JP3589228B2 - Method for producing anisotropic conductive sheet - Google Patents

Method for producing anisotropic conductive sheet Download PDF

Info

Publication number
JP3589228B2
JP3589228B2 JP2002102631A JP2002102631A JP3589228B2 JP 3589228 B2 JP3589228 B2 JP 3589228B2 JP 2002102631 A JP2002102631 A JP 2002102631A JP 2002102631 A JP2002102631 A JP 2002102631A JP 3589228 B2 JP3589228 B2 JP 3589228B2
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive sheet
inspected
insulating
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002102631A
Other languages
Japanese (ja)
Other versions
JP2003021648A (en
Inventor
一美 塙
伸一 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2002102631A priority Critical patent/JP3589228B2/en
Publication of JP2003021648A publication Critical patent/JP2003021648A/en
Application granted granted Critical
Publication of JP3589228B2 publication Critical patent/JP3589228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えばプリント回路基板などを検査対象としてその電気的性能を検査するため、当該検査対象回路基板と電気的検査装置との間の電気的接続を達成するために用いられる異方導電性シートの製造方法に関するものである。
【0002】
【従来の技術】
一般に、プリント回路基板などの回路基板は、電極数が増加し、高密度化し、それに応じて配線が複雑化する傾向にある。このため、内層回路基板と外層回路基板とからなる多層基板が多く用いられるようになってきている。また、生産性を高める意味から、製造の際は、同一回路基板複数枚を一枚の基材上に形成して製造を進める、多面づけが行なわれている。このような内層回路基板のリード電極と、これに接続すべき他の回路端子などとの電気的な接続を達成するために、従来、各リード電極領域上に異方導電性シートを介在させることが行なわれている。この異方導電性シートは、厚さ方向にのみ導電性を示すもの、または加圧されたときに厚さ方向にのみ導電性を示す多数の加圧導電性導電部を有するものであり、種々の構造のものが、例えば特公昭56−48951号公報、特開昭51−93393号公報、特開昭53−147772号公報、特開昭54−146873号公報などにより知られている。上記異方導電性シートはいずれもシート上任意の点に加圧導電性導電部を有するものであった。
【0003】
【発明が解決しようとする課題】
しかし、従来のシート上任意の点に加圧導電性導電部を有する異方導電性シートは、内層回路基板のような配線部が露出している回路基板の検査に対しては、必ずしも十分な性能を発揮し得なかった。さらに、近年における内層回路基板の配線密度の微細化および製造の際の多面づけに伴なうサイズの増大化傾向に対しては、従来の異方導電性シートによる検査が益々困難なものとなってきている。本発明は以上のような問題点を解決するものであって、その目的は、検査対象である回路基板におけるリード電極などの被検査電極が電極ピッチ微小であり、かつ微細で高密度の複雑なパターンのものであり、これらのリード電極に接続された微細な配線が露出されている場合にも、当該回路基板について所要の電気的接続を確実に達成することができ、従って接続信頼性が高く、しかも所要の位置精度を確保しながら当該回路基板の検査を十分に行なうことができる異方導電性シートを容易に、かつ、高い精度で製造することのできる方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明の異方導電性シートの製造方法は、検査対象回路基板の被検査電極に対応した開口部を有する一対の絶縁シート体を用い、当該一対の絶縁シート体の間に、磁性を有する導電性粒子を含有する高分子材料よりなる成形材料層を配し、当該成形材料層に対してその厚さ方向に平行磁場をかけてその磁力によって導電性粒子を移動させながら加圧して成形材料層の高分子材料を流動させてその外形を変化させると共に、高分子材料を硬化させて高分子物質とし、これにより、異方導電性シート体を形成すると共に、前記一対の絶縁シート体のうちの少なくとも一方が当該異方導電性シート体と接合された状態とすることを特徴とする。
【0005】
また、本発明の異方導電性シートの製造方法は、検査対象回路基板の被検査電極に対応した開口部を有する一対の絶縁シート体に当該開口部が覆われるよう開口部被覆シートを設け、この開口部被覆シートが設けられた一対の絶縁シート体を、対応する開口部が向き合うように位置合わせし、この状態で、磁性を有する導電性粒子を含有する高分子材料よりなる成形材料層を前記一対の絶縁性シート体の間に配し、開口部被覆シートが設けられた一対の絶縁シート体と成形材料層とからなる異方導電性シート用材料層を加圧して成形材料層の高分子材料を流動させてその外形を変化させると共に、当該成形材料層に対してその厚さ方向に平行磁場をかけてその磁力によって導電性粒子を移動させながら高分子材料を硬化させて高分子物質とし、これにより、異方導電性シート体に、開口部被覆シートが設けられた絶縁シート体が一体的に接合された異方導電性シート用材料層一体化物を得、この異方導電性シート用材料層一体化物から両方の開口部被覆シートを除去すると共に片方の絶縁シート体を除去することを特徴とする。
【0006】
本発明の方法によれば、製造される異方導電性シートは、絶縁部により相互に絶縁された状態で厚さ方向に伸びる複数の導電部を有し、当該導電部が一面側において検査対象回路基板の被検査電極に対応した突出部を形成し、かつ絶縁性で弾性を有する高分子物質中に導電性粒子が密に充填されてなる異方導電性シート体と、この異方導電性シート体の前記一面側に一体的に接合された、検査対象回路基板の被検査電極に対応した開口部を有する絶縁シート体とよりなり、前記異方導電性シート体の導電部に係る突出部が前記絶縁シート体の開口部中に突出して当該突出部の端部の表面が絶縁シート体の表面とほぼ同一レベルとされているものを製造することができる。従って、検査対象である回路基板におけるリード電極などの被検査電極が電極ピッチ微小であり、かつ微細で高密度の複雑なパターンのものであり、これらのリード電極に接続された微細な配線が露出されている場合にも、当該回路基板について所要の電気的接続を確実に達成することができ、従って接続信頼性が高く、しかも所要の位置精度を確保しながら当該回路基板の検査を十分に行なうことができる異方導電性シートを、容易に、かつ高い精度に製造することができる。
【0007】
【発明の実施の形態】
以下、図面によって本発明を具体的に説明する。
先ず、本発明の方法によって製造される異方導電性シートの構成について説明する。
図9および図10は、本発明の方法によって製造される異方導電性シート11の具体的構成例を示すものであって、絶縁シート体1が異方導電性シート体8の一面上に配置されて一体的に接合されている。
この異方導電性シート体8においては、その厚さ方向に伸びる複数の導電部10が、絶縁部12により相互に絶縁された状態で、検査対象回路基板の被検査電極に対応して配置され、各導電部10は絶縁シート体1の開口部2中に突出し、この突出した導電部10の端部の表面は、絶縁シート体1の表面とほぼ同一レベルになる形状で形成されている。
【0008】
各導電部10は、絶縁性で弾性を有する高分子物質4中に導電性粒子5が密に充填されて構成され、通常、加圧により抵抗値が減少する加圧導電性を有する。導電部10における導電性粒子5の充填率は3体積%以上30体積%以下、好ましくは5体積%以上20体積%以下である。なお、導電性粒子5の充填率が低いときは、加圧力を大きくしても抵抗値が減少せず、従って信頼性の高い電気的接続が困難となる。導電部10の厚さDは、0.1〜5mm、特に0.3〜3mmであることが好ましい。導電部10の厚さDがこの範囲にあれば、小さな圧力でも有効な導電性が確実に得られる。
【0009】
また、絶縁シート体1の厚さdは、実用的には0.01〜0.8mm、特に好ましくは0.02〜0.2mmである。絶縁シート体1の厚さdがこの範囲にあれば、異方導電性シート体8の製造における成形の際に生じる成形歪みに基づく導電部の位置ずれを回路基板検査に十分耐える範囲内に抑えることができ、なおかつ、小さな圧力でも有効な導電性が確実に得られる。絶縁シート体1の開口部2中に突出した導電部10の高さhは、絶縁シート体1の厚さdと同一であることが好ましい。
【0010】
導電部10を構成する導電性粒子5としては、例えばニッケル、鉄、コバルトなどの磁性を示す金属の粒子もしくはこれらの合金の粒子、またはこれらの粒子に金、銀、パラジウム、ロジウムなどのメッキを施したもの、非磁性金属粒子もしくはガラスビーズなどの無機質粒子またはポリマー粒子にニッケル、コバルトなどの導電性磁性体のメッキを施したものなどを挙げることができる。製造コストの低減化を図る観点からは、特にニッケル、鉄またはこれらの合金の粒子が好ましく、また接触抵抗が小さいなどの電気的特性の点で金メッキされた粒子を好ましく用いることができる。
【0011】
導電性粒子5の粒径は、導電部10において導電性粒子間の電気的な接触を十分なものとし、かつ導電部10の接触安定性を十分保つ観点から、10〜400μmが好ましく、特に20〜100μmが好ましい。
【0012】
導電部10を構成する絶縁性で弾性を有する高分子物質としては、架橋構造の高分子物質が好ましく、かかる架橋構造の高分子物質を得るために用いることができる未架橋の高分子材料としては、シリコーンゴム、ポリブタジエン、天然ゴム、ポリイソプレン、スチレン−ブタジエン共重合体ゴム、アクリロニトリル−ブタジエン共重合体ゴム、エチレン−プロピレン共重合体ゴム、ウレタンゴム、ポリエステル系ゴム、クロロプレンゴム、エピクロルヒドリンゴムなどを挙げることができる。
【0013】
また、絶縁シート体1としては、異方導電性シート体8の導電部10を構成するものとして挙げられた前記の絶縁性で弾性を有する高分子物質や、熱可塑性樹脂、例えばポリエチレンテレフタレート樹脂、塩化ビニル樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリエチレン樹脂、アクリル樹脂、ポリブタジエン樹脂などや、熱硬化性樹脂、例えばポリイミド樹脂、エポキシ樹脂などが用いられる。
【0014】
次に、本発明の異方導電性シートの製造方法について説明する。
図1は、検査対象回路基板の被検査電極に対応した開口部が形成された状態の2枚の絶縁シート体を示す説明用斜視図、図2は同じく説明用断面図、図3は、開口部が形成された2枚の絶縁シート体に粘着シートが貼付された状態を示す説明用断面図、図4は、磁性を有する導電性粒子と高分子材料との混合物からなる成形材料の層を、粘着シートが貼付された2枚の絶縁シート体の間に配置した状態を示す説明用断面図、図5は、図4の成形材料の層に、加圧力および平行磁場を作用させる状態を示す説明用断面図である。
【0015】
図1および図2に示すように、絶縁シート体1には、検査対象回路基板の被検査電極に対応する部分に、被検査電極の幅とほぼ同一の径を有する円形の開口部2が、NC制御のドリル穴あけ装置、またはエキシマレーザー光を光源とするレーザー加工装置などを用いて形成されている。このような絶縁シート体1を2枚用意する。6はガイド穴である。
【0016】
次に、図3に示すように、これらの絶縁シート体1の開口部2上およびその周辺を、表面が平滑で厚みが均一な粘着シート3で覆い、ガイドピンなどにより、2枚の絶縁シート体1の対応する開口部2が向き合うように位置合わせをした状態で、図4に示すように、磁性を有する導電性粒子5と、高分子物質4となる高分子材料4Aとの混合物からなる成形材料の層(「混合物シート」ともいう。)を形成して2枚の絶縁シート体1と成形材料の層とからなる異方導電性シート用材料層20を得る。
【0017】
次いで、図5に示すように、2枚の絶縁シート体1と成形材料の層からなる異方導電性シート用材料層20を加圧して成形材料を流動させて当該混合物シートの外形を変化させつつ、平行磁場を当該混合物シートの厚さ方向にかけて、その磁力によって導電性粒子5を当該混合物シートの厚さ方向に配向させながら当該成形材料を硬化させて、2枚の絶縁シート体1と硬化した成形材料層が一体化した図8に示す異方導電性シート用材料層一体化物20Aを製造する。なお、混合物シートの外形を変化させた後に成形材料を硬化させるための手段としては、一般的には架橋が用いられる。次に、図9に示すように、粘着シート3の両方および絶縁シート体1の片方を除去して異方導電性シート11を製造する。
【0018】
図5の金型は、各々電磁石を構成する上型21と下型22よりなり、上型21と下型22には、検査対象回路基板の被検査電極に対応したパターンの強磁性体部分Mと、それ以外の非磁性体部分Nとよりなる、表面が平坦面である磁極板23および磁極板24が設けられている。
【0019】
磁極板23および磁極板24の代わりに、図6に示すように、検査対象回路基板の被検査電極に対応したパターンの強磁性体部分Mと、それ以外の非磁性体部分Nとよりなり、当該上型21の下面および下型22の上面において、強磁性体部分Mが非磁性体部分Nより突出した磁性板25および26を用いることもできる。この場合には、異方導電性シート用材料層20に対しては、検査対象回路基板の被検査電極に対応して配置された導電部において、より強い平行磁場が作用されることになる。
【0020】
また、磁極板23および磁極板24の代わりに、図7に示すように、表面が平滑で厚みの均一な強磁性体の板27および28を用いることもできる。この場合には、異方導電性シート用材料層20の任意の点において均一な平行磁場が作用されることになる。この場合、形成された異方導電性シートにおける検査対象回路基板の被検査電極に対応して配置された導電部における電気抵抗値は、磁極板23および磁極板24または磁極板25および磁極板26を用いて成形した場合に比べて、やや高い値を示す。
【0021】
以下、本発明の実施例を説明するが、本発明はこれらの実施例に限定されるものではない。
【0022】
【実施例】
厚さ0.05mm、縦300mm、横400mmのポリエチレンテレフタレートシートを2枚重ねて、NC制御のドリル穴あけ装置で、検査対象回路基板の被検査電極に対応した位置に、0.2mmの径を有する穴による開口部2と、シートの四隅に3.0mmの径を有するガイド穴6を4点あけ(図1、2参照)、2枚の絶縁シート体1を形成した。次に、この2枚の絶縁シート体1のガイド穴6を除く開口部2上およびその周辺を、それぞれ厚さ0.05mmのポリイミド製粘着シート3で覆った(図3参照)。次に、2枚の絶縁シート体1のうち1枚には、その表面を#600のサンドペーパーで粗面化した後、その表面に熱硬化型のシリコーンゴムを薄く塗布した。
【0023】
次に、室温硬化型シリコーンゴムに平均粒径40μmの金メッキしたニッケルよりなる磁性体導電性粒子5を12体積%となる割合で混合してなる成形材料を調製し、これを上記の一対の絶縁シート体間に配置して異方導電性シート用材料層20を形成し、これを金型のキャビティ内に配置した。この金型は、各々電磁石を構成する上型21と下型22よりなり、上型21と下型22には、検査対象回路基板の被検査電極に対応したパターンの強磁性体部分Mと、それ以外の非磁性体部分Nとよりなる、表面が平坦面である磁極板23および磁極板24が設けられたものである。この磁極板23および磁極板24の強磁性体部分Mと、異方導電性シート用材料層20の絶縁シート体1の開口部2とが重なるようにガイドピンにより位置合わせを行なった(図5参照)。この状態で上型21と下型22の電磁石を動作させ、これにより異方導電性シート用材料層20の厚さ方向に加圧力と平行磁場を作用させて、この状態で60℃で8時間放置して硬化させた後、ポリイミド製粘着テープ3および一対の絶縁シート体1の片方を除去し、1枚の絶縁シート体1と、硬化した成形材料による異方導電性シート体8が一体化した異方導電性シート11を製造した。
【0024】
以上の実施例で得られた異方導電性シートを用いて、図11に示した構成で電気的検査を行なった。図11において、61は検査ヘッド、62は異方導電性シート、63はオフグリッドアダプター、64は検査対象のプリント回路基板、64Aは被検査電極、65は検査電極である。
この例の異方導電性シート62は、厚さ方向に複数の導電部を有し、表面が平坦なものである。
検査対象のプリント回路基板64の配線部はすべて露出されており、配線および被検査電極の最小ピッチが0.5mmと微細であったが、十分な性能をもって検査対象回路基板の電気的導通およびショートの検査を行なうことができた。
【0025】
【発明の効果】
本発明の方法によれば、製造される異方導電性シートは、絶縁部により相互に絶縁された状態で厚さ方向に伸びる複数の導電部を有し、当該導電部が一面側において検査対象回路基板の被検査電極に対応した突出部を形成し、かつ絶縁性で弾性を有する高分子物質中に導電性粒子が密に充填されてなる異方導電性シート体と、この異方導電性シート体の前記一面側に一体的に接合された、検査対象回路基板の被検査電極に対応した開口部を有する絶縁シート体とよりなり、前記異方導電性シート体の導電部に係る突出部が前記絶縁シート体の開口部中に突出して当該突出部の端部の表面が絶縁シート体の表面とほぼ同一レベルとされているものを製造することができる。従って、検査対象である回路基板におけるリード電極などの被検査電極が電極ピッチ微小であり、かつ微細で高密度の複雑なパターンのものであり、これらのリード電極に接続された微細な配線が露出されている場合にも、当該回路基板について所要の電気的接続を確実に達成することができ、従って接続信頼性が高く、しかも所要の位置精度を確保しながら当該回路基板の検査を十分に行なうことができる異方導電性シートを、容易に、かつ高い精度に製造することができる。
【図面の簡単な説明】
【図1】本発明の方法において用いられる、検査対象回路基板の被検査電極に対応した開口部が形成された状態の2枚の絶縁シート体を示す説明用斜視図である。
【図2】本発明の方法において用いられる、検査対象回路基板の被検査電極に対応した開口部が形成された状態の2枚の絶縁シート体を示す説明用断面図である。
【図3】2枚の絶縁シート体に、粘着シートが貼付された状態を示す説明用断面図である。
【図4】磁性を有する導電性粒子と高分子材料との混合物からなる成形材料の層を、粘着シートが貼付された2枚の絶縁シート体の間に配置した状態を示す説明用断面図である。
【図5】図4の成形材料の層に、加圧力および平行磁場を作用させる状態を示す説明用断面図である。
【図6】他の磁極板を有する金型を用いた場合における、図5と同様の状態を示す説明用断面図である。
【図7】磁極板の代わりに強磁性体の板を有する金型を用いた場合における、図5と同様の状態を示す説明用断面図である。
【図8】絶縁シート体と異方導電性シート体とが一体化成形された異方導電性シート用材料層一体化物を示す説明用断面図である。
【図9】図8の異方導電性シート用材料層一体化物より粘着シートの両方および絶縁シート体の片方が除去されて、完成した異方導電性シートを示す説明用断面図である。
【図10】図8の異方導電性シート用材料層一体化物より粘着シートの両方および絶縁シート体の片方が除去されて、完成した異方導電性シートを示す説明用斜視図である。
【図11】実施例において製造された異方導電性シートを用いた電気的検査を行なう装置の構成を示す説明用断面図である。
【符号の説明】
1 絶縁シート体
2 開口部
3 粘着シート
4 絶縁性で弾性を有する高分子物質
4A 高分子材料
5 導電性粒子
6 ガイド穴
7 スペーサー
8 異方導電性シート体
10 導電部
11 異方導電性シート
12 絶縁部
20 異方導電性シート用材料層
20A 異方導電性シート用材料層一体化物
21 上型
22 下型
23 磁極板
24 磁極板
25 磁極板
26 磁極板
27 磁極板
28 磁極板
M 強磁性体部分
N 非磁性体部分
61 検査ヘッド
62 異方導電性シート
63 オフグリッドアダプター
64 プリント回路基板
64A 被検査電極
65 検査電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an anisotropic conductive material used for achieving an electrical connection between a circuit board to be inspected and an electrical inspection device, for example, to inspect an electric performance of a printed circuit board or the like as an inspection object. The present invention relates to a sheet manufacturing method.
[0002]
[Prior art]
In general, a circuit board such as a printed circuit board tends to increase the number of electrodes, increase the density, and complicate wiring accordingly. For this reason, multi-layer boards composed of an inner circuit board and an outer circuit board are increasingly used. In addition, in order to enhance productivity, multiple manufacturing is performed in which a plurality of identical circuit boards are formed on a single base material and manufacturing is advanced. Conventionally, an anisotropic conductive sheet is interposed on each lead electrode region in order to achieve electrical connection between such lead electrodes of the inner layer circuit board and other circuit terminals to be connected thereto. Is being done. This anisotropic conductive sheet has conductivity only in the thickness direction, or has a large number of pressurized conductive portions that show conductivity only in the thickness direction when pressed. Are known, for example, from JP-B-56-48951, JP-A-51-93393, JP-A-53-147772, and JP-A-54-146873. Each of the anisotropic conductive sheets had a pressurized conductive part at an arbitrary point on the sheet.
[0003]
[Problems to be solved by the invention]
However, an anisotropic conductive sheet having a pressurized conductive portion at any point on a conventional sheet is not necessarily sufficient for inspection of a circuit board having an exposed wiring portion such as an inner layer circuit board. Performance could not be demonstrated. Furthermore, in recent years, with the trend of miniaturization of the wiring density of the inner layer circuit board and the increase in size accompanying multi-faceting at the time of manufacturing, the inspection with the conventional anisotropic conductive sheet becomes increasingly difficult. Is coming. The present invention is to solve the above problems, the purpose of which is that the electrode to be inspected, such as a lead electrode in a circuit board to be inspected, has a fine electrode pitch, and is a fine, high-density complex. Even if the fine wiring connected to these lead electrodes is exposed because of the pattern, the required electrical connection can be surely achieved for the circuit board, and therefore the connection reliability is high. It is another object of the present invention to provide a method capable of easily and accurately producing an anisotropic conductive sheet capable of sufficiently inspecting the circuit board while securing required positional accuracy.
[0004]
[Means for Solving the Problems]
The method for producing an anisotropic conductive sheet of the present invention uses a pair of insulating sheets having openings corresponding to the electrodes to be inspected of a circuit board to be inspected, and a conductive material having magnetism is provided between the pair of insulating sheets. A molding material layer made of a polymer material containing conductive particles is disposed, and a parallel magnetic field is applied to the molding material layer in the direction of its thickness to apply pressure while moving the conductive particles by its magnetic force. Along with flowing the polymer material to change its outer shape, the polymer material is cured to a polymer material, thereby forming an anisotropic conductive sheet body, and of the pair of insulating sheet bodies. At least one is in a state of being joined to the anisotropic conductive sheet body.
[0005]
Further, the method of manufacturing an anisotropic conductive sheet of the present invention provides an opening covering sheet so that the opening is covered by a pair of insulating sheet bodies having openings corresponding to the electrodes to be inspected of the circuit board to be inspected, A pair of insulating sheet bodies provided with the opening covering sheets are aligned so that the corresponding openings face each other, and in this state, a molding material layer made of a polymer material containing conductive particles having magnetism is removed. A material layer for an anisotropic conductive sheet, which is disposed between the pair of insulating sheet bodies and includes a pair of insulating sheet bodies provided with an opening covering sheet and a molding material layer, is pressed to increase the height of the molding material layer. In addition to flowing the molecular material to change its outer shape, a parallel magnetic field is applied to the molding material layer in the thickness direction, and the polymer material is cured by moving the conductive particles by the magnetic force, thereby polymerizing the polymer material. age Thereby, an anisotropic conductive sheet material layer integrated product is obtained in which an insulating sheet body provided with an opening covering sheet is integrally joined to the anisotropic conductive sheet body, and the anisotropic conductive sheet material is obtained. The present invention is characterized in that both the opening covering sheets are removed from the integrated layer and one of the insulating sheets is removed.
[0006]
According to the method of the present invention, the anisotropic conductive sheet to be manufactured has a plurality of conductive portions extending in the thickness direction while being insulated from each other by the insulating portion, and the conductive portion is an object to be inspected on one surface side. An anisotropically conductive sheet body formed with a protruding portion corresponding to an electrode to be inspected on a circuit board, and densely filled with conductive particles in an insulating and elastic polymer material; An insulating sheet body integrally joined to the one surface side of the sheet body and having an opening corresponding to the electrode to be inspected of the circuit board to be inspected, and a protrusion relating to a conductive part of the anisotropic conductive sheet body Can protrude into the opening of the insulating sheet body, and the surface of the end of the protruding part is substantially at the same level as the surface of the insulating sheet body. Therefore, the electrodes to be inspected, such as lead electrodes, on the circuit board to be inspected have a fine electrode pitch, a fine and high-density complicated pattern, and the fine wiring connected to these lead electrodes is exposed. In this case, the required electrical connection can be reliably achieved with respect to the circuit board, the connection reliability is high, and the circuit board is sufficiently inspected while securing the required positional accuracy. The anisotropic conductive sheet which can be manufactured can be manufactured easily and with high precision.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to the drawings.
First, the configuration of the anisotropic conductive sheet manufactured by the method of the present invention will be described.
9 and 10 show a specific configuration example of the anisotropic conductive sheet 11 manufactured by the method of the present invention, in which the insulating sheet 1 is disposed on one surface of the anisotropic conductive sheet 8. And are integrally joined.
In the anisotropic conductive sheet body 8, a plurality of conductive portions 10 extending in the thickness direction are arranged in a state in which the conductive portions 10 are insulated from each other by the insulating portion 12 and correspond to the electrodes to be inspected on the circuit board to be inspected. Each of the conductive portions 10 protrudes into the opening 2 of the insulating sheet 1, and the surface of the protruding end of the conductive portion 10 is formed in a shape that is substantially the same level as the surface of the insulating sheet 1.
[0008]
Each of the conductive portions 10 is configured by densely filling conductive particles 5 in an insulating and elastic polymer material 4, and usually has pressurized conductivity whose resistance value is reduced by pressurization. The filling rate of the conductive particles 5 in the conductive portion 10 is 3% by volume or more and 30% by volume or less, preferably 5% by volume or more and 20% by volume or less. When the filling rate of the conductive particles 5 is low, the resistance value does not decrease even if the pressing force is increased, so that it is difficult to make a reliable electrical connection. The thickness D of the conductive portion 10 is preferably 0.1 to 5 mm, particularly preferably 0.3 to 3 mm. When the thickness D of the conductive portion 10 is in this range, effective conductivity can be reliably obtained even with a small pressure.
[0009]
Further, the thickness d of the insulating sheet 1 is practically 0.01 to 0.8 mm, particularly preferably 0.02 to 0.2 mm. If the thickness d of the insulating sheet 1 is within this range, the displacement of the conductive portion due to molding distortion generated during molding in the manufacture of the anisotropic conductive sheet 8 is suppressed to a range that can sufficiently withstand circuit board inspection. In addition, effective conductivity is reliably obtained even with a small pressure. The height h of the conductive portion 10 protruding into the opening 2 of the insulating sheet body 1 is preferably the same as the thickness d of the insulating sheet body 1.
[0010]
As the conductive particles 5 constituting the conductive portion 10, for example, particles of a metal exhibiting magnetism such as nickel, iron, and cobalt or particles of alloys thereof, or plating of these particles with gold, silver, palladium, rhodium, or the like is used. Examples thereof include those obtained by plating non-magnetic metal particles or inorganic particles such as glass beads or polymer particles with a conductive magnetic material such as nickel or cobalt. From the viewpoint of reducing the manufacturing cost, particles of nickel, iron or an alloy thereof are particularly preferable, and gold-plated particles can be preferably used in terms of electrical characteristics such as low contact resistance.
[0011]
The particle size of the conductive particles 5 is preferably 10 to 400 μm, particularly preferably 20 to 400 μm, from the viewpoint of ensuring sufficient electrical contact between the conductive particles in the conductive portion 10 and maintaining sufficient contact stability of the conductive portion 10. 100100 μm is preferred.
[0012]
As the insulating and elastic polymer material constituting the conductive portion 10, a polymer material having a crosslinked structure is preferable, and as an uncrosslinked polymer material that can be used to obtain such a polymer material having a crosslinked structure, , Silicone rubber, polybutadiene, natural rubber, polyisoprene, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, ethylene-propylene copolymer rubber, urethane rubber, polyester rubber, chloroprene rubber, epichlorohydrin rubber, etc. Can be mentioned.
[0013]
Further, as the insulating sheet body 1, the above-mentioned insulating and elastic polymer material mentioned as a constituent of the conductive portion 10 of the anisotropic conductive sheet body 8, a thermoplastic resin such as a polyethylene terephthalate resin, For example, a vinyl chloride resin, a polystyrene resin, a polyacrylonitrile resin, a polyethylene resin, an acrylic resin, a polybutadiene resin, or a thermosetting resin such as a polyimide resin or an epoxy resin is used.
[0014]
Next, a method for producing the anisotropic conductive sheet of the present invention will be described.
FIG. 1 is an explanatory perspective view showing two insulating sheet bodies in which openings corresponding to electrodes to be inspected of a circuit board to be inspected are formed, FIG. 2 is a sectional view for explanation, and FIG. FIG. 4 is a cross-sectional view illustrating a state in which the pressure-sensitive adhesive sheet is attached to two insulating sheet bodies each having a portion, and FIG. 4 illustrates a layer of a molding material including a mixture of conductive particles having magnetic properties and a polymer material. FIG. 5 is a cross-sectional view illustrating a state in which the pressure-sensitive adhesive sheet is attached between two insulating sheet bodies, and FIG. 5 illustrates a state in which a pressing force and a parallel magnetic field are applied to the molding material layer in FIG. It is explanatory sectional drawing.
[0015]
As shown in FIGS. 1 and 2, a circular opening 2 having a diameter substantially equal to the width of the electrode to be inspected is formed in a portion of the insulating sheet body 1 corresponding to the electrode to be inspected on the circuit board to be inspected. It is formed using an NC-controlled drilling apparatus, a laser processing apparatus using excimer laser light as a light source, or the like. Two such insulating sheet bodies 1 are prepared. 6 is a guide hole.
[0016]
Next, as shown in FIG. 3, the opening 2 of the insulating sheet body 1 and its surroundings are covered with a pressure-sensitive adhesive sheet 3 having a smooth surface and a uniform thickness. In a state where the corresponding openings 2 of the body 1 are aligned so as to face each other, as shown in FIG. 4, the mixture is made of a mixture of conductive particles 5 having magnetism and a polymer material 4A to be a polymer substance 4. A layer of a molding material (also referred to as a “mixture sheet”) is formed to obtain an anisotropic conductive sheet material layer 20 including two insulating sheet bodies 1 and a layer of a molding material .
[0017]
Next, as shown in FIG. 5, the anisotropic conductive sheet material layer 20 composed of two insulating sheet bodies 1 and a layer of a molding material is pressurized to flow the molding material to change the outer shape of the mixture sheet. While applying a parallel magnetic field in the thickness direction of the mixture sheet, the molding material is cured while the conductive particles 5 are oriented in the thickness direction of the mixture sheet by the magnetic force, and the two insulating sheet bodies 1 are cured. The integrated material layer for an anisotropic conductive sheet 20A shown in FIG. 8 in which the formed molding material layers are integrated is manufactured. In addition, as a means for curing the molding material after changing the outer shape of the mixture sheet, crosslinking is generally used. Next, as shown in FIG. 9, both the pressure-sensitive adhesive sheet 3 and one of the insulating sheet members 1 are removed to manufacture the anisotropic conductive sheet 11.
[0018]
The mold shown in FIG. 5 includes an upper mold 21 and a lower mold 22 each constituting an electromagnet. The upper mold 21 and the lower mold 22 have a ferromagnetic material portion M having a pattern corresponding to an electrode to be inspected on a circuit board to be inspected. And a pole plate 23 and a pole plate 24 having a flat surface, each of which is made up of a non-magnetic material portion N.
[0019]
As shown in FIG. 6, instead of the magnetic pole plate 23 and the magnetic pole plate 24, a ferromagnetic portion M having a pattern corresponding to the electrode to be inspected of the circuit board to be inspected, and a non-magnetic material portion N other than the pattern, On the lower surface of the upper mold 21 and the upper surface of the lower mold 22, magnetic plates 25 and 26 in which the ferromagnetic material portion M protrudes from the nonmagnetic material portion N can be used. In this case, a stronger parallel magnetic field is applied to the anisotropic conductive sheet material layer 20 in the conductive portion arranged corresponding to the electrode to be inspected on the circuit board to be inspected.
[0020]
Instead of the pole plates 23 and 24, ferromagnetic plates 27 and 28 having a smooth surface and a uniform thickness can be used as shown in FIG. In this case, a uniform parallel magnetic field is applied at any point of the material layer 20 for the anisotropic conductive sheet. In this case, the electric resistance value of the conductive portion of the formed anisotropic conductive sheet corresponding to the electrode to be inspected of the circuit board to be inspected is the magnetic pole plate 23 and the magnetic pole plate 24 or the magnetic pole plate 25 and the magnetic pole plate 26 Shows a slightly higher value than when molded using
[0021]
Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples.
[0022]
【Example】
Two polyethylene terephthalate sheets each having a thickness of 0.05 mm, a length of 300 mm, and a width of 400 mm are stacked, and have a diameter of 0.2 mm at a position corresponding to an electrode to be inspected on a circuit board to be inspected by an NC control drilling apparatus. Openings 2 formed by holes and four guide holes 6 each having a diameter of 3.0 mm at four corners of the sheet were formed (see FIGS. 1 and 2), and two insulating sheet bodies 1 were formed. Next, the opening 2 except for the guide holes 6 of the two insulating sheet bodies 1 and the periphery thereof were covered with a 0.05 mm-thick polyimide adhesive sheet 3 (see FIG. 3). Next, on one of the two insulating sheet bodies 1, the surface was roughened with # 600 sandpaper, and then a thin layer of thermosetting silicone rubber was applied to the surface.
[0023]
Next, a molding material is prepared by mixing room-temperature-curable silicone rubber with magnetic conductive particles 5 of gold-plated nickel having an average particle size of 40 μm at a ratio of 12% by volume. An anisotropic conductive sheet material layer 20 was formed between the sheet bodies, and this was placed in the cavity of the mold. This mold includes an upper mold 21 and a lower mold 22 each constituting an electromagnet. The upper mold 21 and the lower mold 22 include a ferromagnetic material portion M having a pattern corresponding to an electrode to be inspected on a circuit board to be inspected, A magnetic pole plate 23 and a magnetic pole plate 24 having a flat surface and made of other nonmagnetic portions N are provided. Positioning was performed using guide pins so that the ferromagnetic portions M of the pole plates 23 and 24 and the opening 2 of the insulating sheet body 1 of the anisotropic conductive sheet material layer 20 were overlapped (FIG. 5). reference). In this state, the electromagnets of the upper mold 21 and the lower mold 22 are operated, thereby applying a pressing force and a parallel magnetic field in the thickness direction of the anisotropic conductive sheet material layer 20, and in this state at 60 ° C. for 8 hours. After leaving to cure, the polyimide adhesive tape 3 and one of the pair of insulating sheet bodies 1 are removed, and one insulating sheet body 1 and an anisotropic conductive sheet body 8 made of the cured molding material are integrated. An anisotropic conductive sheet 11 was manufactured.
[0024]
Using the anisotropic conductive sheet obtained in the above example, an electrical test was performed with the configuration shown in FIG. 11, reference numeral 61 denotes an inspection head, 62 denotes an anisotropic conductive sheet, 63 denotes an off-grid adapter, 64 denotes a printed circuit board to be inspected, 64A denotes an electrode to be inspected, and 65 denotes an inspection electrode.
The anisotropic conductive sheet 62 of this example has a plurality of conductive portions in the thickness direction and has a flat surface.
All the wiring portions of the printed circuit board 64 to be inspected were exposed, and the minimum pitch of the wiring and the electrode to be inspected was as fine as 0.5 mm. Was successfully tested.
[0025]
【The invention's effect】
According to the method of the present invention, the anisotropic conductive sheet to be manufactured has a plurality of conductive portions extending in the thickness direction while being insulated from each other by the insulating portion, and the conductive portion is an object to be inspected on one surface side. An anisotropically conductive sheet body formed with a protruding portion corresponding to an electrode to be inspected on a circuit board, and densely filled with conductive particles in an insulating and elastic polymer material; An insulating sheet body integrally joined to the one surface side of the sheet body and having an opening corresponding to the electrode to be inspected of the circuit board to be inspected, and a protrusion relating to a conductive part of the anisotropic conductive sheet body Can protrude into the opening of the insulating sheet body, and the surface of the end of the protruding part is substantially at the same level as the surface of the insulating sheet body. Therefore, the electrodes to be inspected, such as lead electrodes, on the circuit board to be inspected have a fine electrode pitch, a fine and high-density complicated pattern, and the fine wiring connected to these lead electrodes is exposed. In this case, the required electrical connection can be reliably achieved with respect to the circuit board, the connection reliability is high, and the circuit board is sufficiently inspected while securing the required positional accuracy. The anisotropic conductive sheet which can be manufactured can be manufactured easily and with high precision.
[Brief description of the drawings]
FIG. 1 is an explanatory perspective view showing two insulating sheet bodies in a state where openings corresponding to electrodes to be inspected are formed on a circuit board to be inspected used in the method of the present invention.
FIG. 2 is an explanatory cross-sectional view showing two insulating sheet bodies in a state where openings corresponding to electrodes to be inspected are formed on a circuit board to be inspected used in the method of the present invention.
FIG. 3 is an explanatory cross-sectional view showing a state where an adhesive sheet is attached to two insulating sheet bodies.
FIG. 4 is an explanatory cross-sectional view showing a state in which a layer of a molding material made of a mixture of conductive particles having magnetic properties and a polymer material is disposed between two insulating sheet bodies to which an adhesive sheet is attached. is there.
5 is an explanatory sectional view showing a state in which a pressing force and a parallel magnetic field are applied to a layer of the molding material in FIG. 4;
FIG. 6 is an explanatory cross-sectional view showing a state similar to FIG. 5 when a mold having another magnetic pole plate is used.
FIG. 7 is an explanatory cross-sectional view showing a state similar to FIG. 5 when a mold having a ferromagnetic plate is used instead of the pole plate.
FIG. 8 is an explanatory cross-sectional view showing an integrated anisotropic conductive sheet material layer in which an insulating sheet body and an anisotropic conductive sheet body are integrally formed.
9 is an explanatory cross-sectional view showing a completed anisotropic conductive sheet in which both the pressure-sensitive adhesive sheet and one of the insulating sheet members are removed from the anisotropically conductive sheet material layer integrated product of FIG.
FIG. 10 is an explanatory perspective view showing a completed anisotropic conductive sheet in which both the pressure-sensitive adhesive sheet and one of the insulating sheet bodies are removed from the integrated material layer for an anisotropic conductive sheet of FIG. 8;
FIG. 11 is an explanatory cross-sectional view showing a configuration of an apparatus for performing an electrical inspection using an anisotropic conductive sheet manufactured in an example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulating sheet body 2 Opening 3 Adhesive sheet 4 Insulating and elastic polymer substance 4A Polymer material 5 Conductive particle 6 Guide hole 7 Spacer 8 Anisotropic conductive sheet body 10 Conducting part 11 Anisotropic conductive sheet 12 Insulating part 20 Anisotropically conductive sheet material layer 20A Anisotropically conductive sheet material layer integrated product 21 Upper die 22 Lower die 23 Magnetic pole plate 24 Magnetic pole plate 25 Magnetic pole plate 26 Magnetic pole plate 27 Magnetic pole plate 28 Magnetic pole plate M Ferromagnetic material Part N Non-magnetic part 61 Inspection head 62 Anisotropic conductive sheet 63 Off-grid adapter 64 Printed circuit board 64A Inspected electrode 65 Inspection electrode

Claims (6)

検査対象回路基板の被検査電極に対応した開口部を有する一対の絶縁シート体を用い、当該一対の絶縁シート体の間に、磁性を有する導電性粒子を含有する高分子材料よりなる成形材料層を配し、当該成形材料層に対してその厚さ方向に平行磁場をかけてその磁力によって導電性粒子を移動させながら加圧して成形材料層の高分子材料を流動させてその外形を変化させると共に、高分子材料を硬化させて高分子物質とし、これにより、異方導電性シート体を形成すると共に、前記一対の絶縁シート体のうちの少なくとも一方が当該異方導電性シート体と接合された状態とすることを特徴とする異方導電性シートの製造方法。A molding material layer made of a polymer material containing conductive particles having magnetism, using a pair of insulating sheets having openings corresponding to the electrodes to be inspected of the circuit board to be inspected. Is arranged, and a parallel magnetic field is applied to the molding material layer in the thickness direction to apply pressure while moving the conductive particles by the magnetic force to flow the polymer material of the molding material layer to change its outer shape. At the same time, the polymer material is cured into a polymer material, thereby forming an anisotropic conductive sheet body, and at least one of the pair of insulating sheet bodies is joined to the anisotropic conductive sheet body. A method for producing an anisotropic conductive sheet, comprising: 検査対象回路基板の被検査電極に対応した開口部を有する一対の絶縁シート体に当該開口部が覆われるよう開口部被覆シートを設け、この開口部被覆シートが設けられた一対の絶縁シート体を、対応する開口部が向き合うように位置合わせし、この状態で、磁性を有する導電性粒子を含有する高分子材料よりなる成形材料層を前記一対の絶縁シート体の間に配し、開口部被覆シートが設けられた一対の絶縁シート体と成形材料層とからなる異方導電性シート用材料層を加圧して成形材料層の高分子材料を流動させてその外形を変化させると共に、当該成形材料層に対してその厚さ方向に平行磁場をかけてその磁力によって導電性粒子を移動させながら高分子材料を硬化させて高分子物質とし、これにより、異方導電性シート体に、開口部被覆シートが設けられた絶縁シート体が一体的に接合された異方導電性シート用材料層一体化物を得、この異方導電性シート用材料層一体化物から両方の開口部被覆シートおよび片方の絶縁シート体を除去することを特徴とする異方導電性シートの製造方法。A pair of insulating sheets having openings corresponding to the electrodes to be inspected of the circuit board to be inspected are provided with an opening covering sheet so as to cover the openings, and the pair of insulating sheets provided with the opening covering sheets is provided with a pair of insulating sheets. Aligning the corresponding openings so that they face each other, and in this state, disposing a molding material layer made of a polymer material containing conductive particles having magnetism between the pair of insulating sheet bodies, and covering the openings. A material layer for an anisotropic conductive sheet, comprising a pair of insulating sheet bodies provided with a sheet and a molding material layer, is pressed to cause the polymer material of the molding material layer to flow, thereby changing its outer shape, and over parallel magnetic field in the thickness direction to cure the polymeric material while moving the conductive particles by the magnetic force to the layers to the polymer substance, thereby, the anisotropic conductive sheet body, the opening cover An insulating sheet body provided with a sheet is integrally joined to obtain an integrated material layer for an anisotropic conductive sheet, and from this integrated material layer for an anisotropic conductive sheet, both opening covering sheets and one of the A method for producing an anisotropic conductive sheet, comprising removing an insulating sheet body. 製造される異方導電性シートが、絶縁部により相互に絶縁された状態で厚さ方向に伸びる複数の導電部を有し、当該導電部が一面側において検査対象回路基板の被検査電極に対応した突出部を形成し、かつ絶縁性で弾性を有する高分子物質中に導電性粒子が密に充填されてなる異方導電性シート体と、この異方導電性シート体の前記一面側に一体的に接合された、検査対象回路基板の被検査電極に対応した開口部を有する絶縁シート体とよりなり、前記異方導電性シート体の導電部に係る突出部が前記絶縁シート体の開口部中に突出して当該突出部の端部の表面が絶縁シート体の表面とほぼ同一レベルとされているものであることを特徴とする請求項1または請求項2に記載の異方導電性シートの製造方法。The anisotropic conductive sheet to be manufactured has a plurality of conductive portions extending in the thickness direction while being insulated from each other by the insulating portions, and the conductive portions correspond to the electrodes to be inspected of the circuit board to be inspected on one surface side. Anisotropically conductive sheet body in which conductive particles are densely filled in an insulating and elastic polymer material, and an anisotropically conductive sheet body integrally formed on the one surface side of the anisotropically conductive sheet body. An insulating sheet body having an opening corresponding to an electrode to be inspected of a circuit board to be inspected, wherein a protrusion relating to a conductive portion of the anisotropic conductive sheet body has an opening in the insulating sheet body. The anisotropic conductive sheet according to claim 1 or 2, wherein the surface of the end portion of the protruding portion projects substantially in the same level as the surface of the insulating sheet body. Production method. 一対の絶縁シート体における検査対象回路基板の検査電極に対応した開口部分に対応して強磁性体部分を配置した磁極板を使用して、平行磁場をかけることを特徴とする請求項1〜請求項3のいずれかに記載の異方導電性シートの製造方法。A parallel magnetic field is applied by using a magnetic pole plate having a ferromagnetic portion arranged corresponding to an opening corresponding to an inspection electrode of a circuit board to be inspected in a pair of insulating sheet bodies. Item 4. The method for producing an anisotropic conductive sheet according to any one of Items 3. 表面が平坦面である磁極板を使用することを特徴とする請求項4に記載の異方導電性シートの製造方法。The method for producing an anisotropic conductive sheet according to claim 4, wherein a pole plate having a flat surface is used. 強磁性体部分を突出させた磁性板を用いることを特徴とする請求項4に記載の異方導電性シートの製造方法。The method for producing an anisotropic conductive sheet according to claim 4, wherein a magnetic plate having a protruding ferromagnetic material portion is used.
JP2002102631A 2002-04-04 2002-04-04 Method for producing anisotropic conductive sheet Expired - Fee Related JP3589228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002102631A JP3589228B2 (en) 2002-04-04 2002-04-04 Method for producing anisotropic conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002102631A JP3589228B2 (en) 2002-04-04 2002-04-04 Method for producing anisotropic conductive sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27504293A Division JP3456235B2 (en) 1993-10-06 1993-10-06 Anisotropic conductive sheet, circuit board electrical inspection method and electrical inspection apparatus

Publications (2)

Publication Number Publication Date
JP2003021648A JP2003021648A (en) 2003-01-24
JP3589228B2 true JP3589228B2 (en) 2004-11-17

Family

ID=19193706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002102631A Expired - Fee Related JP3589228B2 (en) 2002-04-04 2002-04-04 Method for producing anisotropic conductive sheet

Country Status (1)

Country Link
JP (1) JP3589228B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4397774B2 (en) * 2004-09-27 2010-01-13 日東電工株式会社 Method for manufacturing anisotropic conductive sheet
KR101606284B1 (en) 2014-10-29 2016-03-25 주식회사 아이에스시 Electrical connection device having porous insulating sheet with through hole and test socket

Also Published As

Publication number Publication date
JP2003021648A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
JP4930574B2 (en) Anisotropic conductive connector device, manufacturing method thereof, and circuit device inspection device
JP3332006B2 (en) Electrical inspection device and electrical inspection method using anisotropic conductive sheet
JPWO2007043350A1 (en) Anisotropic conductive connector device and circuit device inspection device
EP2461426B1 (en) Anisotropic conductor, method for manufacturing anisotropic conductor, and anisotropic conductor arrangement sheet
JP4385498B2 (en) Sheet-like connector, manufacturing method thereof, and electrical inspection device
KR20090006752A (en) Method of positioning an anisotropic conductive connector, method of positioning the anisotropic conductive connector and a circuit board for inspection, anisotropic conductive connector, and probe card
JP3456235B2 (en) Anisotropic conductive sheet, circuit board electrical inspection method and electrical inspection apparatus
JP4507644B2 (en) Anisotropic conductive connector device, manufacturing method thereof, and circuit device inspection device
JP3820603B2 (en) Connector device
JP3589228B2 (en) Method for producing anisotropic conductive sheet
JPH11160396A (en) Electrical inspection apparatus
JP2000292484A (en) Semiconductor element-connecting apparatus, semiconductor element-inspecting apparatus and inspection method
JPH069378Y2 (en) Conductive elastomer composite sheet
WO2006043629A1 (en) Adapter, manufacturing method thereof, and electric inspection device for circuit device
JP2000243489A (en) Wiring board forming material, plate-shaped connector and its manufacture, and adaptor device for circuit device inspection
JPH11231010A (en) Layered connector and adapter device for inspecting circuit board
JP2973268B2 (en) Method of manufacturing circuit board device for inspection
JPH10189088A (en) Laminated connector and adapter device for inspection of circuit board
JPH09223860A (en) Circuit board device for inspection
JPH10197591A (en) Circuit board inspection device
WO2006043628A1 (en) Anisotropic conductive connector and production method therefor, adaptor device and electrical inspection device
JP2007040952A (en) Adapter device, method for manufacturing the same, and electrical inspection device for circuit device
JPH10197599A (en) Inspection device for semiconductor devices
JPH10339744A (en) Circuit board for check and circuit board device for check
JP2007064673A (en) Anisotropic electrically conductive connector, its manufacturing method, adapter device, and electric inspection apparatus of circuit device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees