JP3588325B2 - Construction method of single span and multi span composite girder bridges - Google Patents

Construction method of single span and multi span composite girder bridges Download PDF

Info

Publication number
JP3588325B2
JP3588325B2 JP2001017589A JP2001017589A JP3588325B2 JP 3588325 B2 JP3588325 B2 JP 3588325B2 JP 2001017589 A JP2001017589 A JP 2001017589A JP 2001017589 A JP2001017589 A JP 2001017589A JP 3588325 B2 JP3588325 B2 JP 3588325B2
Authority
JP
Japan
Prior art keywords
fulcrum
abutment
concrete
composite girder
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001017589A
Other languages
Japanese (ja)
Other versions
JP2002004224A (en
Inventor
民世 丘
Original Assignee
民世 丘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020000031515A external-priority patent/KR20000054500A/en
Priority claimed from KR2020000018176U external-priority patent/KR200212395Y1/en
Priority claimed from KR1020000035471A external-priority patent/KR20000058716A/en
Application filed by 民世 丘 filed Critical 民世 丘
Publication of JP2002004224A publication Critical patent/JP2002004224A/en
Application granted granted Critical
Publication of JP3588325B2 publication Critical patent/JP3588325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D1/00Bridges in general
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed
    • E01D2101/285Composite prestressed concrete-metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は単径間及び多径間プレフレックス(preflex)合成桁橋、PSC合成桁橋、鋼箱桁橋(steel box girder bridge)、鋼板桁橋(plate girder bridge)、長径間(long span)トラス橋などのような単径間及び多径間合成桁橋の施工法に関する。
【0002】
【従来の技術】
単径間及び多径間合成桁橋の施工法に対する従来の技術において、単径間の場合には韓国特許第0250937号公開公報(以下、“引用発明1”と称する)の“仮支点を用いた単純ビーム型プレフレックス合成ビームの製作工法”があり、多径間の場合は韓国特許第105754号公開公報(以下、“引用発明2”と称する)の“連続ビーム型プレストレス(pre−stressed)合成ビームとこれを用いたプレストレス連続合成ビーム構造物の施工法”がある。
【0003】
図1(a)乃至図1(d)は引用発明1の合成桁橋を施工する工程を示したものである。これら図面を参照して引用発明1を説明すれば次の通りである。
【0004】
図1(a)と図1(b)に示したように、まず工場または現場で製作されたプレフレックスビームを橋台間に据え置きして支間の中央に仮支点51を設け、初期コンクリートのクリープと乾燥収縮による圧縮応力損失を挽回するために仮支点51を上昇させさらに下部ケーシングコンクリート52に圧縮応力を導入させる。
【0005】
次に、図1(c)に示したように、仮支点51を上昇させた状態で上部床版コンクリート53と腹部コンクリートを打設し養生させる。最後に、図1(d)に示したように、上部床版コンクリート53が養生された後仮支点51を除去させれば、単純ビーム型プレフレックス合成桁橋が出来上がる。
【0006】
しかし、前述した方法で製作される引用発明1はビームの中央に仮支点を設けて上向き荷重を加えるべきなので、特に桁下空間が高い箇所ではステージング(staging)の設置による高価な追加費用と共に、橋梁下での交通流れを妨害し、工事が複雑になるという短所を持つ。
【0007】
また、引用発明1は橋梁全体が単純ビームシステムで挙動するので、構造的にはビームの中央から発生する最大正(positive)モーメントによって合成桁の断面が大きくならなければならず、これによってビームの中央における垂れが過多に発生するという付加的な使用上の問題点も短所になる。
【0008】
図2(a)乃至図2(e)と図3(a)乃至図3(g)は各々引用発明2にともなう2径間連続型合成桁橋と3径間連続型合成桁橋を製作する工程を示した図である。
【0009】
まず、2径間連続型合成桁橋の施工方法を説明すれば、図2(a)に示したように、連続ビームの設計によって径間別に作られたプレフレックスビームを第2支点54で連結して据え置きする。次に、図2(b)に示したように、連結された第2支点54を上昇させ下部ケーシングコンクリート52に圧縮応力をさらに導入させる。次に、図2(c)に示したように、第2支点54近傍の鋼桁(steel girder)の上部フランジを包む床版コンクリート53を打設して養生し、図2(d)のように上昇された支点を下降させ第2支点54近傍の床版コンクリートに発生する負(negative)モーメントに対応する圧縮応力を導入させる。次に、図2(e)に示したように、残り区間の床版コンクリートを打設すれば、完全な2径間連続型プレフレックス合成桁橋が完成される。
【0010】
図3(a)乃至図3(h)は3径間連続型プレフレックス合成桁橋の施工過程を示した図である。3径間連続型の合成桁橋において、図3(a)乃至図3(d)に示したように、第2支点54における施工過程は図2に示した2径間連続型プレフレックス合成桁橋の施工過程と同一になる。次に、図3(e)乃至図3(h)に示したように、第3支点55を上昇させ、床版コンクリート53を打設し、この第3支点53を下降させ、残り床版コンクリートを打設すれば完全な3径間連続型プレフレックス合成桁橋が完成される。
【0011】
しかし、上記の通り製作される引用発明2は正モーメントと負モーメント区間の床版コンクリート打設の時間差による施工ジョイント発生が誘発される心配があり、各支点上昇及び下降作業を陸上に隣接した橋台ではなく橋脚上で、即ち第2支点と第3支点で施すべきなので、作業が不便で安全事故の危険性を内包しているという短所を有する。
【0012】
さらに、引用発明1と引用発明2の両者において、上部構造の荷重を下部構造に伝達する媒介体の役割を果たす橋座装置は回転だけ可能なようにするヒンジ支点と、回転と移動が可能なようにするローラ支点で構成されていて、上部構造の安全上持続的なメンテナンスに神経を使うべきだけでなく、地震が発生した場合は致命的な損傷を受ける場合がある。
【0013】
【発明が解決しようとする課題】
本発明は前述したような従来の問題点を解決するために創案されたことで、その目的は単径間合成桁橋の施工においてはビームと橋台を片方支点だけ完全に一体化させ、多径間合成桁橋の場合においてはビームと橋脚を一体化させたり、または一体化させないようにして橋台上の支点、即ち端部支点を下降及び上昇させる工程を通じて負モーメント区間の上部床版コンクリートと合成桁の下部フランジに圧縮応力をさらに導入させる、現実的で実用可能であり、経済的な新たな単径間及び多径間合成桁橋の施工法を提供するところにある。
【0014】
【課題を解決するための手段】
前述した目的を達成するための本発明に係る単径間合成桁橋の施工法は、第1橋台と第2橋台を設ける段階と、前記第1橋台の橋座部に形鋼を埋設する段階と、ビームを前記第1橋台と第2橋台間に単純据え置きする段階と、前記第1橋台の形鋼と前記ビームの下部フランジとを連結する段階と、前記第1橋台の橋座部の上部から前記ビームの中立軸まで継手コンクリートを打設する段階と、前記第2橋台側の支点を下降させる段階と、前記第1橋台の継手コンクリートの上部から前記ビームの床版までコンクリートを打設する段階と、前記ビームの全区間にかけて床版コンクリートを打設する段階と、下降させた前記第2橋台側の支点を上昇させる段階とを含めてなされる。
【0015】
また、本発明に係る多径間連続合成桁橋の施工法は、少なくとも二つ以上のビームをお互い連結して第1橋台と第2橋台、そして少なくとも一つ以上の内側の橋脚間に単純据え置きする段階と、前記第1及び第2橋台側の支点を下降させる段階と、前記ビームの全区間にかけて床版コンクリートを打設する段階と、下降させた前記第1及び第2橋台側の支点を上昇させる段階とを含めてなされる。
【0016】
望ましくは、前述したような多径間連続合成桁橋の施工法は、前記ビームを単純据え置きする段階前には前記内側橋脚のコッピング部(copping)に形鋼を埋設する段階をさらに含み、前記ビームを単純据え置きする段階後は前記形鋼と前記ビームの下部フランジとを連結する段階と、前記内側橋脚のコッピング部の上部から前記ビームの中立軸まで継手コンクリートを打設する段階とをさらに含み、そして前記第1及び第2橋台側の支点を下降させる段階後は前記内側橋脚の継手コンクリートの上面から前記ビームの床版までコンクリートを打設する段階をさらに含めてなされる。
【0017】
ここで、前記第1及び第2橋台側の支点の下降時には前記第1橋台側の支点と前記第2橋台側の支点を同時に下降させ、前記第1及び第2橋台側の支点の上昇時には下降させた前記第1橋台側の支点と前記第2橋台側の支点を同時に上昇させるようにする。
【0018】
しかし他の代案として、前記第1及び第2橋台側の支点の下降時には前記第1橋台側の支点と前記第2橋台側の支点を順次に下降させ、前記第1及び第2橋台側の支点の上昇時には前記第1橋台側の支点と前記第2橋台側の支点を順次に上昇させるようにしても構わない。
【0019】
また、2径間連続合成桁橋の場合は前記第1及び第2橋台側の支点の下降時、前記第1橋台側と前記第2橋台側のうちいずれか片方支点だけを下降させ、前記第1及び第2橋台側の支点の上昇時下降させた前記片方支点だけを上昇させるようにする。
【0020】
一方、プレフレックス合成桁橋を施工するための施工法においては、ビームと橋脚とを一体化させない場合にビームの連結後橋脚上に単純据え置きする段階後に、継手に下部ケーシングコンクリートを打設する段階がさらに含まれる。
【0021】
もう一方、プレフレックス合成桁橋または鋼箱形鋼を施工するための施工法においては前記ビームの腹部に複数の補強材とスタッド(stud)を設ける段階がさらに含まれる。
【0022】
また、PSC(プレストレスコンクリート)合成桁橋を施工するための施工法においては前記ビームの腹部に鉄筋を延長しておく段階がさらに含まれる。
【0023】
【発明の実施の形態】
以下、添付した図面を参照して本発明に係る単径間及び多径間合成桁橋の施工法を説明する。本発明に係る施工法はプレフレックス合成桁橋、PSC合成桁橋、鋼箱桁橋、鋼板桁橋、張径間トラス橋に共に適用できる。
【0024】
図4乃至図7は単径間合成桁橋においてビームと橋台を一体化させる施工法に係り、図4は単純ビーム型で製作されたプレフレックスビーム2を一対の橋台間に単純据え置きした状態で片方橋台の橋座部1とプレフレックスビーム2との間を連結することを示している。まず、図4(a)に示したように、橋座部1にH形鋼または□形鋼3を埋設し、その上にビーム2の下部フランジ60との連結のための継手プレート4を溶接させた後、形鋼3をビーム2の下部フランジとボルト5または溶接により締め固める。また、ビーム2には補強材8を設けて補強し、コンクリートが被覆される鋼桁(steel girder)にはスタッド9を設けてコンクリートとの合成効果を高められる。
【0025】
次に、図4(b)に示したように、橋台の上部からプレフレックスビーム2の断面の中立軸まで継手コンクリート10を打設して一体化させ、次に打設されるコンクリートとの一体性確保のために継手コンクリート10上に再び鉄筋6を予め延長させておく
【0026】
それから図4(c)に示したように、上部床版61と共にコンクリートを打設することにより完全な固定支点の役割を果たせる。
【0027】
図4(d)はこのような工程にともなう橋台の平面図である。
【0028】
図5は鋼箱桁橋の場合であって、鋼箱桁2を橋台間に単純据え置きした状態で片方橋台の橋座部1と鋼箱桁2とを連結することを示した図である。
【0029】
図4の場合と同じく、図5(a)に示したように、まず橋座部1にH形鋼または□形鋼3を埋設して置き、その上に鋼箱桁2の下部フランジ60との連結のための連結プレート4を溶接させた後、形鋼3を鋼箱桁2の下部フランジ60とボルト5または溶接により締め固める。また、鋼箱桁2には補強材8を設けて補強し、コンクリートが被覆される鋼桁にスタッド9を設ければコンクリートとの合成効果を高められる。
【0030】
次に、図5(b)に示したように、橋台の上部から鋼箱桁2の断面の中立軸まで継手コンクリート10を打設して一体化させ、次に打設されるコンクリートとの一体性確保のために継手コンクリート10上に再び鉄筋6を予め延長させておく
【0031】
それから図5(c)に示したように、上部床版61と共にコンクリートを打設することで完全な固定支点の役割を果たせる。
【0032】
図6はPSC合成桁橋の場合であって、PSCビーム2を橋台間に単純据え置きした状態で片方橋台の橋座部1とPSCビーム2とを連結することを示した図である。
【0033】
図4及び図5の場合と同じく、図6(a)に示したように、まず橋座部1にH形鋼または□形鋼3を埋設して置き、その上にPSCビーム2の下部フランジとの連結のための継手プレート4を溶接させた後、形鋼3をPSCビーム2の下部フランジのコンクリートに埋設しておいたプレート62と溶接15により締め固める。
【0034】
次に、図6(b)に示したように、固定支点側から全体支間長の約10%区間を除いた残り区他間に床版コンクリート打設と同時に橋台の上部からPSCビーム2の断面の中立軸まで継手コンクリート10を打設して一体化させ、橋台の胸壁63も設ける。また、次に打設されるコンクリートとの一体性確保のために継手コンクリート10上と胸壁では鉄筋6を予め延長させておく。ここで、橋台の胸壁63と打設された床版コンクリートでは引張鉄筋64を予め埋設して施工過程中移動支点の下降時発生する引張力に対応させる。区間の長さ約10%は支間長が30mの橋梁の場合、負モーメント区間の長さを変数として媒介変数解釈 (parameter study) を行って決定した値であって、最も効率良く圧縮応力を導入させうる長さであり、これは橋梁等級の種類と使用コンクリートの材質によって変化できる。
【0035】
次に、図6(c)に示したように、残り上部床版61と共にコンクリートを打設することで完全な固定支点の役割を果たせる。
【0036】
図7は単径間合成桁橋の施工過程を示した図である。
【0037】
図7(a)は工場または現場で製作されたビームを一対の橋台上に単純据え置きした後に、片方支点を固定支点71として、残り片方支点を移動支点72として処理した状態図である。
【0038】
図7(b)は移動支点72を下降させビームの下部フランジに圧縮応力を導入させる過程と、これによるモーメント図である。
【0039】
図7(c)は移動支点72を下降させた状態で床版コンクリート(図4(c)、図5(c)、図6(c)における符号61)を打設した状態図と、これによるモーメント図である。
【0040】
図7(d)は床版コンクリートが養生された後、下降させた移動支点72を上昇させて固定支点71側から生ずる負モーメントに対応する圧縮応力を床版コンクリートに導入させることを示した図である。図7(d)の過程により、下部フランジには引張応力が発生するが、これは合成後の増えた断面剛性によって移動支点72の下降時に導入された圧縮応力の約60−70%に該当するので、結局約30−40%程度の圧縮プレストレシング(pre−stressing)効果を得られる。
【0041】
ここで、PSC合成桁橋の場合は移動支点を下降させる前に固定支点の端部から支間長の約10%区間を除いた区間に床版コンクリートを打設し、残り区間は端部支点の下降後打設する。
【0042】
本発明の単径間合成桁橋の場合は固定支点部の大きいモーメントによって、固定支点端部から支間長の約10%区間は断面を大きくして可変断面への設計が可能である。
【0043】
図8と図9は従来技術で説明した引用発明2の問題点の施工ジョイントの発生可能性と、橋脚上で支点上昇及び下降作業を施すことによって生じる安全事故の危険性を排除するための施工法を示した図であって、前述したようにプレフレックス合成桁橋、PSC合成桁橋、鋼箱桁橋、鋼板桁橋、長径間トラス橋等に共に適用できる。
【0044】
図8は本発明に係る橋脚と合成桁が一体化しない2径間連続合成桁橋の施工過程を示した図であって、引用発明2が内部支点の第2支点を上昇させ正モーメント区間の下部フランジにさらに圧縮応力を導入したこととは違い、図8(a)に示したように、本発明は単純ビーム型で製作されたプレフレックスビームまたはPSCビームを橋台及び橋脚に据え置きし、図10(a)と図10(c)のように内部支点73で連結させたり、図10(b)のように全体橋梁の負モーメント区間のうち内部支点73の左側または右側一カ所で連結させる。
【0045】
図8(b)は橋台側の両端部の支点を下降させ下部フランジにさらに圧縮応力を導入させる状態図と、これに基づくモーメント図である。
【0046】
図8(c)は両端部の支点を下降させた状態で床版コンクリートを打設した状態図と、これに基づくモーメント図である。
【0047】
図8(d)は床版コンクリートが養生された後、下降させた両端部の支点を上昇させ合成後の内部支点部から生ずる引張応力に対応する圧縮応力を床版コンクリートに導入させたことを示した図である。図8(d)の過程により、単径間の場合と同じく、下部フランジには引張応力が発生するが、これは合成後の増えた断面剛性によって両端支点の下降時に導入された圧縮応力の約60−70%に該当するので、結局約30−40%程度の圧縮プレストレシング効果が得られる。
【0048】
ここでも同様に、PSC合成桁橋の場合は両端部の支点を下降させる前に内側支点の左右に該当支間長の約10%区間を除いた区間に床版コンクリートを打設し、残り区間は両端部支点の下降後打設する。
【0049】
図9は本発明に係る橋脚と合成桁が一体化しない3径間連続合成桁橋の施工過程を示した図である。
【0050】
図9(a)は製作されたプレフレックスビームまたはPSCビームを橋台及び橋脚に据え置きし、内部支点でまたは内部支点を外れた全体橋梁の負モーメント区間のうち橋脚の右側または左側のうち一カ所で図10(a)、図10(b)、図10(c)のように連結させた状態図である。
【0051】
前述した通り、図9(b)に示したように、引用発明2が内部支点の第2支点73と第3支点74を順次に上昇させ正モーメント区間の下部フランジにさらに圧縮応力を導入したこととは違い、本発明は橋台側の両端部の支点を同時に、または順次に下降させ同様の効果を得る。
【0052】
図9(c)は両端部の支点を下降させた状態で床版コンクリートを打設した状態図と、これに基づくモーメント図である。
【0053】
図9(d)は床版コンクリートが養生された後、下降させた両端部支点を上昇させて合成後の内部支点部で生ずる引張応力に対応する圧縮応力を床版コンクリートに導入させることを示した図である。この時も同じく、下部フランジには引張応力が発生するが、これは合成後の増えた断面剛性によって両端支点の下降時に導入された圧縮応力の約60−70%に該当するので、結局約30−40%程度の圧縮プレストレシング効果を得られる。本発明の橋脚と合成桁が一体化しない3径間連続合成桁橋の場合は連続ビームの構造特性上内側径間から生ずる正モーメントが内側支点部で発生する最大負モーメントに比べ絶対値で約1/5に過ぎないので、両端支点の下降及び上昇時さらに圧縮プレストレシングが導入されなくても充分な圧縮応力を保有するようになる。
【0054】
ここでも同様に、PSC合成桁橋の場合には両端部の支点を下降させる前に内側支点の左右に該当支間長の約10%区間を除いた区間に床版コンクリートを打設し、残り区間は両端部支点の下降後打設する。
【0055】
図10(a)はプレフレックス合成桁橋の場合、内部支点で二つのビーム2を複数の継手プレート4とボルト5により連結した詳細図である。従来技術において説明した引用発明2の場合は支点を上昇させた後、負モーメント区間の床版コンクリートを打設すると共に、内部支点部にジョイントコンクリート11を打設するのに反し、本発明の場合は両終端の支点を下降させる前に内部支点部にジョイントコンクリート11を打設する。
【0056】
図10(b)は前記プレフレックス合成桁橋の場合のさらに他の連結方法であって、内部支点を外れた橋脚の右側または左側のうち一カ所で二つのビーム2を複数の連結プレート4とボルト5により連結した詳細図である。同じく、従来技術で説明した引用発明2の場合は支点を上昇させた後、負モーメント区間の床版コンクリートを打設すると共に、内部支点部にジョイントコンクリート11を打設することに比べ、本発明の場合は両終端の支点を下降させる前に継手にジョイントコンクリート11を打設する。
【0057】
図10(c)はPSC合成桁橋の場合、内部支点で二つのビーム2を連結した詳細図である。それぞれのPSCビームの製作時、予めボルト5を上部フランジのコンクリートに挿入して置き、ビームの連結時に継手プレート4を利用して連続性を図る。また、下部フランジにも連結鉄筋6を利用してビームを連結する。これは内部支点の下部フランジは圧縮側なので連結鉄筋6の役割がさほど大きくないが、合成桁全体の安定を図るためのことである。また、連結作業時の便利性のためにビームの中立軸に継手ストッパ12を設け、その隙間に無収縮モルタルを充填させる。
【0058】
鋼箱桁橋は内部支点に継手がないため、一層容易く本発明の工法が適用できる。
【0059】
図11乃至図15は多径間連続合成桁橋の施工法のさらに他の例であって、ビームと橋脚を一体化させることによって橋座装置の問題点と地震時の損傷に対してさらに備えるためのことである。このような一体化方法と施工法を説明すれば次の通りである。
【0060】
プレフレックス合成桁橋の場合において、図11(a)に示したように、単純ビーム型で製作された2個のプレフレックスビーム2を図10(a)と同じように、複数の継手プレート4とボルト5により連結させ、橋脚13に予め埋立されて置いた□形鋼14上に載置した後、鋼桁の下部フランジ60と溶接により締め固める。また、次の段階で打設される継手コンクリート10との一体性を助けるために橋脚13とビーム2の下部ケーシングコンクリート52では予め鉄筋6を引抜いて置く。そして、図11(b)と同じく、ビーム2の残り下部フランジのコンクリートと橋脚13の上部からビームの断面の中立軸まで継手コンクリート10を打設して一体化させ、その上には次に打設されるコンクリートとの一体性を図るために鉄筋6をさらに引抜いて置く。
【0061】
図11(c)と同じく、本発明の多径間連続合成桁橋の端部支点を下降させた状態で、床版コンクリート、腹部コンクリートの打設と同時に、橋脚の残り上部を打設することでビーム2と橋脚13が完全に一体化した多径間連続プレフレックス合成桁橋を完成させることができる。図11(d)は橋脚13に埋立された□形鋼14を示した平面図である。
【0062】
図12は鋼箱桁橋の場合を示した図である。
【0063】
図12(a)に示したように、負モーメント区間に該当するセグメントである鋼箱桁2を橋脚13に予め埋立して置いた□形鋼14上に載置した後、ビーム2の下部フランジ60と溶接により締め固める。そして、図12(b)と同じく、橋脚13の上部からビーム2の断面の中立軸まで継手コンクリート10を打設して一体化させる。ここで、橋脚13では鉄筋6を引抜いて置き、鋼箱桁の腹部には補強材8を設けて補強し、上部フランジは勿論、腹部にもスタッド9を設けてコンクリートとの合成効果を高める。特に、鋼箱桁橋の場合は橋脚上に合成桁の継手がないため、さらに容易く本発明の工法が適用できる。
【0064】
図12(c)と同じく、本発明の多径間連続合成桁橋の端部支点を下降させた状態で、床版コンクリートの打設と同時に、橋脚の残り上部を打設することでビームと橋脚が完全に一体化した多径間連続鋼箱桁橋を完成させることができる。
【0065】
図13はPSC合成桁橋の場合を示した図である。
【0066】
図13(a)に示したように、図10(b)と同じく相互連結された二つのPSCビーム2を同様に橋脚13に予め埋立して置いた□形鋼14上に載置した後、下部フランジのコンクリート中に埋立して置いた継手プレート4と溶接により締め固める。次に、図13(b)に示したように、内側支点から左右に該当支間長の約10%区間を除いた残り区間に床版コンクリート打設と同時に橋脚の上部からPSCビーム2の断面の中立軸まで継手コンクリート10を打設して一体化させる。また、次に打設するコンクリートとの一体性確保のために継手コンクリート10には再び鉄筋6を予め引抜いて置く。ここで内側支点部を除いた残り区間に打設された床版コンクリート同士は引張鉄筋64を予め埋設して連結する。これは施工過程中両端部支点の下降時発生する引張力に対応させるためである。区間の長さが約10%は支間長が30mの橋梁の場合、負モーメント区間の長さを変数として媒介変数解釈(parameter study)を行って決定した値であって、最も効率良く圧縮応力を導入させることができる長さであり、これは橋梁等級の種類と使用コンクリートの材質によって変化できる。
【0067】
図13(c)に示したように、本発明の両端部を下降させた状態で残り床版コンクリートの打設と同時に、橋脚の残り上部を打設することでビームと橋脚が完全に一体化した多径間連続PSC合成桁橋を完成させることができる。
【0068】
図14は橋脚と合成桁を一体化させる2径間連続合成桁橋の施工過程を示した図である。
【0069】
図14(a)は合成桁と橋脚を図11(b)、図12(b)、そして図13(b)のように締め固めた後、全体構造物の両端部支点を同時に、または順次に下降させ下部フランジにさらに圧縮応力を導入させる工程と、これに基づくモーメント図である。
【0070】
図14(b)は両端支点を下降させた状態で床版コンクリートを打設する工程と、これに基づくモーメント図である。ここで、図11(c)、図12(c)、そして図13(c)のように床版コンクリートの打設と同時に、橋脚の残り上部にもコンクリートを打設し橋脚と合成桁を完全に一体化させる。
【0071】
図14(c)は床版コンクリートと橋脚の上部コンクリートが養生された後、下降させた両端部支点を同時にまたは順次に上昇させ設計活荷重による負モーメント区間の床版コンクリートから生ずる引張応力に対応する圧縮応力を導入させることを示した図である。この施工段階では、正モーメント区間の下部プランジには引張応力が生ずるが、これは合成後の増えた断面剛性によって両端支点の下降時に導入された圧縮応力の約60−70%に該当するので、結局約30−40%程度の圧縮プレストレシング効果を得られる。
【0072】
PSC合成桁橋の場合は両端部の支点を下降させる前に内側支点の左右に該当支間長の約10%区間を除いた区間に床版コンクリートを打設し、残り区間は両端部支点の下降後打設する。
【0073】
図8及び図14に示した2径間連続合成桁橋の場合は現場与件に応じて片方の端部支点だけ下降及び上昇させても同様の効果が得られる。只、この場合は両端部を同時にまたは順次に下降及び上昇させる場合に比べて下降量と上昇量において2倍値を適用すべきである。
【0074】
図15は本発明に係る橋脚と合成桁を一体化させた3径間連続合成桁橋の施工過程を示したものである。
【0075】
図15(a)は合成桁と橋脚を図11(b)、図12(b)、そして図13(b)のように連結させた後、全体構造物の両端部支点を同時にまたは順次に下降させ、下部フランジにさらに圧縮応力を導入させる過程と、これに基づくモーメント図である。
【0076】
図15(b)は両端部支点を下降させた状態で床版コンクリートを打設する過程と、これに基づくモーメント図である。ここで、図11(c)、図12(c)、そして図13(c)のように床版コンクリートの打設と同時に、橋脚の残り上部もコンクリートを打設して橋脚と合成桁を完全に一体化させる。
【0077】
図15(c)は床版コンクリートと橋脚の上部コンクリートが養生された後、下降させた両端部支点を同時にまたは順次に上昇させ、設計活荷重による負モーメント区間の床版コンクリートから発生する引張応力に対応する圧縮応力を導入させることを示した図である。2径間連続合成桁橋と同じく、この施工段階でも下部フランジには引張応力が発生するが、これは合成後の増えた断面剛性によって端部支点の下降時に導入された圧縮応力の約60−70%に該当されるので、結局約30−40%程度の圧縮プレストレシング効果を得られる。
【0078】
これも同じく、PSC合成桁橋の場合は両端部の支点を下降させる前に内側支点の左右に該当支間長の約10%区間を除いた区間に床版コンクリートを打設し、残り区間は両端部支点の下降後打設する。
【0079】
本発明に係る橋脚と合成桁を一体化させた3径間連続合成桁橋の場合には内側径間から発生する正モーメントが内側支点部から生ずる最大負モーメントに比べて絶対値で約1/3.5に過ぎないので、両端支点の下降及び上昇時追加の圧縮プレストレシングが導入されなくても充分な圧縮応力を保有するようになる。
【0080】
また、本発明に係る橋脚と合成桁を一体化させた多径間連続合成桁橋は、一体化させた橋脚と合成桁の近傍から発生する大きいモーメントによって橋脚から左右に該当支間長の約10%区間は合成桁の断面を大きくして可変断面への設計が可能である。
【0081】
また、本発明に係る単径間及び多径間合成桁構造物は端部支点の下降量より上昇量を少なくして合成桁の下部フランジに導入される圧縮プレストレス量を調節できる。
【0082】
【発明の効果】
以上述べた通り、本発明に係る上部合成桁と橋脚を一体化させない多径間連続合成桁橋の場合は床版コンクリートを一度に打設し、支点下降及び上昇作業を陸上に隣接した橋台で施すことで、従来の技術において説明された引用発明2の問題点の正/負モーメント区間の床版コンクリート打設の時間差による施工ジョイントの発生が防止され、橋脚で施す支点上昇及び下降作業にともなう不便さと安全事故の危険性を終熄させることができる。
【0083】
また、本発明に係る上部合成桁を片方橋台と一体化させる単径間合成桁橋と、橋脚と一体化させる多径間連続合成桁橋の施工法では、前述した効果の他、引用発明の単径間と2径間、3径間構造物が各々静定(determinated)、1次と2次不静定(indeterminated)構造物であることに比べ、本発明は各々1次と5次、そして8次不静定構造物に変換されることで、塑性(plasticity)によるエネルギー分散効果が大きいため、振動減少効果と耐震性を遥かに向上でき、また合成桁と下部構造を一体化することにより発生しうる大きいモーメントが下部構造物に分配されるので、ビームの外力に対する負担が軽減して桁高と支間面において約20%程度の減少効果と延長効果を期することができてさらに経済的な断面が得られる。
【0084】
また、全ての橋梁の劣化の原因になって継続的なメンテナンスが必要な橋座装置の数も減らせてさらなる経済性を高められる。
【図面の簡単な説明】
【図1】従来の技術にともなう単径間プレフレックス合成桁橋の施工過程を示した図である。
【図2】従来の技術にともなう2径間連続プレフレックス合成桁橋の施工過程を示した図である。
【図3】従来の技術にともなう3径間連続プレフレックス合成桁橋の施工過程を示した図である。
【図4】本発明に係る単径間プレフレックス合成桁橋の施工のための橋台と合成桁との連結状態図である。
【図5】本発明に係る単径間鋼箱桁橋の施工のための橋台と合成桁との連結状態図である。
【図6】本発明に係る単径間PSC合成桁橋の施工のための橋台と合成桁との連結状態図である。
【図7】本発明に係る単径間合成桁橋の施工過程を示した図である。
【図8】本発明に係る合成桁と橋脚が一体化しない2径間連続合成桁橋の施工過程を示した図である。
【図9】本発明に係る合成桁と橋脚が一体化しない3径間連続合成桁橋の施工過程を示した図である。
【図10】本発明に係る多径間連続合成桁橋の施工時、内部支点におけるビームとビームとの連結状態図である。
【図11】本発明に係る合成桁と橋脚が一体化した多径間連続プレフレックスの合成桁橋の施工のための橋脚と合成桁との連結状態図である。
【図12】本発明に係る合成桁と橋脚が一体化した多径間連続鋼箱桁橋の施工のための橋脚と合成桁との連結状態図である。
【図13】本発明に係る合成桁と橋脚が一体化した多径間連続PSC合成桁橋の施工のための橋脚と合成桁との連結状態図である。
【図14】本発明に係る合成桁と橋脚が一体化した2径間連続合成桁橋の施工過程を示した図である。
【図15】本発明に係る合成桁と橋脚が一体化した3径間連続合成桁橋の施工過程を示した図である。
【符号の説明】
1 橋座部
2 ビーム
3 形鋼
4 継手プレート
5 ボルト
6 鉄筋
8 補強材
9 スタッド
10 継手コンクリート
11 ジョイントコンクリート
12 継手ストッパ
13 橋脚
14 形鋼
15 溶接
60 下部フランジ
61 床版
62 プレート
63 胸壁
64 引張鉄筋
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to single-span and multi-span preflex composite girder bridges, PSC composite girder bridges, steel box girder bridges, plate girder bridges, and long spans. The present invention relates to a method for constructing a single-span and multi-span composite girder bridge such as a truss bridge.
[0002]
[Prior art]
In the prior art for the construction method of single-span and multi-span composite girder bridges, in the case of a single span, the “temporary fulcrum” of Korean Patent No. 0250937 (hereinafter referred to as “Cited Invention 1”) is used. In the case of multiple spans, there is a “continuous beam type pre-stressed” disclosed in Korean Patent No. 105754 (hereinafter referred to as “Cited Invention 2”). ) Construction method of composite beam and prestressed continuous composite beam structure using it.
[0003]
1 (a) to 1 (d) show steps of constructing the composite girder bridge of cited invention 1. FIG. The cited invention 1 will be described below with reference to these drawings.
[0004]
As shown in FIGS. 1 (a) and 1 (b), a pre-flex beam manufactured at a factory or a site is first placed between abutments, and a temporary fulcrum 51 is provided at the center of the abutment, and creep of the initial concrete is performed. The temporary fulcrum 51 is raised to recover the compressive stress loss due to the drying shrinkage, and the compressive stress is introduced into the lower casing concrete 52.
[0005]
Next, as shown in FIG. 1 (c), the upper slab concrete 53 and the abdominal concrete are cast and cured while the temporary fulcrum 51 is raised. Finally, as shown in FIG. 1D, if the temporary fulcrum 51 is removed after the upper slab concrete 53 is cured, a simple beam type preflex composite girder bridge is completed.
[0006]
However, in the cited invention 1 manufactured by the above-described method, a temporary fulcrum should be provided at the center of the beam to apply an upward load. Therefore, especially in a place where the space under the girder is high, staging is installed, and an expensive additional cost is required. Disadvantages are that it hinders traffic flow under the bridge and complicates construction.
[0007]
In cited invention 1, since the entire bridge behaves in a simple beam system, structurally, the maximum positive moment generated from the center of the beam has to increase the cross section of the composite girder, thereby increasing the beam's cross section. The additional use problem of excessive center sag is also a disadvantage.
[0008]
FIGS. 2 (a) to 2 (e) and FIGS. 3 (a) to 3 (g) show a two-span continuous composite girder bridge and a three-span continuous girder bridge according to cited invention 2, respectively. It is a figure showing a process.
[0009]
First, a method of constructing a two-span continuous composite girder bridge will be described. As shown in FIG. 2A, a preflex beam made for each span by the design of a continuous beam is connected at a second fulcrum 54. And leave it deferred. Next, as shown in FIG. 2B, the connected second fulcrum 54 is raised to further introduce compressive stress into the lower casing concrete 52. Next, as shown in FIG. 2 (c), floor slab concrete 53 wrapping the upper flange of a steel girder near the second fulcrum 54 is cast and cured, as shown in FIG. 2 (d). And the compressive stress corresponding to the negative moment generated in the floor slab concrete near the second fulcrum 54 is introduced. Next, as shown in FIG. 2 (e), when the slab concrete in the remaining section is cast, a complete two-span continuous preflex composite girder bridge is completed.
[0010]
3 (a) to 3 (h) are diagrams showing a construction process of a three span continuous pre-flex composite girder bridge. As shown in FIGS. 3A to 3D, in the three span continuous type girder bridge, the construction process at the second fulcrum 54 is the two span continuous type preflex composite girder shown in FIG. It will be the same as the bridge construction process. Next, as shown in FIG. 3 (e) to FIG. 3 (h), the third fulcrum 55 is raised, the concrete slab 53 is cast, the third fulcrum 53 is lowered, and the remaining concrete slab is lowered. The complete 3-span continuous pre-flex composite girder bridge is completed.
[0011]
However, the cited invention 2 manufactured as described above has a concern that the construction joint may be generated due to the time difference between the concrete moments of the positive moment and the negative moment sections, and the raising and lowering of each fulcrum is performed by the abutment adjacent to the land. However, the work must be performed on the bridge pier, that is, on the second fulcrum and the third fulcrum, so that the operation is inconvenient and involves a risk of a safety accident.
[0012]
Further, in both cited invention 1 and cited invention 2, the bridge seat device serving as an intermediary for transmitting the load of the superstructure to the substructure is provided with a hinge fulcrum that allows only rotation and a rotation and movement that is possible. It is composed of a roller fulcrum that can be used, and not only should nerves be used for continuous maintenance of the superstructure for safety, but also in case of an earthquake, it may be fatally damaged.
[0013]
[Problems to be solved by the invention]
The present invention has been invented to solve the conventional problems as described above, and its purpose is to completely integrate the beam and the abutment only at one fulcrum in the construction of a single-span composite girder bridge, and to provide a multi-diameter bridge. In the case of a composite girder bridge, the beam and the pier are integrated or not integrated, and the fulcrum on the abutment, that is, the end fulcrum, is lowered and raised to combine with the upper slab concrete in the negative moment section. It is an object of the present invention to provide a new practical, practical and economical method of constructing a new single-span and multi-span composite girder bridge that further introduces compressive stresses into the lower flange of the girder.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a method for constructing a single span composite girder bridge according to the present invention includes the steps of providing a first abutment and a second abutment, and embedding a shaped steel in a bridge seat of the first abutment. Simply standing the beam between the first and second abutments, connecting the shaped steel of the first abutment to the lower flange of the beam, and upper part of the bridge seat of the first abutment Casting concrete to the neutral axis of the beam, lowering the fulcrum on the second abutment side, and casting concrete from above the joint concrete of the first abutment to the floor slab of the beam. The method includes a step, a step of placing floor slab concrete over the entire section of the beam, and a step of raising a fulcrum of the lowered second abutment side.
[0015]
Also, the method of constructing a multi-span continuous composite girder bridge according to the present invention is a method of connecting at least two or more beams to each other by simply installing the beams between the first and second abutments and at least one or more inner piers. Performing, lowering the fulcrum on the first and second abutment side, casting concrete slab over the entire section of the beam, and adjusting the lowered fulcrum on the first and second abutment side. And the step of raising.
[0016]
Preferably, the method of constructing a multi-span continuous composite girder bridge as described above further includes a step of burying a shaped steel in a coping part of the inner pier before the step of simply keeping the beam. After the step of simply standing the beam, the method further includes the step of connecting the section steel and the lower flange of the beam, and the step of casting joint concrete from the upper part of the coping portion of the inner pier to the neutral axis of the beam. After the step of lowering the fulcrum on the first and second abutments, the method further includes a step of placing concrete from the upper surface of the joint concrete of the inner pier to the floor slab of the beam.
[0017]
Here, when the fulcrums on the first and second abutments are lowered, the fulcrum on the first abutment side and the fulcrums on the second abutment side are simultaneously lowered, and when the fulcrums on the first and second abutments are raised, they are lowered. The fulcrum on the first abutment side and the fulcrum on the second abutment side are simultaneously raised.
[0018]
However, as another alternative, when the fulcrums on the first and second abutments are lowered, the fulcrum on the first abutment side and the fulcrum on the second abutment side are sequentially lowered, and the fulcrums on the first and second abutment sides are lowered. In this case, the fulcrum on the first abutment side and the fulcrum on the second abutment side may be sequentially raised.
[0019]
In the case of a two-span continuous composite girder bridge, when the fulcrums on the first and second abutments are lowered, only one of the first and second abutments is lowered, and the At the time of raising the fulcrum on the first and second abutment side, only the one fulcrum that has been lowered is raised.
[0020]
On the other hand, in the construction method for constructing a preflex composite girder bridge, when the beam and the pier are not integrated, after the beam is connected and simply laid on the pier, the lower casing concrete is poured into the joint Is further included.
[0021]
On the other hand, the method for constructing a pre-flex composite girder bridge or steel box section steel further includes providing a plurality of reinforcing members and studs on the abdomen of the beam.
[0022]
Also, PSC (Prestressed concrete) In the construction method for constructing a composite girder bridge, a reinforcing bar is attached to the abdomen of the beam. Extend Further steps are included.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for constructing a single-span and multi-span composite girder bridge according to the present invention will be described with reference to the accompanying drawings. The construction method according to the present invention is applicable to both preflex composite girder bridges, PSC composite girder bridges, steel box girder bridges, steel plate girder bridges, and span span truss bridges.
[0024]
4 to 7 relate to a construction method for integrating a beam and an abutment in a single span composite girder bridge, and FIG. 4 shows a state in which a preflex beam 2 manufactured by a simple beam type is simply placed between a pair of abutments. It shows that the bridge seat 1 of one side abutment and the pre-flex beam 2 are connected. First, as shown in FIG. 4 (a), an H-shaped steel or a □ -shaped steel 3 is buried in the bridge seat 1, and a joint plate 4 for connection with the lower flange 60 of the beam 2 is welded thereon. After that, the section steel 3 is compacted with the lower flange of the beam 2 by bolts 5 or welding. Further, the beam 2 is provided with a reinforcing material 8 to reinforce it, and a steel girder to be coated with concrete is provided with a stud 9 to enhance the effect of combining with concrete.
[0025]
Next, as shown in FIG. 4 (b), the joint concrete 10 is cast from the upper part of the abutment to the neutral axis of the cross section of the pre-flex beam 2 and integrated therewith. Reinforcing the reinforcing bar 6 on the joint concrete 10 again Extend .
[0026]
Then, as shown in FIG. 4 (c), by casting concrete together with the upper floor slab 61, it can function as a complete fixed fulcrum.
[0027]
FIG. 4D is a plan view of the abutment associated with such a process.
[0028]
FIG. 5 is a view showing a case of the steel box girder bridge, in which the bridge seat portion 1 of one abutment and the steel box girder 2 are connected in a state where the steel box girder 2 is simply installed between the abutments.
[0029]
As in the case of FIG. 4, as shown in FIG. 5 (a), first, an H-shaped steel or a □ -shaped steel 3 is buried in the bridge seat 1, and the lower flange 60 of the steel box girder 2 is placed thereon. After the connection plate 4 for connection of the steel box is welded, the section steel 3 is compacted with the lower flange 60 of the steel box girder 2 by the bolt 5 or welding. Further, if the steel box girder 2 is provided with a reinforcing material 8 to reinforce the steel girder, and the steel girder covered with concrete is provided with studs 9, the effect of combining with the concrete can be enhanced.
[0030]
Next, as shown in FIG. 5 (b), the joint concrete 10 is cast and integrated from the top of the abutment to the neutral axis of the cross section of the steel box girder 2, and then integrated with the concrete to be cast. Reinforcing the reinforcing bar 6 on the joint concrete 10 again Extend .
[0031]
Then, as shown in FIG. 5C, by casting concrete together with the upper floor slab 61, it can function as a complete fixed fulcrum.
[0032]
FIG. 6 shows the case of a PSC composite girder bridge, in which the bridge seat 1 of one abutment and the PSC beam 2 are connected while the PSC beam 2 is simply installed between the abutments.
[0033]
As in the case of FIGS. 4 and 5, as shown in FIG. 6 (a), first, an H-section steel or □ -section steel 3 is buried in the bridge seat 1, and the lower flange of the PSC beam 2 is placed thereon. After welding the joint plate 4 for connection with the PSC, the shaped steel 3 is compacted by welding 15 with the plate 62 embedded in the concrete of the lower flange of the PSC beam 2.
[0034]
Next, as shown in FIG. 6B, the cross section of the PSC beam 2 from the upper part of the abutment at the same time as the concrete slab is cast in the remaining sections other than the section of about 10% of the entire span length from the fixed fulcrum side. The joint concrete 10 is cast and integrated to the neutral axis, and the abutment parapet 63 is also provided. In addition, in order to ensure the integrity with the concrete to be cast next, the reinforcing bar 6 is previously formed on the joint concrete 10 and the chest wall. Extend . Here, in the slab concrete that has been cast and the battlement wall 63 of the abutment, a tensile reinforcing bar 64 is buried in advance to correspond to the tensile force generated when the moving fulcrum is lowered during the construction process. In the case of a bridge with a span length of 30 m, the length of the section is about 10%, which is the value determined by conducting a parameter study using the length of the negative moment section as a variable. The length is allowed to vary depending on the type of bridge grade and the concrete material used.
[0035]
Next, as shown in FIG. 6 (c), by casting concrete together with the remaining upper floor slab 61, it can function as a complete fixed fulcrum.
[0036]
FIG. 7 is a diagram showing a construction process of the single span composite girder bridge.
[0037]
FIG. 7A is a state diagram in which a beam manufactured at a factory or a site is simply placed on a pair of abutments, and then one fulcrum is treated as a fixed fulcrum 71 and the other fulcrum is treated as a movable fulcrum 72.
[0038]
FIG. 7B is a diagram showing a process of lowering the moving fulcrum 72 to introduce a compressive stress to the lower flange of the beam, and a moment diagram due to the process.
[0039]
FIG. 7 (c) is a diagram showing a state where floor slab concrete (reference numeral 61 in FIG. 4 (c), FIG. 5 (c), FIG. 6 (c)) is cast with the moving fulcrum 72 lowered, and FIG. It is a moment diagram.
[0040]
FIG. 7D shows that after the floor slab concrete is cured, the lowered moving fulcrum 72 is raised to introduce a compressive stress corresponding to a negative moment generated from the fixed fulcrum 71 side into the floor slab concrete. It is. In the process of FIG. 7D, tensile stress is generated in the lower flange, which corresponds to about 60-70% of the compressive stress introduced when the moving fulcrum 72 descends due to the increased sectional rigidity after the combination. As a result, a compression pre-stressing effect of about 30-40% can be obtained.
[0041]
Here, in the case of the PSC composite girder bridge, before lowering the moving fulcrum, concrete slab is cast in a section excluding the section of about 10% of the span length from the end of the fixed fulcrum, and the remaining section is the end fulcrum. After lowering, it is cast.
[0042]
In the case of the single-span composite girder bridge of the present invention, the section of about 10% of the span length from the end of the fixed fulcrum can be designed to have a variable cross section due to the large moment of the fixed fulcrum.
[0043]
FIGS. 8 and 9 show the possibility of the construction joint of the problem of cited invention 2 described in the prior art and the construction for eliminating the danger of a safety accident caused by performing the fulcrum raising and lowering work on the pier. It is a diagram showing the method, and as described above, can be applied to a preflex composite girder bridge, a PSC composite girder bridge, a steel box girder bridge, a steel plate girder bridge, a long span truss bridge, and the like.
[0044]
FIG. 8 is a view showing a construction process of a two-span continuous composite girder bridge in which the bridge pier and the composite girder according to the present invention are not integrated, and the cited invention 2 raises the second fulcrum of the internal fulcrum and increases the positive moment section. Unlike the case where compressive stress is further introduced into the lower flange, as shown in FIG. 8 (a), the present invention places a pre-flex beam or a PSC beam made of a simple beam type on an abutment and a pier, and 10 (a) and the internal fulcrum 73 as shown in FIG. 10 (c), or as shown in FIG. 10 (b), one of the negative moment sections of the entire bridge at the left or right side of the internal fulcrum 73.
[0045]
FIG. 8B is a state diagram in which the fulcrum at both ends on the abutment side is lowered to further introduce a compressive stress into the lower flange, and a moment diagram based on this.
[0046]
FIG. 8 (c) is a diagram showing a state in which floor slab concrete is cast with the fulcrums at both ends lowered, and a moment diagram based on this.
[0047]
FIG. 8 (d) shows that after the slab concrete was cured, the fulcrums at both ends which were lowered were raised, and a compressive stress corresponding to the tensile stress generated from the internal fulcrum part after the synthesis was introduced into the slab concrete. FIG. In the process of FIG. 8D, a tensile stress is generated in the lower flange as in the case of the single diameter, but this is approximately equal to the compressive stress introduced when the fulcrum at both ends is lowered due to the increased cross-sectional rigidity after the synthesis. Since it corresponds to 60-70%, a compression prestressing effect of about 30-40% can be finally obtained.
[0048]
Similarly, in the case of the PSC composite girder bridge, before lowering the fulcrums at both ends, concrete slabs are cast on the left and right sides of the inner fulcrum in a section excluding the section of about 10% of the corresponding span length, and the remaining sections are After the fulcrum at both ends is lowered, it is cast.
[0049]
FIG. 9 is a diagram showing a construction process of a three-span continuous composite girder bridge according to the present invention in which the pier and the composite girder are not integrated.
[0050]
FIG. 9 (a) shows that the fabricated preflex beam or PSC beam is fixed on the abutment and the pier, and at one of the right and left sides of the pier in the negative moment section of the entire bridge at the inner fulcrum or off the inner fulcrum. 11 (a), FIG. 10 (b), and FIG. 10 (c).
[0051]
As described above, as shown in FIG. 9 (b), cited invention 2 sequentially raises the second fulcrum 73 and the third fulcrum 74 of the internal fulcrum and introduces further compressive stress to the lower flange of the positive moment section. Unlike this, the present invention obtains the same effect by lowering the fulcrums at both ends on the abutment simultaneously or sequentially.
[0052]
FIG. 9 (c) is a diagram showing a state in which floor slab concrete is cast with the fulcrums at both ends lowered, and a moment diagram based on this.
[0053]
FIG. 9D shows that, after the slab concrete is cured, the lowered fulcrums are raised and a compressive stress corresponding to the tensile stress generated at the internal fulcrum part after the synthesis is introduced into the slab concrete. FIG. At this time, similarly, tensile stress is generated in the lower flange, which corresponds to about 60-70% of the compressive stress introduced when the fulcrum at both ends is lowered due to the increased cross-sectional rigidity after the combination, so that about 30% is ultimately obtained. A compression prestressing effect of about -40% can be obtained. In the case of a three-span continuous composite girder bridge in which the bridge pier and the composite girder of the present invention are not integrated, the positive moment generated from the inner span is about an absolute value smaller than the maximum negative moment generated at the inner fulcrum due to the structural characteristics of the continuous beam. Since it is only 1/5, a sufficient compressive stress is maintained even when the fulcrum at both ends is lowered and raised and no compression prestressing is introduced.
[0054]
Similarly, in the case of the PSC composite girder bridge, before lowering the fulcrums at both ends, concrete is slab laid on the left and right sides of the inner fulcrum in a section excluding a section of about 10% of the corresponding span length, and the remaining sections are laid. Is installed after the fulcrum of both ends is lowered.
[0055]
FIG. 10 (a) is a detailed view of a preflex composite girder bridge in which two beams 2 are connected by a plurality of joint plates 4 and bolts 5 at internal fulcrums. In the case of the cited invention 2 described in the prior art, after raising the fulcrum, the slab concrete in the negative moment section is poured, and the joint concrete 11 is poured into the internal fulcrum. Lays joint concrete 11 on the internal fulcrum before lowering the fulcrums at both ends.
[0056]
FIG. 10 (b) shows still another connection method in the case of the preflex composite girder bridge, in which two beams 2 are connected to a plurality of connection plates 4 at one of right and left sides of a pier deviating from an internal fulcrum. FIG. 3 is a detailed view connected by bolts 5. Similarly, in the case of the cited invention 2 described in the prior art, after raising the fulcrum, the concrete of the present invention is compared with the slab concrete in the negative moment section and the joint concrete 11 being cast in the internal fulcrum. In the case of (1), the joint concrete 11 is poured into the joint before lowering the fulcrums at both ends.
[0057]
FIG. 10C is a detailed view in which two beams 2 are connected at an internal fulcrum in the case of a PSC composite girder bridge. At the time of manufacturing each PSC beam, bolts 5 are inserted and placed in advance in the concrete of the upper flange, and continuity is achieved using the joint plate 4 when connecting the beams. The beam is also connected to the lower flange using the connection reinforcing bar 6. This is because the role of the connecting reinforcing bar 6 is not so large because the lower flange of the internal fulcrum is on the compression side, but this is for stabilizing the entire composite girder. Further, a joint stopper 12 is provided on the neutral shaft of the beam for convenience in connection work, and the gap is filled with non-shrink mortar.
[0058]
Since the steel box girder bridge has no joint at the internal fulcrum, the method of the present invention can be applied more easily.
[0059]
11 to 15 show still another example of a method of constructing a multi-span continuous composite girder bridge, in which a beam and a pier are integrated to further prepare for problems of a bridge seat device and damage during an earthquake. It is for that. The following is a description of such an integration method and a construction method.
[0060]
In the case of a pre-flex composite girder bridge, as shown in FIG. 11A, two pre-flex beams 2 manufactured by a simple beam type are connected to a plurality of joint plates 4 in the same manner as in FIG. After being mounted on the square steel 14 buried in advance in the pier 13 and being placed on the pier 13, it is compacted by welding to the lower flange 60 of the steel girder. In addition, in order to assist the integration with the joint concrete 10 to be cast in the next stage, the reinforcing bar 6 is previously drawn out from the pier 13 and the lower casing concrete 52 of the beam 2. Then, similarly to FIG. 11 (b), the joint concrete 10 is cast and integrated from the upper part of the bridge pier 13 to the concrete of the remaining lower flange of the beam 2 from the upper part of the pier 13, and the next The reinforcing bar 6 is further pulled out and placed in order to achieve integration with the concrete to be provided.
[0061]
As in FIG. 11 (c), with the end fulcrum of the multi-span continuous composite girder bridge of the present invention lowered, simultaneously with the placement of the floor slab concrete and the abdominal concrete, the remaining upper portion of the pier is cast. Thus, a multi-span continuous preflex composite girder bridge in which the beam 2 and the pier 13 are completely integrated can be completed. FIG. 11D is a plan view showing the square steel 14 buried in the pier 13.
[0062]
FIG. 12 is a diagram showing a case of a steel box girder bridge.
[0063]
As shown in FIG. 12A, after the steel box girder 2, which is a segment corresponding to the negative moment section, is placed on the square steel 14 buried in advance on the pier 13, the lower flange of the beam 2 is formed. 60 and compacted by welding. Then, similarly to FIG. 12B, the joint concrete 10 is cast from the upper part of the pier 13 to the neutral axis of the cross section of the beam 2 and integrated. Here, the reinforcing bar 6 is pulled out and placed on the pier 13, the reinforcing member 8 is provided on the abdomen of the steel box girder to reinforce, and the stud 9 is provided not only on the upper flange but also on the abdomen to enhance the effect of combining with the concrete. In particular, in the case of a steel box girder bridge, since there is no joint of a composite girder on the pier, the method of the present invention can be applied more easily.
[0064]
Similarly to FIG. 12 (c), with the end fulcrum of the multi-span continuous composite girder bridge of the present invention lowered, simultaneously with the placement of the floor slab concrete, the remaining upper part of the pier is cast together with the beam. A multi-span continuous steel box girder bridge with completely integrated piers can be completed.
[0065]
FIG. 13 is a diagram showing the case of a PSC composite girder bridge.
[0066]
As shown in FIG. 13 (a), after two PSC beams 2 interconnected similarly to FIG. 10 (b) are placed on a It is compacted by welding with the joint plate 4 buried in the concrete of the lower flange. Next, as shown in FIG. 13 (b), the cross section of the PSC beam 2 from the upper part of the pier at the same time as the concrete slab is cast in the remaining section excluding the section about 10% of the corresponding span length from the inner fulcrum to the left and right The concrete joint 10 is cast to the neutral axis and integrated. Further, in order to ensure the integrity with the concrete to be cast next, the reinforcing bar 6 is again pulled out and placed on the joint concrete 10 again. Here, the floor slabs cast in the remaining sections excluding the inner fulcrum portions are connected by embedding the tension reinforcing bars 64 in advance. This is to cope with the tensile force generated when the fulcrums of both ends are lowered during the construction process. In the case of a bridge having a section length of about 10% and a span of 30 m, the value is determined by performing a parameter study using the length of the negative moment section as a variable. The length that can be introduced, which can vary depending on the type of bridge grade and the concrete material used.
[0067]
As shown in FIG. 13 (c), the beam and the pier are completely integrated by laying the remaining upper part of the pier simultaneously with the placement of the remaining slab concrete with both ends of the present invention lowered. The completed multi-span continuous PSC composite girder bridge can be completed.
[0068]
FIG. 14 is a diagram showing a construction process of a two-span continuous composite girder bridge integrating a pier and a composite girder.
[0069]
FIG. 14 (a) shows a composite girder and a pier being compacted as shown in FIG. 11 (b), FIG. 12 (b) and FIG. 13 (b). It is a process of lowering and further introducing a compressive stress to the lower flange, and a moment diagram based on the process.
[0070]
FIG. 14 (b) is a diagram showing a process of placing concrete slabs with both fulcrums lowered, and a moment diagram based on the process. Here, as shown in FIG. 11 (c), FIG. 12 (c), and FIG. 13 (c), simultaneously with the placement of the floor slab concrete, the concrete is also placed on the remaining upper part of the pier to complete the pier and the composite girder. To be integrated.
[0071]
FIG. 14 (c) shows that after the floor slab concrete and the upper concrete of the pier have been cured, the lowered fulcrums of the both ends are simultaneously or sequentially raised to respond to the tensile stress generated from the floor slab concrete in the negative moment section due to the design live load. FIG. 4 is a view showing that a compressive stress is applied. In this construction stage, tensile stress is generated in the lower plunge of the positive moment section, which corresponds to approximately 60-70% of the compressive stress introduced when the fulcrum at both ends is lowered due to the increased sectional rigidity after the synthesis. As a result, a compression prestressing effect of about 30-40% can be obtained.
[0072]
In the case of the PSC composite girder bridge, before lowering the fulcrums at both ends, slab concrete is placed on the left and right sides of the inner fulcrum except for the section of about 10% of the span length, and the rest of the fulcrum is lowered on the remaining sections. It is cast afterwards.
[0073]
In the case of the two-span continuous composite girder bridge shown in FIGS. 8 and 14, the same effect can be obtained by lowering and raising only one end fulcrum according to the site conditions. However, in this case, a double value should be applied for the descending amount and the ascending amount as compared with the case where the both ends are lowered or raised simultaneously or sequentially.
[0074]
FIG. 15 shows a construction process of a three-span continuous composite girder bridge in which a pier and a composite girder according to the present invention are integrated.
[0075]
FIG. 15 (a) shows that after connecting the composite girder and the pier as shown in FIG. 11 (b), FIG. 12 (b) and FIG. 13 (b), the supporting points at both ends of the entire structure are lowered simultaneously or sequentially. FIG. 4 is a diagram showing a process of causing a lower flange to further introduce a compressive stress and a moment diagram based on the process.
[0076]
FIG. 15 (b) is a process of placing the slab concrete with the fulcrums at both ends lowered, and a moment diagram based on this process. Here, as shown in FIG. 11 (c), FIG. 12 (c), and FIG. 13 (c), simultaneously with the placement of the floor slab concrete, the remaining upper part of the pier is also poured with concrete to complete the pier and the composite girder. To be integrated.
[0077]
Fig. 15 (c) shows that after the slab concrete and the upper concrete of the pier have been cured, the lowered fulcrums are simultaneously or sequentially raised, and the tensile stress generated from the slab concrete in the negative moment section due to the design live load. FIG. 4 is a diagram showing that a compressive stress corresponding to the above is introduced. Like the two-span continuous composite girder bridge, tensile stress is also generated in the lower flange at this stage of construction, but this is due to the increased cross-sectional rigidity after composite, which is about 60-% of the compressive stress introduced when the end fulcrum is lowered. Since it corresponds to 70%, a compression prestressing effect of about 30-40% can be obtained after all.
[0078]
Similarly, in the case of the PSC composite girder bridge, before lowering the fulcrums at both ends, concrete is slab laid on the left and right sides of the inner fulcrum in the section excluding the section of about 10% of the applicable span length, and the remaining sections are at both ends. It is cast after the fulcrum is lowered.
[0079]
In the case of a three-span continuous composite girder bridge in which the pier and the composite girder according to the present invention are integrated, the positive moment generated from the inner span is about 1 / in absolute value compared to the maximum negative moment generated from the inner fulcrum. Since it is only 3.5, a sufficient compressive stress is maintained even if additional compressive prestressing is not introduced when the fulcrum is lowered and raised.
[0080]
Further, the multi-span continuous composite girder bridge in which the pier and the composite girder according to the present invention are integrated with each other has a large moment generated from the vicinity of the integrated pier and the composite girder. The% section can be designed to have a variable cross section by enlarging the cross section of the composite girder.
[0081]
In addition, the single-span and multi-span composite girder structures according to the present invention can adjust the amount of compressive prestress introduced into the lower flange of the composite girder by making the rising amount smaller than the lowering amount of the end fulcrum.
[0082]
【The invention's effect】
As described above, in the case of a multi-span continuous composite girder bridge in which the upper composite girder and the pier according to the present invention are not integrated, the slab concrete is cast at once, and the fulcrum lowering and ascent work is performed by the abutment adjacent to the land. By doing so, it is possible to prevent the occurrence of construction joints due to the time lag of concrete slab placement in the positive / negative moment sections, which is a problem of cited invention 2 described in the prior art, and accompanying the fulcrum raising and lowering work performed on the pier. It can eliminate inconvenience and the danger of safety accidents.
[0083]
Further, in the construction method of a single span composite girder bridge integrating the upper composite girder with one abutment according to the present invention and a multi span continuous composite girder bridge integrated with the pier, in addition to the effects described above, Compared to single-span, two-span, and three-span structures being respectively determined, primary and secondary indeterminate structures, the present invention provides primary and fifth order structures, respectively. And, since it is converted into an 8th order indefinite structure, the energy dispersion effect by plasticity is large, so that the vibration reduction effect and the seismic resistance can be greatly improved, and the composite girder and the lower structure are integrated. As a result, a large moment that can be generated is distributed to the substructure, so that the load on the external force of the beam is reduced, and a reduction effect and an extension effect of about 20% can be expected in the girder height and the span surface. Economic cross-section is obtained.
[0084]
In addition, the number of bridge seat devices that require continuous maintenance due to deterioration of all bridges can be reduced, thereby further improving economic efficiency.
[Brief description of the drawings]
FIG. 1 is a view showing a construction process of a single-span preflex composite girder bridge according to a conventional technique.
FIG. 2 is a view showing a construction process of a two-span continuous preflex composite girder bridge according to the conventional technique.
FIG. 3 is a view showing a construction process of a three-span continuous preflex composite girder bridge according to a conventional technique.
FIG. 4 is a connection state diagram of an abutment and a composite girder for construction of a single span preflex composite girder bridge according to the present invention.
FIG. 5 is a connection diagram of an abutment and a composite girder for construction of a single-span steel box girder bridge according to the present invention.
FIG. 6 is a connection state diagram of an abutment and a composite girder for construction of a single span PSC composite girder bridge according to the present invention.
FIG. 7 is a view showing a construction process of a single span composite girder bridge according to the present invention.
FIG. 8 is a view showing a construction process of a two-span continuous composite girder bridge in which the composite girder and the pier according to the present invention are not integrated.
FIG. 9 is a view showing a construction process of a three-span continuous composite girder bridge in which the composite girder and the pier according to the present invention are not integrated.
FIG. 10 is a connection state diagram of beams at internal fulcrums when the multi-span continuous composite girder bridge according to the present invention is constructed.
FIG. 11 is a connection state diagram of a pier and a composite girder for constructing a composite girder bridge of a multi-span continuous preflex in which the composite girder and the pier according to the present invention are integrated.
FIG. 12 is a connection diagram of a pier and a composite girder for construction of a multi-span continuous steel box girder bridge in which the composite girder and the pier according to the present invention are integrated.
FIG. 13 is a connection state diagram of a pier and a composite girder for construction of a multi-span continuous PSC composite girder bridge in which the composite girder and the pier according to the present invention are integrated.
FIG. 14 is a view showing a construction process of a two-span continuous composite girder bridge in which the composite girder and the pier according to the present invention are integrated.
FIG. 15 is a view showing a construction process of a three-span continuous composite girder bridge in which the composite girder and the pier according to the present invention are integrated.
[Explanation of symbols]
1 Bridge seat
2 beams
3 Section steel
4 Fitting plate
5 bolts
6 Reinforcing bars
8 Reinforcement
9 studs
10 Joint concrete
11 Joint concrete
12 Joint stopper
13 pier
14 Shape steel
15 Welding
60 lower flange
61 Floor slab
62 plates
63 Parapet
64 Tensile reinforcing bar

Claims (12)

第1橋台と第2橋台を設ける段階と、
前記第1橋台の橋座部に形鋼を埋設する段階と、
ビームを前記第1橋台と第2橋台との間に単純据え置きする段階と、
前記第1橋台の形鋼と前記ビームの下部フランジとを連結する段階と、
前記第1橋台の橋座部の上面から前記ビームの中立軸まで継手コンクリートを打設する段階と、
前記第2橋台側の支点を下降させる段階と、
前記ビームに、前記第1橋台の継手コンクリートの上面を含む床版コンクリートを打設する段階と、
下降させた前記第2橋台側の支点を上昇させる段階とを含めてなされることを特徴とする単径間合成桁橋の施工法。
Providing a first abutment and a second abutment;
Burying a shaped steel in the bridge seat of the first abutment;
Simply placing the beam between the first and second abutments;
Connecting the shaped steel of the first abutment to a lower flange of the beam;
Casting joint concrete from the upper surface of the bridge seat of the first abutment to the neutral axis of the beam;
Lowering the fulcrum on the second abutment side;
Placing the floor slab concrete including the upper surface of the joint concrete of the first abutment on the beam ;
Raising the fulcrum on the side of the second abutment which has been lowered, the method comprising the steps of:
少なくとも二つ以上のビームをお互い連結して第1橋台と第2橋台、そして少なくとも一つ以上の内側の橋脚間に単純据え置きする段階と、
前記第1及び第2橋台側の支点を下降させる段階と、
前記ビームに床版コンクリートを打設する段階と、
下降させた前記第1及び第2橋台側の支点を上昇させる段階とを有してなり、
さらに、
前記ビームを単純据え置きする段階前、前記内側橋脚の橋座部に形鋼を埋設する段階と、
前記ビームを単純据え置きする段階後、前記形鋼と前記ビームの下部フランジとを連結する段階と、
前記内側橋脚の橋座部の上部から前記ビームの中立軸まで継手コンクリートを打設する段階と、
前記第1及び第2橋台側の支点を下降させる段階後、前記内側橋脚の継手コンクリートの上面から前記ビームの床版までコンクリートを打設する段階とを含んでなる
ことを特徴とする多径間連続合成桁橋の施工法。
Simply connecting at least two or more beams to each other between the first and second abutments and at least one or more inner piers;
Lowering the fulcrum on the first and second abutment side;
Casting floor slab concrete into the beam;
Raising the fulcrum of the lowered first and second abutment sides ,
further,
Before the step of simply deferring the beam, a step of burying a shaped steel in the bridge seat of the inner pier,
After the step of simply holding the beam, connecting the section steel and a lower flange of the beam,
Casting joint concrete from the top of the bridge seat of the inner pier to the neutral axis of the beam;
After the step of lowering the fulcrum of the first and second abutments, casting concrete from the upper surface of the joint concrete of the inner pier to the floor slab of the beam. Construction method of multi-span continuous composite girder bridge.
プレフレックス合成桁の施工のため、前記ビームを単純据え置きする段階前に前記ビームの継手にジョイントコンクリートを打設する段階をさらに含めてなされることを特徴とする請求項2に記載の多径間連続合成桁橋の施工法。3. The multi span span according to claim 2, further comprising a step of casting joint concrete at a joint of the beam before the step of simply holding the beam for the construction of the preflex composite girder. Construction method of continuous composite girder bridge. 前記第1及び第2橋台側の支点の下降時には前記第1橋台側の支点と前記第2橋台側の支点を同時に下降させ、
前記第1及び第2橋台側の支点の上昇時には下降させた前記第1橋台側の支点と前記第2橋台側の支点を同時に上昇させることを特徴とする請求項2に記載の多径間連続合成桁橋の施工法。
When the fulcrum on the first and second abutments is lowered, the fulcrum on the first abutment and the fulcrum on the second abutment are simultaneously lowered,
The multi-span continuation according to claim 2, wherein when the fulcrums on the first and second abutments are raised, the fulcrum on the first abutment side and the fulcrum on the second abutment side, which have been lowered, are simultaneously raised. Construction method of composite girder bridge.
前記第1及び第2橋台側の支点の下降時には前記第1橋台側の支点と前記第2橋台側の支点を順次に下降させ、
前記第1及び第2橋台側の支点の上昇時には前記第1橋台側の支点と前記第2橋台側の支点を順次に上昇させることを特徴とする請求項2に記載の多径間連続合成桁橋の施工法。
When the fulcrum on the first and second abutment side is lowered, the fulcrum on the first abutment side and the fulcrum on the second abutment side are sequentially lowered,
The multi-span continuous composite girder according to claim 2, wherein the fulcrum on the first abutment side and the fulcrum on the second abutment side are sequentially raised when the fulcrums on the first and second abutments are raised. Bridge construction method.
二つのビームをお互い連結して第1橋台と第2橋台、そして一つの内側の橋脚間に単純据え置きする段階と、
前記第1及び第2橋台側のいずれか片方支点を下降させる段階と、
前記ビームに床版コンクリートを打設する段階と、
下降させた前記第1及び第2橋台側の片方支点を上昇させる段階とを有してなり、
さらに、
前記ビームを単純据え置きする段階前、前記内側橋脚の橋座部に形鋼を埋設する段階と、
前記ビームを単純据え置きする段階後、前記形鋼と前記ビームの下部フランジとを連結する段階と、
前記内側橋脚の橋座部の上部から前記ビームの中立軸まで継手コンクリートを打設する段階と、
前記第1及び第2橋台側のいずれかの支点を下降させる段階後、前記内側橋脚の継手コンクリートの上面から前記ビームの床版までコンクリートを打設する段階とを含んでなる
ことを特徴とする二径間連続合成桁橋の施工法。
Connecting the two beams together and simply placing them between the first and second abutments and one inner pier;
Lowering one of the fulcrums on the first and second abutment sides;
Casting floor slab concrete into the beam;
Raising one fulcrum of the lowered first and second abutment sides,
further,
Before the step of simply deferring the beam, a step of burying a shaped steel in the bridge seat of the inner pier,
After the step of simply holding the beam, connecting the section steel and a lower flange of the beam,
Casting joint concrete from the top of the bridge seat of the inner pier to the neutral axis of the beam;
After lowering any of the fulcrums on the first and second abutment sides, casting concrete from the upper surface of the joint concrete of the inner pier to the floor slab of the beam. Construction method of two span continuous composite girder bridge characterized by the following.
プレフレックス合成桁橋または鋼箱型合成桁橋を施工するために前記ビームの腹部に一つ以上の補強材とスタッドを設ける段階をさらに含むことを特徴とする請求項1,2,または6に記載の合成桁橋の施工法。7. The method of claim 1 , 2, or 6 , further comprising the step of providing one or more reinforcements and studs on the abdomen of the beam to construct a preflex composite girder bridge or a steel box type girder bridge. The construction method for the composite girder bridge described. PSC合成桁橋を施工するため、前記ビームの腹部に鉄筋を延長させておく段階をさらに含むことを特徴とする請求項1,2,または6に記載の合成桁橋の施工法。The method for constructing a composite girder bridge according to claim 1 , 2, or 6 , further comprising extending a reinforcing bar to the abdomen of the beam to construct the PSC composite girder bridge. PSC合成桁橋を施工するため、前記第2橋台側の支点を下降させる段階前に、前記第1橋台の胸壁とビームの正モーメント区間に床版コンクリートを打設する段階と、前記胸壁と床版コンクリートとを連結する継手鉄筋を埋設する段階とをさらに含むことを特徴とする請求項1に記載の単径間合成桁橋の施工法。Prior to the step of lowering the fulcrum on the side of the second abutment to construct a PSC composite girder bridge, placing concrete slab in the positive moment section of the parapet and beam of the first abutment; The method according to claim 1, further comprising the step of burying a joint reinforcing bar connecting the slab concrete. PSC合成桁橋を施工するために、前記第1及び第2橋台側の支点を下降させる段階前に、前記ビームの正モーメント区間に床版コンクリートを打設する段階と、
前記床版コンクリートをお互いに連結する継手鉄筋を埋設する段階とをさらに含むことを特徴する請求項2に記載の多径間合成桁橋の施工法。
Prior to the step of lowering the fulcrum on the first and second abutment sides to construct a PSC composite girder bridge, placing floor slab concrete in the positive moment section of the beam;
3. The method of claim 2, further comprising: burying a joint reinforcing bar connecting the slab concrete to each other. 4.
前記ビームの継手位置は前記内側の橋脚に置かせることを特徴とする請求項2に記載の多径間合成桁橋の施工法。The method according to claim 2, wherein the joint position of the beam is placed on the inner pier . 前記ビームの継手位置は前記内側の橋脚の左側と右側のうちいずれか一ヶ所に置かせることを特徴とする請求項2に記載の多径間合成桁橋の施工法。The method according to claim 2, wherein a joint position of the beam is located at one of a left side and a right side of the inner pier .
JP2001017589A 2000-06-08 2001-01-25 Construction method of single span and multi span composite girder bridges Expired - Fee Related JP3588325B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020000031515A KR20000054500A (en) 2000-06-08 2000-06-08 Construction method that introduces compressive stress to bottom plate concrete and bottom moment flange of parent section by using and adjusting the descending and rising process of end point in short span and multi span composite structures
KR200035471 2000-06-26
KR2020000018176U KR200212395Y1 (en) 2000-06-26 2000-06-26 Cross-sectional structure integrating lower structure and upper mold
KR1020000035471A KR20000058716A (en) 2000-06-26 2000-06-26 Multi-span continuous composite construction that integrates beams and piers and lowers and raises end points
KR200018176 2000-06-26
KR200031515 2000-06-26

Publications (2)

Publication Number Publication Date
JP2002004224A JP2002004224A (en) 2002-01-09
JP3588325B2 true JP3588325B2 (en) 2004-11-10

Family

ID=36716992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017589A Expired - Fee Related JP3588325B2 (en) 2000-06-08 2001-01-25 Construction method of single span and multi span composite girder bridges

Country Status (5)

Country Link
JP (1) JP3588325B2 (en)
KR (1) KR100522170B1 (en)
CN (1) CN1252354C (en)
AU (1) AU2001222332A1 (en)
WO (1) WO2001096665A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059089A1 (en) * 2002-12-30 2004-07-15 Koo, Min Se Prestressed composite girder, continuous prestressed composite girder structure and methods of fabricating and connecting the same
ES2283179B1 (en) * 2005-03-11 2008-12-01 Iglesias Y Revilla, S.L. MIXED STRUCTURES FOR APPLICATION TO PREFABRICATED INDUSTRIAL VESSELS.
JP4318694B2 (en) * 2006-02-13 2009-08-26 朝日エンヂニヤリング株式会社 Floor slab bridge structure
JP4863268B2 (en) * 2006-06-01 2012-01-25 公益財団法人鉄道総合技術研究所 Bridge construction method and its bridge structure
KR100742206B1 (en) * 2006-10-25 2007-07-25 (주)한맥기술 Steel-concrete composite rahmen bridge and construction method thereof
JP4245657B1 (en) 2008-10-24 2009-03-25 朝日エンヂニヤリング株式会社 Rigid connection structure between pier and concrete girder
KR101046940B1 (en) * 2008-11-17 2011-07-07 지에스건설 주식회사 Continuous bridge construction method using PS girder and steel plate girder
JP5342312B2 (en) * 2009-04-21 2013-11-13 大成建設株式会社 Precast member installation method
CN101694087B (en) * 2009-10-13 2011-05-11 毕承会 Method for building novel bridge
CN102877417B (en) * 2012-10-26 2014-12-03 中铁上海设计院集团有限公司 Anchoring method of girder suspender of continuous camber composite bridge
CN103205930B (en) * 2013-04-25 2015-06-03 福州大学 Structure for continuous transformation of existing simply supported hollow slab girder bridge and construction method of structure
CN104480858A (en) * 2014-10-20 2015-04-01 中建三局第二建设工程有限责任公司 Construction method for sealing anchorage of pre-stress concrete box girder and cross girder anchored troughs
CN104612056B (en) * 2014-12-10 2016-06-29 中铁第四勘察设计院集团有限公司 The overall quickly pushing tow method for traversing of a kind of frame bridge
CN104594194B (en) * 2015-02-04 2016-08-24 河南省交通规划设计研究院股份有限公司 It is applied to the combined bridge deck in Large Span Bridges and Urban Bridge
KR101586320B1 (en) * 2015-09-10 2016-01-18 오종훈 Psc girder rahmen bridge and construction method thereof
CN105926423B (en) * 2016-04-15 2018-06-12 浙江大学 It is a kind of applied to the combination beam type bridge floor continuation apparatus of Hollow Slab Beam Bridge and bridge floor continuation method
CN106284046A (en) * 2016-10-09 2017-01-04 北京市市政工程设计研究总院有限公司 Bridge steel concrete equals curved combination beam manufacture method
PH12017000177A1 (en) * 2017-06-16 2019-02-04 Wookyung Tech Co Ltd Method for manufacturing steel i beam segment of positive moment and negative moment and method for constructing simple bridge and continuous bridge
CN109977453B (en) * 2019-01-15 2023-04-18 河北工程大学 Working resistance design method for solid filling hydraulic support
CN112446069A (en) * 2019-08-14 2021-03-05 深圳市建筑设计研究总院有限公司 Pre-internal force of structural member and calculation method thereof
CN114232489B (en) * 2021-12-20 2023-08-25 福建宏盛建设集团有限公司 Construction method of large-span reinforced concrete structure building

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009582B2 (en) * 1994-01-07 2000-02-14 三菱重工業株式会社 Construction method of continuous composite girder bridge between concrete slab and steel girder
KR100341165B1 (en) * 1998-07-03 2002-11-29 (주)한국해외기술공사 Construction method of preflex beam

Also Published As

Publication number Publication date
WO2001096665A1 (en) 2001-12-20
CN1252354C (en) 2006-04-19
KR100522170B1 (en) 2005-10-18
JP2002004224A (en) 2002-01-09
KR20030014686A (en) 2003-02-19
CN1494628A (en) 2004-05-05
AU2001222332A1 (en) 2001-12-24

Similar Documents

Publication Publication Date Title
JP3588325B2 (en) Construction method of single span and multi span composite girder bridges
US8474080B2 (en) Construction method of steel composition girder bridge
KR100941066B1 (en) Prestressed-precast-segmental open spendral concrete arch bridge and its constructing method
KR101007708B1 (en) Semi-hinge rahman bridge and method for constructing the same
KR102009134B1 (en) Construction Method of Long Span Girder Bridge
JPS6114287B2 (en)
EP1828484A2 (en) Bridge construction system and method
CA2061871C (en) Composite, prestressed structural member and method of forming same
JP2007077630A (en) Continuous girder using precast main-girder segment, and its erection method
JP5331924B1 (en) SPC bridge construction method
JP3908642B2 (en) Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge
KR101881580B1 (en) Bridge comprising monolithic structure of girder and pier and construction method for the same
KR101661449B1 (en) Methods for controlling the camber of the cantilever truss half precast panel and, constructing methods using the same
JP3739046B2 (en) Construction method of steel PC composite bridge
KR100842062B1 (en) The steel composite rahmen bridge construction technique for which preflexion steel girder was used
KR20080099061A (en) Psc beam for connection steel width step of psc bridges
KR101241401B1 (en) Composite steel continuous bridge construction method using concrete cross beams
JPH0475322B2 (en)
KR20000054500A (en) Construction method that introduces compressive stress to bottom plate concrete and bottom moment flange of parent section by using and adjusting the descending and rising process of end point in short span and multi span composite structures
CN211548061U (en) Laminated arch shell structure
KR20060017949A (en) Field-fabricated prestressing steel-composed girder and construction method of continuous bridge using the girder
CN106677073A (en) Construction method for semi-integral jointless bridge structure adaptive to soft soil foundation
KR101228107B1 (en) A integral abutment continuous composite bridge using precast girder and the construction method thereof
KR100979218B1 (en) Continuous span structure
CN110886392A (en) Laminated arch shell structure and construction method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees