JP3597527B2 - 熱式流量計 - Google Patents

熱式流量計 Download PDF

Info

Publication number
JP3597527B2
JP3597527B2 JP2003139696A JP2003139696A JP3597527B2 JP 3597527 B2 JP3597527 B2 JP 3597527B2 JP 2003139696 A JP2003139696 A JP 2003139696A JP 2003139696 A JP2003139696 A JP 2003139696A JP 3597527 B2 JP3597527 B2 JP 3597527B2
Authority
JP
Japan
Prior art keywords
substrate
flow path
sensor
measurement
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003139696A
Other languages
English (en)
Other versions
JP2003329503A (ja
Inventor
彰浩 伊藤
良彦 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29707494&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3597527(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2003139696A priority Critical patent/JP3597527B2/ja
Publication of JP2003329503A publication Critical patent/JP2003329503A/ja
Application granted granted Critical
Publication of JP3597527B2 publication Critical patent/JP3597527B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱線を用いて流量を計測する熱式流量計に関する。
【0002】
【従来の技術】
従来、熱線を用いて流量を計測する熱式流量計には、例えば、図18に示すように、半導体マイクロマシニングの加工技術で製造された測定チップをセンサー部として使用するものがある。そして、図18の熱式流量計101においては、入口ポート102に流入させた計測対象気体を、整流機構103で整流させた後に、計測流路104を介して、出口ポート105から流出させており、計測対象気体の流量を計測するために、電気回路106に接続された測定チップ111を計測流路104に露出させている。
【0003】
この点、測定チップ111は、図19に示すように、シリコンチップ116において、上流温度センサー112、ヒータ113、下流温度センサー114、周囲温度センサー115(上述したセンサー112〜115は、「熱線」に相当する)などを、半導体マイクロマシニングの加工技術を設けたものである。
【0004】
従って、図18の熱式流量計101においては、計測対象気体が計測流路104に流れていないときは、図19の測定チップ111の温度分布がヒータ113を中心に対称となる一方、計測対象気体が計測流路104に流れているときは、上流温度センサー112の温度が低下し、下流温度センサー114の温度が上昇するので、図19の測定チップ111の温度分布の対称性は、計測対象気体の流量に応じて崩壊することになる。このとき、この崩壊の程度は、上流温度センサー112と下流温度センサー114の抵抗値の差になって現れるので、電気回路106を介して、計測対象気体の流量を計測することが可能となる。
【0005】
【発明が解決しようとする課題】
しかしながら、図18の熱式流量計101では、図19の測定チップ111において、6個の電極D1、D2、D3、D4、D5、D6をシリコンチップ116に設けており、上流温度センサー112、ヒータ113、下流温度センサー114、周囲温度センサー115のそれぞれと電気回路106とを接続することを、6個の電極D1〜D6を使用したワイヤーボンディングにより行っていた。
【0006】
従って、図18の熱式流量計101では、測定チップ111が計測配管104の中で露出し、ボンディングワイヤーWが計測配管104に介在するので、大流量の計測対象気体が計測配管104に流れると、その風圧などを受けてボンディングワイヤーWが切れる恐れがあり、それを防ぐためには、カバー機構を設けるなど(例えば、特開平10−2773号の「支持体13a」)の対策を行う必要があった。
【0007】
そこで、本発明は、上述した問題点を解決するためになされたものであり、熱線が設けられた測定チップをセンサー部とするものであって、測定チップの熱線と電気回路との接続に関し、ワイヤーボンディングの使用を回避した熱式流量計を提供することを課題とする。
【0008】
【課題を解決するための手段】
この課題を解決するために成された請求項1に係る発明は、熱線と前記熱線に接続する熱線用電極とが設けられた測定チップと、前記熱線を用いた計測原理を行うための電気回路に接続する電気回路用電極が表面に設けられた基板と、前記基板が密着することにより主流路が形成されるボディとを備え、前記測定チップ又は前記基板に溝が設けられており、前記熱線用電極と前記電気回路用電極とを接着して前記測定チップを前記基板に実装することによって、前記主流路に対するセンサー流路を前記測定チップと前記基板との間に前記溝で形成するとともに、前記センサー流路に前記熱線を橋設させたこと、を特徴としている。
【0009】
このような特徴を有する本発明の熱式流量計において、測定チップに設けられた熱線は、測定チップを基板に実装した際に、測定チップに設けられた熱線用電極と基板の表面に設けられた電気回路用電極とが接着されることによって、熱線を用いた計測原理を行うための電気回路に接続されている。
一方、基板がボディに対して密着されると、ボディの内部において、主流路が形成される。このとき、基板又は基板に実装された測定チップに溝が設けられているので、ボディの内部において、主流路に対するセンサー流路も形成される。
従って、ボディの内部を流れる計測対象気体は、主流路とセンサー流路の断面積比に応じて、主流路とセンサー流路とに分流されることになる。この点、測定チップに設けられた熱線は、センサー流路に橋設された状態にあるので、熱線を用いた計測原理を行うための電気回路により、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量を測定することができる。
【0010】
すなわち、本発明の熱式流量計は、測定チップが実装された基板をボディに密着させることにより、ボディの内部において、主流路とセンサー流路とを形成すると同時に、測定チップに設けられた熱線を、センサー流路に橋設された状態にして、電気回路を介し、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量を測定するものであるから、熱線が設けられた測定チップをセンサー部とするものであって、測定チップに設けられた熱線は、測定チップを基板に実装した際に、測定チップの熱線用電極と基板の電気回路用電極とが接着されることによって、電気回路に接続されているので、測定チップの熱線と電気回路との接続に関し、ワイヤーボンディングの使用を回避したものと言うことができる。
【0011】
また、本発明の熱式流量計において、測定チップに設けられた熱線は、センサー流路に橋設された状態にあるので、壊れやすい部分であるが、センサー流路は、基板又は基板に実装された測定チップに設けられた溝であって、測定チップと基板との間に形成されるものであり、測定チップが基板に実装されると、測定チップに設けられた熱線は、測定チップと基板との間に挟まれて、外部から接触することが難しくなるので、組立・検査工程などにおける取り扱いが容易となる。
【0012】
また、本発明の熱式流量計においては、測定チップに設けられた熱線などが壊れたりしても、測定チップが実装された基板ごとの交換で対応できるので、修理が容易となる。
【0013】
また、本発明の熱式流量計は、測定チップに設けられた熱線を、センサー流路に橋設された状態にして、電気回路を介し、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量を測定するものであるが、センサー流路は、基板又は基板に実装された測定チップに設けられた溝で形成されるものであって、溝の細長い形状により、計測対象気体の流れが整えられていくので、測定結果の乱流ノイズが小さい。
【0014】
また、請求項2に係る発明は、請求項1に記載する熱式流量計であって、前記測定チップのみに前記溝を設けたこと、を特徴としている。
【0015】
また、本発明の熱式流量計において、測定チップのみに溝を設けても、ボディの内部にセンサー流路を形成することは可能であるので、この場合は、基板に溝を設けることを省略でき、この点は、特に、基板がセラミック又は金属などの溝加工しにくい材料でできているときに有効である。
【0016】
また、請求項3に係る発明は、請求項1に記載する熱式流量計であって、前記基板のみに前記溝を設けたこと、を特徴としている。
【0017】
また、本発明の熱式流量計において、基板のみに溝を設けても、ボディの内部にセンサー流路を形成することは可能であるので、この場合は、測定チップに溝を設けることを省略できるとともに、さらに、溝加工による測定チップの強度低下を防止することができる。
【0018】
また、請求項4に係る発明は、熱線と前記熱線に接続する熱線用電極とが設けられた測定チップと、前記熱線を用いた計測原理を行うための電気回路に接続する電気回路用電極ピンと、前記電気回路用電極ピンが挿設された基板と、前記電気回路用電極ピンと前記基板との間を密封する弾性体と、前記基板が密着することにより主流路が形成されるボディとを備え、前記熱線用電極と前記電気回路用電極ピンの平頭部とを接着して前記測定チップを前記基板の表面側で実装することによって、前記主流路に対するセンサー流路を前記測定チップと前記基板との間に前記弾性体の厚みで細長く形成するとともに、前記センサー流路に前記熱線を橋設させたこと、を特徴としている。
【0019】
このような特徴を有する本発明の熱式流量計において、測定チップに設けられた熱線は、測定チップを基板の表面側で実装した際に、測定チップに設けられた熱線用電極と、基板に挿設された電気回路用電極ピンの平頭部とが接着されることによって、熱線を用いた計測原理を行うための電気回路に接続されている。
一方、基板がボディに対して密着されると、ボディの内部において、主流路が形成される。このとき、電気回路用電極ピンと基板との間を密封する弾性体が、基板と基板に実装された測定チップとの間に存在するので、ボディの内部において、主流路に対するセンサー流路も形成される。
従って、ボディの内部を流れる計測対象気体は、主流路とセンサー流路の断面積比に応じて、主流路とセンサー流路とに分流されることになる。この点、測定チップに設けられた熱線は、センサー流路に橋設された状態にあるので、熱線を用いた計測原理を行うための電気回路により、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量を測定することができる。
【0020】
すなわち、本発明の熱式流量計は、測定チップが実装された基板をボディに密着させることにより、ボディの内部において、主流路とセンサー流路とを形成すると同時に、測定チップに設けられた熱線を、センサー流路に橋設された状態にして、電気回路を介し、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量を測定するものであるから、熱線が設けられた測定チップをセンサー部とするものであって、測定チップに設けられた熱線は、測定チップを基板に実装した際に、測定チップの熱線用電極と、基板に挿設された電気回路用電極ピンの平頭部とが接着されることによって、電気回路に接続されているので、測定チップの熱線と電気回路との接続に関し、ワイヤーボンディングの使用を回避したものと言うことができる。
【0021】
また、本発明の熱式流量計において、測定チップに設けられた熱線は、センサー流路に橋設された状態にあるので、壊れやすい部分であるが、センサー流路は、基板と基板に実装された測定チップとの間に存在する弾性体の厚みで形成されるものであり、測定チップが基板に実装されると、測定チップに設けられた熱線は、測定チップと基板との間に挟まれて、外部から接触することが難しくなるので、組立・検査工程などにおける取り扱いが容易となる。
【0022】
また、本発明の熱式流量計においては、測定チップに設けられた熱線などが壊れたりしても、測定チップが実装された基板ごとの交換で対応できるので、修理が容易となる。
【0023】
また、本発明の熱式流量計は、測定チップに設けられた熱線を、センサー流路に橋設された状態にして、電気回路を介し、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量を測定するものであるが、センサー流路は、基板と基板に実装された測定チップとの間に存在する弾性体の厚みで細長く形成されるものであり、その細長い形状により、計測対象気体の流れが整えられていくので、測定結果の乱流ノイズが小さい。
【0024】
また、本発明の熱式流量計においては、センサー流路が、基板と基板に実装された測定チップとの間に存在する弾性体の厚みで形成されるものであるので、基板に溝を設けることを省略でき、この点は、特に、基板がセラミック又は金属などの溝加工しにくい材料でできているときに有効であり、同時に、測定チップに溝を設けることを省略できるので、溝加工による測定チップの強度低下を防止することもできる。
【0025】
また、本発明の熱式流量計においては、基板と基板に実装された測定チップとの間に弾性体が存在しており、基板が多少反ったとしても、弾性体が緩衝材として働くので、基板に実装された測定チップが破壊されることはない。
【0026】
また、請求項5に係る発明は、請求項4に記載する熱式流量計であって、前記測定チップに溝を設けたことにより、前記センサー流路の一部にしたこと、を特徴としている。
また、請求項6に係る発明は、請求項4又は請求項5に記載する熱式流量計であって、前記基板に溝を設けたことにより、前記センサー流路の一部にしたこと、を特徴としている。
【0027】
尚、本発明の熱式流量計においては、センサー流路が、基板と基板に実装された測定チップとの間に存在する弾性体の厚みで形成されるものであるけれども、測定チップ又は基板に溝を設けたことにより、センサー流路の一部にしても、上述したように、熱線が設けられた測定チップをセンサー部とするものであって、測定チップの熱線と電気回路との接続に関し、ワイヤーボンディングの使用を回避したものと言うことができるし、組立・検査工程などにおける取り扱いが容易となるし、修理が容易となるし、測定結果の乱流ノイズが小さい。
【0028】
また、請求項7に係る発明は、請求項1乃至請求項6のいずれか一つに記載する熱式流量計であって、前記電気回路を前記基板の裏面に設けたこと、を特徴としている。
【0029】
また、本発明の熱式流量計において、熱線を用いた計測原理を行うための電気回路を基板の裏面に設ければ、熱線が設けられた測定チップは基板の表面又は表面側で基板に実装されていることから、熱線が設けられた測定チップと、熱線が設けられた測定チップと熱線を用いた計測原理を行うための電気回路とを、一つの基板に集約することができるので、省スペースやコストダウンに貢献することができる。
【0030】
また、請求項8に係る発明は、請求項1乃至請求項7のいずれか一つに記載する熱式流量計であって、前記センサー流路の下流側に前記熱線を設けたこと、を特徴としている。
【0031】
また、本発明の熱式流量計において、センサー流路の下流側に熱線を設ければ、センサー流路の下流側は、センサー流路の細長い形状により、計測対象気体の流れが整えられていく作用がより大きく発揮されるので、測定結果の乱流ノイズがより小さくなる。
【0032】
また、請求項9に係る発明は、請求項1乃至請求項8のいずれか一つに記載する熱式流量計であって、前記ボディに内設された底板を備え、前記底板で前記主流路の断面積を変更させたこと、を特徴としている。
【0033】
また、本発明の熱式流量計において、ボディに内設された底板を備え、底板で主流路の断面積を変更させれば、ボディの内部を流れる計測対象気体は、主流路とセンサー流路の断面積比に応じて、主流路とセンサー流路とに分流されることから、センサー流路に橋設された熱線からの出力特性を異なるものとすることができるので、かかる出力特性に応じて、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量の測定範囲(流量レンジ)を調整することができる。
【0034】
尚、電気回路で行われる熱線を用いた計測原理には、一つの熱線を用いたもの、二つの熱線を用いたもの、三つの熱線を用いたものなどがあり、多数の熱線を用いたものであってもよい。
【0035】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照にして説明する。図1に示すように、本実施の形態の熱式流量計1Aにおいては、Oリング48を介して、基板21Aがボディ41Aにねじ固定で密着されている。また、ボディ41Aには、入口ポート42、入口流路43、計測流路44、出口流路45、出口ポート46が形成されており、計測流路44には、底板47がねじ固定で設けられている。
【0036】
一方、基板21Aには、プリント基板22A(図4参照)の裏面において、電気素子31、32、33、34などで構成される電気回路が設けられている。また、図4に示すように、プリント基板22Aの表面において、溝23が加工されるとともに、電気回路用電極24、25、26、27が溝23の両側に設けられている。また、これらの電気回路用電極24〜27は、プリント基板22Aの中で、電気素子31〜34(図1参照)などで構成される電気回路と接続されている。さらに、プリント基板22Aの表面においては、後述するようにして、測定チップ11が実装されている。
【0037】
ここで、測定チップ11について説明すると、図2の正面図や図3の側面図で示すように、測定チップ11は、シリコンチップ12に対して、半導体マイクロマシニングの加工技術を実施したものであり、このとき、溝13が加工されるとともに、熱線用電極14、15、16、17が溝13の両側に設けられる。さらに、このとき、温度センサー用熱線18が、熱線用電極14、15から延設されるとともに溝13の上に架設され、また、流速センサー用熱線19が、熱線用電極16、17から延設されるとともに溝13の上に架設される。
【0038】
そして、測定チップ11の熱線用電極14、15、16、17を、基板21Aの電気回路用電極24、25、26、27(図4参照)のそれぞれと、半田リフロー又は導電性接着剤などで接合することによって、測定チップ11を基板21Aに実装している。従って、測定チップ11が基板21Aに実装されると、測定チップ11に設けられた温度センサー用熱線18と流速センサー用熱線19は、測定チップ11の熱線用電極14〜17と、基板21Aの電気回路用電極24〜27(図4参照)とを介して、基板21Aの裏面に設けられた電気回路に接続される。
【0039】
また、測定チップ11が基板21Aに実装されると、図5に示すように、測定チップ11の溝13は、基板21Aの溝23と重なり合う。よって、図1や図5に示すように、測定チップ11が実装された基板21Aをボディ41Aに密着すると、ボディ41Aの計測流路44において、測定チップ11と底板47との間に、主流路Mが形成される一方、基板21Aと測定チップ11との間に、測定チップ11の溝13や基板21Aの溝23などからなるセンサー流路S1が形成される。そのため、センサー流路S1には、温度センサー用熱線18と流速センサー用熱線19とが橋を渡すように設けられる。
【0040】
従って、本実施の形態の熱式流量計1Aにおいては、図1に示すように、ボディ41Aの入口ポート42から計測対象気体が流れ込むと(図1のF)、計測対象気体は、ボディ41Aの計測流路44において、主流路Mへ流れ込むもの(図1のF1)と、センサー流路S1へ流れ込むもの(図1のF2)とに分流した後、再び合流して、ボディ41Aの出口ポート46から流れ出すことになる(図1のF)。
【0041】
この点、センサー流路S1へ流れ込む計測対象気体(図1のF2)は、センサー流路S1に橋設された温度センサー用熱線18と流速センサー用熱線19とから熱を奪うので、基板21Aの裏面に設けられた電気回路が、温度センサー用熱線18と流速センサー用熱線19などの出力を検知しながら、温度センサー用熱線18と流速センサー用熱線19とが一定の温度差になるように制御している。
【0042】
このときの出力の一例を図6に示す。図6のグラフは、本実施の形態の熱式流量計1Aにおいて、ボディ41Aの入口ポート42へ流れ込む計測対象気体(図1のF)の流量が、2(l/min)、4(l/min)、6(l/min)、8(l/min)、10(l/min)、12(l/min)、16(l/min)、20(l/min)のときの出力を、上から順に示したものである。また、図7のグラフは、従来技術の一例の熱式流量計において、計測対象気体の流量が、2(l/min)、4(l/min)、6(l/min)、8(l/min)、10(l/min)、12(l/min)、16(l/min)、20(l/min)のときの出力を、上から順に示したものである。
【0043】
図6と図7と比較すると、本実施の形態の熱式流量計1Aは、従来技術の一例の熱式流量計と比べ、出力の振動幅が小さいことがわかる。また、この振動幅の出力値に対する比率をノイズとして示したものが図9である。図9においても、本実施の形態の熱式流量計1Aは、従来技術の一例の熱式流量計に対し、ノイズが小さいことがわかる。
【0044】
尚、図9において、「発明方式」とは、本実施の形態の熱式流量計1Aを意味し、「従来方式」とは、従来技術の一例の熱式流量計を意味する。この点は、後述する図8でも同じである。
【0045】
また、図8は、図6の出力を平均化したものを「発明方式」として示したものである。すなわち、本実施の形態の熱式流量計1Aは、ボディ41Aの入口ポート42へ流れ込む計測対象気体(図1のF)の流量に応じて出力の平均値が変化し、その再現性も温度補償回路(基板21Aの電気回路の一部)で保障されるので、ボディ41Aの入口ポート42へ流れ込む計測対象気体(図1のF)の流量を計測することができる。
【0046】
また、図10は、本実施の形態の熱式流量計1Aにおいて、底板47(図1、図5参照)の高さを変更したときの出力特性を示したものである。図10に示すように、底板47(図1、図5参照)の高さを、2mm、3mm、3.5mm、4.5mmと変更していくと、出力特性も変更される。これは、図11に示すように、底板47(図1、図5参照)の高さを、2mm、3mm、3.5mm、4.5mmと変更していくと、センサー流路S1(図1、図5参照)の断面積は一定であるものの、主流路M(図1、図5参照)の断面積が変更され、これに伴い、主流路Mへ流れ込む計測対象気体(図1のF1)の流量と、センサー流路S1へ流れ込む計測対象気体(図1のF2)の流量とが変化することが考えられる。
【0047】
もっとも、出力特性の直線性を示す範囲が計測に適した範囲であることを考慮すれば、図10により、例えば、底板47(図1、図5参照)の高さを3mmにすれば、計測対象気体の流量が0〜20(l/min)の範囲で計測が可能となり、底板47(図1、図5参照)の高さを4.5mmにすれば、計測対象気体の流量が0〜4(l/min)の範囲で計測が可能となる。従って、ボディ41Aにねじ固定で設けられた底板47を交換するだけで、計測対象気体の流量の測定範囲(流量レンジ)に適したボディ41Aにすることができる。
【0048】
以上詳細に説明したように、本実施の形態の熱式流量計1Aにおいては、図1〜図5に示すように、測定チップ11に設けられた温度センサー用熱線18と流速センサー用熱線19は、測定チップ11を基板21Aに実装した際に、測定チップ11に設けられた熱線用電極14〜17と基板21Aの表面に設けられた電気回路用電極24〜27とが接着されることによって、温度センサー用熱線18と流速センサー用熱線19を用いた計測原理を行うための電気回路(基板21Aの裏面に電気部品31〜34などで構成されたもの)に接続されている。
【0049】
一方、基板21Aがボディ41Aに対してねじ固定で密着されると、ボディ41Aの計測流路44において、主流路Mが形成される。このとき、基板21Aに溝23が設けられるとともに、基板21Aに実装された測定チップ11に溝13が設けられているので、ボディの計測流路44において、主流路Mに対するセンサー流路S1も形成される。
【0050】
従って、ボディ41Aの計測流路44を流れる計測対象気体は、主流路Mとセンサー流路S1の断面積比に応じて、主流路Mとセンサー流路S1とに分流されることになる。この点、測定チップ11に設けられた温度センサー用熱線18と流速センサー用熱線19は、センサー流路S1に橋設された状態にあるので、温度センサー用熱線18と流速センサー用熱線19を用いた計測原理を行うための電気回路(基板21Aの裏面に電気部品31〜34などで構成されたもの)により、(センサー流路S1を流れる計測対象気体の流量、ひいては、)ボディ41Aの内部を流れる計測対象気体の流量を測定することができる(図6、図8、図10、図11参照)。
【0051】
すなわち、本実施の形態の熱式流量計1Aは、図1〜図5に示すように、測定チップ11が実装された基板21Aをボディ41Aにねじ固定で密着させることにより、ボディ41Aの計測流路44において、主流路Mとセンサー流路S1とを形成すると同時に、測定チップ11に設けられた温度センサー用熱線18と流速センサー用熱線19を、センサー流路S1に橋設された状態にして、電気回路(基板21Aの裏面に電気部品31〜34などで構成されたもの)を介し、(センサー流路S1を流れる計測対象気体の流量、ひいては、)ボディ41Aの内部を流れる計測対象気体の流量を測定するものであるから(図6、図8、図10、図11参照)、温度センサー用熱線18と流速センサー用熱線19が設けられた測定チップ11をセンサー部とするものであって、測定チップ11に設けられた温度センサー用熱線18と流速センサー用熱線19は、測定チップ11を基板21Aに実装した際に、測定チップ11の熱線用電極14〜17と基板21Aの電気回路用電極24〜27とが半田リフローなどで接着されることによって、電気回路(基板21Aの裏面に電気部品31〜34などで構成されたもの)に接続されているので、測定チップ11の温度センサー用熱線18及び流速センサー用熱線19と電気回路(基板21Aの裏面に電気部品31〜34などで構成されたもの)との接続に関し、ワイヤーボンディングの使用を回避したものと言うことができる。
【0052】
また、本実施の形態の熱式流量計1Aにおいて、図1〜図5に示すように、測定チップ11に設けられた温度センサー用熱線18と流速センサー用熱線19は、センサー流路S1に橋設された状態にあるので、壊れやすい部分であるが、センサー流路S1は、基板21Aに設けられた溝23及び基板21Aに実装された測定チップ11に設けられた溝13であって、測定チップ11と基板21Aとの間に形成されるものであり、測定チップ11が基板21Aに実装されると、測定チップ11に設けられた温度センサー用熱線18と流速センサー用熱線19は、測定チップ11と基板21Aとの間に挟まれて、外部から接触することが難しくなるので、組立・検査工程などにおける取り扱いが容易となる。
【0053】
また、本実施の形態の熱式流量計1Aにおいては、測定チップ11に設けられた温度センサー用熱線18と流速センサー用熱線19などが壊れたりしても、測定チップ11が実装された基板21Aごとの交換(ここでは、ねじ固定による交換)で対応できるので、修理が容易となる。
【0054】
また、本実施の形態の熱式流量計1Aは、測定チップ11に設けられた温度センサー用熱線18と流速センサー用熱線19を、センサー流路S1に橋設された状態にして、電気回路(基板21Aの裏面に電気部品31〜34などで構成されたもの)を介し、(センサー流路S1を流れる計測対象気体の流量、ひいては、)ボディ41Aの内部を流れる計測対象気体の流量を測定するものである。この点、センサー流路S1は、基板21Aに設けられた溝23及び基板21Aに実装された測定チップ11に設けられた溝13で形成されるものであって、溝13、23の細長い形状により、計測対象気体の流れが整えられていくので、測定結果の乱流ノイズを小さくすることができる(図6〜図8参照)。
【0055】
また、本実施の形態の熱式流量計1Aにおいては、温度センサー用熱線18と流速センサー用熱線19を用いた計測原理を行うための電気回路を、基板21Aの裏面に設けており、さらに、温度センサー用熱線18と流速センサー用熱線19が設けられた測定チップ11は、基板21Aの表面に実装されている。従って、温度センサー用熱線18と流速センサー用熱線19が設けられた測定チップ11と、温度センサー用熱線18と流速センサー用熱線19を用いた計測原理を行うための電気回路とを、一つの基板21Aに集約しているので、省スペースやコストダウンに貢献している。
【0056】
また、本実施の形態の熱式流量計1Aにおいては、図2に示すように、センサー流路S1の下流側に流速センサー用熱線19を設けて、センサー流路S1を流れる計測対象気体F2の助走区間Lを長く設けている。この点、センサー流路S1の下流側は、センサー流路S1の細長い形状により、センサー流路S1を流れる計測対象気体F2の流れが整えられていく作用がより大きく発揮されるので、測定結果の乱流ノイズをより小さくすることができる(図9参照)。
【0057】
また、本実施の形態の熱式流量計1Aにおいては、図1、図5に示すように、ボディ41Aにねじ固定で内設された底板47を備えており、高さの異なる底板47で主流路Mの断面積を変更させれば(図11参照)、ボディ41の計測流路44を流れる計測対象気体は、主流路Mとセンサー流路S1の断面積比に応じて、主流路M(図1のF1)とセンサー流路S1(図1のF2)とに分流されることから、図10に示すように、センサー流路S1に橋設された流速センサー用熱線19などからの出力特性を異なるものとすることができるので、図10の出力特性に応じて、(センサー流路S1を流れる計測対象気体の流量、ひいては、)ボディ41の内部を流れる計測対象気体の流量の測定範囲(流量レンジ)を調整することができる。
【0058】
尚、本発明は上記実施の形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、本実施の形態の熱式流量計1Aにおいては、図1、図5に示すように、基板21Aに溝23が設けられるとともに、測定チップ11にも溝13が設けられているが、基板21Aには溝23を設けず、測定チップ11のみに溝13を設けてもよい。なぜなら、測定チップ11のみに溝13を設けても、ボディ41の計測流路44にセンサー流路S1を形成することは可能だからであり、この場合は、基板21Aに溝23を設けることを省略でき、この点は、特に、基板21Aが、例えば、セラミック又は金属などの溝加工しにくい材料でできているときに有効である。
【0059】
また、測定チップ11には溝13を設けず、基板21Aのみに溝23を設けてもよい。なぜなら、基板21Aのみに溝23を設けても、ボディ41Aの計測流路44にセンサー流路S1を形成することは可能だからであり、この場合は、測定チップ11に溝13を設けることを省略できるとともに、さらに、溝加工による測定チップ11(シリコンチップ)の強度低下を防止することができる。
【0060】
また、本実施の形態の熱式流量計1Aにおいては、図1〜図5に示すように、測定チップ11の熱線用電極14、15、16、17を、基板21Aの電気回路用電極24、25、26、27のそれぞれと、半田リフロー又は導電性接着剤などで接合することによって、測定チップ11を基板21Aに実装している。しかしながら、図12や図13の断面図で示すようにして、測定チップ11を基板21Bに実装してもよい。
【0061】
すなわち、図12や図13で示す基板21Bでは、プリント基板22Bに対し、弾性体であるゴム29を介して、4本の電気回路用電極ピン28を挿入し、これらの電気回路用電極ピン28の平頭部を、上述した基板21Aの電気回路用電極24〜27に代えている。このとき、図1のボディ41の計測流路44には、上述したセンサー流路S1に代えて、ゴム29の厚みと測定チップ11の溝13からなるセンサー流路S2が形成される。
【0062】
そして、測定チップ11が実装された基板21B(図12や図13に示すもの)をボディ41Aにねじ固定で密着させた熱式流量計においては、図12や図13に示すように、センサー流路S2が、基板21Bと基板21Bに実装された測定チップ11との間に存在するゴム29の厚みと、測定チップ11の溝13とで形成されるものであるので、基板21Bに溝を設けることを省略でき、この点は、特に、基板21Bがセラミック又は金属などの溝加工しにくい材料でできているときに有効である。
【0063】
また、測定チップ11が実装された基板21B(図12や図13に示すもの)をボディ41Aにねじ固定で密着させた熱式流量計においては、図12や図13に示すように、基板21Bと基板21Bに実装された測定チップ11との間にゴム29が存在しており、基板21Bが多少反ったとしても、ゴム29が緩衝材として働くので、基板21Bに実装された測定チップ11(シリコンチップ)が破壊されることはない。
【0064】
尚、図12や図13においては、センサー流路S2が、基板21Bと基板21Bに実装された測定チップ11との間に存在するゴム29の厚みと、測定チップ11の溝13とで形成されるものであったが、ゴム29の厚みのみで形成してもよい。また、基板21Bに新たに溝を設けてセンサー流路S2の一部にしてもよく、この場合は、測定チップ11に溝13を設けることを省略できるので、溝加工による測定チップ11(シリコンチップ)の強度低下を防止することができる。
【0065】
また、図14に示す熱式流量計1Bのように、上述した熱式流量計1Aに対し、ボディ41Aの入口流路43において、図16の整流板(金網)53を挿入したり、ボディ41Aの計測流路44の主流路Mにおいて、図15のステンレスパイプ52からなる整流機構51を設ければ、図6の出力の振動幅や、図9のノイズ値が、より一層小さくなる。
【0066】
また、図17に示す熱式流量計1Cのように、上述した熱式流量計1Aに対し、ボディ41Bの入口流路43において、フィルター55を挿入したり、遮蔽部54を突設させれば、ボディ41Bの入口ポート42から流れ込む計測対象流体の流入角度が大きくなっても、ボディ41Bの計測流路44に流れ込む計測対象流体の流入角度を所定範囲におさめることができるので、図6、図8、図10などに示す出力特性への影響を防止できる。
【0067】
尚、本実施の形態の熱式流量計1A、1B、1Cにおいて、電気回路(基板21Aの裏面に電気部品31〜34などで構成されたもの)で行われる計測原理は、温度センサー用熱線18と流速センサー用熱線19を用いたものであったが、その他には、一つの熱線を用いたもの、三つの熱線を用いたものなどがあり、多数の熱線を用いたものであってもよい。また、二つの熱線を用いたものには、上述したように、温度センサー用熱線18と流速センサー用熱線19などの出力を検知しながら、温度センサー用熱線18と流速センサー用熱線19とが一定の温度差になるように制御する方式のほかに、従来技術の欄で説明したように、2つの熱線により、温度分布の対称性の崩壊度を検出する方式などがある。これらの点については、測定チップ11が実装された基板21B(図12や図13に示すもの)をボディ41Aにねじ固定で密着させた熱式流量計においても、同様である。
【0068】
【発明の効果】
請求項1に係る発明の熱式流量計は、測定チップが実装された基板をボディに密着させることにより、ボディの内部において、主流路とセンサー流路とを形成すると同時に、測定チップに設けられた熱線を、センサー流路に橋設された状態にして、電気回路を介し、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量を測定するものであるから、熱線が設けられた測定チップをセンサー部とするものであって、測定チップに設けられた熱線は、測定チップを基板に実装した際に、測定チップの熱線用電極と基板の電気回路用電極とが接着されることによって、電気回路に接続されているので、測定チップの熱線と電気回路との接続に関し、ワイヤーボンディングの使用を回避したものと言うことができる。
【0069】
また、請求項1に係る発明の熱式流量計において、測定チップに設けられた熱線は、センサー流路に橋設された状態にあるので、壊れやすい部分であるが、センサー流路は、基板又は基板に実装された測定チップに設けられた溝であって、測定チップと基板との間に形成されるものであり、測定チップが基板に実装されると、測定チップに設けられた熱線は、測定チップと基板との間に挟まれて、外部から接触することが難しくなるので、組立・検査工程などにおける取り扱いが容易となる。
【0070】
また、請求項1に係る発明の熱式流量計においては、測定チップに設けられた熱線などが壊れたりしても、測定チップが実装された基板ごとの交換で対応できるので、修理が容易となる。
【0071】
また、請求項1に係る発明の熱式流量計は、測定チップに設けられた熱線を、センサー流路に橋設された状態にして、電気回路を介し、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量を測定するものであるが、センサー流路は、基板又は基板に実装された測定チップに設けられた溝で形成されるものであって、溝の細長い形状により、計測対象気体の流れが整えられていくので、測定結果の乱流ノイズが小さい。
【0072】
また、請求項2に係る発明の熱式流量計のように、測定チップのみに溝を設けても、ボディの内部にセンサー流路を形成することは可能であるので、この場合は、基板に溝を設けることを省略でき、この点は、特に、基板がセラミック又は金属などの溝加工しにくい材料でできているときに有効である。
【0073】
また、請求項3に係る発明の熱式流量計のように、基板のみに溝を設けても、ボディの内部にセンサー流路を形成することは可能であるので、この場合は、測定チップに溝を設けることを省略できるとともに、さらに、溝加工による測定チップの強度低下を防止することができる。
【0074】
また、請求項4に係る発明の熱式流量計は、測定チップが実装された基板をボディに密着させることにより、ボディの内部において、主流路とセンサー流路とを形成すると同時に、測定チップに設けられた熱線を、センサー流路に橋設された状態にして、電気回路を介し、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量を測定するものであるから、熱線が設けられた測定チップをセンサー部とするものであって、測定チップに設けられた熱線は、測定チップを基板に実装した際に、測定チップの熱線用電極と、基板に挿設された電気回路用電極ピンの平頭部とが接着されることによって、電気回路に接続されているので、測定チップの熱線と電気回路との接続に関し、ワイヤーボンディングの使用を回避したものと言うことができる。
【0075】
また、請求項4に係る発明の熱式流量計において、測定チップに設けられた熱線は、センサー流路に橋設された状態にあるので、壊れやすい部分であるが、センサー流路は、基板と基板に実装された測定チップとの間に存在する弾性体の厚みで形成されるものであり、測定チップが基板に実装されると、測定チップに設けられた熱線は、測定チップと基板との間に挟まれて、外部から接触することが難しくなるので、組立・検査工程などにおける取り扱いが容易となる。
【0076】
また、請求項4に係る発明の熱式流量計においては、測定チップに設けられた熱線などが壊れたりしても、測定チップが実装された基板ごとの交換で対応できるので、修理が容易となる。
【0077】
また、請求項4に係る発明の熱式流量計は、測定チップに設けられた熱線を、センサー流路に橋設された状態にして、電気回路を介し、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量を測定するものであるが、センサー流路は、基板と基板に実装された測定チップとの間に存在する弾性体の厚みで細長く形成されるものであり、その細長い形状により、計測対象気体の流れが整えられていくので、測定結果の乱流ノイズが小さい。
【0078】
また、請求項4に係る発明の熱式流量計においては、センサー流路が、基板と基板に実装された測定チップとの間に存在する弾性体の厚みで形成されるものであるので、基板に溝を設けることを省略でき、この点は、特に、基板がセラミック又は金属などの溝加工しにくい材料でできているときに有効であり、同時に、測定チップに溝を設けることを省略できるので、溝加工による測定チップの強度低下を防止することもできる。
【0079】
また、請求項4に係る発明の熱式流量計においては、基板と基板に実装された測定チップとの間に弾性体が存在しており、基板が多少反ったとしても、弾性体が緩衝材として働くので、基板に実装された測定チップが破壊されることはない。
【0080】
尚、請求項5又は請求項6に係る発明の熱式流量計のように、センサー流路が、基板と基板に実装された測定チップとの間に存在する弾性体の厚みで形成されるものであるけれども、測定チップ又は基板に溝を設けたことにより、センサー流路の一部にしても、上述したように、熱線が設けられた測定チップをセンサー部とするものであって、測定チップの熱線と電気回路との接続に関し、ワイヤーボンディングの使用を回避したものと言うことができるし、組立・検査工程などにおける取り扱いが容易となるし、修理が容易となるし、測定結果の乱流ノイズが小さい。
【0081】
また、請求項7に係る発明の熱式流量計において、熱線を用いた計測原理を行うための電気回路を基板の裏面に設ければ、熱線が設けられた測定チップは基板の表面又は表面側で基板に実装されていることから、熱線が設けられた測定チップと、熱線が設けられた測定チップと熱線を用いた計測原理を行うための電気回路とを、一つの基板に集約することができるので、省スペースやコストダウンに貢献することができる。
【0082】
また、請求項8に係る発明の熱式流量計において、センサー流路の下流側に熱線を設ければ、センサー流路の下流側は、センサー流路の細長い形状により、計測対象気体の流れが整えられていく作用がより大きく発揮されるので、測定結果の乱流ノイズがより小さくなる。
【0083】
また、請求項9に係る発明の熱式流量計において、ボディに内設された底板を備え、底板で主流路の断面積を変更させれば、ボディの内部を流れる計測対象気体は、主流路とセンサー流路の断面積比に応じて、主流路とセンサー流路とに分流されることから、センサー流路に橋設された熱線からの出力特性を異なるものとすることができるので、かかる出力特性に応じて、センサー流路を流れる計測対象気体の流量、ひいては、ボディの内部を流れる計測対象気体の流量の測定範囲(流量レンジ)を調整することができる。
【図面の簡単な説明】
【図1】本発明の熱式流量計の断面図である。
【図2】本発明の熱式流量計で使用された測定チップの正面図である。
【図3】本発明の熱式流量計で使用された測定チップの側面図である。
【図4】本発明の熱式流量計において、測定チップを基板に実装するときの斜視図である。
【図5】図1の線A−Aの断面図である。
【図6】本発明の熱式流量計の出力特性を示した図である。
【図7】従来技術の熱式流量計の出力特性を示した図である。
【図8】本発明の熱式流量計と従来技術の熱式流量計の出力特性を比較した図である。
【図9】本発明の熱式流量計と従来技術の熱式流量計の出力特性における乱流ノイズを比較した図である。
【図10】本発明の熱式流量計において、底板の高さを変更したときの出力特性を示した図である。
【図11】本発明の熱式流量計において、底板の高さと主流路の断面積の関係の一例を示した表である。
【図12】本発明の熱式流量計において、測定素子が実装された基板のその他の例の断面図である。
【図13】図12の線B−B断面図である。
【図14】本発明の熱式流量計のその他の例の断面図である。
【図15】整流機構の斜視図である。
【図16】整流板の正面図である。
【図17】本発明の熱式流量計のその他の例の断面図である。
【図18】従来技術の熱式流量計の断面図である。
【図19】従来技術の熱式流量計で使用された測定素子の斜視図である。
【符号の説明】
1A、1B、1C 熱式流量計
11 測定チップ
13 測定チップの溝
14、15、16、17 熱線用電極
18 温度センサー用熱線
19 流速センサー用熱線
21A、21B 基板
23 基板の溝
24、25、26、27 電気回路用電極
31、32、33、34 電気素子
28 電気回路用電極ピン
29 ゴム
41A、41B ボディ
47 底板
L 助走距離
M 主流路
S1、S2 センサー流路

Claims (9)

  1. 熱線と前記熱線に接続する熱線用電極とが設けられた測定チップと、
    前記熱線を用いた計測原理を行うための電気回路に接続する電気回路用電極が表面に設けられた基板と、
    前記基板が密着することにより主流路が形成されるボディとを備え、
    前記測定チップ又は前記基板に溝が設けられており、前記熱線用電極と前記電気回路用電極とを接着して前記測定チップを前記基板に実装することによって、前記主流路に対するセンサー流路を前記測定チップと前記基板との間に前記溝で形成するとともに、前記センサー流路に前記熱線を橋設させたこと、を特徴とする熱式流量計。
  2. 請求項1に記載する熱式流量計であって、
    前記測定チップのみに前記溝を設けたこと、を特徴とする熱式流量計。
  3. 請求項1に記載する熱式流量計であって、
    前記基板のみに前記溝を設けたこと、を特徴とする熱式流量計。
  4. 熱線と前記熱線に接続する熱線用電極とが設けられた測定チップと、
    前記熱線を用いた計測原理を行うための電気回路に接続する電気回路用電極ピンと、
    前記電気回路用電極ピンが挿設された基板と、
    前記電気回路用電極ピンと前記基板との間を密封する弾性体と、
    前記基板が密着することにより主流路が形成されるボディとを備え、
    前記熱線用電極と前記電気回路用電極ピンの平頭部とを接着して前記測定チップを前記基板の表面側で実装することによって、前記主流路に対するセンサー流路を前記測定チップと前記基板との間に前記弾性体の厚みで細長く形成するとともに、前記センサー流路に前記熱線を橋設させたこと、を特徴とする熱式流量計。
  5. 請求項4に記載する熱式流量計であって、
    前記測定チップに溝を設けたことにより、前記センサー流路の一部にしたこと、を特徴とする熱式流量計。
  6. 請求項4又は請求項5に記載する熱式流量計であって、
    前記基板に溝を設けたことにより、前記センサー流路の一部にしたこと、を特徴とする熱式流量計。
  7. 請求項1乃至請求項6のいずれか一つに記載する熱式流量計であって、
    前記電気回路を前記基板の裏面に設けたこと、を特徴とする熱式流量計。
  8. 請求項1乃至請求項7のいずれか一つに記載する熱式流量計であって、
    前記センサー流路の下流側に前記熱線を設けたこと、を特徴とする熱式流量計。
  9. 請求項1乃至請求項8のいずれか一つに記載する熱式流量計であって、
    前記ボディに内設された底板を備え、
    前記底板で前記主流路の断面積を変更させたこと、を特徴とする熱式流量計。
JP2003139696A 2003-05-19 2003-05-19 熱式流量計 Expired - Fee Related JP3597527B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139696A JP3597527B2 (ja) 2003-05-19 2003-05-19 熱式流量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139696A JP3597527B2 (ja) 2003-05-19 2003-05-19 熱式流量計

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000368801A Division JP2002168669A (ja) 2000-12-04 2000-12-04 熱式流量計

Publications (2)

Publication Number Publication Date
JP2003329503A JP2003329503A (ja) 2003-11-19
JP3597527B2 true JP3597527B2 (ja) 2004-12-08

Family

ID=29707494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139696A Expired - Fee Related JP3597527B2 (ja) 2003-05-19 2003-05-19 熱式流量計

Country Status (1)

Country Link
JP (1) JP3597527B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039035A (ja) * 2009-07-14 2011-02-24 Ckd Corp 熱式流量計

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265819A (ja) * 2004-02-19 2005-09-29 Keyence Corp 分流式流量センサ装置
JP2005300365A (ja) * 2004-04-13 2005-10-27 Keyence Corp 分流式流量センサ装置
CN109073432B (zh) * 2016-06-24 2021-01-29 日立汽车***株式会社 热式流量计

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222647Y2 (ja) * 1985-05-09 1990-06-19
JPH0342616B2 (ja) * 1983-08-26 1991-06-27
JPH045928B2 (ja) * 1981-12-02 1992-02-04 S Tec Inc
JPH0518799A (ja) * 1991-07-11 1993-01-26 Stec Kk 層流素子およびその製造方法
JPH062156U (ja) * 1992-06-20 1994-01-14 株式会社エステック 層流素子
JPH07159215A (ja) * 1993-12-04 1995-06-23 Stec Kk 質量流量センサ
JPH07243928A (ja) * 1994-03-04 1995-09-19 Omron Corp 物理量測定センサ及びその製造方法並びに多層回路基板
JPH08210889A (ja) * 1995-02-03 1996-08-20 Yamatake Honeywell Co Ltd 流量計
JPH10221131A (ja) * 1997-02-12 1998-08-21 Osaka Gas Co Ltd 流量計
JPH10332455A (ja) * 1997-06-02 1998-12-18 Ricoh Co Ltd フローセンサ及びその製造方法
JP2000146652A (ja) * 1998-11-05 2000-05-26 Fuji Electric Co Ltd マスフローセンサ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045928B2 (ja) * 1981-12-02 1992-02-04 S Tec Inc
JPH0342616B2 (ja) * 1983-08-26 1991-06-27
JPH0222647Y2 (ja) * 1985-05-09 1990-06-19
JPH0518799A (ja) * 1991-07-11 1993-01-26 Stec Kk 層流素子およびその製造方法
JPH062156U (ja) * 1992-06-20 1994-01-14 株式会社エステック 層流素子
JPH07159215A (ja) * 1993-12-04 1995-06-23 Stec Kk 質量流量センサ
JPH07243928A (ja) * 1994-03-04 1995-09-19 Omron Corp 物理量測定センサ及びその製造方法並びに多層回路基板
JPH08210889A (ja) * 1995-02-03 1996-08-20 Yamatake Honeywell Co Ltd 流量計
JPH10221131A (ja) * 1997-02-12 1998-08-21 Osaka Gas Co Ltd 流量計
JPH10332455A (ja) * 1997-06-02 1998-12-18 Ricoh Co Ltd フローセンサ及びその製造方法
JP2000146652A (ja) * 1998-11-05 2000-05-26 Fuji Electric Co Ltd マスフローセンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039035A (ja) * 2009-07-14 2011-02-24 Ckd Corp 熱式流量計

Also Published As

Publication number Publication date
JP2003329503A (ja) 2003-11-19

Similar Documents

Publication Publication Date Title
JP5182314B2 (ja) 空気流量測定装置
JPWO2008105144A1 (ja) センサ、センサの温度制御方法及び異常回復方法
JP2002168669A (ja) 熱式流量計
JPWO2008105197A1 (ja) フローセンサ
JP4752472B2 (ja) 空気流量測定装置
JP3597527B2 (ja) 熱式流量計
JP5293278B2 (ja) 熱式流量計
JP4166705B2 (ja) 空気流量測定装置
JP2000146652A (ja) マスフローセンサ
JP2009074945A (ja) フローセンサ
US6799456B2 (en) Thermal flow sensor
JP3871566B2 (ja) 熱式流量計
JP2008215825A (ja) センサ
JP3878666B2 (ja) 熱式流量計
JP3715920B2 (ja) 熱式流量計
JP3637050B2 (ja) 熱式流量計
JP4319457B2 (ja) 熱式流量計
JP3895948B2 (ja) フローセンサ
JP3766290B2 (ja) フローセンサ
JP3766289B2 (ja) フローセンサ
JP3645899B2 (ja) 熱式流量計
JP3785052B2 (ja) フローセンサ
JP5364059B2 (ja) 熱式流量計
JP6234743B2 (ja) 熱式流量センサ
JP3645900B2 (ja) 熱式流量計

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040624

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

R150 Certificate of patent or registration of utility model

Ref document number: 3597527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees