JP2002004224A - Construction method of single span and multi span composite girder bridge - Google Patents

Construction method of single span and multi span composite girder bridge

Info

Publication number
JP2002004224A
JP2002004224A JP2001017589A JP2001017589A JP2002004224A JP 2002004224 A JP2002004224 A JP 2002004224A JP 2001017589 A JP2001017589 A JP 2001017589A JP 2001017589 A JP2001017589 A JP 2001017589A JP 2002004224 A JP2002004224 A JP 2002004224A
Authority
JP
Japan
Prior art keywords
abutment
fulcrum
concrete
composite girder
girder bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001017589A
Other languages
Japanese (ja)
Other versions
JP3588325B2 (en
Inventor
Min Se Koo
民世 丘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020000031515A external-priority patent/KR20000054500A/en
Priority claimed from KR1020000035471A external-priority patent/KR20000058716A/en
Priority claimed from KR2020000018176U external-priority patent/KR200212395Y1/en
Application filed by Individual filed Critical Individual
Publication of JP2002004224A publication Critical patent/JP2002004224A/en
Application granted granted Critical
Publication of JP3588325B2 publication Critical patent/JP3588325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D1/00Bridges in general
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed
    • E01D2101/285Composite prestressed concrete-metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the construction method of a single span and multi span composite girder bridge further introducing compression stress in upper floor board concrete and the lower flange of a composite girder of a negative moment zone through a process lowering and lifting an end supporting point. SOLUTION: The construction method includes a step for providing a first abutment and a second abutment, a step for burying the shape steel of the bridge seat of the first abutment, a step for simply leaving a beam between the first abutment and the second abutment as it is, a step for connecting the shape steel of the first abutment and the lower flange of the beam, a step for placing joint concrete to the neutral axis of the beam from the upper part of the bridge seat part of the first abutment, a step for lowering the supporting point of the second abutment, a step for placing concrete to the floor board of the beam from the upper part of the joint concrete of the first abutment, a step for placing floor board concrete over the whole zone of the beam, and a step for lifting the supporting point of the second abutment side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は単径間及び多径間プ
レフレックス(preflex)合成桁橋、PSC合成桁橋、鋼箱
桁橋(steel box girder bridge)、鋼板桁橋(plate g
irder bridge)、長径間(long span)トラス橋などの
ような単径間及び多径間合成桁橋の施工法に関する。
The present invention relates to single-span and multi-span preflex composite girder bridges, PSC composite girder bridges, steel box girder bridges, steel plate girder bridges.
The invention relates to the construction of single and multi span composite girder bridges, such as irder bridges and long span truss bridges.

【0002】[0002]

【従来の技術】単径間及び多径間合成桁橋の施工法に対
する従来の技術において、単径間の場合には韓国特許第
0250937号公開公報(以下、“引用発明1”と称
する)の“仮支点を用いた単純ビーム型プレフレックス
合成ビームの製作工法”があり、多径間の場合は韓国特
許第105754号公開公報(以下、“引用発明2”と
称する)の“連続ビーム型プレストレス(pre-stresse
d)合成ビームとこれを用いたプレストレス連続合成ビ
ーム構造物の施工法”がある。
2. Description of the Related Art In the prior art for the construction method of single-span and multi-span composite girder bridges, in the case of a single span, Korean Patent Publication No. 0250937 (hereinafter referred to as "cited invention 1"). There is a “method of manufacturing a simple beam type preflex composite beam using a temporary fulcrum”, and in the case of multiple spans, a “continuous beam type pre-mixed beam” disclosed in Korean Patent No. Stress (pre-stresse
d) Construction method of composite beam and prestressed continuous composite beam structure using it.

【0003】図1(a)乃至図1(d)は引用発明1の
合成桁橋を施工する工程を示したものである。これら図
面を参照して引用発明1を説明すれば次の通りである。
FIGS. 1 (a) to 1 (d) show steps of constructing a composite girder bridge of cited invention 1. FIG. The cited invention 1 will be described below with reference to these drawings.

【0004】図1(a)と図1(b)に示したように、
まず工場または現場で製作されたプレフレックスビーム
を橋台間に据え置きして支間の中央に仮支点51を設
け、初期コンクリートのクリープと乾燥収縮による圧縮
応力損失を挽回するために仮支点51を上昇させさらに
下部ケーシングコンクリート52に圧縮応力を導入させ
る。
As shown in FIGS. 1 (a) and 1 (b),
First, a pre-flex beam manufactured at a factory or a site is placed between abutments to provide a temporary fulcrum 51 at the center of the abutment, and the temporary fulcrum 51 is raised to recover compressive stress loss due to creep and drying shrinkage of the initial concrete. Further, compressive stress is introduced into the lower casing concrete 52.

【0005】次に、図1(c)に示したように、仮支点
51を上昇させた状態で上部床版コンクリート53と腹
部コンクリートを打設し養生させる。最後に、図1
(d)に示したように、上部床版コンクリート53が養
生された後仮支点51を除去させれば、単純ビーム型プ
レフレックス合成桁橋が出来上がる。
Next, as shown in FIG. 1 (c), the upper floor slab concrete 53 and the abdominal concrete are poured and cured while the temporary fulcrum 51 is raised. Finally, FIG.
As shown in (d), if the temporary fulcrum 51 is removed after the upper slab concrete 53 is cured, a simple beam type preflex composite girder bridge is completed.

【0006】しかし、前述した方法で製作される引用発
明1はビームの中央に仮支点を設けて上向き荷重を加え
るべきなので、特に桁下空間が高い箇所ではステージン
グ(staging)の設置による高価な追加費用と共に、橋
梁下での交通流れを妨害し、工事が複雑になるという短
所を持つ。
However, in the cited invention 1 manufactured by the above-described method, a temporary fulcrum should be provided at the center of the beam to apply an upward load. Therefore, especially in a place where the space under the girder is high, the staging is expensively added. Along with the cost, it has the drawback of hindering traffic flow under the bridge and complicating construction.

【0007】また、引用発明1は橋梁全体が単純ビーム
システムで挙動するので、構造的にはビームの中央から
発生する最大正(positive)モーメントによって合成桁
の断面が大きくならなければならず、これによってビー
ムの中央における垂れが過多に発生するという付加的な
使用上の問題点も短所になる。
In cited invention 1, since the entire bridge behaves in a simple beam system, the cross section of the composite girder must be structurally increased by the maximum positive moment generated from the center of the beam. It also has the disadvantage of an additional use problem in that excessive sag in the center of the beam.

【0008】図2(a)乃至図2(e)と図3(a)乃
至図3(g)は各々引用発明2にともなう2径間連続型
合成桁橋と3径間連続型合成桁橋を製作する工程を示し
た図である。
FIGS. 2 (a) to 2 (e) and FIGS. 3 (a) to 3 (g) respectively show a two-span continuous composite girder bridge and a three-span continuous composite girder bridge according to cited invention 2. FIG. 5 is a view showing a process of manufacturing the hologram.

【0009】まず、2径間連続型合成桁橋の施工方法を
説明すれば、図2(a)に示したように、連続ビームの
設計によって径間別に作られたプレフレックスビームを
第2支点54で連結して据え置きする。次に、図2
(b)に示したように、連結された第2支点54を上昇
させ下部ケーシングコンクリート52に圧縮応力をさら
に導入させる。次に、図2(c)に示したように、第2
支点54近傍の鋼桁(steel girder)の上部フランジを
包む床版コンクリート53を打設して養生し、図2
(d)のように上昇された支点を下降させ第2支点54
近傍の床版コンクリートに発生する負(negative)モー
メントに対応する圧縮応力を導入させる。次に、図2
(e)に示したように、残り区間の床版コンクリートを
打設すれば、完全な2径間連続型プレフレックス合成桁
橋が完成される。
First, a method of constructing a two-span continuous type composite girder bridge will be described. As shown in FIG. 2A, a pre-flex beam made for each span by a continuous beam design is used as a second fulcrum. It is connected at 54 and left stationary. Next, FIG.
As shown in (b), the connected second fulcrum 54 is raised to further introduce compressive stress to the lower casing concrete 52. Next, as shown in FIG.
The concrete slab 53 covering the upper flange of the steel girder near the fulcrum 54 was cast and cured, and FIG.
The fulcrum raised as shown in FIG.
A compressive stress corresponding to a negative moment generated in the nearby slab concrete is introduced. Next, FIG.
As shown in (e), when the slab concrete in the remaining section is cast, a complete two-span continuous preflex composite girder bridge is completed.

【0010】図3(a)乃至図3(h)は3径間連続型
プレフレックス合成桁橋の施工過程を示した図である。
3径間連続型の合成桁橋において、図3(a)乃至図3
(d)に示したように、第2支点54における施工過程
は図2に示した2径間連続型プレフレックス合成桁橋の
施工過程と同一になる。次に、図3(e)乃至図3
(h)に示したように、第3支点55を上昇させ、床版
コンクリート53を打設し、この第3支点53を下降さ
せ、残り床版コンクリートを打設すれば完全な3径間連
続型プレフレックス合成桁橋が完成される。
FIGS. 3 (a) to 3 (h) are views showing the process of constructing a three-span continuous preflex composite girder bridge.
In the composite span girder bridge of three spans continuous type, FIGS.
As shown in (d), the construction process at the second fulcrum 54 is the same as the construction process of the two span continuous preflex composite girder bridge shown in FIG. Next, FIGS. 3 (e) to 3
As shown in (h), the third fulcrum 55 is raised, the concrete slab 53 is cast, the third fulcrum 53 is lowered, and the remaining slab concrete is cast to complete three consecutive spans. Type preflex composite girder bridge is completed.

【0011】しかし、上記の通り製作される引用発明2
は正モーメントと負モーメント区間の床版コンクリート
打設の時間差による施工ジョイント発生が誘発される心
配があり、各支点上昇及び下降作業を陸上に隣接した橋
台ではなく橋脚上で、即ち第2支点と第3支点で施すべ
きなので、作業が不便で安全事故の危険性を内包してい
るという短所を有する。
However, cited invention 2 produced as described above
There is a concern that the time difference between the positive moment and negative moment sections of concrete slab placement may cause construction joints to be generated, and the ascent and descent of each fulcrum will be carried out on the pier, not on the abutment adjacent to the land, ie, the second fulcrum Since it should be performed at the third fulcrum, there is a disadvantage that the work is inconvenient and involves the risk of a safety accident.

【0012】さらに、引用発明1と引用発明2の両者に
おいて、上部構造の荷重を下部構造に伝達する媒介体の
役割を果たす橋座装置は回転だけ可能なようにするヒン
ジ支点と、回転と移動が可能なようにするローラ支点で
構成されていて、上部構造の安全上持続的なメンテナン
スに神経を使うべきだけでなく、地震が発生した場合は
致命的な損傷を受ける場合がある。
Furthermore, in both cited invention 1 and cited invention 2, the bridge seat device serving as a medium for transmitting the load of the upper structure to the lower structure has a hinge fulcrum that allows only rotation, and rotation and movement. It is constructed with roller fulcrums that allow for safe maintenance of the superstructure, as well as the use of nerves, and can cause catastrophic damage in the event of an earthquake.

【0013】[0013]

【発明が解決しようとする課題】本発明は前述したよう
な従来の問題点を解決するために創案されたことで、そ
の目的は単径間合成桁橋の施工においてはビームと橋台
を片方支点だけ完全に一体化させ、多径間合成桁橋の場
合においてはビームと橋脚を一体化させたり、または一
体化させないようにして橋台上の支点、即ち端部支点を
下降及び上昇させる工程を通じて負モーメント区間の上
部床版コンクリートと合成桁の下部フランジに圧縮応力
をさらに導入させる、現実的で実用可能であり、経済的
な新たな単径間及び多径間合成桁橋の施工法を提供する
ところにある。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to use a beam and an abutment as one supporting point in the construction of a single span composite girder bridge. In the case of a multi-span composite girder bridge, the beam and the pier are integrated or not integrated so that the fulcrum on the abutment, that is, the end fulcrum, is lowered and raised. To provide a practical, practical and economical new construction method of single-span and multi-span composite girder bridges that further introduces compressive stress into the upper deck slab concrete and the lower flange of the composite girder in the moment section There.

【0014】[0014]

【課題を解決するための手段】前述した目的を達成する
ための本発明に係る単径間合成桁橋の施工法は、第1橋
台と第2橋台を設ける段階と、前記第1橋台の橋座部に
形鋼を埋設する段階と、ビームを前記第1橋台と第2橋
台間に単純据え置きする段階と、前記第1橋台の形鋼と
前記ビームの下部フランジとを連結する段階と、前記第
1橋台の橋座部の上部から前記ビームの中立軸まで継手
コンクリートを打設する段階と、前記第2橋台側の支点
を下降させる段階と、前記第1橋台の継手コンクリート
の上部から前記ビームの床版までコンクリートを打設す
る段階と、前記ビームの全区間にかけて床版コンクリー
トを打設する段階と、下降させた前記第2橋台側の支点
を上昇させる段階とを含めてなされる。
In order to achieve the above-mentioned object, a method for constructing a single span composite girder bridge according to the present invention comprises the steps of providing a first abutment and a second abutment, and a bridge of the first abutment. Embedding a shaped steel in a seat, simply placing a beam between the first and second abutments, connecting a shaped steel of the first abutment to a lower flange of the beam, Casting joint concrete from the upper part of the bridge seat of the first abutment to the neutral axis of the beam, lowering the fulcrum on the second abutment side, and carrying out the beam from the upper part of the joint concrete of the first abutment And the step of placing concrete over the entire section of the beam, and the step of raising the lowered fulcrum on the second abutment side.

【0015】また、本発明に係る多径間連続合成桁橋の
施工法は、少なくとも二つ以上のビームをお互い連結し
て第1橋台と第2橋台、そして少なくとも一つ以上の内
側の橋脚間に単純据え置きする段階と、前記第1及び第
2橋台側の支点を下降させる段階と、前記ビームの全区
間にかけて床版コンクリートを打設する段階と、下降さ
せた前記第1及び第2橋台側の支点を上昇させる段階と
を含めてなされる。
Further, the method of constructing a multi-span continuous composite girder bridge according to the present invention includes connecting at least two or more beams to each other to form a first abutment and a second abutment and at least one or more inner piers. Simply laying down the floor, lowering the fulcrum on the first and second abutments, casting concrete over the entire section of the beam, and lowering the first and second abutments. And raising the fulcrum.

【0016】望ましくは、前述したような多径間連続合
成桁橋の施工法は、前記ビームを単純据え置きする段階
前には前記内側橋脚のコッピング部(copping)に形鋼
を埋設する段階をさらに含み、前記ビームを単純据え置
きする段階後は前記形鋼と前記ビームの下部フランジと
を連結する段階と、前記内側橋脚のコッピング部の上部
から前記ビームの中立軸まで継手コンクリートを打設す
る段階とをさらに含み、そして前記第1及び第2橋台側
の支点を下降させる段階後は前記内側橋脚の継手コンク
リートの上面から前記ビームの床版までコンクリートを
打設する段階をさらに含めてなされる。
Preferably, the method for constructing a multi-span continuous composite girder bridge as described above further includes a step of burying a shaped steel in a copping portion of the inner pier before the step of simply standing the beam. After the step of simply deferring the beam, the step of connecting the shape steel and the lower flange of the beam, and the step of casting joint concrete from the upper part of the cupping portion of the inner pier to the neutral axis of the beam. After the step of lowering the fulcrum of the first and second abutments, the method further includes the step of placing concrete from the upper surface of the joint concrete of the inner pier to the floor slab of the beam.

【0017】ここで、前記第1及び第2橋台側の支点の
下降時には前記第1橋台側の支点と前記第2橋台側の支
点を同時に下降させ、前記第1及び第2橋台側の支点の
上昇時には下降させた前記第1橋台側の支点と前記第2
橋台側の支点を同時に上昇させるようにする。
Here, when the fulcrums on the first and second abutments are lowered, the fulcrum on the first abutment side and the fulcrum on the second abutment side are simultaneously lowered, and the fulcrums on the first and second abutments are lowered. When ascending, the fulcrum on the first abutment side lowered and the second
Raise the fulcrum on the abutment side at the same time.

【0018】しかし他の代案として、前記第1及び第2
橋台側の支点の下降時には前記第1橋台側の支点と前記
第2橋台側の支点を順次に下降させ、前記第1及び第2
橋台側の支点の上昇時には前記第1橋台側の支点と前記
第2橋台側の支点を順次に上昇させるようにしても構わ
ない。
However, as another alternative, the first and second
When the fulcrum on the abutment side is lowered, the fulcrum on the first abutment side and the fulcrum on the second abutment side are sequentially lowered, and the first and second fulcrums are lowered.
When the fulcrum on the abutment side is raised, the fulcrum on the first abutment side and the fulcrum on the second abutment side may be sequentially raised.

【0019】また、2径間連続合成桁橋の場合は前記第
1及び第2橋台側の支点の下降時、前記第1橋台側と前
記第2橋台側のうちいずれか片方支点だけを下降させ、
前記第1及び第2橋台側の支点の上昇時下降させた前記
片方支点だけを上昇させるようにする。
In the case of a two-span continuous composite girder bridge, when the fulcrums on the first and second abutments are lowered, only one of the fulcrums on the first and second abutments is lowered. ,
When raising the fulcrum on the first and second abutment side, only the one fulcrum that has been lowered is raised.

【0020】一方、プレフレックス合成桁橋を施工する
ための施工法においては、ビームと橋脚とを一体化させ
ない場合にビームの連結後橋脚上に単純据え置きする段
階後に、継手に下部ケーシングコンクリートを打設する
段階がさらに含まれる。
On the other hand, in a construction method for constructing a preflex composite girder bridge, when the beam and the pier are not integrated, after the beam is connected, the lower casing concrete is applied to the joint after the step of simply laying the beam on the pier. The step of setting is further included.

【0021】もう一方、プレフレックス合成桁橋または
鋼箱形鋼を施工するための施工法においては前記ビーム
の腹部に複数の補強材とスタッド(stud)を設ける段階
がさらに含まれる。
On the other hand, a method for constructing a preflex composite girder bridge or a steel box-shaped steel further includes a step of providing a plurality of reinforcing members and studs on the abdomen of the beam.

【0022】また、PSC合成桁橋を施工するための施工
法においては前記ビームの腹部に鉄筋を引き抜いて置く
段階がさらに含まれる。
The method for constructing a PSC composite girder bridge further includes a step of pulling out and placing a reinforcing bar on the abdomen of the beam.

【0023】[0023]

【発明の実施の形態】以下、添付した図面を参照して本
発明に係る単径間及び多径間合成桁橋の施工法を説明す
る。本発明に係る施工法はプレフレックス合成桁橋、PS
C合成桁橋、鋼箱桁橋、鋼板桁橋、張径間トラス橋に共
に適用できる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a single-span and multi-span composite girder bridge according to the present invention. The construction method according to the present invention is a preflex composite girder bridge, PS
Applicable to C composite girder bridge, steel box girder bridge, steel plate girder bridge, and span span truss bridge.

【0024】図4乃至図7は単径間合成桁橋においてビ
ームと橋台を一体化させる施工法に係り、図4は単純ビ
ーム型で製作されたプレフレックスビーム2を一対の橋
台間に単純据え置きした状態で片方橋台の橋座部1とプ
レフレックスビーム2との間を連結することを示してい
る。まず、図4(a)に示したように、橋座部1にH形
鋼または□形鋼3を埋設し、その上にビーム2の下部フ
ランジ60との連結のための継手プレート4を溶接させ
た後、形鋼3をビーム2の下部フランジとボルト5また
は溶接により締め固める。また、ビーム2には補強材8
を設けて補強し、コンクリートが被覆される鋼桁(stee
l girder)にはスタッド9を設けてコンクリートとの合
成効果を高められる。
4 to 7 relate to a construction method for integrating a beam and an abutment in a single-span composite girder bridge, and FIG. 4 simply places a preflex beam 2 made of a simple beam type between a pair of abutments. In this state, the connection between the bridge seat 1 of one of the abutments and the pre-flex beam 2 is shown. First, as shown in FIG. 4A, an H-shaped steel or a □ -shaped steel 3 is buried in the bridge seat 1 and a joint plate 4 for connection with the lower flange 60 of the beam 2 is welded thereon. After that, the section steel 3 is compacted with the lower flange of the beam 2 by bolts 5 or welding. The beam 2 has a reinforcing material 8
Steel girder (stee) covered with concrete
l girder) is provided with studs 9 to enhance the effect of combining with concrete.

【0025】次に、図4(b)に示したように、橋台の
上部からプレフレックスビーム2の断面の中立軸まで継
手コンクリート10を打設して一体化させ、次に打設さ
れるコンクリートとの一体性確保のために継手コンクリ
ート10上に再び鉄筋6を予め引抜いて置く。
Next, as shown in FIG. 4 (b), the joint concrete 10 is cast from the upper part of the abutment to the neutral axis of the cross section of the preflex beam 2 and integrated, and then the concrete to be cast The reinforcing bar 6 is again pulled out and placed on the joint concrete 10 again in order to secure the integrity with the joint.

【0026】それから図4(c)に示したように、上部
床版61と共にコンクリートを打設することにより完全
な固定支点の役割を果たせる。
Then, as shown in FIG. 4 (c), the concrete is cast together with the upper floor slab 61 so as to function as a complete fixed fulcrum.

【0027】図4(d)はこのような工程にともなう橋
台の平面図である。
FIG. 4D is a plan view of the abutment associated with such a process.

【0028】図5は鋼箱桁橋の場合であって、鋼箱桁2
を橋台間に単純据え置きした状態で片方橋台の橋座部1
と鋼箱桁2とを連結することを示した図である。
FIG. 5 shows the case of a steel box girder bridge.
Abutment 1 on one side abutment with the slab simply affixed between the abutments
It is a figure showing that steel box girder 2 is connected.

【0029】図4の場合と同じく、図5(a)に示した
ように、まず橋座部1にH形鋼または□形鋼3を埋設し
て置き、その上に鋼箱桁2の下部フランジ60との連結
のための連結プレート4を溶接させた後、形鋼3を鋼箱
桁2の下部フランジ60とボルト5または溶接により締
め固める。また、鋼箱桁2には補強材8を設けて補強
し、コンクリートが被覆される鋼桁にスタッド9を設け
ればコンクリートとの合成効果を高められる。
As in the case of FIG. 4, as shown in FIG. 5 (a), first, an H-shaped steel or a □ -shaped steel 3 is buried in the bridge seat 1, and the lower part of the steel box girder 2 is placed thereon. After the connection plate 4 for connection with the flange 60 is welded, the shaped steel 3 is compacted with the lower flange 60 of the steel box girder 2 by bolts 5 or welding. If the steel box girder 2 is provided with a reinforcing material 8 to reinforce the steel girder and the stud 9 is provided on the steel girder covered with concrete, the effect of combining with the concrete can be enhanced.

【0030】次に、図5(b)に示したように、橋台の
上部から鋼箱桁2の断面の中立軸まで継手コンクリート
10を打設して一体化させ、次に打設されるコンクリー
トとの一体性確保のために継手コンクリート10上に再
び鉄筋6を予め引抜いて置く。
Next, as shown in FIG. 5 (b), the joint concrete 10 is cast from the upper portion of the abutment to the neutral axis of the cross section of the steel box girder 2 and integrated therewith. The reinforcing bar 6 is again pulled out and placed on the joint concrete 10 again in order to secure the integrity with the joint.

【0031】それから図5(c)に示したように、上部
床版61と共にコンクリートを打設することで完全な固
定支点の役割を果たせる。
Then, as shown in FIG. 5 (c), concrete can be cast together with the upper floor slab 61 to serve as a complete fixed fulcrum.

【0032】図6はPSC合成桁橋の場合であって、PSCビ
ーム2を橋台間に単純据え置きした状態で片方橋台の橋
座部1とPSCビーム2とを連結することを示した図であ
る。
FIG. 6 shows the case of a PSC composite girder bridge, in which the bridge seat 1 of one of the abutments and the PSC beam 2 are connected in a state where the PSC beam 2 is simply installed between the abutments. .

【0033】図4及び図5の場合と同じく、図6(a)
に示したように、まず橋座部1にH形鋼または□形鋼3
を埋設して置き、その上にPSCビーム2の下部フランジ
との連結のための継手プレート4を溶接させた後、形鋼
3をPSCビーム2の下部フランジのコンクリートに埋設
しておいたプレート62と溶接15により締め固める。
As in the case of FIGS. 4 and 5, FIG.
As shown in the above, first, an H-section steel or □ -section steel 3
After the joint plate 4 for connection with the lower flange of the PSC beam 2 is welded thereon, the shaped steel 3 is embedded in the concrete of the lower flange of the PSC beam 2. And by welding 15.

【0034】次に、図6(b)に示したように、固定支
点側から全体支間長の約10%区間を除いた残り区間に
床版コンクリート打設と同時に橋台の上部からPSCビー
ム2の断面の中立軸まで継手コンクリート10を打設し
て一体化させ、橋台の胸壁63も設ける。また、次に打
設されるコンクリートとの一体性確保のために継手コン
クリート10上と胸壁では鉄筋6を予め引抜いて置く。
ここで、橋台の胸壁63と打設された床版コンクリート
では引張鉄筋64を予め埋設して施工過程中移動支点の
下降時発生する引張力に対応させる。区間の長さ約10
%は支間長が30mの橋梁の場合、負モーメント区間の
長さを変数として媒介変数解釈(parameter study)を
行って決定した値であって、最も効率良く圧縮応力を導
入させうる長さであり、これは橋梁等級の種類と使用コ
ンクリートの材質によって変化できる。
Next, as shown in FIG. 6 (b), the PSC beam 2 is transferred from the upper portion of the abutment simultaneously with the slab concrete placement in the remaining section excluding the section of about 10% of the entire span length from the fixed fulcrum side. The joint concrete 10 is cast and integrated up to the neutral axis of the cross section, and the parapet 63 of the abutment is also provided. Further, the reinforcing bar 6 is previously pulled out on the joint concrete 10 and the chest wall in order to secure the integrity with the concrete to be cast next.
In this case, in the concrete slab cast into the abutment's chest wall 63, the tension rebar 64 is buried in advance to correspond to the tensile force generated when the moving fulcrum is lowered during the construction process. Section length about 10
% Is a value determined by conducting a parameter study using the length of the negative moment section as a variable in the case of a bridge with a span length of 30 m, and is a length at which a compressive stress can be introduced most efficiently. This can vary depending on the type of bridge grade and the concrete material used.

【0035】次に、図6(c)に示したように、残り上
部床版61と共にコンクリートを打設することで完全な
固定支点の役割を果たせる。
Next, as shown in FIG. 6 (c), concrete is cast together with the remaining upper floor slab 61 so that it can function as a complete fixed fulcrum.

【0036】図7は単径間合成桁橋の施工過程を示した
図である。
FIG. 7 is a diagram showing a construction process of a single span composite girder bridge.

【0037】図7(a)は工場または現場で製作された
ビームを一対の橋台上に単純据え置きした後に、片方支
点を固定支点71として、残り片方支点を移動支点72
として処理した状態図である。
FIG. 7A shows a state in which a beam manufactured at a factory or a site is simply placed on a pair of abutments, and one of the fulcrums is used as a fixed fulcrum 71 while the other fulcrum is used as a movable fulcrum 72.
FIG.

【0038】図7(b)は移動支点72を下降させビー
ムの下部フランジに圧縮応力を導入させる過程と、これ
によるモーメント図である。
FIG. 7B is a diagram showing a process of lowering the moving fulcrum 72 to introduce a compressive stress to the lower flange of the beam and a moment diagram due to the process.

【0039】図7(c)は移動支点72を下降させた状
態で床版コンクリート(図4(c)、図5(c)、図6
(c)における符号61)を打設した状態図と、これに
よるモーメント図である。
FIG. 7 (c) shows a concrete slab (FIG. 4 (c), FIG. 5 (c), FIG. 6) with the moving fulcrum 72 lowered.
A state diagram in which reference numeral 61) in (c) is cast and a moment diagram due to this.

【0040】図7(d)は床版コンクリートが養生され
た後、下降させた移動支点72を上昇させて固定支点7
1側から生ずる負モーメントに対応する圧縮応力を床版
コンクリートに導入させることを示した図である。図7
(d)の過程により、下部フランジには引張応力が発生
するが、これは合成後の増えた断面剛性によって移動支
点72の下降時に導入された圧縮応力の約60−70%
に該当するので、結局約30−40%程度の圧縮プレス
トレシング(pre-stressing)効果を得られる。
FIG. 7D shows that after the floor slab concrete has been cured, the lowered moving fulcrum 72 is raised and the fixed fulcrum 7 is raised.
It is the figure which showed that compressive stress corresponding to the negative moment which arises from one side was introduced into floor slab concrete. FIG.
In the process (d), a tensile stress is generated in the lower flange, which is about 60-70% of the compressive stress introduced when the moving fulcrum 72 is lowered due to the increased sectional rigidity after the synthesis.
Therefore, a compression pre-stressing effect of about 30-40% can be obtained.

【0041】ここで、PSC合成桁橋の場合は移動支点を
下降させる前に固定支点の端部から支間長の約10%区
間を除いた区間に床版コンクリートを打設し、残り区間
は端部支点の下降後打設する。
Here, in the case of the PSC composite girder bridge, before lowering the movable fulcrum, the slab concrete is poured into a section excluding the section of about 10% of the span length from the end of the fixed fulcrum, and the remaining section is the end. It is cast after the fulcrum is lowered.

【0042】本発明の単径間合成桁橋の場合は固定支点
部の大きいモーメントによって、固定支点端部から支間
長の約10%区間は断面を大きくして可変断面への設計
が可能である。
In the case of the single span composite girder bridge of the present invention, the section of about 10% of the span length from the end of the fixed fulcrum can be enlarged and the cross section can be designed to be variable due to the large moment of the fixed fulcrum. .

【0043】図8と図9は従来技術で説明した引用発明
2の問題点の施工ジョイントの発生可能性と、橋脚上で
支点上昇及び下降作業を施すことによって生じる安全事
故の危険性を排除するための施工法を示した図であっ
て、前述したようにプレフレックス合成桁橋、PSC合成
桁橋、鋼箱桁橋、鋼板桁橋、長径間トラス橋等に共に適
用できる。
FIGS. 8 and 9 eliminate the possibility of the construction joint of the problem of the cited invention 2 described in the prior art and the danger of a safety accident caused by the work of raising and lowering the fulcrum on the pier. And a construction method for the same, and as described above, can be applied to a preflex composite girder bridge, a PSC composite girder bridge, a steel box girder bridge, a steel plate girder bridge, a long span truss bridge, and the like.

【0044】図8は本発明に係る橋脚と合成桁が一体化
しない2径間連続合成桁橋の施工過程を示した図であっ
て、引用発明2が内部支点の第2支点を上昇させ正モー
メント区間の下部フランジにさらに圧縮応力を導入した
こととは違い、図8(a)に示したように、本発明は単
純ビーム型で製作されたプレフレックスビームまたはPS
Cビームを橋台及び橋脚に据え置きし、図10(a)と
図10(c)のように内部支点73で連結させたり、図
10(b)のように全体橋梁の負モーメント区間のうち
内部支点73の左側または右側一カ所で連結させる。
FIG. 8 is a view showing a construction process of a two-span continuous composite girder bridge according to the present invention, in which the pier and the composite girder are not integrated. Unlike the case where compressive stress is further introduced into the lower flange of the moment section, as shown in FIG. 8 (a), the present invention employs a pre-flex beam or PS made of a simple beam type.
The C beam is fixed on the abutment and the pier, and connected at the internal fulcrum 73 as shown in FIGS. 10A and 10C, or as shown in FIG. 10B, the internal fulcrum in the negative moment section of the entire bridge. 73 is connected at one place on the left or right side.

【0045】図8(b)は橋台側の両端部の支点を下降
させ下部フランジにさらに圧縮応力を導入させる状態図
と、これに基づくモーメント図である。
FIG. 8B shows a state diagram in which the fulcrum at both ends on the abutment side is lowered to further introduce a compressive stress into the lower flange, and a moment diagram based on this.

【0046】図8(c)は両端部の支点を下降させた状
態で床版コンクリートを打設した状態図と、これに基づ
くモーメント図である。
FIG. 8 (c) is a diagram showing a state in which floor slab concrete is cast with the fulcrums at both ends lowered, and a moment diagram based on this.

【0047】図8(d)は床版コンクリートが養生され
た後、下降させた両端部の支点を上昇させ合成後の内部
支点部から生ずる引張応力に対応する圧縮応力を床版コ
ンクリートに導入させたことを示した図である。図8
(d)の過程により、単径間の場合と同じく、下部フラ
ンジには引張応力が発生するが、これは合成後の増えた
断面剛性によって両端支点の下降時に導入された圧縮応
力の約60−70%に該当するので、結局約30−40
%程度の圧縮プレストレシング効果が得られる。
FIG. 8D shows that after the slab concrete is cured, the fulcrums of the lowered both ends are raised, and the compressive stress corresponding to the tensile stress generated from the internal fulcrum part after the synthesis is introduced into the slab concrete. FIG. FIG.
In the process (d), a tensile stress is generated in the lower flange as in the case of the single span, but this is about 60-% of the compressive stress introduced when the fulcrum at both ends is lowered due to the increased sectional rigidity after the combination. Because it corresponds to 70%, after all about 30-40
% Of the compression prestressing effect can be obtained.

【0048】ここでも同様に、PSC合成桁橋の場合は両
端部の支点を下降させる前に内側支点の左右に該当支間
長の約10%区間を除いた区間に床版コンクリートを打
設し、残り区間は両端部支点の下降後打設する。
Similarly, in the case of the PSC composite girder bridge, before lowering the fulcrums at both ends, concrete slabs are cast on the left and right sides of the inner fulcrum in a section excluding the section of about 10% of the corresponding span length. The remaining sections will be cast after the fulcrums at both ends have descended.

【0049】図9は本発明に係る橋脚と合成桁が一体化
しない3径間連続合成桁橋の施工過程を示した図であ
る。
FIG. 9 is a view showing a construction process of a three span continuous composite girder bridge according to the present invention, in which the pier and the composite girder are not integrated.

【0050】図9(a)は製作されたプレフレックスビ
ームまたはPSCビームを橋台及び橋脚に据え置きし、内
部支点でまたは内部支点を外れた全体橋梁の負モーメン
ト区間のうち橋脚の右側または左側のうち一カ所で図1
0(a)、図10(b)、図10(c)のように連結さ
せた状態図である。
FIG. 9 (a) shows the pre-flex beam or the PSC beam fabricated on an abutment and a pier, and a right moment or a left moment of a pier in a negative moment section of an entire bridge at an inner fulcrum or off an inner fulcrum. Figure 1 in one place
11 (a), FIG. 10 (b) and FIG. 10 (c) are connected state diagrams.

【0051】前述した通り、図9(b)に示したよう
に、引用発明2が内部支点の第2支点73と第3支点7
4を順次に上昇させ正モーメント区間の下部フランジに
さらに圧縮応力を導入したこととは違い、本発明は橋台
側の両端部の支点を同時に、または順次に下降させ同様
の効果を得る。
As described above, as shown in FIG. 9B, the cited invention 2 uses the second fulcrum 73 and the third fulcrum 7 of the internal fulcrum.
Unlike the case where the compressive stress is further introduced into the lower flange of the positive moment section by sequentially raising the fulcrum 4, the fulcrum at both ends on the abutment side is lowered simultaneously or sequentially to obtain the same effect.

【0052】図9(c)は両端部の支点を下降させた状
態で床版コンクリートを打設した状態図と、これに基づ
くモーメント図である。
FIG. 9 (c) is a diagram showing a state where floor slab concrete is cast with the fulcrums at both ends lowered, and a moment diagram based on this.

【0053】図9(d)は床版コンクリートが養生され
た後、下降させた両端部支点を上昇させて合成後の内部
支点部で生ずる引張応力に対応する圧縮応力を床版コン
クリートに導入させることを示した図である。この時も
同じく、下部フランジには引張応力が発生するが、これ
は合成後の増えた断面剛性によって両端支点の下降時に
導入された圧縮応力の約60−70%に該当するので、
結局約30−40%程度の圧縮プレストレシング効果を
得られる。本発明の橋脚と合成桁が一体化しない3径間
連続合成桁橋の場合は連続ビームの構造特性上内側径間
から生ずる正モーメントが内側支点部で発生する最大負
モーメントに比べ絶対値で約1/5に過ぎないので、両
端支点の下降及び上昇時さらに圧縮プレストレシングが
導入されなくても充分な圧縮応力を保有するようにな
る。
FIG. 9D shows that after the floor slab concrete is cured, the lowered both fulcrums are raised and a compressive stress corresponding to the tensile stress generated at the internal fulcrum after the synthesis is introduced into the slab concrete. FIG. At this time, similarly, tensile stress is generated in the lower flange, which corresponds to approximately 60-70% of the compressive stress introduced when the fulcrum at both ends is lowered due to the increased cross-sectional rigidity after synthesis.
As a result, a compression prestressing effect of about 30-40% can be obtained. In the case of a three-span continuous composite girder bridge in which the bridge pier and the composite girder of the present invention are not integrated, the positive moment generated from the inner span is approximately smaller in absolute value than the maximum negative moment generated at the inner fulcrum due to the structural characteristics of the continuous beam. Since it is only 1/5, a sufficient compressive stress is maintained even when the compression prestressing is not introduced when the fulcrum is lowered and raised at both ends.

【0054】ここでも同様に、PSC合成桁橋の場合には
両端部の支点を下降させる前に内側支点の左右に該当支
間長の約10%区間を除いた区間に床版コンクリートを
打設し、残り区間は両端部支点の下降後打設する。
Similarly, in the case of the PSC composite girder bridge, before lowering the fulcrums at both ends, concrete slabs are cast on the left and right sides of the inner fulcrum in a section excluding the section of about 10% of the span length. The remaining sections are cast after the fulcrums of both ends are lowered.

【0055】図10(a)はプレフレックス合成桁橋の
場合、内部支点で二つのビーム2を複数の継手プレート
4とボルト5により連結した詳細図である。従来技術に
おいて説明した引用発明2の場合は支点を上昇させた
後、負モーメント区間の床版コンクリートを打設すると
共に、内部支点部にジョイントコンクリート11を打設
するのに反し、本発明の場合は両終端の支点を下降させ
る前に内部支点部にジョイントコンクリート11を打設
する。
FIG. 10 (a) is a detailed view of a preflex composite girder bridge in which two beams 2 are connected to a plurality of joint plates 4 and bolts 5 at internal fulcrums. In the case of the cited invention 2 described in the prior art, after raising the fulcrum, the floor concrete in the negative moment section is cast, and the joint concrete 11 is cast on the internal fulcrum. Lays joint concrete 11 on the internal fulcrum before lowering the fulcrums at both ends.

【0056】図10(b)は前記プレフレックス合成桁
橋の場合のさらに他の連結方法であって、内部支点を外
れた橋脚の右側または左側のうち一カ所で二つのビーム
2を複数の連結プレート4とボルト5により連結した詳
細図である。同じく、従来技術で説明した引用発明2の
場合は支点を上昇させた後、負モーメント区間の床版コ
ンクリートを打設すると共に、内部支点部にジョイント
コンクリート11を打設することに比べ、本発明の場合
は両終端の支点を下降させる前に継手にジョイントコン
クリート11を打設する。
FIG. 10 (b) shows still another connection method in the case of the preflex composite girder bridge, in which two beams 2 are connected to a plurality of beams at one of the right and left sides of the pier deviating from the internal fulcrum. FIG. 3 is a detailed view of a plate 4 and bolts 5 connected together. Similarly, in the case of the cited invention 2 described in the prior art, after raising the fulcrum, the floor concrete in the negative moment section is cast and the joint concrete 11 is cast at the internal fulcrum. In the case of (1), the joint concrete 11 is poured into the joint before lowering the fulcrums at both ends.

【0057】図10(c)はPSC合成桁橋の場合、内部
支点で二つのビーム2を連結した詳細図である。それぞ
れのPSCビームの製作時、予めボルト5を上部フランジ
のコンクリートに挿入して置き、ビームの連結時に継手
プレート4を利用して連続性を図る。また、下部フラン
ジにも連結鉄筋6を利用してビームを連結する。これは
内部支点の下部フランジは圧縮側なので連結鉄筋6の役
割がさほど大きくないが、合成桁全体の安定を図るため
のことである。また、連結作業時の便利性のためにビー
ムの中立軸に継手ストッパ12を設け、その隙間に無収
縮モルタルを充填させる。
FIG. 10 (c) is a detailed view in which two beams 2 are connected at an internal fulcrum in the case of a PSC composite girder bridge. At the time of producing each PSC beam, bolts 5 are inserted in advance into the concrete of the upper flange and placed, and continuity is achieved by using the joint plate 4 when connecting the beams. The beam is also connected to the lower flange using the connection reinforcing bar 6. This is because the role of the connecting reinforcing bar 6 is not so large because the lower flange of the internal fulcrum is on the compression side, but it is for stabilizing the entire composite girder. Further, a joint stopper 12 is provided on the neutral shaft of the beam for convenience in connection work, and the gap is filled with non-shrinkable mortar.

【0058】鋼箱桁橋は内部支点に継手がないため、一
層容易く本発明の工法が適用できる。
Since the steel box girder bridge has no joint at the internal fulcrum, the method of the present invention can be applied more easily.

【0059】図11乃至図15は多径間連続合成桁橋の
施工法のさらに他の例であって、ビームと橋脚を一体化
させることによって橋座装置の問題点と地震時の損傷に
対してさらに備えるためのことである。このような一体
化方法と施工法を説明すれば次の通りである。
FIGS. 11 to 15 show still another example of a method of constructing a multi-span continuous composite girder bridge. Integrating the beam and the pier reduces the problems of the bridge seat device and the damage caused by the earthquake. In order to further prepare. The following is a description of such an integration method and a construction method.

【0060】プレフレックス合成桁橋の場合において、
図11(a)に示したように、単純ビーム型で製作され
た2個のプレフレックスビーム2を図10(a)と同じ
ように、複数の継手プレート4とボルト5により連結さ
せ、橋脚13に予め埋立されて置いた□形鋼14上に載
置した後、鋼桁の下部フランジ60と溶接により締め固
める。また、次の段階で打設される継手コンクリート1
0との一体性を助けるために橋脚13とビーム2の下部
ケーシングコンクリート52では予め鉄筋6を引抜いて
置く。そして、図11(b)と同じく、ビーム2の残り
下部フランジのコンクリートと橋脚13の上部からビー
ムの断面の中立軸まで継手コンクリート10を打設して
一体化させ、その上には次に打設されるコンクリートと
の一体性を図るために鉄筋6をさらに引抜いて置く。
In the case of a preflex composite girder bridge,
As shown in FIG. 11A, two preflex beams 2 manufactured by a simple beam type are connected to each other by a plurality of joint plates 4 and bolts 5 as in FIG. And then compacted by welding with the lower flange 60 of the steel girder. Also, joint concrete 1 to be cast in the next stage
The reinforcing bar 6 is previously drawn out of the bridge pier 13 and the lower casing concrete 52 of the beam 2 in order to assist in the integration with the bridge. Then, similarly to FIG. 11 (b), the joint concrete 10 is cast and integrated from the upper part of the bridge pier 13 to the concrete of the lower flange of the remaining lower flange of the beam 2, and the next The reinforcing bar 6 is further pulled out and placed in order to achieve the integration with the concrete to be provided.

【0061】図11(c)と同じく、本発明の多径間連
続合成桁橋の端部支点を下降させた状態で、床版コンク
リート、腹部コンクリートの打設と同時に、橋脚の残り
上部を打設することでビーム2と橋脚13が完全に一体
化した多径間連続プレフレックス合成桁橋を完成させる
ことができる。図11(d)は橋脚13に埋立された□
形鋼14を示した平面図である。
As shown in FIG. 11 (c), with the end fulcrum of the multi-span continuous composite girder bridge of the present invention lowered, simultaneously with the placement of floor slab concrete and abdominal concrete, the remaining upper part of the pier is struck. With this arrangement, a multi-span continuous preflex composite girder bridge in which the beam 2 and the pier 13 are completely integrated can be completed. FIG. 11 (d) shows the □ buried in the pier 13.
FIG. 2 is a plan view showing a section steel 14.

【0062】図12は鋼箱桁橋の場合を示した図であ
る。
FIG. 12 is a view showing the case of a steel box girder bridge.

【0063】図12(a)に示したように、負モーメン
ト区間に該当するセグメントである鋼箱桁2を橋脚13
に予め埋立して置いた□形鋼14上に載置した後、ビー
ム2の下部フランジ60と溶接により締め固める。そし
て、図12(b)と同じく、橋脚13の上部からビーム
2の断面の中立軸まで継手コンクリート10を打設して
一体化させる。ここで、橋脚13では鉄筋6を引抜いて
置き、鋼箱桁の腹部には補強材8を設けて補強し、上部
フランジは勿論、腹部にもスタッド9を設けてコンクリ
ートとの合成効果を高める。特に、鋼箱桁橋の場合は橋
脚上に合成桁の継手がないため、さらに容易く本発明の
工法が適用できる。
As shown in FIG. 12A, the steel box girder 2 which is a segment corresponding to the negative moment section is connected to the pier 13.
After being placed on the □ -shaped steel 14 buried in advance, the beam 2 is compacted by welding with the lower flange 60 of the beam 2. Then, similarly to FIG. 12B, the joint concrete 10 is cast and integrated from the upper part of the pier 13 to the neutral axis of the cross section of the beam 2. Here, the reinforcing bar 6 is pulled out and placed on the bridge pier 13, the reinforcing member 8 is provided on the abdomen of the steel box girder, and the stud 9 is provided not only on the upper flange but also on the abdomen to enhance the effect of combining with the concrete. In particular, in the case of a steel box girder bridge, since there is no joint of a composite girder on the pier, the construction method of the present invention can be more easily applied.

【0064】図12(c)と同じく、本発明の多径間連
続合成桁橋の端部支点を下降させた状態で、床版コンク
リートの打設と同時に、橋脚の残り上部を打設すること
でビームと橋脚が完全に一体化した多径間連続鋼箱桁橋
を完成させることができる。
As in FIG. 12 (c), while the end fulcrum of the multi-span continuous composite girder bridge of the present invention is lowered, the remaining upper portion of the pier is cast simultaneously with the placement of the floor slab concrete. Thus, a multi-span continuous steel box girder bridge in which the beam and the pier are completely integrated can be completed.

【0065】図13はPSC合成桁橋の場合を示した図で
ある。
FIG. 13 is a diagram showing the case of a PSC composite girder bridge.

【0066】図13(a)に示したように、図10
(b)と同じく相互連結された二つのPSCビーム2を同
様に橋脚13に予め埋立して置いた□形鋼14上に載置
した後、下部フランジのコンクリート中に埋立して置い
た継手プレート4と溶接により締め固める。次に、図1
3(b)に示したように、内側支点から左右に該当支間
長の約10%区間を除いた残り区間に床版コンクリート
打設と同時に橋脚の上部からPSCビーム2の断面の中立
軸まで継手コンクリート10を打設して一体化させる。
また、次に打設するコンクリートとの一体性確保のため
に継手コンクリート10には再び鉄筋6を予め引抜いて
置く。ここで内側支点部を除いた残り区間に打設された
床版コンクリート同士は引張鉄筋64を予め埋設して連
結する。これは施工過程中両端部支点の下降時発生する
引張力に対応させるためである。区間の長さが約10%
は支間長が30mの橋梁の場合、負モーメント区間の長
さを変数として媒介変数解釈(parameter study)を行
って決定した値であって、最も効率良く圧縮応力を導入
させることができる長さであり、これは橋梁等級の種類
と使用コンクリートの材質によって変化できる。
As shown in FIG. 13A, FIG.
(B) Two PSC beams 2 interconnected in the same manner as in (b) are mounted on a square steel 14 which is also previously buried on a pier 13 and then buried in concrete at the lower flange. 4 and compact by welding. Next, FIG.
As shown in Fig. 3 (b), joints from the upper part of the pier to the neutral axis of the cross section of the PSC beam 2 at the same time as the concrete slab is cast in the remaining section excluding the section of about 10% of the applicable span length from the inner fulcrum to the left and right The concrete 10 is cast and integrated.
Further, in order to ensure the integrity with the concrete to be cast next, the reinforcing bar 6 is again pulled out and put on the joint concrete 10 again. Here, the floor slabs cast in the remaining section excluding the inner fulcrum portion are connected by embedding the tensile reinforcing bars 64 in advance. This is to cope with the tensile force generated when the fulcrum at both ends is lowered during the construction process. Section length is about 10%
Is the value determined by conducting a parameter study using the length of the negative moment section as a variable in the case of a bridge with a span of 30 m, and the length that can introduce the compressive stress most efficiently. Yes, this can vary depending on the type of bridge grade and the concrete material used.

【0067】図13(c)に示したように、本発明の両
端部を下降させた状態で残り床版コンクリートの打設と
同時に、橋脚の残り上部を打設することでビームと橋脚
が完全に一体化した多径間連続PSC合成桁橋を完成させ
ることができる。
As shown in FIG. 13 (c), the beam and the pier are completely completed by laying the remaining slab concrete at the same time as placing the remaining slab concrete with both ends lowered. To complete the multi-span continuous PSC composite girder bridge integrated into the bridge.

【0068】図14は橋脚と合成桁を一体化させる2径
間連続合成桁橋の施工過程を示した図である。
FIG. 14 is a view showing a construction process of a two-span continuous composite girder bridge in which the pier and the composite girder are integrated.

【0069】図14(a)は合成桁と橋脚を図11
(b)、図12(b)、そして図13(b)のように締
め固めた後、全体構造物の両端部支点を同時に、または
順次に下降させ下部フランジにさらに圧縮応力を導入さ
せる工程と、これに基づくモーメント図である。
FIG. 14A shows a composite girder and a pier in FIG.
(B), after compacting as shown in FIG. 12 (b), and FIG. 13 (b), simultaneously lowering the fulcrum at both ends of the entire structure or sequentially to introduce a compressive stress into the lower flange. It is a moment diagram based on this.

【0070】図14(b)は両端支点を下降させた状態
で床版コンクリートを打設する工程と、これに基づくモ
ーメント図である。ここで、図11(c)、図12
(c)、そして図13(c)のように床版コンクリート
の打設と同時に、橋脚の残り上部にもコンクリートを打
設し橋脚と合成桁を完全に一体化させる。
FIG. 14 (b) shows a process of placing the slab concrete with the fulcrums at both ends lowered, and a moment diagram based on the process. Here, FIG. 11 (c), FIG.
(C) And, as shown in FIG. 13 (c), simultaneously with the placement of the floor slab concrete, the concrete is also placed on the remaining upper part of the pier to completely integrate the pier and the composite girder.

【0071】図14(c)は床版コンクリートと橋脚の
上部コンクリートが養生された後、下降させた両端部支
点を同時にまたは順次に上昇させ設計活荷重による負モ
ーメント区間の床版コンクリートから生ずる引張応力に
対応する圧縮応力を導入させることを示した図である。
この施工段階では、正モーメント区間の下部プランジに
は引張応力が生ずるが、これは合成後の増えた断面剛性
によって両端支点の下降時に導入された圧縮応力の約6
0−70%に該当するので、結局約30−40%程度の
圧縮プレストレシング効果を得られる。
FIG. 14 (c) shows that after the floor slab concrete and the upper concrete of the pier have been cured, the lowered fulcrums are simultaneously or sequentially raised and the tensile force generated from the floor slab concrete in the negative moment section due to the design live load is obtained. It is a figure showing that compressive stress corresponding to stress is introduced.
In this construction stage, tensile stress is generated in the lower plunge of the positive moment section, and this is approximately 6% of the compressive stress introduced when the fulcrum at both ends is lowered due to the increased sectional rigidity after the synthesis.
Since it corresponds to 0-70%, a compression pre-stretching effect of about 30-40% can be finally obtained.

【0072】PSC合成桁橋の場合は両端部の支点を下降
させる前に内側支点の左右に該当支間長の約10%区間
を除いた区間に床版コンクリートを打設し、残り区間は
両端部支点の下降後打設する。
In the case of the PSC composite girder bridge, before lowering the fulcrums at both ends, concrete is slab laid on the left and right sides of the inner fulcrum in a section excluding the section of about 10% of the corresponding span length, and the remaining sections are reinforced at both ends After the fulcrum is lowered, it is cast.

【0073】図8及び図14に示した2径間連続合成桁
橋の場合は現場与件に応じて片方の端部支点だけ下降及
び上昇させても同様の効果が得られる。只、この場合は
両端部を同時にまたは順次に下降及び上昇させる場合に
比べて下降量と上昇量において2倍値を適用すべきであ
る。
In the case of the two-span continuous composite girder bridge shown in FIGS. 8 and 14, the same effect can be obtained by lowering and raising only one end fulcrum according to the site requirements. However, in this case, a double value should be applied to the descending amount and the ascending amount as compared with the case where both ends are lowered and raised simultaneously or sequentially.

【0074】図15は本発明に係る橋脚と合成桁を一体
化させた3径間連続合成桁橋の施工過程を示したもので
ある。
FIG. 15 shows a construction process of a three-span continuous composite girder bridge in which a bridge pier and a composite girder according to the present invention are integrated.

【0075】図15(a)は合成桁と橋脚を図11
(b)、図12(b)、そして図13(b)のように連
結させた後、全体構造物の両端部支点を同時にまたは順
次に下降させ、下部フランジにさらに圧縮応力を導入さ
せる過程と、これに基づくモーメント図である。
FIG. 15A shows a composite girder and a pier in FIG.
(B), after connecting as shown in FIG. 12 (b) and FIG. 13 (b), simultaneously lowering the fulcrum of both ends of the entire structure simultaneously or sequentially to introduce further compressive stress into the lower flange. It is a moment diagram based on this.

【0076】図15(b)は両端部支点を下降させた状
態で床版コンクリートを打設する過程と、これに基づく
モーメント図である。ここで、図11(c)、図12
(c)、そして図13(c)のように床版コンクリート
の打設と同時に、橋脚の残り上部もコンクリートを打設
して橋脚と合成桁を完全に一体化させる。
FIG. 15 (b) is a diagram showing the process of placing the slab concrete with the fulcrums at both ends lowered, and the moment diagram based on this process. Here, FIG. 11 (c), FIG.
(C) At the same time as the floor slab concrete is cast as shown in FIG. 13 (c), concrete is also cast on the remaining upper part of the pier to completely integrate the pier and the composite girder.

【0077】図15(c)は床版コンクリートと橋脚の
上部コンクリートが養生された後、下降させた両端部支
点を同時にまたは順次に上昇させ、設計活荷重による負
モーメント区間の床版コンクリートから発生する引張応
力に対応する圧縮応力を導入させることを示した図であ
る。2径間連続合成桁橋と同じく、この施工段階でも下
部フランジには引張応力が発生するが、これは合成後の
増えた断面剛性によって端部支点の下降時に導入された
圧縮応力の約60−70%に該当されるので、結局約3
0−40%程度の圧縮プレストレシング効果を得られ
る。
FIG. 15 (c) shows that after the floor slab concrete and the upper concrete of the pier have been cured, the lowered both fulcrums are raised simultaneously or sequentially to generate from the slab concrete in the negative moment section due to the design live load. FIG. 4 is a diagram showing that a compressive stress corresponding to a tensile stress to be applied is introduced. Like the two-span continuous composite girder bridge, tensile stress is generated in the lower flange at this stage of construction, but this is due to the increased sectional rigidity after the composite, which is about 60-% of the compressive stress introduced when the end fulcrum is lowered. 70%, so after all, about 3
A compression prestressing effect of about 0-40% can be obtained.

【0078】これも同じく、PSC合成桁橋の場合は両端
部の支点を下降させる前に内側支点の左右に該当支間長
の約10%区間を除いた区間に床版コンクリートを打設
し、残り区間は両端部支点の下降後打設する。
Similarly, in the case of the PSC composite girder bridge, before lowering the fulcrums at both ends, concrete slabs are cast on the left and right sides of the inner fulcrum in a section excluding the section of about 10% of the length of the corresponding span. The section will be cast after the fulcrum at both ends is lowered.

【0079】本発明に係る橋脚と合成桁を一体化させた
3径間連続合成桁橋の場合には内側径間から発生する正
モーメントが内側支点部から生ずる最大負モーメントに
比べて絶対値で約1/3.5に過ぎないので、両端支点
の下降及び上昇時追加の圧縮プレストレシングが導入さ
れなくても充分な圧縮応力を保有するようになる。
In the case of a three-span continuous composite girder bridge in which the pier and the composite girder of the present invention are integrated, the positive moment generated from the inner span is an absolute value compared to the maximum negative moment generated from the inner fulcrum. Since it is only about 1 / 3.5, sufficient compressive stress is maintained even if additional compressive prestressing is not introduced when the fulcrum is lowered and raised.

【0080】また、本発明に係る橋脚と合成桁を一体化
させた多径間連続合成桁橋は、一体化させた橋脚と合成
桁の近傍から発生する大きいモーメントによって橋脚か
ら左右に該当支間長の約10%区間は合成桁の断面を大
きくして可変断面への設計が可能である。
The multi-span continuous composite girder bridge according to the present invention, in which the pier and the composite girder are integrated, has a large moment generated from the vicinity of the integrated pier and the composite girder. In the section of about 10%, the cross section of the composite girder can be enlarged to design a variable cross section.

【0081】また、本発明に係る単径間及び多径間合成
桁構造物は端部支点の下降量より上昇量を少なくして合
成桁の下部フランジに導入される圧縮プレストレス量を
調節できる。
Further, the single-span and multi-span composite girder structures according to the present invention can adjust the amount of compressive prestress introduced into the lower flange of the composite girder by making the rising amount smaller than the descending amount of the end fulcrum. .

【0082】[0082]

【発明の効果】以上述べた通り、本発明に係る上部合成
桁と橋脚を一体化させない多径間連続合成桁橋の場合は
床版コンクリートを一度に打設し、支点下降及び上昇作
業を陸上に隣接した橋台で施すことで、従来の技術にお
いて説明された引用発明2の問題点の正/負モーメント
区間の床版コンクリート打設の時間差による施工ジョイ
ントの発生が防止され、橋脚で施す支点上昇及び下降作
業にともなう不便さと安全事故の危険性を終熄させるこ
とができる。
As described above, in the case of a multi-span continuous composite girder bridge according to the present invention in which the upper composite girder and the pier are not integrated, the slab concrete is cast at once and the fulcrum lowering and raising work is performed on land. By using an abutment adjacent to the pier, the occurrence of a construction joint due to the time difference of concrete slab placement in the positive / negative moment section, which is a problem of cited invention 2 described in the related art, is prevented, and the fulcrum raised by the pier is raised. In addition, the inconvenience of the descent work and the danger of safety accidents can be eliminated.

【0083】また、本発明に係る上部合成桁を片方橋台
と一体化させる単径間合成桁橋と、橋脚と一体化させる
多径間連続合成桁橋の施工法では、前述した効果の他、
引用発明の単径間と2径間、3径間構造物が各々静定
(determinated)、1次と2次不静定(indeterminate
d)構造物であることに比べ、本発明は各々1次と5
次、そして8次不静定構造物に変換されることで、塑性
(plasticity)によるエネルギー分散効果が大きいた
め、振動減少効果と耐震性を遥かに向上でき、また合成
桁と下部構造を一体化することにより発生しうる大きい
モーメントが下部構造物に分配されるので、ビームの外
力に対する負担が軽減して桁高と支間面において約20
%程度の減少効果と延長効果を期することができてさら
に経済的な断面が得られる。
Further, the construction method of the single-span composite girder bridge according to the present invention, in which the upper composite girder is integrated with the one-sided abutment, and the multi-span continuous composite girder bridge, in which the upper composite girder is integrated with the pier, have the advantages described above.
The single-span, two-span, and three-span structures of the cited invention are determinated, primary and secondary indeterminate, respectively.
d) Compared to a structure, the present invention
By being converted to the next and eighth order indefinite structures, the energy dispersion effect by plasticity is large, so the vibration reduction effect and seismic resistance can be greatly improved, and the composite girder and substructure are integrated As a result, a large moment that can be generated is distributed to the substructure, so that the load on the external force of the beam is reduced, and the beam height and the span length are reduced by about 20.
% Reduction effect and extension effect can be expected, and a more economical cross section can be obtained.

【0084】また、全ての橋梁の劣化の原因になって継
続的なメンテナンスが必要な橋座装置の数も減らせてさ
らなる経済性を高められる。
Further, it is possible to reduce the number of bridge seat devices that require continuous maintenance due to deterioration of all bridges, thereby further improving the economic efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の技術にともなう単径間プレフレックス
合成桁橋の施工過程を示した図である。
FIG. 1 is a view showing a construction process of a single-span preflex composite girder bridge according to a conventional technique.

【図2】 従来の技術にともなう2径間連続プレフレッ
クス合成桁橋の施工過程を示した図である。
FIG. 2 is a view showing a construction process of a two-span continuous preflex composite girder bridge according to a conventional technique.

【図3】 従来の技術にともなう3径間連続プレフレッ
クス合成桁橋の施工過程を示した図である。
FIG. 3 is a view showing a construction process of a three span continuous preflex composite girder bridge according to a conventional technique.

【図4】 本発明に係る単径間プレフレックス合成桁橋
の施工のための橋台と合成桁との連結状態図である。
FIG. 4 is a connection state diagram of an abutment and a composite girder for construction of a single span preflex composite girder bridge according to the present invention.

【図5】 本発明に係る単径間鋼箱桁橋の施工のための
橋台と合成桁との連結状態図である。
FIG. 5 is a connection state diagram of an abutment and a composite girder for construction of a single-span steel box girder bridge according to the present invention.

【図6】 本発明に係る単径間PSC合成桁橋の施工のた
めの橋台と合成桁との連結状態図である。
FIG. 6 is a connection state diagram of an abutment and a composite girder for construction of a single span PSC composite girder bridge according to the present invention.

【図7】 本発明に係る単径間合成桁橋の施工過程を示
した図である。
FIG. 7 is a view showing a construction process of the single span composite girder bridge according to the present invention.

【図8】 本発明に係る合成桁と橋脚が一体化しない2
径間連続合成桁橋の施工過程を示した図である。
FIG. 8 shows a composite girder according to the present invention and a pier that are not integrated 2
It is the figure which showed the construction process of the continuous span girder bridge.

【図9】 本発明に係る合成桁と橋脚が一体化しない3
径間連続合成桁橋の施工過程を示した図である。
FIG. 9: The composite girder and pier according to the present invention are not integrated 3
It is the figure which showed the construction process of the continuous span girder bridge.

【図10】 本発明に係る多径間連続合成桁橋の施工
時、内部支点におけるビームとビームとの連結状態図で
ある。
FIG. 10 is a connection state diagram of beams at internal fulcrums when the multispan continuous composite girder bridge according to the present invention is constructed.

【図11】 本発明に係る合成桁と橋脚が一体化した多
径間連続プレフレックスの合成桁橋の施工のための橋脚
と合成桁との連結状態図である。
FIG. 11 is a connection diagram of a pier and a composite girder for constructing a composite girder bridge of a multi-span continuous preflex in which the composite girder and the pier according to the present invention are integrated.

【図12】 本発明に係る合成桁と橋脚が一体化した多
径間連続鋼箱桁橋の施工のための橋脚と合成桁との連結
状態図である。
FIG. 12 is a connection state diagram of a pier and a composite girder for construction of a multi-span continuous steel box girder bridge in which the composite girder and the pier according to the present invention are integrated.

【図13】 本発明に係る合成桁と橋脚が一体化した多
径間連続PSC合成桁橋の施工のための橋脚と合成桁との
連結状態図である。
FIG. 13 is a connection state diagram of a pier and a composite girder for constructing a multi-span continuous PSC composite girder bridge in which the composite girder and the pier according to the present invention are integrated.

【図14】 本発明に係る合成桁と橋脚が一体化した2
径間連続合成桁橋の施工過程を示した図である。
FIG. 14 shows a composite girder and bridge pier according to the present invention 2
It is the figure which showed the construction process of the continuous span girder bridge.

【図15】 本発明に係る合成桁と橋脚が一体化した3
径間連続合成桁橋の施工過程を示した図である。
FIG. 15 shows a composite girder and a bridge pier 3 according to the present invention.
It is the figure which showed the construction process of the continuous span girder bridge.

【符号の説明】[Explanation of symbols]

1 橋座部 2 ビーム 3 形鋼 4 継手プレート 5 ボルト 6 鉄筋 8 補強材 9 スタッド 10 継手コンクリート 11 ジョイントコンクリート 12 継手ストッパ 13 橋脚 14 形鋼 15 溶接 60 下部フランジ 61 床版 62 プレート 63 胸壁 64 引張鉄筋 DESCRIPTION OF SYMBOLS 1 Bridge seat 2 Beam 3 Shaped steel 4 Joint plate 5 Bolt 6 Reinforcement 8 Reinforcement material 9 Stud 10 Jointed concrete 11 Jointed concrete 12 Joint stopper 13 Bridge pier 14 Shaped steel 15 Welding 60 Lower flange 61 Floor plate 62 Plate 63 Chest wall 64 Tension steel

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 第1橋台と第2橋台を設ける段階と、 前記第1橋台の橋座部に形鋼を埋設する段階と、 ビームを前記第1橋台と第2橋台との間に単純据え置き
する段階と、 前記第1橋台の形鋼と前記ビームの下部フランジとを連
結する段階と、 前記第1橋台の橋座部の上面から前記ビームの中立軸ま
で継手コンクリートを打設する段階と、 前記第2橋台側の支点を下降させる段階と、 前記第1橋台の継手コンクリートの上面から前記ビーム
の床版までコンクリートを打設する段階と、 前記ビームに床版コンクリートを打設する段階と、 下降させた前記第2橋台側の支点を上昇させる段階とを
含めてなされることを特徴とする単径間合成桁橋の施工
法。
1. A step of providing a first abutment and a second abutment; a step of burying a shaped steel in a bridge seat portion of the first abutment; and simply placing a beam between the first and second abutments. Connecting the shaped steel of the first abutment to the lower flange of the beam; and casting joint concrete from the upper surface of the bridge seat of the first abutment to the neutral axis of the beam; Lowering the fulcrum on the second abutment side; casting concrete from the upper surface of the joint concrete of the first abutment to the slab of the beam; and casting concrete slab on the beam; Raising the fulcrum on the side of the second abutment that has been lowered, the method comprising the steps of:
【請求項2】 少なくとも二つ以上のビームをお互い連
結して第1橋台と第2橋台、そして少なくとも一つ以上
の内側の橋脚間に単純据え置きする段階と、 前記第1及び第2橋台側の支点を下降させる段階と、 前記ビームに床版コンクリートを打設する段階と、 下降させた前記第1及び第2橋台側の支点を上昇させる
段階とを含めてなされることを特徴とする多径間連続合
成桁橋の施工法。
2. A method for connecting at least two or more beams to each other and simply placing the beams between a first abutment and a second abutment and at least one or more inner abutments; A step of lowering a fulcrum, placing concrete on the beam, and raising a fulcrum of the lowered first and second abutments. Construction method of continuous continuous girder bridge.
【請求項3】 プレフレックス合成桁の施工のため、前
記ビームを単純据え置きする段階前に前記ビームの継手
に下部ケーシングコンクリートを打設する段階をさらに
含めてなされることを特徴とする請求項2に記載の多径
間連続合成桁橋の施工法。
3. The method according to claim 2, further comprising the step of placing lower casing concrete at a joint of the beam before the step of simply holding the beam for the construction of the preflex composite girder. Construction method of multi-span continuous composite girder bridge described in.
【請求項4】 前記ビームを単純据え置きする段階前、
前記内側橋脚のコッピング部に形鋼を埋設する段階と、 前記ビームを単純据え置きする段階後、前記形鋼と前記
ビームの下部フランジとを連結する段階と、 前記内側橋脚のコッピング部の上部から前記ビームの中
立軸まで継手コンクリートを打設する段階と、 前記第1及び第2橋台側の支点を下降させる段階後、前
記内側橋脚の継手コンクリートの上面から前記ビームの
床版までコンクリートを打設する段階とをさらに含めて
なされることを特徴とする請求項2に記載の多径間連続
合成桁橋の施工法。
4. prior to the step of simply deferring said beam;
Burying a shape steel in the coping portion of the inner pier; connecting the shape steel and a lower flange of the beam after the step of simply keeping the beam; and After the step of casting the joint concrete to the neutral axis of the beam and the step of lowering the fulcrum on the first and second abutment sides, the concrete is poured from the upper surface of the joint concrete of the inner pier to the floor slab of the beam. The method for constructing a multi-span continuous composite girder bridge according to claim 2, further comprising the steps of:
【請求項5】 前記第1及び第2橋台側の支点の下降時
には前記第1橋台側の支点と前記第2橋台側の支点を同
時に下降させ、 前記第1及び第2橋台側の支点の上昇時には下降させた
前記第1橋台側の支点と前記第2橋台側の支点を同時に
上昇させることを特徴とする請求項2または4に記載の
多径間連続合成桁橋の施工法。
5. When the fulcrums on the first and second abutments are lowered, the fulcrum on the first abutment side and the fulcrums on the second abutment side are simultaneously lowered, and the fulcrums on the first and second abutments are raised. 5. The method according to claim 2, wherein the fulcrum on the first abutment side and the fulcrum on the second abutment side, which are sometimes lowered, are simultaneously raised. 6.
【請求項6】 前記第1及び第2橋台側の支点の下降時
には前記第1橋台側の支点と前記第2橋台側の支点を順
次に下降させ、 前記第1及び第2橋台側の支点の上昇時には前記第1橋
台側の支点と前記第2橋台側の支点を順次に上昇させる
ことを特徴とする請求項2または4に記載の多径間連続
合成桁橋の施工法。
6. When the fulcrums on the first and second abutments descend, the fulcrum on the first abutment side and the fulcrums on the second abutment side are sequentially lowered, and the fulcrums on the first and second abutments are reduced. The method according to claim 2 or 4, wherein the fulcrum on the first abutment side and the fulcrum on the second abutment side are sequentially raised when ascending.
【請求項7】 2径間連続合成桁橋の施工のため、前記
第1及び第2橋台側の支点の下降時、前記第1橋台側と
前記第2橋台側のうちいずれか片方支点だけを下降さ
せ、 前記第1及び第2橋台側の支点の上昇時、下降させた前
記片方支点だけを上昇させることを特徴とする請求項2
または4に記載の多径間連続合成桁橋の施工法。
7. For the construction of a two span continuous composite girder bridge, when the fulcrums on the first and second abutments are lowered, only one of the fulcrums on the first and second abutments is moved. The fulcrum on the first and second abutment side is raised, and only the one fulcrum that has been lowered is raised.
Or the construction method of the multi-span continuous composite girder bridge according to 4.
【請求項8】 プレフレックス合成桁橋または鋼箱型合
成桁橋を施工するために前記ビームの腹部に一つ以上の
補強材とスタッドを設ける段階をさらに含むことを特徴
とする請求項1または4に記載の合成桁橋の施工法。
8. The method of claim 1, further comprising providing one or more reinforcements and studs on the abdomen of the beam to construct a preflex composite girder bridge or a steel box composite girder bridge. 4. The method for constructing a composite girder bridge according to 4.
【請求項9】 PSC合成桁橋を施工するため、前記ビー
ムの腹部に鉄筋を引き抜いて置く段階をさらに含むこと
を特徴とする請求項1または4に記載の合成桁橋の施工
法。
9. The method for constructing a composite girder bridge according to claim 1, further comprising the step of extracting and placing a reinforcing bar on the abdomen of the beam to construct a PSC composite girder bridge.
【請求項10】 PSC合成桁橋を施工するため、前記第
2橋台側の支点を下降させる段階前に、前記第1橋台の
胸壁とビームの正モーメント区間に床版コンクリートを
打設する段階と、 前記胸壁と床版コンクリートとを連結する継手鉄筋を埋
設する段階とをさらに含むことを特徴とする請求項1に
記載の単径間合成桁橋の施工法。
10. laying concrete in the positive moment section of the parapet and beam of the first abutment before the step of lowering the fulcrum on the side of the second abutment to construct a PSC composite girder bridge; The method according to claim 1, further comprising: burying a joint reinforcing bar connecting the parapet and the slab concrete.
【請求項11】 PSC合成桁橋を施工するために、前記
第1及び第2橋台側の支点を下降させる段階前に、前記
ビームの正モーメント区間に床版コンクリートを打設す
る段階と、 前記床版コンクリートをお互い連結する継手鉄筋を埋設
する段階とをさらに含むことを特徴とする請求項2また
は4に記載の多径間合成桁橋の施工法。
11. laying concrete in a positive moment section of the beam before lowering the fulcrum on the first and second abutments to construct a PSC composite girder bridge; The method for constructing a multi-span composite girder bridge according to claim 2 or 4, further comprising the step of burying joint reinforcing bars that connect the slab concrete to each other.
【請求項12】 前記ビームの継手位置は内部支点に置
かせることを特徴とする請求項2に記載の多径間合成桁
橋の施工法。
12. The method for constructing a multi-span composite girder bridge according to claim 2, wherein a joint position of the beam is set at an internal fulcrum.
【請求項13】 前記ビームの継手位置は内部支点の左
側と右側のうちいずれか一カ所に置かせることを特徴と
する請求項2に記載の多径間合成桁橋の施工法。
13. The method for constructing a multi-span composite girder bridge according to claim 2, wherein the joint position of the beam is located at one of left and right sides of the internal fulcrum.
JP2001017589A 2000-06-08 2001-01-25 Construction method of single span and multi span composite girder bridges Expired - Fee Related JP3588325B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020000031515A KR20000054500A (en) 2000-06-08 2000-06-08 Construction method that introduces compressive stress to bottom plate concrete and bottom moment flange of parent section by using and adjusting the descending and rising process of end point in short span and multi span composite structures
KR200031515 2000-06-26
KR1020000035471A KR20000058716A (en) 2000-06-26 2000-06-26 Multi-span continuous composite construction that integrates beams and piers and lowers and raises end points
KR200035471 2000-06-26
KR200018176 2000-06-26
KR2020000018176U KR200212395Y1 (en) 2000-06-26 2000-06-26 Cross-sectional structure integrating lower structure and upper mold

Publications (2)

Publication Number Publication Date
JP2002004224A true JP2002004224A (en) 2002-01-09
JP3588325B2 JP3588325B2 (en) 2004-11-10

Family

ID=36716992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017589A Expired - Fee Related JP3588325B2 (en) 2000-06-08 2001-01-25 Construction method of single span and multi span composite girder bridges

Country Status (5)

Country Link
JP (1) JP3588325B2 (en)
KR (1) KR100522170B1 (en)
CN (1) CN1252354C (en)
AU (1) AU2001222332A1 (en)
WO (1) WO2001096665A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321452A (en) * 2006-06-01 2007-12-13 Railway Technical Res Inst Construction method for bridge and bridge structure thereof
WO2010047096A1 (en) * 2008-10-24 2010-04-29 朝日エンヂニヤリング株式会社 Structure for rigidly joining pier and concrete beam together
JP2010255204A (en) * 2009-04-21 2010-11-11 Taisei Corp Method for erecting precast member
CN102877417A (en) * 2012-10-26 2013-01-16 中铁上海设计院集团有限公司 Anchoring method of girder suspender of continuous camber composite bridge
CN101021057B (en) * 2006-02-13 2015-01-21 朝日工程株式会社 Bridge structure of substrate
CN104480858A (en) * 2014-10-20 2015-04-01 中建三局第二建设工程有限责任公司 Construction method for sealing anchorage of pre-stress concrete box girder and cross girder anchored troughs
CN104594194A (en) * 2015-02-04 2015-05-06 河南省交通规划勘察设计院有限责任公司 Composite bridge deck applied to long-span bridges and city bridges
CN104612056A (en) * 2014-12-10 2015-05-13 中铁第四勘察设计院集团有限公司 Quick pushing and transverse moving method for integral frame bridge
CN105926423A (en) * 2016-04-15 2016-09-07 浙江大学 Composite beam type bridge floor continuation device and bridge floor continuation method applied in hollow slab girder bridges

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059089A1 (en) * 2002-12-30 2004-07-15 Koo, Min Se Prestressed composite girder, continuous prestressed composite girder structure and methods of fabricating and connecting the same
ES2283179B1 (en) * 2005-03-11 2008-12-01 Iglesias Y Revilla, S.L. MIXED STRUCTURES FOR APPLICATION TO PREFABRICATED INDUSTRIAL VESSELS.
KR100742206B1 (en) * 2006-10-25 2007-07-25 (주)한맥기술 Steel-concrete composite rahmen bridge and construction method thereof
KR101046940B1 (en) * 2008-11-17 2011-07-07 지에스건설 주식회사 Continuous bridge construction method using PS girder and steel plate girder
CN101694087B (en) * 2009-10-13 2011-05-11 毕承会 Method for building novel bridge
CN103205930B (en) * 2013-04-25 2015-06-03 福州大学 Structure for continuous transformation of existing simply supported hollow slab girder bridge and construction method of structure
KR101586320B1 (en) * 2015-09-10 2016-01-18 오종훈 Psc girder rahmen bridge and construction method thereof
CN106284046A (en) * 2016-10-09 2017-01-04 北京市市政工程设计研究总院有限公司 Bridge steel concrete equals curved combination beam manufacture method
PH12017000177A1 (en) * 2017-06-16 2019-02-04 Wookyung Tech Co Ltd Method for manufacturing steel i beam segment of positive moment and negative moment and method for constructing simple bridge and continuous bridge
CN109977453B (en) * 2019-01-15 2023-04-18 河北工程大学 Working resistance design method for solid filling hydraulic support
CN112446069A (en) * 2019-08-14 2021-03-05 深圳市建筑设计研究总院有限公司 Pre-internal force of structural member and calculation method thereof
CN114232489B (en) * 2021-12-20 2023-08-25 福建宏盛建设集团有限公司 Construction method of large-span reinforced concrete structure building

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009582B2 (en) * 1994-01-07 2000-02-14 三菱重工業株式会社 Construction method of continuous composite girder bridge between concrete slab and steel girder
KR100341165B1 (en) * 1998-07-03 2002-11-29 (주)한국해외기술공사 Construction method of preflex beam

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101021057B (en) * 2006-02-13 2015-01-21 朝日工程株式会社 Bridge structure of substrate
JP2007321452A (en) * 2006-06-01 2007-12-13 Railway Technical Res Inst Construction method for bridge and bridge structure thereof
WO2010047096A1 (en) * 2008-10-24 2010-04-29 朝日エンヂニヤリング株式会社 Structure for rigidly joining pier and concrete beam together
US8370983B2 (en) 2008-10-24 2013-02-12 Asahi Engineering Co., Ltd. Rigid connection structure of bridge pier and concrete girder
JP2010255204A (en) * 2009-04-21 2010-11-11 Taisei Corp Method for erecting precast member
CN102877417A (en) * 2012-10-26 2013-01-16 中铁上海设计院集团有限公司 Anchoring method of girder suspender of continuous camber composite bridge
CN104480858A (en) * 2014-10-20 2015-04-01 中建三局第二建设工程有限责任公司 Construction method for sealing anchorage of pre-stress concrete box girder and cross girder anchored troughs
CN104612056A (en) * 2014-12-10 2015-05-13 中铁第四勘察设计院集团有限公司 Quick pushing and transverse moving method for integral frame bridge
CN104594194A (en) * 2015-02-04 2015-05-06 河南省交通规划勘察设计院有限责任公司 Composite bridge deck applied to long-span bridges and city bridges
CN104594194B (en) * 2015-02-04 2016-08-24 河南省交通规划设计研究院股份有限公司 It is applied to the combined bridge deck in Large Span Bridges and Urban Bridge
CN105926423A (en) * 2016-04-15 2016-09-07 浙江大学 Composite beam type bridge floor continuation device and bridge floor continuation method applied in hollow slab girder bridges
CN105926423B (en) * 2016-04-15 2018-06-12 浙江大学 It is a kind of applied to the combination beam type bridge floor continuation apparatus of Hollow Slab Beam Bridge and bridge floor continuation method

Also Published As

Publication number Publication date
AU2001222332A1 (en) 2001-12-24
CN1252354C (en) 2006-04-19
CN1494628A (en) 2004-05-05
KR100522170B1 (en) 2005-10-18
JP3588325B2 (en) 2004-11-10
WO2001096665A1 (en) 2001-12-20
KR20030014686A (en) 2003-02-19

Similar Documents

Publication Publication Date Title
JP3588325B2 (en) Construction method of single span and multi span composite girder bridges
KR100941066B1 (en) Prestressed-precast-segmental open spendral concrete arch bridge and its constructing method
KR100958014B1 (en) Construction method of steel composite girder bridge
US6470524B1 (en) Composite bridge superstructure with precast deck elements
KR101007708B1 (en) Semi-hinge rahman bridge and method for constructing the same
JP2007077630A (en) Continuous girder using precast main-girder segment, and its erection method
JP5331924B1 (en) SPC bridge construction method
JP3908642B2 (en) Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge
CN101440598B (en) Steel box-concrete combined box plate arch structure and construction method thereof
KR101042674B1 (en) Continuous composite rahmen bridge using precast girder and the construction method thereof
KR101208231B1 (en) Method for constructing continuous supporting structure of corrugated steel web PSC beam
KR101337185B1 (en) Construction method of hybrid bridge reinforced with concrete filler and its structure thereof
KR101881580B1 (en) Bridge comprising monolithic structure of girder and pier and construction method for the same
JP3739046B2 (en) Construction method of steel PC composite bridge
KR20090072876A (en) Manufacturing method of prestressed concrete beams with additional prestress introduced by H-beam and steel plate
JP2000104221A (en) Combined truss bridge and erection method of the same
CN214328478U (en) Three-tower self-anchored suspension bridge
JPH07300817A (en) Concrete-filled steel pipe truss pier and construction method
KR20000054500A (en) Construction method that introduces compressive stress to bottom plate concrete and bottom moment flange of parent section by using and adjusting the descending and rising process of end point in short span and multi span composite structures
KR101228107B1 (en) A integral abutment continuous composite bridge using precast girder and the construction method thereof
KR101358176B1 (en) Continuous precast girder bridge and the construction method thereof
KR20000058716A (en) Multi-span continuous composite construction that integrates beams and piers and lowers and raises end points
JP2004011300A (en) Pc composite structure, pc bridge and prestressing method
CN110886392A (en) Laminated arch shell structure and construction method thereof
KR200230089Y1 (en) Shifting up and down system of continuous preflex composite girder on temporary support

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees