JP3614993B2 - テスト回路 - Google Patents

テスト回路 Download PDF

Info

Publication number
JP3614993B2
JP3614993B2 JP23284596A JP23284596A JP3614993B2 JP 3614993 B2 JP3614993 B2 JP 3614993B2 JP 23284596 A JP23284596 A JP 23284596A JP 23284596 A JP23284596 A JP 23284596A JP 3614993 B2 JP3614993 B2 JP 3614993B2
Authority
JP
Japan
Prior art keywords
output
circuit
scan
test
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23284596A
Other languages
English (en)
Other versions
JPH1078475A (ja
Inventor
徳哉 大澤
秀史 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP23284596A priority Critical patent/JP3614993B2/ja
Priority to US08/788,838 priority patent/US5905737A/en
Publication of JPH1078475A publication Critical patent/JPH1078475A/ja
Application granted granted Critical
Publication of JP3614993B2 publication Critical patent/JP3614993B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/30Accessing single arrays
    • G11C29/32Serial access; Scan testing

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はスキャンパス、特に非同期RAMコア及びロジック回路の周辺に設けられるスキャンパスに関する。
【0002】
【従来の技術】
図16は、3つのロジック部81〜83を含むロジック領域80、およびロジック領域80によって囲まれた非同期式のRAMコア91に対して、スキャンパス1〜3を設けるスキャンテスト方式を用いたテスト手法を行うための構成を示すブロック図である。スキャンテスト方式では、チップの内部に存在するフリップフロップ(FF)をスキャンフリップフロップ(SFF)に置換し、スキャンパスを構成する。
【0003】
例えば図16では、シリアルのスキャンイン信号SI1を用いてスキャンパス1〜3へと順次テストデータを入力し、テスト実行後にはシリアルのスキャンアウト信号SOとしてテスト結果を出力する。スキャンパス1,2はRAMコア91と共にRAMブロック92を構成している。
【0004】
図17は、RAMブロック92の詳細を示す回路図である。スキャンパス1はスキャンフリップフロップ10〜12によって、スキャンパス2はスキャンフリップフロップ20〜22及びセレクタ203,213,223によって、それぞれ構成されている。スキャンフリップフロップ10〜12,20〜22はいずれも制御信号の値が“0”/“1”を採るに従って、それぞれ出力端に接続される“0”入力端及び“1”入力端とを有するセレクタと、このセレクタの出力に接続されたフリップフロップとから構成されている。
【0005】
図18はスキャンフリップフロップ10の構成を例示する回路図である。スキャンフリップフロップ10はセレクタ101及びフリップフロップ102によって構成されているが、他のスキャンフリップフロップも同様に構成できる。図17においては全てのスキャンフリップフロップ10〜12,20〜22の制御信号としてシフトモード信号SMが与えられる。
【0006】
通常の動作時においては、シフトモード信号SMは“0”に設定され、スキャンフリップフロップ10〜12及びスキャンフリップフロップ20〜22は全て通常のフリップフロップとして、それぞれRAMコア91の入力側及び出力側において機能することになる。
【0007】
但し、出力側のスキャンパス2において、スキャンフリップフロップ20〜22が実質的に機能する場合としない場合がある。これはスキャンフリップフロップ20〜22とRAMコア91の出力とを選択的に出力するセレクタ203,213,223の機能に依存する。即ち、セレクタ203,213,223の制御信号として与えられるテストモード信号TESTが値“1”/“0”を採るのに対応して、RAMブロック92はその読み出し動作が同期式/非同期式となる。ここで「同期」とは、フリップフロップの動作等において当然必要となる、図示されないクロックに対して「同期」することを意味する。
【0008】
ロジック領域80に対するテスト動作(ロジックテスト)においてはシフトモード信号SM及びテストモード信号TESTを“1”にすることにより、スキャンイン信号SIはスキャンフリップフロップ10〜12,20〜22を順次シフトし(スキャンモード)、テストデータがスキャンフリップフロップ20〜22に格納される。
【0009】
このテストデータはロジック部82へと入力される。スキャンパス1はロジック部81の出力(テスト結果)を受けるので、スキャンフリップフロップ10〜12にはこのテスト結果が格納される。
【0010】
【発明が解決しようとする課題】
このように、ロジックテストにおいてはスキャンフリップフロップ10〜12,20〜22のいずれもが用いられる。しかし、RAMブロック92の機能として、書き込み動作が同期式であっても、読み出し動作が非同期式であることが要求される場合、通常動作時ではスキャンパス20〜22が実質的に機能しない。またRAMコア91のみのテストを行いたいときにはスキャンパス3を使用する必要がない。このためスキャンフリップフロップ20〜22若しくはスキャンパス3がエリアオーバーヘッドとなり、面積の利用効率が低いという問題点があった。
【0011】
本発明は係る問題点を解決するためになされたもので、面積の利用効率の高いスキャンパスの構成を提供することを目的としている。
【0012】
【課題を解決するための手段】
この発明のうち請求項1にかかるものは、第1乃至第3の回路に対して第1のテストを行うテスト回路である。そして前記第1の回路の出力及びスキャンイン信号を入力し、パラレルの態様の第1の出力及びスキャン信号たる第2の出力を選択的に出力する第1のスキャンパスと、前記第1のスキャンパスの前記第1の出力を入力する入力端群及び出力端群を有する第4の回路と、前記第1のスキャンパスの前記第1の出力と、前記第4の回路の出力とを選択的に前記第2の回路に出力する選択手段と、前記第1のスキャンパスの第2の出力と、前記第2の回路の出力と、前記第4の回路の出力とを入力し、これら3者の何れか一つを選択的に前記第3の回路に出力する第2のスキャンパスとを備える。しかも、前記第4の回路に対して第2のテストをも行う。
【0013】
この発明のうち請求項2にかかるものは、請求項1記載のテスト回路であって、前記第2のスキャンパスはデータ圧縮機能を有する。
【0014】
この発明のうち請求項3にかかるものは、請求項2記載のテスト回路であって、前記第2のスキャンパスは、前記第4の回路の出力を選択的に前記第3の回路に与える場合にMISR回路を構成する。
【0015】
この発明のうち請求項4にかかるものは、請求項3記載のテスト回路であって、前記第2のスキャンパスは前記第2の回路の出力に対してビット毎に設けられ、前記データ圧縮機能を発揮するデータ圧縮回路からなり、前記データ圧縮回路の各々は前記第2の回路の出力を受ける通常入力端と、前記スキャン信号が伝搬するスキャン入力端と、出力端とを含むスキャンフリップフロップと、前記スキャンフリップフロップの前記スキャン入力端に接続された出力端と、前記出力端に選択的に接続される第1及び第2の入力端とを含むセレクタと、前記セレクタの前記第1の入力端に出力する論理回路とを有する。そして前記論理回路の各々は、自身に対応する前記スキャンフリップフロップの出力を保持するループを、前記セレクタと共に形成し、前記第2のテストの結果が不良であれば前記スキャンフリップフロップに所定の論理を与え、前記スキャン信号は前記セレクタの前記第2の入力端を伝搬する。
【0016】
この発明のうち請求項5にかかるものは、第1乃至第5の回路に対して第1のテストを行い、第5の回路に対しては更に第2のテストをも行うテスト回路である。そして前記第1の回路の出力及びスキャンイン信号を入力し、パラレルの態様の第1の出力及びスキャン信号たる第2の出力を選択的に出力し、前記第1の出力は前記第2の回路に入力する第1のスキャンパスと、前記第1のスキャンパスの前記第1の出力と、前記第2の回路の出力とを選択的に前記第5の回路に出力する選択手段と、前記第1のスキャンパスの第2の出力と、前記第3の回路の出力と、前記第5の回路の出力とを入力し、これら3者の何れか一つを選択的に前記第4の回路に出力する第2のスキャンパスとを備える。
【0017】
【発明の実施の形態】
実施の形態1.
図1は本発明の実施の形態1の基本的な考え方を示すブロック図である。スキャンパス1はロジック領域80のロジック部81の出力と、スキャンイン信号SI1とを入力し、制御信号たるシフトモード信号SMの制御を受ける。
【0018】
スキャンパス1の出力のうちスキャン信号SI3ではない方は、RAMコア91の入力端DI0〜DI2へと入力する。
【0019】
従来の技術において示されたスキャンパス2の代わりに、セレクタ40〜42が設けられている。これらの“1”入力端にはそれぞれRAMコア91の入力端DI0〜DI2が、“0”入力端にはそれぞれRAMコア91の出力端DO0〜DO2が、接続されている。セレクタ40〜42の出力はロジック部82に入力する。セレクタ群40〜42はいずれもロジックテスト信号LOGTESTの制御を受け、その値が“0”か“1”かによって、ロジック部82に与えられるのがスキャンパス1の出力のうちのスキャン信号SI3ではない方なのか、RAMコア91の出力なのかが決定される。
【0020】
スキャンパス3aは従来の技術のスキャンパス3に対応した位置に配せられており、ロジック部82とロジック部83との間に介在し、スキャンパス1と直列に接続されている。スキャンパス3aは、それぞれが3つの入力A,B,Cを選択的に1つ出力するセレクタ300〜302と、フリップフロップ310〜312からなる。セレクタ300〜302はいずれもRAMテスト信号RAMTESTと、シフトモード信号SMの両方の制御を受ける。入力Aにはシフトされるべきスキャン信号が与えられる。また入力Bにはロジック部82の出力が与えられる。そして、入力CにはRAMコア91の出力が与えられる。
【0021】
図2は本発明の実施の形態1の具体的構成を示すブロック図である。図1で示されたセレクタ300〜302はそれぞれがRAMテスト信号RAMTESTとシフトモード信号SMとを制御信号とする2入力1出力のセレクタの対で構成することができる。そして図18に例示されるように、2入力1出力のセレクタとフリップフロップの対はスキャンフリップフロップを構成するので、結局セレクタ300とフリップフロップ310の組み合わせは、RAMテスト信号RAMTESTで制御されるセレクタ320と、シフトモード信号SMで制御されるスキャンフリップフロップ330との組み合わせで実現することができる。同様にしてセレクタ301,302とフリップフロップ311,312との組み合わせは、セレクタ32,322とスキャンフリップフロップ331,332との組み合わせで構成することができる。
【0022】
スキャンフリップフロップ330〜332の“1”入力端はスキャン信号が伝搬するスキャン入力端であり、“0”入力端はスキャンフリップフロップ330〜332が通常のフリップフロップとして機能する場合の入力を受ける通常入力端である。
【0023】
図2に示された構成は以下の3つのモードで動作する。
▲1▼通常モード;
このモードにおいては、ロジックテスト信号LOGTEST、RAMテスト信号RAMTEST及びシフトモード信号SMを“0”に設定する。シフトモード信号SMを“0”に設定するので、スキャンパス1を構成するスキャンフリップフロップ10〜12が有するフリップフロップ(図17及び図18参照。例えばフリップフロップ102)はRAMコア91へと同期式に入力を与える。また、ロジックテスト信号LOGTESTが“0”であるのでセレクタ40〜42はRAMコア91の出力をロジック部82に非同期式に与える。即ち、RAMコア91に対する書き込み動作が同期式であり、読み出し動作が非同期式である。
【0024】
そしてRAMテスト信号RAMTESTが“0”であるのでセレクタ320〜322はロジック部82の出力をスキャンフリップフロップ330〜332に伝達し、シフトモード信号SMが“0”であるのでスキャンフリップフロップ330〜332はロジック部82とロジック部83との間に介在する通常のフリップフロップとして機能する。従って、従来の技術において行われる通常動作と同じ動作が、しかもそれぞれ同期式/非同期式の、書き込み動作及び読み出し動作が本実施の形態においても実現される。
【0025】
▲2▼ロジックテストモード;
このモードにおいては、RAMテスト信号RAMTESTが“0”に、ロジックテスト信号LOGTESTが“1”に設定される。RAMテスト信号RAMTESTが“0”であるのでセレクタ320〜322はロジック部82の出力をスキャンフリップフロップ330〜332に伝達する。また、ロジックテスト信号LOGTESTが“1”に設定されるので、スキャンパス1の出力の内、スキャン信号SI3でない方は、RAMコア91を回避してロジック部82へと与えられる。
【0026】
図3はこのモードにおける、図2の回路の等価回路を示すブロック図である。ロジック部81,82の間、及びロジック部82,83の間には、いずれもシフトモード信号SMで制御されるスキャンパス1,3aがそれぞれ設けられており、両者が直列に接続されて1本のスキャンパスを構築している。従ってRAMコア91を初期化する必要がなく、テストパターン数を削減したロジックテストを行うことができる。
【0027】
▲3▼RAMテストモード;
このモードにおいては、RAMテスト信号RAMTESTが“1”に、ロジックテスト信号LOGTESTが“0”に設定される。従ってセレクタ40〜42,320〜322は、RAMコア91の出力をロジック部82を回避して、スキャンフリップフロップ330〜332に伝達する。
【0028】
図4はこのモードにおける、図2の回路の等価回路を示すブロック図である。直列に接続されたスキャンパス1,3aがRAMコア91を囲んでいるので、RAMテストのみを行うことができる。
【0029】
以上に述べたように、本実施の形態によれば、ロジックテストにおけるロジック部82,83の間に介在するスキャンパスとして、RAMテストにおいてRAMコア91の出力側に設けられるスキャンパスとして、いずれも同一のスキャンパス3aを用いることができ、従来の技術において設けられていたスキャンパス2を必要としない。そして通常動作においては書き込み動作及び読み出し動作がそれぞれ同期式/非同期式で行われる。
【0030】
ロジックテスト信号LOGTESTによって制御されるセレクタ40〜42は従来の技術におけるスキャンパス2と置換されるが、図17を参照してわかるように、スキャンフリップフロップ20〜22の分だけ本実施の形態の方が構成要素が少なくて済む。従って、エリアオーバーヘッドを小さくし、面積の利用効率を悪化させることなくRAMコアのみのテストを行うことができる。
【0031】
図1、図2に示された回路において、スキャンパス1,3aの間に別途に新たなスキャンパスが挿入されていても、またスキャンパス1とスキャンパス3aの接続順序が入れ替わっても、スキャン信号が伝達されるので問題はない。
【0032】
実施の形態2.
図5は本発明の実施の形態2を示すブロック図である。図1を用いて実施の形態1で説明された回路に対し、セレクタ40〜42がその“0”入力端を自身の出力端に接続し、スキャンパス3aをスキャンパス3bで置換した構成を有している。
【0033】
スキャンパス3bはロジック部82の出力のビット毎に、ANDゲートAi,EXORゲートXi、スキャンフリップフロップ33iを備えている(i=0,1,2)。更にEXORゲートX3及びセレクタ6をも備えている。そしてANDゲートA0〜A2の第1の入力端にはいずれもRAMテスト信号RAMTESTが与えられる。またANDゲートA0〜A2の出力端はそれぞれXORゲートX0〜X2の第1の入力端に接続される。ANDゲートA0〜A2の第2の入力端にはRAMコア91の出力がビット毎に与えられる。
【0034】
XORゲートX0の第2の入力端にはセレクタ6の出力が与えられる。また、XORゲートX1,X2の第2の入力端にはそれぞれスキャンフリップフロップ330,331の出力が与えられる。セレクタ6の“0”入力端にはスキャンパス1からスキャン信号SI3が、“1”入力端にはXORゲートX3の出力が、それぞれ与えられる。XORゲートX3にはスキャンフリップフロップ331,332の出力が与えられる。
【0035】
スキャンフリップフロップ330〜332の“0”入力端にはロジック部82の出力がビット毎に、“1”入力端にはXORゲートX0〜X2の出力が、それぞれ与えられる。
【0036】
図6は、本実施の形態の変形を示すブロック図であり、実施の形態1と同様に、RAMコア91とロジック部82との間にセレクタ40〜42を介在させたものである。図6において、ロジックテスト信号LOGTESTを“0”に設定した場合が、図5に相当するといえる。
【0037】
図5、図6に示された構成は以下の3つのモードで動作する。
▲1▼通常モード;
このモードにおいては、シフトモード信号SMを“0”に設定する。図6に示された構成においては更にロジックテスト信号LOGTESTも“0”に設定して図5と構成が等価となる。
【0038】
シフトモード信号SMを“0”に設定するので、スキャンパス1はRAMコア91へと同期式に入力を与える。また、シフトモード信号SMが“0”であるので、スキャンフリップフロップ330〜332はロジック部82の出力を受け、ロジック部83へと出力する通常のフリップフロップとして機能する。スキャンフリップフロップ330〜332の“1”入力端に与えられるデータはこのモードに寄与しないので、RAMテスト信号RAMTESTはその値が問われない(Don’t Care)。
【0039】
以上のようにして、従来の技術において行われる通常動作と同じ動作が、しかも書き込み動作及び読み出し動作がそれぞれ同期式/非同期式で、本実施の形態においても実現される。
【0040】
▲2▼ロジックテストモード;
このモードにおいては、RAMテスト信号RAMTESTが“0”に設定される。まず図5に示された構成から説明する。
【0041】
図7は図5に示された構成においてRAMテスト信号RAMTESTが“0”に設定された場合の等価回路を示すブロック図である。ANDゲートA0〜A2はその第2の入力端に与えられたデータに拘らずに“0”を出力するので、EXORゲートX0〜X2はその第2の入力端に与えられたデータを出力する。
【0042】
セレクタ6は、その“0”入力端に与えられるスキャン信号SI3を出力するので、スキャンフリップフロップ330の“1”入力端にこれが与えられることになる。スキャンフリップフロップ331,332の出力に依存してEXORゲートX3の出力は異なるが、これはセレクタ6の“1”入力端に与えられるので、このモードには寄与しない。
【0043】
このようにして、スキャンパス1、RAMコア91、ロジック部82、スキャンパス3b、ロジック部83という順に並列のデータが伝搬し、ロジックテストが行われる。
【0044】
一方、図6に示された本実施の形態の変形においてはロジックテスト信号LOGTESTが“1”に設定される。よってスキャンパス1の出力の内、スキャン信号SI3でない方は、RAMコア91を回避してロジック部82へと与えられる。
【0045】
従って、図5に示された構成と比較して、ロジックテストにおいてRAMコア91を初期化する必要がなく、ロジックテストのテストパターン数を削減することができるという利点が付加される。
【0046】
▲3▼RAMテストモード;
このモードにおいては、RAMテスト信号RAMTEST及びシフトモード信号SMが“1”に設定される。シフトモード信号SMが“1”に設定されるので、ロジック部82の出力はこのモードに寄与しない。従って、ロジック部82に与えられるデータもこのモードに寄与しないため、図6の場合にはロジックテスト信号LOGTESTの値は問われない。
【0047】
図8はこのモードにおける、図5及び図6の回路の等価回路を示すブロック図である。実施の形態1と同様にRAMコア91を直列に接続されたスキャンパス1,3bが囲んでいるので、RAMテストのみを行うことができる。
【0048】
セレクタ6はEXORゲートX3の出力をEXORゲートX0の第2の入力端に与える。また、ANDゲートA0〜A2はそれぞれがその第2の入力端に与えられたデータを出力するので、EXORゲートX0〜X2の第1の入力端にはRAMコア91の出力が与えられることになる。従って、XORゲートX0〜X3及びスキャンフリップフロップ330〜332は多入力データ圧縮回路としてよく用いられている多入力シグニチャレジスタ(MISR:Multi Input Signature Register)回路を構成することになる。RAMコア91から出力されたRAMテストの結果はこのMISR回路に取り込まれて圧縮される。
【0049】
簡単にRAMテストの実行手順を示すと以下のようになる。まずあらかじめ、▲1▼RAMコア91の全アドレスに対してスキャンパス1からテストデータを書き込む。また▲2▼スキャンフリップフロップ330〜332の記憶する内容を”0”に初期化しておく。これは図5及び図6に示された状態で、RAMテスト信号RAMTEST及びスキャン信号SI3を“0”に設定することで実現できる。
【0050】
次にRAMTEST=“1”として図8に示された回路を得て、▲3▼RAMコア91の全アドレスに対してRAMテストの結果であるデータの読み出しを行う。このデータはMISR回路を構成しているスキャンパス3bにおいて圧縮される。そして▲4▼RAMTEST=“0”に再度設定し、スキャンパス3bに保持されているテスト結果をスキャンアウト信号SOとしてシフトアウトする。
【0051】
このスキャンアウト信号SOの内容と、テストデータに対してあらかじめシミュレーションによって得られているテスト結果と比較する(シグニチャ解析)ことにより、RAMコア91の故障を検出することができる。
【0052】
このように、RAMコア91の出力を取り込むスキャンパス3bにデータ圧縮機能を備えるので、実施の形態1ではRAMテストにおいてアドレス毎にテスト結果をシフトアウトする必要があったが、本実施の形態では全アドレスに対してテストを行った後に、テスト結果をシフトすることとなる。従って、本実施の形態においても実施の形態1と同様に、スキャンフリップフロップ20〜22の分だけ構成要素が少なくて済むという効果に加え、更にテスト時間を短縮することができるという効果がある。
【0053】
実施の形態3.
図9は本発明の実施の形態3を示すブロック図である。図1を用いて実施の形態1で説明された回路に対し、セレクタ40〜42がその“0”入力端を自身の出力端に接続し、スキャンパス3aをスキャンパス3cで置換した構成を有している。
【0054】
スキャンパス3cはロジック部82の出力及びRAMコア91の出力を受けるデータ圧縮回路340〜342によって構成されている。これらはビット毎に設けられているため、テスト結果から故障箇所を特定することができる。
【0055】
データ圧縮回路34iはゲート群Qiと、ロジック部82の出力を受ける“0”入力端を有し、シフトモード信号SMによって制御されるスキャンフリップフロップ33iと、スキャンフリップフロップ33iの“1”入力端に接続される出力端を有するセレクタ32iとから構成されている。セレクタ320の“0”入力端にはスキャン信号SI3が、セレクタ321,322の“0”入力端にはそれぞれフリップフロップ330,331の出力が与えられる。
【0056】
ゲート群Qiはビット毎のRAMコア91の出力、期待信号EXP、比較制御信号CMP、フリップフロップ33iの出力を入力し、セレクタ32iの“1”入力端へと出力する。
【0057】
また、セレクタ32iは実施の形態1においてはRAMテスト信号RAMTESTによって動作が制御されていたが、本実施の形態においてはホールド信号HLDによって動作が制御される。
【0058】
図10はデータ圧縮回路340の詳細、特にゲート群Q0の詳細を示す回路図である。他のデータ圧縮回路341,342についても同様の構成がなされる。かかる構成は例えば特開平8−94718号公報の図11において開示されている。
【0059】
ゲート群QiはそれぞれXORゲートX1i、NANDゲートN1i及びANDゲートA1iから構成されている。XORゲートX1iの一対の入力端にはRAMコア91の出力及び期待信号EXPが与えられる。NANDゲートN1iの一対の入力端にはXORゲートX1iの出力及び比較制御信号CMPが与えられる。そしてANDゲートA1iの一対の入力端にはNANDゲートN1iの出力及びスキャンフリップフロップ33iの出力が与えられ、ANDゲートA1iはセレクタ32iの“1”入力端へと出力する。
【0060】
図11は、本実施の形態の変形を示すブロック図であり、実施の形態1と同様に、RAMコア91とロジック部82との間にセレクタ40〜42を介在させたものである。図11において、ロジックテスト信号LOGTESTを“0”に設定した場合が、図9に相当するといえる。
【0061】
図9、図11に示された構成は以下の3つのモードで動作する。
▲1▼通常モード;
このモードにおいては、シフトモード信号SMを“0”に設定する。図11に示された構成においては更にロジックテスト信号LOGTESTも“0”に設定して図9と構成が等価となる。
【0062】
シフトモード信号SMが“0”であるのでスキャンパス1はRAMコア91へと同期式に書き込みを行う。またスキャンフリップフロップ330〜332はロジック部82の出力を受け、ロジック部83へと出力する通常のフリップフロップとして機能する。スキャンフリップフロップ330〜332の“1”入力端に与えられるデータはこのモードに寄与しないので、ホールド信号HLDはその値を問わない。
【0063】
以上のようにして、従来の技術において行われる通常動作と同じ動作が、しかも書き込み動作及び読み出し動作がそれぞれ同期式/非同期式で、本実施の形態においても実現される。
【0064】
▲2▼ロジックテストモード;
このモードにおいてはホールド信号HLDが“0”に設定される。まず図9に示された構成から説明する。セレクタ320〜322とフリップフロップ330〜332とが交互に直列に接続されたパスが形成され、図7に示された構成と等価な構成が得られ、実施の形態2のロジックテストモードで説明された動作が本実施の形態でも実現される。
【0065】
一方、図11に示された本実施の形態の変形においては更にロジックテスト信号LOGTESTが“1”に設定される。よってスキャンパス1の出力の内、スキャン信号SI3でない方は、RAMコア91を回避してロジック部82へと与えられる。
【0066】
従って、図9に示された構成と比較して、ロジックテストにおいてRAMコア91を初期化する必要がなく、ロジックテストのテストパターン数を削減することができるという利点が付加される。
【0067】
▲3▼RAMテストモード;
このモードにおいては、シフトモード信号SMが“1”に設定される。よってロジック部82の出力はこのモードに寄与しない。従って、ロジック部82に与えれるデータもこのモードに寄与せず、図11の場合にはロジックテスト信号LOGTESTの値は問われないため、図9及び図11のいずれの構成も、RAMテストモードにおける等価的な構成は図12に示されるようになる。
【0068】
例えばRAMの全アドレスに”0”を書き込んだ後、全アドレスから“0”を読み出すテストの具体的手順を以下に簡単に示す。まず▲1▼ホールド信号HLDを“0”に設定してセレクタ320〜322とフリップフロップ330〜332とが交互に直列に接続されたパスを形成する。ここでスキャンイン信号SI1を例えば“1”に設定し、フリップフロップ330〜332を全て“1”に初期設定する。次に▲2▼ホールド信号HLDを“1”に設定して、ANDゲートA1i、セレクタ32i、フリップフロップ33iでループを形成する。このとき比較制御信号CMPを“0”に設定しておくことでNANDゲートN1iは常に“1”を出力し、スキャンフリップフロップ33iの記憶する論理“1”がホールドされる。その一方、スキャン信号SI1として“0”を与え、RAMコア91の全てのアドレスに“0”を書き込む。そして▲3▼ホールド信号HLDを“1”に設定したまま、比較制御信号CMPを“1”にする。このときまでに期待信号EXPには期待値“0”を与えておき、RAMコア91の読み出し動作を行う。
【0069】
例えばRAMコア91の出力端DO0に関してみれば、ここに読み出されたデータはXORゲートX10において期待値と比較され、両者が同一か否かが判断される。その結果はNANDゲートN10によって反転されてANDゲートA10へと与えられる。読み出されたデータが期待値“0”と等しければANDゲートA0はスキャンフリップフロップ330に記憶されたデータと同じ論理“1”をセレクタ320に与えるので、スキャンフリップフロップ330の値は“1”のままである。
【0070】
一方、読み出されたデータが期待値と異なればANDゲートA10は常に“0”を出力するので、一旦出力端DO0において故障が発見されれば、スキャンフリップフロップ330にはその後“0”が記憶され続けることとなる。他の出力端DO1,DO2に関しても同様である。
【0071】
ついで▲4▼ホールド信号HLDを“0”に、比較制御信号CMPを“0”にすることにより、テスト実行時にスキャンフリップフロップ330〜332に格納された値がその論理を保ちつつ、スキャンアウト信号SOとしてシフトされて得られる。そして正常ビットに関しては“1”が、故障ビットに対しては“0”が検出される。
【0072】
本実施の形態は実施の形態2と類似してデータ圧縮機能を備える。更にテスト結果がビット毎に圧縮されるので、故障箇所を特定することができるという効果が付加される。
【0073】
実施の形態4.
実施の形態1ないし実施の形態3に示された構成は、RAMコア91に対する書き込み及びRAMコア91からの読み出しのいずれもが非同期式で行われる場合にも適用することができる。
【0074】
図13は本発明の実施の形態4を示すブロック図である。ロジック領域80はロジック部81〜84を備えており、スキャンパス1はロジック部81,84の間に、RAMコア91はロジック部84,82の間に、そしてスキャンパス3cはロジック部82,83の間にそれぞれ介在している。
【0075】
スキャンパス1はロジック部81の力及びスキャンイン信号SI1を受け、ロジック部84へビット毎の出力を、スキャン信号を伝達させる場合にはスキャン信号SI3を、それぞれ出力する。
【0076】
セレクタ40〜42のそれぞれはロジック部84の出力を“0”入力端で受け、スキャンパス1の出力の内、スキャン信号SI3でない方を“1”入力端で受ける。セレクタ40〜42の出力は、RAMコア91への入力として機能する。セレクタ40〜42はRAMテスト信号RAMTESTによって制御される。
【0077】
スキャンパス3aの構成は既に実施の形態1において図1を用いて説明されたものと同一である。スキャンパス3aはセレクタ300〜302の制御を行うためのRAMテスト信号RAMTEST及びシフトモード信号SM、スキャン信号SI3の他、ロジック部82の出力、RAMコア91の出力を受ける。RAMコア91の出力は、ロジック部82の入力としても機能する。
【0078】
図13に示された構成は、実施の形態1と同様、以下の3つのモードで動作する。
▲1▼通常モード;
このモードにおいては、RAMテスト信号RAMTESTを“0”にし、セレクタ40〜42がロジック部84の出力をRAMコア91の入力として伝達する。また、セレクタ300〜302がその入力B(ロジック部82の出力が与えられる)を出力するように設定される。スキャンパス3aが図2に示された構造を有するのであれば、シフトモード信号SMを“0”に設定する。
【0079】
この場合には、ロジック部84とRAMコア91の間にフリップフロップが介在しないので、その書き込み動作は非同期式である。一方、RAMコア91の出力はフリップフロップを介することなくロジック部82に与えられるのでその読み出し動作も非同期式となる。フリップフロップ310〜312はロジック部82,83の間に介在する。
【0080】
▲2▼ロジックテストモード;
このモードにおいては、RAMテスト信号RAMTESTが“0”に、またセレクタ300〜302がシフトモード信号SMの値が“1”/“0”を採るのに従って、その入力A(スキャン信号が伝達される),Bを出力するように設定される。
【0081】
この場合には、ロジック部81,84の間にはスキャンパス1が、ロジック部84,82の間にはRAMコア91が、ロジック部82,83の間にはスキャンフリップフロップが、それぞれ介在することになる。よってシフトモード信号SMの値を制御することにより、スキャンイン信号SI1を用いてテストデータを伝達させ、テスト結果をシフトアウト信号SOから得ることができる。
【0082】
▲3▼RAMテストモード;
このモードにおいては、RAMテスト信号RAMTESTが“1”に設定され、ロジック部84を介することなくセレクタ40〜42がスキャンパス1からの出力をRAMコア91の入力として伝達する。またセレクタ300〜302はその入力C(RAM91の出力が与えられる)を出力するように設定されるので、スキャンパス3aとRAMコア91との間にはロジック部82を介したデータのやりとりはない。
【0083】
このようにしてRAMコア91はその入力側にスキャンパス1からテストデータが与えられ、その出力側からフリップフロップ310〜312にテスト結果を与えるので、RAMコア91のみをスキャンパス1,3aを用いてテストすることができる。
【0084】
以上のように本実施の形態によれば、RAMコア91に対する書き込み/読み出し動作の何れもが非同期式である場合においても、実施の形態1と同様の効果を得ることができる。
【0085】
勿論、スキャンパス3b,3cを用いることにより、実施の形態2及び実施の形態3と同様の効果を得ることもできる。
【0086】
実施の形態5.
図14は本発明の実施の形態5を示すブロック図であり、図1におけるスキャンパス3aをスキャンパス3へと一般化して表記している。また、スキャンパス1がスキャンパス1dに置換されている。
【0087】
図15はスキャンパス1dの構成を示すブロック図である。スキャンパス1dはスキャンフリップフロップ(例えば図17に示されたスキャンフリップフロップ10〜12)の直列接続からなる通常のスキャンパス1eと、RAMテストに用いられるテストデータのパターンを発生するデータパターン発生回路109と、セレクタ110〜112を備えている。
【0088】
スキャンパス1eにはロジック部81の出力の他、スキャンイン信号SI1及びシフトモード信号SMが入力され、ビット毎の出力をセレクタ110〜112の“0”入力端に、またスキャン信号SI3を出力する。データパターン発生回路109にはRAMテスト信号RAMTEST及びシフトイン信号SI1が入力され、ビット毎にテストデータをセレクタ110〜112の“1”入力端に出力する。
【0089】
RAMテスト信号RAMTESTが“0”の場合には、セレクタ110〜112の機能によって実施の形態1と同様の機能を有する。一方、RAMテスト信号RAMTESTが“1”の場合、即ちRAMテストが実行される場合においては、データパターン発生回路109の出力がRAMコア91に与えられる(RAMテスト時においてはロジックテスト信号LOGTESTが“0”に設定されるので、セレクタ40〜42はセレクタ110〜112の出力を他へ伝達しない)。
【0090】
データパターン発生回路109の好例として、LFSR(Linear Feedback Shift Register)回路を用いれば、エリアオーバーヘッドが小さいという利点がある。データパターン発生回路109はRAMテスト信号RAMTESTの値が“1”を採ることによってアクティブとなり、スキャンイン信号SI1はLFSR回路の初期値設定に用いることができる。
【0091】
以上のように本実施の形態によれば、実施の形態1で得られる効果に加えて、RAMテストに好適なテストデータをRAMテスト時にスキャンパス1dから与えることができるという効果がある。
【0092】
勿論、スキャンパス3は、実施の形態2及び実施の形態3に示されるように、テスト結果を圧縮する回路を備えていてもよい。
【0093】
その他の変形.
上記数々の実施の形態において、種々の変形が可能である。例えばRAMコア91自体は非同期式で書き込み/読み出しがなされるとして説明されてきたが、RAMコア91の自体の書き込み/読み出しが同期設計されていても本発明を適用することができる。
【0094】
特にすでにハードマクロ化された同期式のRAMに対して、
i)RAM内部にテスト回路を付加したり、ii)RAMをスキャンパスで囲み、通常動作時はこれらのスキャンパスをバイパスする必要がない。従って、RAMの再設計、所要の面積の増加を回避してテスト容易化が実現できるために本発明の効果は特に大きい。
【0095】
また各実施の形態において示されたRAMコア91をロジック回路に置換してもよい。そのロジック回路は一つの論理ブロックとして扱うことができ、テストパターンがすでにライブラリ化されている場合に特に効果が大きい。
【0096】
上記数々の実施の形態では、通常のデータとスキャン信号とを入力とするセレクタと、セレクタの出力を入力とするフリップフロップで構成されたスキャンフリップフロップで説明した(図18)。
【0097】
例えば、通常のデータとスキャン信号とを入力とし、通常動作用のクロックとスキャンクロックを備えたスキャンフリップフロップに置き換えても上記数々の実施の形態の効果は変わらない。
【0098】
例えば、レベル・センシティブ・スキャン・デザイン(LSSD)に用いられるシフトレジスタラッチに置き換えても上記数々の実施の形態の効果は変わらない。
【0099】
【発明の効果】
この発明のうち請求項1にかかるテスト回路においては、▲1▼選択手段が第4の回路の出力を選択的に第2の回路に出力し、第2のスキャンパスが第2の回路の出力を選択的に第3の回路に出力する場合には、第1の回路、第1のスキャンパス、第4の回路、第2の回路、第2のスキャンパス、第3の回路がこの順に接続される。よって第4の回路の入力/出力はそれぞれ同期式/非同期式で行われる。
【0100】
また、▲2▼選択手段が第1のスキャンパスの第1の出力を選択的に第2の回路に出力し、第2のスキャンパスが第1のスキャンパスの第2の出力と、第2の回路の出力との一方を選択的に第3の回路に与える場合には、第1の回路、第1のスキャンパス、第2の回路、第2のスキャンパス、第3の回路がこの順に接続されて第1のテストが行われる。
【0101】
更に、▲3▼第2のスキャンパスが第4の回路の出力を第3の回路に出力する場合には、選択手段の動作に拘らず、第4の回路は第1及び第2のスキャンパスによって囲まれる。よって第4の回路に対する第2のテストを第2の回路が介在することなく行うことができる。
【0102】
第1及び第2のテストの何れをも行わない場合には第4の回路の入力/出力はそれぞれ同期式/非同期式で行われる。そして第1及び第2のテストのいずれを行う場合にも第2のスキャンパスが兼用して用いられるので、エリアオーバーヘッドを抑制しつつもこれら2種の動作を行うことができる。しかも第1のテストを行う際には第4の回路は介在しないので、第1乃至第3の回路に対する第1のテストにおいて第4の回路の初期化は必要ない。
【0103】
この発明のうち請求項2にかかるテスト回路によれば、第4の回路に対する第2のテストにおいて、第4の回路に複数種の入力が与えられ、これに対する出力を調べる場合であっても、入力の種類毎にテスト結果を第2のスキャンパスにおいてシフトアウトさせる必要はない。複数種の全ての入力に対して第2のテストを行った後でテスト結果をシフトアウトさせればよいので、テスト時間を短縮することができるという効果が付加される。
【0104】
この発明のうち請求項3にかかるテスト回路によれば、第4の回路に対する第2のテストが行われる際に、MISR回路によってテスト結果の圧縮が行われるので、シグニチャ解析によって第4の回路の良否を判断することができる。
【0105】
この発明のうち請求項4にかかるテスト回路によれば、第4の回路の出力のビット毎に、第2のテストの結果に一旦不良が存在すれば、論理回路によってスキャンフリップフロップに所定の論理が固定されるので、不良が存在したことが記憶される。従って、圧縮されたテスト結果の良否を得ることができる。
【0106】
この発明のうち請求項5にかかるテスト回路においては、(1)選択手段が第2の回路の出力を選択的に第5の回路に出力し、第2のスキャンパスが第3の回路の出力を選択的に第4の回路に出力する場合には、第1の回路、第1のスキャンパス、第2の回路、第5の回路、第3の回路、第2のスキャンパス、第4の回路がこの順に接続される。よって第5の回路の入力/出力はいずれも非同期式で行われる。
【0107】
また、(2)選択手段が第2の回路の出力を選択的に第の回路に出力し、第2のスキャンパスが第1のスキャンパスの第2の出力と、第3の回路の出力との一方を選択的に第4の回路に与える場合には、第1の回路、第1のスキャンパス、第2の回路、第5の回路、第3の回路、第2のスキャンパス、第4の回路がこの順に接続されて第1のテストが行われる。
【0108】
更に、(3)選択手段が第1のスキャンパスの第1の出力を第5の回路に出力し、第2のスキャンパスが第5の回路の出力を第4の回路に出力する場合には、第5の回路は第1及び第2のスキャンパスによって囲まれる。よって第5の回路に対する第2のテストを第2及び第4の回路が介在することなく行うことができる。
【0109】
第1及び第2のテストの何れをも行わない場合には第5の回路の入力/出力はいずれも非同期式で行われる。そして第1及び第2のテストのいずれを行う場合にも第2のスキャンパスが兼用して用いられるので、エリアオーバーヘッドを抑制しつつもこれら2種の動作を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の基本的な考え方を示すブロック図である。
【図2】本発明の実施の形態1の具体的構成を示すブロック図である。
【図3】ロジックテストモードにおける、図2の回路の等価回路を示すブロック図である。
【図4】RAMテストモードにおける、図2の回路の等価回路を示すブロック図である。
【図5】本発明の実施の形態2を示すブロック図である。
【図6】本発明の実施の形態2の変形を示すブロック図である。
【図7】RAMテスト信号RAMTESTが“0”の場合における、図5の回路の等価回路を示すブロック図である。
【図8】RAMテストモードにおける、図5及び図6の回路の等価回路を示すブロック図である。
【図9】本発明の実施の形態3を示すブロック図である。
【図10】ゲート群Q0の詳細を示す回路図である。
【図11】本発明の実施の形態3の変形を示すブロック図である。
【図12】RAMテストモードにおける、図9及び図11の回路の等価回路を示すブロック図である。
【図13】本発明の実施の形態4を示すブロック図である。
【図14】本発明の実施の形態5を示すブロック図である。
【図15】スキャンパス1dの構成を示すブロック図である。
【図16】従来の技術を示すブロック図である。
【図17】RAMブロック92の詳細を示す回路図である。
【図18】スキャンフリップフロップ10の構成を示す回路図である。
【符号の説明】
DI0〜DI2 入力端、DO0〜DO2 出力端、40〜42,320〜322 セレクタ、1,3,3a,3b,3c スキャンパス、340〜342 データ圧縮回路、330〜332 スキャンフリップフロップ、Q0〜Q2 ゲート群、81〜84 ロジック部、91 RAMコア、SI1 スキャンイン信号、SI3 スキャン信号。

Claims (5)

  1. 第1乃至第3の回路に対して第1のテストを行うテスト回路であって、
    前記第1の回路の出力及びスキャンイン信号を入力し、パラレルの態様の第1の出力及びスキャン信号たる第2の出力を選択的に出力する第1のスキャンパスと、
    前記第1のスキャンパスの前記第1の出力を入力する入力端群及び出力端群を有する第4の回路と、
    前記第1のスキャンパスの前記第1の出力と、前記第4の回路の出力とを選択的に前記第2の回路に出力する選択手段と、
    前記第1のスキャンパスの第2の出力と、前記第2の回路の出力と、前記第4の回路の出力とを入力し、これら3者の何れか一つを選択的に前記第3の回路に出力する第2のスキャンパスと
    を備え、
    前記第4の回路に対して第2のテストをも行うテスト回路。
  2. 前記第2のスキャンパスはデータ圧縮機能を有する、請求項1記載のテスト回路。
  3. 前記第2のスキャンパスは、前記第4の回路の出力を選択的に前記第3の回路に与える場合にMISR回路を構成する、請求項2記載のテスト回路。
  4. 前記第2のスキャンパスは
    前記第2の回路の出力に対してビット毎に設けられ、前記データ圧縮機能を発揮するデータ圧縮回路からなり、
    前記データ圧縮回路の各々は
    前記第2の回路の出力を受ける通常入力端と、前記スキャン信号が伝搬するスキャン入力端と、出力端とを含むスキャンフリップフロップと、
    前記スキャンフリップフロップの前記スキャン入力端に接続された出力端と、前記出力端に選択的に接続される第1及び第2の入力端とを含むセレクタと、
    前記セレクタの前記第1の入力端に出力する論理回路と
    を有し、
    前記論理回路の各々は、自身に対応する前記スキャンフリップフロップの出力を保持するループを、前記セレクタと共に形成し、前記第2のテストの結果が不良であれば前記スキャンフリップフロップに所定の論理を与え、
    前記スキャン信号は前記セレクタの前記第2の入力端を伝搬する、請求項2記載のテスト回路。
  5. 第1乃至第5の回路に対して第1のテストを行うテスト回路であって、
    前記第1の回路の出力及びスキャンイン信号を入力し、パラレルの態様の第1の出力及びスキャン信号たる第2の出力を選択的に出力し、前記第1の出力は前記第2の回路に入力する第1のスキャンパスと、
    前記第1のスキャンパスの前記第1の出力と、前記第2の回路の出力とを選択的に前記第5の回路に出力する選択手段と、
    前記第1のスキャンパスの第2の出力と、前記第3の回路の出力と、前記第5の回路の出力とを入力し、これら3者の何れか一つを選択的に前記第4の回路に出力する第2のスキャンパスと
    を備え、
    前記第5の回路に対して第2のテストをも行うテスト回路。
JP23284596A 1996-09-03 1996-09-03 テスト回路 Expired - Fee Related JP3614993B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP23284596A JP3614993B2 (ja) 1996-09-03 1996-09-03 テスト回路
US08/788,838 US5905737A (en) 1996-09-03 1997-01-27 Test circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23284596A JP3614993B2 (ja) 1996-09-03 1996-09-03 テスト回路

Publications (2)

Publication Number Publication Date
JPH1078475A JPH1078475A (ja) 1998-03-24
JP3614993B2 true JP3614993B2 (ja) 2005-01-26

Family

ID=16945712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23284596A Expired - Fee Related JP3614993B2 (ja) 1996-09-03 1996-09-03 テスト回路

Country Status (2)

Country Link
US (1) US5905737A (ja)
JP (1) JP3614993B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153650A (ja) * 1997-11-20 1999-06-08 Mitsubishi Electric Corp 半導体集積回路装置
JPH11352188A (ja) * 1998-06-11 1999-12-24 Mitsubishi Electric Corp 半導体装置
DE19911939C2 (de) * 1999-03-17 2001-03-22 Siemens Ag Verfahren für den eingebauten Selbsttest einer elektronischen Schaltung
US6272657B1 (en) * 1999-10-19 2001-08-07 Atmel Corporation Apparatus and method for progammable parametric toggle testing of digital CMOS pads
JP3459799B2 (ja) 1999-10-19 2003-10-27 Necエレクトロニクス株式会社 テスト回路およびテスト回路生成装置、テスト回路生成方法およびその記録媒体
JP2001165999A (ja) * 1999-12-14 2001-06-22 Mitsubishi Electric Corp 半導体集積回路およびこれを用いた半導体集積回路装置
JP2003344500A (ja) * 2002-05-29 2003-12-03 Nec Electronics Corp マクロテスト回路
JP2004030829A (ja) 2002-06-27 2004-01-29 Oki Electric Ind Co Ltd 半導体記憶装置
US6990621B2 (en) * 2002-12-20 2006-01-24 Intel Corporation Enabling at speed application of test patterns associated with a wide tester interface on a low pin count tester
JP2006236551A (ja) * 2005-01-28 2006-09-07 Renesas Technology Corp テスト機能を有する半導体集積回路および製造方法
KR100675015B1 (ko) * 2006-02-24 2007-01-29 삼성전자주식회사 스캔 기능 및 컬럼 리던던시를 포함하는 내장형 메모리장치, 리던던시 리페어 및 스캔 방법
US7665003B2 (en) * 2006-12-15 2010-02-16 Qualcomm Incorporated Method and device for testing memory
JP2009180532A (ja) * 2008-01-29 2009-08-13 Renesas Technology Corp 標準セルおよび半導体装置
JP5911816B2 (ja) * 2013-02-26 2016-04-27 株式会社東芝 半導体集積回路装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503537A (en) * 1982-11-08 1985-03-05 International Business Machines Corporation Parallel path self-testing system
US5155432A (en) * 1987-10-07 1992-10-13 Xilinx, Inc. System for scan testing of logic circuit networks
JPH01110274A (ja) * 1987-10-23 1989-04-26 Sony Corp 試験回路
EP0358376B1 (en) * 1988-09-07 1995-02-22 Texas Instruments Incorporated Integrated test circuit
JP2676169B2 (ja) * 1989-12-27 1997-11-12 三菱電機株式会社 スキャンパス回路
JPH03252569A (ja) * 1990-02-26 1991-11-11 Advanced Micro Devicds Inc スキャンパス用レジスタ回路
JP2741119B2 (ja) * 1991-09-17 1998-04-15 三菱電機株式会社 バイパススキャンパスおよびそれを用いた集積回路装置
US5471481A (en) * 1992-05-18 1995-11-28 Sony Corporation Testing method for electronic apparatus
JP2871291B2 (ja) * 1992-05-20 1999-03-17 日本電気株式会社 論理集積回路
JPH0690265A (ja) * 1992-09-08 1994-03-29 Fujitsu Ltd 準同期検波復調部
US5428622A (en) * 1993-03-05 1995-06-27 Cyrix Corporation Testing architecture with independent scan paths
KR0123751B1 (ko) * 1993-10-07 1997-11-25 김광호 반도체장치 및 그 제조방법
JP3325727B2 (ja) * 1994-05-26 2002-09-17 三菱電機株式会社 半導体メモリの検査装置
JP2561032B2 (ja) * 1994-06-14 1996-12-04 日本電気株式会社 半導体集積回路のテスト方式
US5592493A (en) * 1994-09-13 1997-01-07 Motorola Inc. Serial scan chain architecture for a data processing system and method of operation

Also Published As

Publication number Publication date
JPH1078475A (ja) 1998-03-24
US5905737A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
JP3691170B2 (ja) テスト回路
US5450415A (en) Boundary scan cell circuit and boundary scan test circuit
JP4903365B2 (ja) スキャンベースの集積回路でスキャンパターンをブロードキャストする方法および装置
US5130988A (en) Software verification by fault insertion
US4519078A (en) LSI self-test method
JP2994666B2 (ja) 境界走査試験セル
JP3614993B2 (ja) テスト回路
Wohl et al. Design of compactors for signature-analyzers in built-in self-test
JP2948835B2 (ja) 試験装置
JP3749541B2 (ja) 集積回路試験装置及び試験法
US6877119B2 (en) Circuit scan output arrangement
US7337379B2 (en) Apparatus and method for diagnosing integrated circuit
US7036060B2 (en) Semiconductor integrated circuit and its analyzing method
JP2004500558A (ja) テスト応答を選択的に圧縮する方法及び装置
Wohl et al. Fully X-tolerant combinational scan compression
EP0469238B1 (en) Reduced delay circuits for shift register latch scan strings
Bhattacharya et al. H-SCAN: A high level alternative to full-scan testing with reduced area and test application overheads
US4912395A (en) Testable LSI device incorporating latch/shift registers and method of testing the same
KR20000013809A (ko) 선형궤환 쉬프트 레지스터를 사용한 내장 자기진단 장치
US20110175638A1 (en) Semiconductor integrated circuit and core test circuit
KR0181546B1 (ko) 테스트 가능한 블록을 갖는 반도체 집적회로
JP2002311090A (ja) 半導体集積回路およびテスト用ボード
Bushnell et al. Built-in self-test
KR100527229B1 (ko) 반도체 집적 회로 장치
US6647522B1 (en) Semiconductor devices having multiple memories

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees