufacture of electrode plate for nonaqueous electrolyte secondary battery
JP3990033B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
JPH1064526A (en) Electrode plate for nonaqueous electrolyte secondary battery and manufacture thereof
JPH11185734A (en) Electrode plate for nonaqueous electrolyte and manufacture thereof
JPH08250110A (en) Manufacture of electrode plate for nonaqueous electrolytic secondary battery
JPH10223209A (en) Manufacture of electrode plate for non-aqueous electrolytic solution secondary battery
JP3590220B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
JPH10255772A (en) Manufacture of electrode plate for nonaqueous electrolyte secondary battery
JP4426661B2 (en) Non-aqueous electrolyte secondary battery electrode plate and method for producing the same
JP4774728B2 (en) Coating composition for positive electrode active material layer, positive electrode plate formed from the composition, and nonaqueous electrolyte secondary battery having the positive electrode plate
JP2003173780A (en) Coating composition for anode, anode plate, and nonaqueous electrolyte solution secondary battery
JPH10223208A (en) Manufacture of electrode plate for non-aqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees