JPH08250110A - Manufacture of electrode plate for nonaqueous electrolytic secondary battery - Google Patents

Manufacture of electrode plate for nonaqueous electrolytic secondary battery

Info

Publication number
JPH08250110A
JPH08250110A JP7077179A JP7717995A JPH08250110A JP H08250110 A JPH08250110 A JP H08250110A JP 7077179 A JP7077179 A JP 7077179A JP 7717995 A JP7717995 A JP 7717995A JP H08250110 A JPH08250110 A JP H08250110A
Authority
JP
Japan
Prior art keywords
active material
material layer
transfer
film
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7077179A
Other languages
Japanese (ja)
Inventor
Tadafumi Shindo
忠文 進藤
Yuichi Miyazaki
祐一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP7077179A priority Critical patent/JPH08250110A/en
Publication of JPH08250110A publication Critical patent/JPH08250110A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To make an active material to be transferred more fine to closely adhere it to a base surface, and provide an electrode plate of high quality by transferring an active material layer from a transfer film having the transferring active material layer formed thereon to the metal base surface. CONSTITUTION: A lengthy metal base 21 and a lengthy transfer film A having an active material layer 23 formed on one surface of a polymer film 22 are mutually superposed so that the active material layer 23 is orthogonal to the surface of the metal base plate 21. The metal base 21 and the transfer film A are intermittently orthogonally transferred. A hot stamper 25 is lowered at a point of time when the transfer is interrupted to transfer the active material layer 23 having the same form as the pressing surface of the stamper 25 to the metal base 21 surface. This transfer is intermittently performed. A peeling layer 24 is preliminarily formed on the base film 22 of the transfer film A, as occasion demands, to facilitate the transfer of the active material layer 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池用電
極板に関し、更に詳しくは、例えば、リチウム二次電池
で代表される非水電解液二次電池用の電極板の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode plate for a non-aqueous electrolyte secondary battery, more specifically, a method for manufacturing an electrode plate for a non-aqueous electrolyte secondary battery represented by, for example, a lithium secondary battery. Regarding

【0002】[0002]

【従来の技術】近年、電子機器や通信機器の小型化及び
軽量化が急速に進んでおり、これらの駆動用電源として
用いられる二次電池に対しても同様な小型化及び軽量化
が要求されている。これらの要求に対して高エネルギー
密度及び高電圧を有するリチウムイオン二次電池を代表
とする非水電解液二次電池がアルカリ蓄電池に代わって
種々提案されている。
2. Description of the Related Art In recent years, electronic devices and communication devices have been rapidly reduced in size and weight, and secondary batteries used as power sources for driving these devices are also required to be reduced in size and weight. ing. In response to these requirements, various non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries having high energy density and high voltage have been proposed in place of alkaline storage batteries.

【0003】又、二次電池の性能に大きく影響するそれ
らの電極板に関しては、充放電サイクル寿命の延長の為
に、又、高エネルギー密度化の為に薄膜大面積化を図る
ことも提案されている。例えば、特開昭63−1046
6号公報、特開平3−285262号公報に記載されて
いる様に、金属酸化物、硫化物、ハロゲン化物等の正極
活物質粉末を、導電剤や適当な結着剤(バインダー)と
共に適当な湿潤剤(溶媒)に分散溶解させて、ペースト
状の活物質塗布液を調製し、これを金属基体に塗布して
活物質層を形成し、正極電極板を作製する方法が提案さ
れている。
Regarding those electrode plates that greatly affect the performance of the secondary battery, it has been proposed to increase the area of a thin film in order to extend the charge / discharge cycle life and increase the energy density. ing. For example, JP-A-63-1046
No. 6, JP-A-3-285262, a positive electrode active material powder such as a metal oxide, a sulfide, or a halide is appropriately mixed with a conductive agent and a suitable binder (binder). There has been proposed a method of preparing a positive electrode plate by dispersing and dissolving it in a wetting agent (solvent) to prepare a paste-form active material coating liquid, and applying this to a metal substrate to form an active material layer.

【0004】上記の如き塗布方法によって金属基板に活
物質層を形成する場合には、その塗布液の組成、特にバ
インダーが重要であって、非水電解液二次電池に使用さ
れる非水電解液に対して化学的に安定であること、電解
液に溶出しないこと、活物質粉末に適当な塗工適性を与
えること、少量の使用で活物質粉末を強固に結着させ
て、形成される活物質層が金属基体から剥離しない様に
優れた密着性を与えること等が要求され、更に電極板の
作製に際しては、金属基体全面に活物質層を形成するの
ではなく、電極板から端子を取る為に、塗工部と非塗工
部とを繰り返し作製することが必要である。
When the active material layer is formed on the metal substrate by the coating method as described above, the composition of the coating solution, particularly the binder, is important, and the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery is used. It is chemically stable to liquids, does not elute into electrolytes, imparts appropriate coating suitability to active material powders, and is formed by firmly binding active material powders with a small amount of use. It is required to provide excellent adhesion so that the active material layer does not peel off from the metal substrate. Furthermore, when manufacturing the electrode plate, the terminal is not formed on the entire surface of the metal substrate but from the electrode plate. In order to take it, it is necessary to repeatedly produce a coated part and a non-coated part.

【0005】[0005]

【発明が解決しようとする課題】これらの要求に対して
上記の塗布液は、活物質粉末が非常に比重が大であり、
しかも多量のバインダーを使用することが出来ず、更に
活物質層の膜厚は100μm前後という厚膜が要求され
る為、溶媒の使用量も大きく制限されており、更に被塗
工物である金属基体が伸縮性及び強度に劣る金属箔であ
る為に、塗工時における金属箔の制御が困難であり、印
刷分野や塗装分野で広く使用されている通常の塗工機に
適応し得る程度の塗工適性を付与することが困難であ
る。従って、塗工方法による活物質層の形成は、その生
産性が非常に低く、且つ得られる電極板の品質も到底満
足し得るものではない。従って本発明の目的は、高品質
の非水電解液二次電池用の電極板を生産性良く提供する
ことが出来る上記電極板の製造方法を提供することであ
る。
In order to meet these requirements, the above coating liquid has a very large specific gravity of the active material powder,
Moreover, since it is not possible to use a large amount of binder and the thickness of the active material layer is required to be as thick as about 100 μm, the amount of solvent used is greatly limited. Since the base material is a metal foil having poor elasticity and strength, it is difficult to control the metal foil during coating, and it can be applied to ordinary coating machines widely used in the printing field and coating field. It is difficult to impart coating suitability. Therefore, the productivity of the active material layer formed by the coating method is very low, and the quality of the obtained electrode plate is not satisfactory at all. Therefore, an object of the present invention is to provide a method for manufacturing the above-mentioned electrode plate, which can provide a high-quality electrode plate for a non-aqueous electrolyte secondary battery with high productivity.

【0006】[0006]

【課題を解決する為の手段】上記目的は以下の本発明に
よって達成される。即ち、本発明は、金属基板面に活物
質層を形成して非水電解液二次電池用電極板を製造する
方法において、上記活物質層を、転写性活物質層が形成
されている転写フイルムから金属基板面に転写させて形
成することを特徴とする非水電解液二次電池用電極板の
製造方法である。
The above object can be achieved by the present invention described below. That is, the present invention relates to a method for producing an electrode plate for a non-aqueous electrolyte secondary battery by forming an active material layer on the surface of a metal substrate, wherein the active material layer is transferred by a transferable active material layer. It is a method for producing an electrode plate for a non-aqueous electrolyte secondary battery, which is formed by transferring it from a film onto a metal substrate surface.

【0007】[0007]

【作用】活物質層形成用塗工液は、前記の様にその性質
上充分な塗工適性を与えることが出来ない。その大きな
原因の1つは被塗工材が金属基体であることである。本
発明では、活物質層用塗工液でも塗工可能な高分子フイ
ルム面に、該塗工液によって活物質層を形成して転写フ
イルムを作製し、この活物質層を金属基体に転写する。
この方法によって、金属基体面に所望の形状の活物質層
を容易に形成することが出来る。特に従来の方法におい
ては、金属基体上に塗工液を塗布し、溶媒を蒸発させる
必要がある為、形成された活物質層の強度及び金属基体
に対する密着性が低く、粉落ち、層の剥離等の種々の問
題が発生したが、本発明によれば、転写時及び転写後に
おいても溶媒による問題はなく、そのうえ転写時の転写
圧力によって、転写された活物質層は緻密化され且つ金
属基体に良好に密着する為、前記の如き問題を生じるこ
となく、高品質の非水電解液二次電池用の電極板が容易
に提供される。
The coating liquid for forming the active material layer cannot give sufficient coating suitability due to its properties as described above. One of the major causes is that the material to be coated is a metal substrate. In the present invention, a transfer film is prepared by forming an active material layer on the surface of a polymer film which can be coated with a coating liquid for active material layer by using the coating liquid, and transferring the active material layer to a metal substrate. .
By this method, the active material layer having a desired shape can be easily formed on the metal substrate surface. In particular, in the conventional method, since it is necessary to apply the coating liquid onto the metal substrate and evaporate the solvent, the strength of the formed active material layer and the adhesion to the metal substrate are low, and the powder falls and the layer peels. However, according to the present invention, there is no problem due to the solvent during and after transfer, and the transferred active material layer is densified by the transfer pressure during transfer and the metal substrate Therefore, a high quality electrode plate for a non-aqueous electrolyte secondary battery can be easily provided without causing the above problems.

【0008】[0008]

【好ましい実施態様】次に好ましい実施態様を挙げて本
発明を更に詳細に説明する。図1は、リチウムイオン二
次電池に代表される非水電解液二次電池の製造工程の1
例を図解的に示す図であり、本発明の対象は、正極活物
質及び負極活物質のコーティング工程に関するものであ
り、本発明は、金属基板面に活物質層を形成して非水電
解液二次電池用電極板を製造する方法において、上記活
物質層を、転写性活物質層が形成されている転写フイル
ムから金属基板面に転写させて形成することを特徴とし
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to preferred embodiments. FIG. 1 shows a manufacturing process of a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery.
It is a diagram schematically showing an example, the object of the present invention relates to a coating process of a positive electrode active material and a negative electrode active material, the present invention, a non-aqueous electrolyte solution by forming an active material layer on the metal substrate surface. A method of manufacturing an electrode plate for a secondary battery is characterized in that the active material layer is formed by transferring it from a transfer film having a transferable active material layer formed thereon to a metal substrate surface.

【0009】図2aは、本発明の好ましい1実施例を図
解的に示す図であり、図2bはこの方法で使用される転
写フイルムAの拡大断面図である。この図に示す方法で
は、ロール状に巻かれている活物質層を形成すべき長尺
金属基板21と、高分子フイルム22の一方の面に活物
質層23が形成され、ロール状に巻かれている長尺転写
フイルムAとを、該活物質層23が金属基板21の面に
対向する様に直交させて重ね合わせ、上記金属基板21
と転写フイルムAとを断続的に直交移行させて、両者の
重なり部分において活物質層23の転写を断続的に行う
方法である。この方法における金属基板は、幅が30m
mであり、その面に転写される活物質層23のサイズは
280mm×600mmであり、それらの間隔は50m
mであり、その厚みは約100μmである。従って転写
フイルムもほぼ同一の幅を有し、同様の厚さの活物質層
23がフイルム22面に形成されている。勿論、上記の
数値は1実施例であって、本発明はこれらの数値に限定
されない。
FIG. 2a is a diagram schematically showing a preferred embodiment of the present invention, and FIG. 2b is an enlarged sectional view of a transfer film A used in this method. In the method shown in this figure, a long metal substrate 21 on which a roll-shaped active material layer is to be formed, and an active material layer 23 formed on one surface of a polymer film 22 are rolled and rolled. And the long transfer film A which are in contact with each other so as to be orthogonal to each other so that the active material layer 23 faces the surface of the metal substrate 21.
The transfer film A and the transfer film A are intermittently and orthogonally moved so that the active material layer 23 is transferred intermittently at the overlapping portion between the two. The metal substrate in this method has a width of 30 m.
m, the size of the active material layer 23 transferred onto the surface is 280 mm × 600 mm, and the distance between them is 50 m.
m and its thickness is about 100 μm. Therefore, the transfer film also has substantially the same width, and the active material layer 23 having the same thickness is formed on the surface of the film 22. Of course, the above numerical values are one example, and the present invention is not limited to these numerical values.

【0010】上記例における転写フイルムAの基材フイ
ルム22には、剥離層24が形成されてており、活物質
層23の転写を容易にしているが、フイルム22が離型
性に優れたものである場合には離型層24は不要であ
る。図2に示す方法では、不図示の駆動手段によって金
属基板21が矢印で示す方向に約650mm毎に断続的
に移行され、一方、転写フイルムAも同一速度で矢印方
向に移行され、移行が中断した時点でホットスタンパー
25が下降し、転写フイルムAの活物質層23が支持台
(不図示)上にある金属基板21にプレスされ、図示の
如くスタンパー25のプレス面と同一形状の活物質層2
3が金属基板21面に転写される。尚、この転写は金属
基体の両面に行うことが出来る。又、転写に際しては、
転写フイルムAと金属基体21との上下関係は逆であっ
てもよい。
A peeling layer 24 is formed on the base film 22 of the transfer film A in the above example to facilitate transfer of the active material layer 23, but the film 22 has excellent releasability. In that case, the release layer 24 is unnecessary. In the method shown in FIG. 2, the metal substrate 21 is intermittently moved in the direction indicated by the arrow at intervals of about 650 mm by the driving means (not shown), while the transfer film A is also moved in the direction indicated by the arrow at the same speed, and the movement is interrupted. At that time, the hot stamper 25 descends, the active material layer 23 of the transfer film A is pressed onto the metal substrate 21 on a support (not shown), and the active material layer having the same shape as the stamped surface of the stamper 25 as shown in the figure. Two
3 is transferred to the surface of the metal substrate 21. Incidentally, this transfer can be performed on both sides of the metal substrate. Also, when transferring,
The vertical relationship between the transfer film A and the metal substrate 21 may be reversed.

【0011】図3は、本発明の別の好ましい実施例を図
解的に示す図であり、この図に示す方法では、ロール状
に巻かれている活物質層を形成すべき長尺金属基板31
と、活物質層33が一方の表面に形成され、ロール状に
巻かれている長尺転写フイルムAとを、活物質層33を
金属基板31の面に対向する様に上下に同一方向に重ね
合わせ、上記金属基板31と転写フイルムAとをバック
アップロール34と加圧加熱ロール35との間を連続的
に移行させて、これらの一対のロール間で活物質層33
の転写を連続的又は断続的に行う方法である。この方法
における金属基板31は前記の例と同様であり、その面
に転写された活物質層33のサイズ、間隔及び厚みも同
様である。従って転写フイルムAもほぼ同一の幅を有
し、同様の厚さの活物質層33が基材フイルム32面に
形成されている。
FIG. 3 is a diagram schematically showing another preferred embodiment of the present invention. In the method shown in this figure, a long metal substrate 31 on which an active material layer wound in a roll is to be formed.
And an active material layer 33 formed on one surface and a long transfer film A wound in a roll shape are stacked in the same direction vertically so that the active material layer 33 faces the surface of the metal substrate 31. Together, the metal substrate 31 and the transfer film A are continuously transferred between the backup roll 34 and the pressure heating roll 35, and the active material layer 33 is formed between the pair of rolls.
Is a method of continuously or intermittently transferring The metal substrate 31 in this method is the same as in the above example, and the size, spacing and thickness of the active material layers 33 transferred to the surface are also the same. Therefore, the transfer film A also has almost the same width, and the active material layer 33 having the same thickness is formed on the surface of the base film 32.

【0012】この例における転写フイルムAは、その転
写前の状態をA部拡大図に示してある様に、基材フイル
ム32の面に離型層36と接着層37とが所定の間隔で
繰り返し形成され(図示の例は幅50mmの接着層が幅
600mm毎に連続的に形成され、その全面に活物質層
33が形成されている。この転写フイルムAが一対の転
写ロール34,35間を経過すると、B部拡大図に示す
様に、接着層37がある部分は転写が行われず、剥離層
36のある部分のみが金属基板31面に正確に転写され
る。活物質層33が金属基板31上に転写された状態を
C部拡大図に示す。尚、上記接着層を形成する接着剤と
しては、加熱により溶融し接着力が向上するものが挙げ
られ、例えば、エチレン−酢酸ビニル共重合体等が好ま
しく使用される。又、常温で接着性を有するものであっ
てもよい。
The transfer film A in this example has a release layer 36 and an adhesive layer 37 which are repeatedly arranged at a predetermined interval on the surface of the base film 32, as shown in an enlarged view of a portion A before transfer. In the illustrated example, an adhesive layer having a width of 50 mm is continuously formed every 600 mm in width, and an active material layer 33 is formed on the entire surface thereof. This transfer film A is formed between a pair of transfer rolls 34 and 35. After a lapse of time, as shown in the enlarged view of the portion B, the portion having the adhesive layer 37 is not transferred, and only the portion having the peeling layer 36 is accurately transferred to the surface of the metal substrate 31. The active material layer 33 is the metal substrate. The state transferred to 31 is shown in an enlarged view of C. Note that the adhesive forming the adhesive layer may be one that is melted by heating to improve the adhesive force, and for example, ethylene-vinyl acetate copolymer Coalescence and the like are preferably used. , It may have an adhesive property at normal temperature.

【0013】図4は、本発明の更に別の好ましい実施例
を図解的に示す図であり、この図に示す方法は、前記図
3に示す方法と類似しているが、A部拡大図に示す様に
加圧加熱ロール47の面に所定の幅(50mm)の凹部
49が形成されていて、その部分では活物質層43の転
写が行われず、他の部分では転写が行われる様になって
いる。尚、図示はしてないが、加圧加熱ロール47に凹
部49を設ける代わりにバックアップロール48に同様
の凹部を設けてもよいし、更に両方のロールに設けても
よい。上記方法においては、B部拡大図に示す様に、転
写フイルムAは、図2に示す例と同様であり、転写後の
転写フイルムAの状態はC部拡大図の如く、そして転写
後の金属基板41はD部拡大図に示す如き状態になる。
FIG. 4 is a diagram schematically showing another preferred embodiment of the present invention. The method shown in this figure is similar to the method shown in FIG. As shown in the drawing, a concave portion 49 having a predetermined width (50 mm) is formed on the surface of the pressurizing and heating roll 47, the active material layer 43 is not transferred in that portion, and is transferred in the other portion. ing. Although not shown, the backup roll 48 may be provided with a similar recess instead of providing the pressurizing and heating roll 47 with the recess 49, or may be provided on both rolls. In the above method, the transfer film A is the same as the example shown in FIG. 2 as shown in the enlarged view of the B part, and the state of the transfer film A after the transfer is as shown in the enlarged view of the C part and the metal after the transfer. The substrate 41 is in the state shown in the enlarged view of the D portion.

【0014】上記本発明の方法で使用される正極活物質
として、例えば、LiCoO2 、LiMn22 等のリ
チウム酸化物、TiS2 、MnO2 、MoO3 、V2
5 等のカルコゲン化合物のうち、一種或いは複数種を組
み合わせて用いられる。一方、負極活物質として、リチ
ウム、リチウム合金、或いはグラファイト、カーボンブ
ラック、アセチレンブラック等の炭素質材料が好んで用
いられる。特に、LiCoO2 を正極活物質として使用
し、一方、炭素質材料を負極活物質として用いることが
好ましく、この組み合わせによって4ボルト程度の高い
放電電圧が得られる。
Examples of the positive electrode active material used in the method of the present invention include lithium oxides such as LiCoO 2 and LiMn 2 O 2 , TiS 2 , MnO 2 , MoO 3 and V 2 O.
Among chalcogen compounds such as 5, they are used alone or in combination of plural kinds. On the other hand, as the negative electrode active material, lithium, a lithium alloy, or a carbonaceous material such as graphite, carbon black, or acetylene black is preferably used. In particular, it is preferable to use LiCoO 2 as the positive electrode active material, while using a carbonaceous material as the negative electrode active material, and a high discharge voltage of about 4 V can be obtained by this combination.

【0015】本発明で使用する金属基板としては、従来
の非水電解液二次電池において使用されると同様な厚み
のアルミニウム、銅、ステンレス等の金属基板が使用さ
れ、これらの金属基板面に活物質層を転写させる転写フ
イルムは、上記の粉末状活物質、必要に応じて導電剤、
バインダー(結着剤)及び適当な分散媒とを用いて、こ
れらを混練或いは分散して活物質塗布液を調製し、該塗
布液を、例えば、PET(ポリエチレンテレフタレー
ト)フイルム、ポリカーボネートフイルム、ポリエチレ
ンフイルム、ポリプロピレンフイルム等の高分子フイル
ム上に塗布し、乾燥することによって得られる。この
際、フイルム面には前記図2〜4図に示す様に、転写方
法に合わせて離型層や接着層を形成することが出来る。
As the metal substrate used in the present invention, a metal substrate of aluminum, copper, stainless steel or the like having the same thickness as that used in the conventional non-aqueous electrolyte secondary battery is used. The transfer film for transferring the active material layer includes the powdered active material described above, a conductive agent if necessary,
A binder (binder) and an appropriate dispersion medium are used to knead or disperse these to prepare an active material coating liquid, and the coating liquid is, for example, a PET (polyethylene terephthalate) film, a polycarbonate film, or a polyethylene film. It can be obtained by coating on a polymer film such as polypropylene film and drying. At this time, a release layer or an adhesive layer can be formed on the film surface according to the transfer method as shown in FIGS.

【0016】上記塗工液の調製に使用するバインダーと
して、例えば、ポリエステル樹脂、ポリアミド樹脂、ポ
リアクリル酸エステル樹脂、ポリカーボネート樹脂、ポ
リウレタン樹脂、セルロース樹脂、ポリオレフィン樹
脂、ポリビニル樹脂、フッ素系樹脂、ポリイミド樹脂等
の熱可塑性樹脂から任意に選択して使用することが出来
る。一方、二次電池の作製に用いる電解液としては、溶
質であるリチウム塩を、環状エステル類、鎖状エステル
類、環状エーテル類、鎖状エーテル類等の有機溶媒に溶
かした非水電解液が用いられるので、上記バインダーは
電解液と反応したり、溶解したりしないものを選択する
べきであるが、それ自体電解液と反応したり、溶解する
ものであっても、活物質層を金属基板に転写後に電子線
や各種架橋剤等の任意の手段によって電解液と反応した
り、溶解しない様になる材料であればよい。活物質塗布
液の調製は、粒子状バインダー、粉末状活物質及び水や
トルエン等の有機溶媒からなる分散媒体、更に必要に応
じて導電剤を混合した組成物を、従来公知であるホモジ
ナイザー、ボールミル、サンドミル、ロールミル等の分
散機を用いて分散することによって行われる。
As the binder used for preparing the above coating liquid, for example, polyester resin, polyamide resin, polyacrylic acid ester resin, polycarbonate resin, polyurethane resin, cellulose resin, polyolefin resin, polyvinyl resin, fluorine resin, polyimide resin It can be used by arbitrarily selecting it from thermoplastic resins such as. On the other hand, as an electrolytic solution used for manufacturing a secondary battery, a nonaqueous electrolytic solution obtained by dissolving a lithium salt that is a solute in an organic solvent such as cyclic esters, chain esters, cyclic ethers, and chain ethers is used. Since the above-mentioned binder is used, it is necessary to select a binder that does not react with or dissolve in the electrolytic solution.However, even if the binder itself reacts with or dissolves in the electrolytic solution, the active material layer may be used as a metal substrate. Any material may be used so long as it does not react with or dissolve in the electrolytic solution by any means such as electron beam or various crosslinking agents after the transfer. The active material coating solution is prepared by mixing a particulate binder, a powdery active material and a dispersion medium composed of an organic solvent such as water or toluene, and a composition in which a conductive agent is mixed if necessary, with a conventionally known homogenizer or ball mill. , A sand mill, a roll mill, or the like.

【0017】この様にして調製された活物質塗布液を、
高分子フイルム上に、グラビアコート、グラビアリバー
スコート、ロールコート、マイヤーコート、ブレードコ
ート、ナイフコート、エアーナイフコート、コンマコー
ト、スロットダイコート、スライドダイコート、ディッ
プコート等の各塗工方法を用いて、乾燥厚みで10〜2
00μm、好ましくは50〜150μmの範囲で塗布す
る。高分子フイルム上に塗工した塗布幅がそのまま、転
写される金属基体上の活物質層の長さになる場合が多い
ので、塗布液の塗工幅を制御することが好ましい。その
為には、塗工幅の制御のし易いスロットダイコートやス
ライダーコート等の塗工方法を採用することが好まし
い。
The active material coating solution thus prepared is
On the polymer film, using each coating method such as gravure coat, gravure reverse coat, roll coat, Meyer coat, blade coat, knife coat, air knife coat, comma coat, slot die coat, slide die coat, dip coat, etc. 10 to 2 in dry thickness
The coating is performed in the range of 00 μm, preferably 50 to 150 μm. Since the coating width applied on the polymer film often becomes the length of the active material layer on the metal substrate to be transferred, it is preferable to control the coating width of the coating liquid. For that purpose, it is preferable to adopt a coating method such as slot die coating or slider coating, which makes it easy to control the coating width.

【0018】上記の如き転写フイルムを用いて活物質層
を金属基板に転写する条件としては、例えば、プレス圧
は500kg/cm2 〜7500kg/cm2 が好まし
く、この値未満のプレス圧では転写が不十分であり、
又、上記値を越えるプレス圧であると、転写フイルムの
基材フイルムや金属基板が破壊される畏れがあるので好
ましくない。更に、転写された活物質層の均一性を向上
させる為に、金属ロール、加熱ロール、シートプレス機
等を用いて、更にプレス処理を施すことが好ましい。こ
の際におけるプレス条件が500kg/cm2 未満では
活物質層の均一性が得られにくく、又、7500kg/
cm2 を越えると金属基板を含めた極板自体が破損して
しまう。更に好ましいプレス圧は3000〜5000k
g/cm2 の範囲である。
[0018] The active material layer using such transfer film described above as a condition for transfer to the metal substrate, for example, the pressing pressure is preferably 500kg / cm 2 ~7500kg / cm 2 , is transferred in a press pressure of less than this value Is insufficient,
Further, if the pressing pressure exceeds the above value, there is a fear that the base film of the transfer film or the metal substrate may be broken, which is not preferable. Further, in order to improve the uniformity of the transferred active material layer, it is preferable to further perform a press treatment using a metal roll, a heating roll, a sheet press machine or the like. If the pressing condition at this time is less than 500 kg / cm 2, it is difficult to obtain the uniformity of the active material layer,
If it exceeds cm 2 , the electrode plate itself including the metal substrate will be damaged. More preferable pressing pressure is 3000-5000k
It is in the range of g / cm 2 .

【0019】以上の如き転写フイルムを用いて、前記の
如き転写方法によって活物質層を金属基板に転写した
後、ドライヤー、電気炉等による加熱処理、或いは紫外
線ランプ、電子線照射装置、γ線照射装置等により電離
放射線を照射し、活物質層の粒子状バインダー、活物
質、導電剤粒子及び金属基板の相互の接着力を発現させ
て活物質層を金属基板に密着させることが好ましい。更
にこの金属基板を用いて電池の組立て工程に移る前に、
活物質層中の水分を除去する為に、更に加熱処理や減圧
処理等を行うことが好ましい。
After the active material layer is transferred onto the metal substrate by the transfer method as described above using the transfer film as described above, heat treatment with a dryer, an electric furnace or the like, or an ultraviolet lamp, an electron beam irradiation device, γ-ray irradiation It is preferable that the active material layer is brought into close contact with the metal substrate by irradiating ionizing radiation with an apparatus or the like so as to develop mutual adhesive force between the particulate binder of the active material layer, the active material, the conductive agent particles and the metal substrate. Furthermore, before moving to the battery assembly process using this metal substrate,
In order to remove water in the active material layer, it is preferable to further perform heat treatment, reduced pressure treatment, or the like.

【0020】[0020]

【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明する。 実施例1 1〜100μmの粒径を持つLiCoO2 粉末を90重
量部、導電剤としてグラファイト粉末5.0重量部、結
着剤としてポリ弗化ビニリデン樹脂(ネオフロンVD
F、ダイキン工業(株)製)5.0重量部及びN−メチ
ルピロリドン20重量部を分散機にて30分間撹拌混合
することにより、スラリー状の正極活物質をを含む正極
塗布液を得た。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. Example 1 90 parts by weight of LiCoO 2 powder having a particle size of 1 to 100 μm, 5.0 parts by weight of graphite powder as a conductive agent, and polyvinylidene fluoride resin (Neotron VD) as a binder.
5.0 parts by weight of F, manufactured by Daikin Industries, Ltd. and 20 parts by weight of N-methylpyrrolidone were mixed by stirring for 30 minutes with a disperser to obtain a positive electrode coating liquid containing a positive electrode active material in a slurry form. .

【0021】次いで、上記塗布液を、厚さ36μmの長
尺PETフイルム上にダイコーターを用いて連続的に片
面塗工し(塗工幅300mm)、乾燥工程を経た後13
5℃のオーブンで2分間乾燥し、更に140℃のオーブ
ンで2分間乾燥して溶媒を除去することにより、PET
フイルムに厚さ100μmの活物質層を形成して本発明
で使用する転写フイルムを得た。尚、この転写フイルム
はその保存性を良好にする為に、活物質層の表面に各種
プラスチックフイルム、或は金属基板であるアルミニウ
ム箔や銅箔等を剥離性保護層として剥離可能に積層して
おくことも出来る。
Next, the above coating solution was continuously coated on one side of a long PET film having a thickness of 36 μm using a die coater (coating width 300 mm), and after a drying step, 13
Dry in an oven at 5 ° C for 2 minutes and then in an oven at 140 ° C for 2 minutes to remove the solvent.
A 100 μm-thick active material layer was formed on the film to obtain a transfer film used in the present invention. In order to improve the preservability of this transfer film, various plastic films or aluminum foil or copper foil, which is a metal substrate, are laminated on the surface of the active material layer as a peelable protective layer so that they can be peeled off. You can also leave it.

【0022】上記長尺転写フイルムを、図2に示す如き
方法で、長尺アルミニウム箔(厚さ20μm)に直交さ
せる様にして活物質層を転写し、更に裏面にも同様に転
写を行って正極板を作製した。その転写条件はプレス圧
500kg/cm2 で行った。得られた正極板を80℃
の真空オーブン中で48時間熟成して水分を除去した。
次にグラファイト粉末(ロンザジャパン社製、SFG−
6)を85重量部、ポリ弗化ビニリデン樹脂(ネオフロ
ンVDF、ダイキン工業(株)製)15重量部及び分散
溶媒としてN−メチルピロリドン225重量部からなる
混合物を分散機を用いて8000回転で分散させて負極
塗布液を得た。この得られた負極塗布液をダイコーター
を用いて36μmのPETフイルム上に連続的に片面塗
布し、正極板の場合と同様に乾燥させた(乾燥後の膜厚
は100μmであった。)。その後、正極板の場合と同
様の条件で厚み12μmの圧延銅箔に転写し、更に裏面
にも同様に転写を行って負極板を作製した。
The active material layer was transferred by making the above-mentioned long transfer film orthogonal to a long aluminum foil (thickness: 20 μm) by the method shown in FIG. A positive electrode plate was produced. The transfer conditions were a press pressure of 500 kg / cm 2 . The obtained positive electrode plate is at 80 ° C.
In a vacuum oven for 48 hours to remove water.
Next, graphite powder (LFG manufactured by Lonza Japan, SFG-
6) 85 parts by weight, a polyvinylidene fluoride resin (Neotron VDF, manufactured by Daikin Industries, Ltd.) 15 parts by weight, and a mixture of 225 parts by weight of N-methylpyrrolidone as a dispersion solvent are dispersed at 8000 rpm using a disperser. Then, a negative electrode coating solution was obtained. The obtained negative electrode coating liquid was continuously coated on one side of a 36 μm PET film using a die coater and dried in the same manner as in the positive electrode plate (the film thickness after drying was 100 μm). Then, it was transferred to a rolled copper foil having a thickness of 12 μm under the same conditions as in the case of the positive electrode plate, and further transferred to the back surface in the same manner to manufacture a negative electrode plate.

【0023】以上の方法により得られた正極板及び負極
板は、活物質層が断続的に存在する金属基板であった。
又、その活物質層の形状は4角形である。以上の如くし
て得られた正極板及び負極板を5000kg/cm2
条件でプレスを行い膜を均一にした。その後、断裁して
スリットして幅5cm、長さ32cmの短冊上の金属基
板とした。その金属基板には活物質層が塗布されていな
い2cmの端子が形成されている。
The positive electrode plate and the negative electrode plate obtained by the above method were metal substrates having active material layers intermittently present.
The shape of the active material layer is a quadrangle. The positive electrode plate and the negative electrode plate obtained as described above were pressed under the condition of 5000 kg / cm 2 to make the film uniform. After that, it was cut and slit to obtain a rectangular metal substrate having a width of 5 cm and a length of 32 cm. On the metal substrate, a 2 cm terminal having no active material layer applied is formed.

【0024】ポリオレフィン系(ポリプロピレン、ポリ
エチレン又はそれらの共重合体)の多孔性フイルムから
なるセパレーターを介して、上記正極板及び負極板を渦
巻き状に捲回して電極体とし、次に、この電極体を負極
端子を兼ねる有底円筒状のステンレス容器内に挿入し、
AAサイズで定格容量500mAhの電池を組み立て
た。この電池に、EC(エチレンカーボネート):PC
(プロピレンカーボネート):DME(ジメトキシエタ
ン)をそれぞれの正負極板間に、正負極板より幅広の三
次元空孔構造(海綿状)を有体積比1:1:2で全量で
1リットルで全量になるに調製した混合溶媒に、支持塩
として1モルのLiPF6 を溶解したものを電解液とし
注液して非水電解液二次電池を作製した。
The positive electrode plate and the negative electrode plate are spirally wound to form an electrode body through a separator made of a polyolefin-based (polypropylene, polyethylene or a copolymer thereof) porous film, and then the electrode body is prepared. Insert into a cylindrical stainless steel container with a bottom that also serves as the negative electrode terminal,
A battery having an AA size and a rated capacity of 500 mAh was assembled. In this battery, EC (ethylene carbonate): PC
(Propylene carbonate): DME (dimethoxyethane) between the positive and negative electrode plates, and a three-dimensional pore structure (sponge-like) wider than the positive and negative electrode plates with a volume ratio of 1: 1: 2 and a total amount of 1 liter. A non-aqueous electrolyte secondary battery was prepared by injecting 1 mol of LiPF 6 as a supporting salt dissolved in the mixed solvent prepared as above as an electrolyte.

【0025】上記非水電解液二次電池の電池特性の測定
には、25℃の温度で各20セルずつ、充放電測定装置
を用い最大充電々流0.2CmAの電流値で、まず充電
方向から電池電圧が4.1Vになるまで充電し、10分
間の休止の後に同一電流で2.75Vになるまで放電
し、10分間の休止の後、以下同一の条件で100サイ
クル充放電特性を測定した。その結果、1サイクル目の
容量を100とした時、100サイクル後の容量は98
となり、容量維持率は98%で良好であった。
For the measurement of the battery characteristics of the non-aqueous electrolyte secondary battery, 20 cells each at a temperature of 25 ° C. and a charging / discharging measuring device were used. , The battery voltage is 4.1V, the battery is charged for 10 minutes, then discharged at the same current until 2.75V, and after 10 minutes, 100 cycles charge / discharge characteristics are measured under the same conditions. did. As a result, when the capacity of the first cycle is 100, the capacity after 100 cycles is 98.
The capacity retention rate was 98%, which was good.

【0026】実施例2 実施例1同様の正極塗布液をPETフイルムに塗布及び
乾燥して転写フイルムを作製した。実施例1と同様の条
件で電解銅(18μm厚)の表裏面に転写して正極板と
した。次に、グラファイト粉末(ロンザジャパン社製、
SFG−15)を80重量部、ポリ(スチレン−ブタジ
エンゴム)(日本合成ゴム(株)製、TR−2000)
を20重量部及び分散溶媒としてトルエン212重量部
の混合物を実施例1と同様の方法で分散して負極用の塗
布液を調製した。その後実施例1と同様の方法でPET
フイルム上に塗工厚み80μmになる様に塗布して転写
フイルムとし、これを用いて実施例1と同様な方法で電
解銅箔の表裏面に転写して負極板とした。以下実施例1
と同様の方法及び材料を用いて電池の組立てを行い、実
施例1と同様に充放電特性を調べた。その結果、1サイ
クル目の容量を100とした時、100サイクル後の容
量は97となり、容量維持率は97%で良好であった。
Example 2 The same positive electrode coating solution as in Example 1 was applied to a PET film and dried to prepare a transfer film. Under the same conditions as in Example 1, the electrolytic copper (18 μm thick) was transferred onto the front and back surfaces to form a positive electrode plate. Next, graphite powder (manufactured by Lonza Japan,
80 parts by weight of SFG-15), poly (styrene-butadiene rubber) (TR-2000 manufactured by Japan Synthetic Rubber Co., Ltd.)
20 parts by weight and 212 parts by weight of toluene as a dispersion solvent were dispersed in the same manner as in Example 1 to prepare a coating liquid for a negative electrode. After that, PET is performed in the same manner as in Example 1.
A transfer film was formed by coating the film so as to have a coating thickness of 80 μm, and the transfer film was transferred to the front and back surfaces of the electrolytic copper foil in the same manner as in Example 1 to obtain a negative electrode plate. Example 1 below
A battery was assembled using the same method and materials as in Example 1, and the charge / discharge characteristics were examined in the same manner as in Example 1. As a result, when the capacity of the first cycle was 100, the capacity after 100 cycles was 97, and the capacity retention ratio was 97%, which was good.

【0027】比較例1 活物質としては正極及び負極とも実施例1と同じ材料を
用い、ダイコーターを用いアルミニウム箔に直接塗工し
て活物質層を形成した。その場合、コーターのダイから
の吐出量を制御することにより塗工部及び非塗工部を形
成した。その結果、塗工速度の上昇により活物質層の形
状が4角形からゆがむ傾向を示した。それを乾燥及びス
リットし、矩冊状の金属基板を作製した。しかしなが
ら、端子となる部分の長さが個々の短冊により違いがあ
り、又、活物質量が個々の矩冊で異なる為、安定して同
じ性能を有する電池の作製が困難であった。
Comparative Example 1 The same material as in Example 1 was used as the active material for both the positive electrode and the negative electrode, and an active material layer was formed by direct coating on an aluminum foil using a die coater. In that case, the coated portion and the non-coated portion were formed by controlling the discharge amount from the die of the coater. As a result, the shape of the active material layer tended to be distorted from a quadrangle due to an increase in coating speed. It was dried and slit to produce a rectangular metal substrate. However, since the length of the terminal portion varies depending on the individual strips, and the amount of active material varies among the individual rectangular strips, it is difficult to stably manufacture batteries having the same performance.

【0028】[0028]

【発明の効果】以上の如き本発明によれば、活物質層用
塗工液でも塗工可能な高分子フイルム面に、該塗工液に
よって活物質層を形成して転写フイルムを作製し、この
活物質層を金属基体に転写することによって、金属基体
面に所望の形状の活物質層を容易に形成することが出来
る。又、本発明によれば、転写時及び転写後においても
溶媒による問題はなく、そのうえ転写時の転写圧力によ
って、転写された活物質層は緻密化され且つ金属基体に
良好に密着する為、前記の如き問題を生じることなく、
高品質の非水電解液二次電池用の電極板が容易に提供さ
れる。
According to the present invention as described above, a transfer film is prepared by forming an active material layer on the surface of a polymer film which can be coated with a coating liquid for active material layer, by using the coating liquid, By transferring this active material layer to the metal substrate, the active material layer having a desired shape can be easily formed on the surface of the metal substrate. Further, according to the present invention, there is no problem due to the solvent during and after the transfer, and the transferred active material layer is densified and adheres well to the metal substrate due to the transfer pressure during the transfer. Without causing problems such as
An electrode plate for a high quality non-aqueous electrolyte secondary battery is easily provided.

【0029】[0029]

【図面の簡単な説明】[Brief description of drawings]

【図1】非水電解液二次電池の製造工程を説明する図。FIG. 1 is a diagram illustrating a manufacturing process of a non-aqueous electrolyte secondary battery.

【図2】本発明の製造方法を説明する図。FIG. 2 is a diagram illustrating a manufacturing method of the present invention.

【図3】本発明の製造方法を説明する図。FIG. 3 is a diagram illustrating a manufacturing method of the present invention.

【図4】本発明の製造方法を説明する図。FIG. 4 is a diagram illustrating a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

A:転写フイルム 21,31,41:金属基板 22,32,42:基材フイルム 23,33,43:活物質層 24,36,46:剥離層 25:ホットスタンパー 37:接着層 34,35,47,48:転写ロール A: Transfer film 21, 31, 41: Metal substrate 22, 32, 42: Base film 23, 33, 43: Active material layer 24, 36, 46: Release layer 25: Hot stamper 37: Adhesive layer 34, 35, 47, 48: Transfer roll

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 金属基板面に活物質層を形成して非水電
解液二次電池用電極板を製造する方法において、上記活
物質層を、転写性活物質層が形成されている転写フイル
ムから金属基板面に転写させて形成することを特徴とす
る非水電解液二次電池用電極板の製造方法。
1. A method for producing an electrode plate for a non-aqueous electrolyte secondary battery by forming an active material layer on the surface of a metal substrate, wherein the active material layer is a transfer film having a transferable active material layer formed thereon. A method for manufacturing an electrode plate for a non-aqueous electrolyte secondary battery, which comprises forming the electrode plate for transfer to a surface of a metal substrate.
【請求項2】 活物質層を形成すべき長尺金属基板と、
転写性活物質層が形成されている長尺転写フイルムと
を、上記活物質層を金属基板面に対向する様に直交さ
せ、上記金属基板と転写フイルムとを断続的に移行させ
て、両者の重なり部分において活物質層の転写を断続的
に行う請求項1に記載の非水電解液二次電池用電極板の
製造方法。
2. A long metal substrate on which an active material layer is to be formed,
The long transfer film on which the transferable active material layer is formed is orthogonally crossed so that the active material layer faces the surface of the metal substrate, and the metal substrate and the transfer film are intermittently transferred to both of them. The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the transfer of the active material layer is intermittently performed in the overlapping portion.
【請求項3】 転写フイルムが、フイルム上に連続した
転写性活物質層を有し、該活物質層の転写を所望の形状
のスタンパーにより行う請求項2に記載の非水電解液二
次電池用電極板の製造方法。
3. The non-aqueous electrolyte secondary battery according to claim 2, wherein the transfer film has a continuous transferable active material layer on the film, and the transfer of the active material layer is performed by a stamper having a desired shape. Of manufacturing electrode plate for automobile.
【請求項4】 活物質層を形成すべき長尺金属基板と、
転写性活物質層が形成されている長尺転写フイルムと
を、活物質層を金属基板面に対向させて重ねた状態で同
一方向に移行させ、連続的又は断続的に活物質層の転写
を行う請求項1に記載の非水電解液二次電池用電極板の
製造方法。
4. A long metal substrate on which an active material layer is to be formed,
The long transfer film on which the transferable active material layer is formed is transferred in the same direction in a state where the active material layer is opposed to the metal substrate surface and overlapped to transfer the active material layer continuously or intermittently. The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, which is performed.
【請求項5】 転写フイルムが、フイルム上に連続した
活物質層を有し、該活物質層の転写を一対のロールを用
いて行う請求項4に記載の非水電解液二次電池用電極板
の製造方法。
5. The non-aqueous electrolyte secondary battery electrode according to claim 4, wherein the transfer film has a continuous active material layer on the film, and the transfer of the active material layer is performed using a pair of rolls. Method of manufacturing a plate.
【請求項6】 転写フイルムが、フイルム上に所定の幅
の非転写性の活物質層と所望の幅の転写性の活物質層が
連続して形成され、活物質層の転写を連続的に行う請求
項4に記載の非水電解液二次電池用電極板の製造方法。
6. A transfer film, wherein a non-transferable active material layer having a predetermined width and a transferable active material layer having a desired width are continuously formed on the film, and the transfer of the active material layer is continuously performed. The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 4, which is performed.
【請求項7】 金属基板がアルミニウム箔又は銅箔であ
る請求項1に記載の非水電解液二次電池用電極板の製造
方法。
7. The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the metal substrate is an aluminum foil or a copper foil.
【請求項8】 転写フイルムが、高分子フイルム上に、
活物質とバインダーとからなる転写性活物質層が形成さ
れたものである請求項1に記載の非水電解液二次電池用
電極板の製造方法。
8. A transfer film is provided on a polymer film,
The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein a transferable active material layer including an active material and a binder is formed.
【請求項9】 高分子フイルム上に、活物質とバインダ
ーとからなる転写性活物質層が形成され、該活物質層の
表面に剥離性保護層が形成されている非水電解液二次電
池用電極板の製造に使用する為の転写フイルム。
9. A non-aqueous electrolyte secondary battery in which a transferable active material layer comprising an active material and a binder is formed on a polymer film, and a peelable protective layer is formed on the surface of the active material layer. Transfer film for use in the production of electrode plates for use.
JP7077179A 1995-03-08 1995-03-08 Manufacture of electrode plate for nonaqueous electrolytic secondary battery Pending JPH08250110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7077179A JPH08250110A (en) 1995-03-08 1995-03-08 Manufacture of electrode plate for nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7077179A JPH08250110A (en) 1995-03-08 1995-03-08 Manufacture of electrode plate for nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JPH08250110A true JPH08250110A (en) 1996-09-27

Family

ID=13626586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7077179A Pending JPH08250110A (en) 1995-03-08 1995-03-08 Manufacture of electrode plate for nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JPH08250110A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129220A (en) * 1995-11-07 1997-05-16 Fuji Photo Film Co Ltd Lithium foil attaching method and device for negative electrode current collector
JP2002319391A (en) * 2001-04-20 2002-10-31 Sumitomo Electric Ind Ltd Negative electrode for lithium battery, and manufacturing method therefor
JP2007048565A (en) * 2005-08-09 2007-02-22 Sony Corp Manufacturing method and manufacturing device of electrode for battery
JP2007227666A (en) * 2006-02-23 2007-09-06 Nippon Zeon Co Ltd Method of manufacturing electrochemical element
JP2010086788A (en) * 2008-09-30 2010-04-15 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical element
KR20160088628A (en) * 2015-01-16 2016-07-26 한국과학기술원 Polymer transfer method and apparatus on the cathode active material
KR20180100815A (en) 2017-03-02 2018-09-12 주식회사 엘지화학 Electrode for lithium secondary battery and Lithium secondary battery comprising the same
WO2023137580A1 (en) * 2022-01-18 2023-07-27 宁德时代新能源科技股份有限公司 Electrode plate and preparation method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129220A (en) * 1995-11-07 1997-05-16 Fuji Photo Film Co Ltd Lithium foil attaching method and device for negative electrode current collector
JP2002319391A (en) * 2001-04-20 2002-10-31 Sumitomo Electric Ind Ltd Negative electrode for lithium battery, and manufacturing method therefor
JP2007048565A (en) * 2005-08-09 2007-02-22 Sony Corp Manufacturing method and manufacturing device of electrode for battery
JP2007227666A (en) * 2006-02-23 2007-09-06 Nippon Zeon Co Ltd Method of manufacturing electrochemical element
JP4605467B2 (en) * 2006-02-23 2011-01-05 日本ゼオン株式会社 Method for producing electrochemical element
JP2010086788A (en) * 2008-09-30 2010-04-15 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical element
KR20160088628A (en) * 2015-01-16 2016-07-26 한국과학기술원 Polymer transfer method and apparatus on the cathode active material
KR20180100815A (en) 2017-03-02 2018-09-12 주식회사 엘지화학 Electrode for lithium secondary battery and Lithium secondary battery comprising the same
WO2023137580A1 (en) * 2022-01-18 2023-07-27 宁德时代新能源科技股份有限公司 Electrode plate and preparation method therefor

Similar Documents

Publication Publication Date Title
US7575606B2 (en) Method for producing lithium ion secondary battery
US6234225B1 (en) Cell electrode with thick tip portion
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
CN103380519B (en) Lithium rechargeable battery and manufacture method thereof
US20010041289A1 (en) Lithium battery
CN105556711B (en) The method for manufacturing non-aqueous electrolyte secondary battery
JP2001351616A (en) Manufacturing method of electrode
JP4643780B2 (en) Non-aqueous electrolyte secondary battery electrode plate and method for producing the same
KR20200030518A (en) Method for manufacturing battery
JP2004214140A (en) Electrode plate for battery and manufacturing method thereof, and nonaqueous electrolyte battery
CN110832680B (en) Method for producing member for electrochemical element, and laminate for electrochemical element
JPH08250110A (en) Manufacture of electrode plate for nonaqueous electrolytic secondary battery
CN102422461A (en) Cell separator manufacturing method
EP4057372A9 (en) Method for producing secondary battery electrode and method for producing secondary battery
JPH1050348A (en) Electrode plate for nonaqueous electrolyte secondary battery and manufacture thereof
JP3697324B2 (en) Sheet electrode manufacturing method and non-aqueous electrolyte battery
JP3626558B2 (en) Pattern forming method and method for producing electrode plate for non-aqueous electrolyte secondary battery
US20200266418A1 (en) Gap section multilayer electrode profile
JPH1064526A (en) Electrode plate for nonaqueous electrolyte secondary battery and manufacture thereof
KR101057351B1 (en) Gel polymer electrolyte application device
US11108082B2 (en) Composite solid electrolyte layer, method for producing the same, and method for producing all-solid-state battery
JP2006172807A (en) Method of manufacturing electrode plate
JPH08124561A (en) Manufacture of plate for nonaqueous electrolyte secondary battery and active material applying liquid used in the manufacture
JP2000315526A (en) Manufacture of solid electrolyte secondary battery
JP2000243384A (en) Manufacture of positive electrode material for polymer lithium secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406