JP3575642B2 - Method and apparatus for producing silver halide emulsion - Google Patents

Method and apparatus for producing silver halide emulsion Download PDF

Info

Publication number
JP3575642B2
JP3575642B2 JP20672795A JP20672795A JP3575642B2 JP 3575642 B2 JP3575642 B2 JP 3575642B2 JP 20672795 A JP20672795 A JP 20672795A JP 20672795 A JP20672795 A JP 20672795A JP 3575642 B2 JP3575642 B2 JP 3575642B2
Authority
JP
Japan
Prior art keywords
solution
silver halide
chamber
halogen
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20672795A
Other languages
Japanese (ja)
Other versions
JPH0934044A (en
Inventor
靖典 市川
加藤  明
弘志 大西
茂治 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP20672795A priority Critical patent/JP3575642B2/en
Publication of JPH0934044A publication Critical patent/JPH0934044A/en
Application granted granted Critical
Publication of JP3575642B2 publication Critical patent/JP3575642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は写真用ハロゲン化銀乳剤の製造方法及び装置に関する、特に反応容器の系外に混合室を設け、ここで形成した微粒子を反応容器に添加するまでの間に異なる種類のハロゲンを添加しコンバージョンさせる事に関する方法と装置である。
【0002】
【従来の技術】
本発明に関係する特許としては、下記の二つの傾向のものが有り、本発明はこの両者の折衷型の為、参考までに両者の特許を紹介する。
(a) 混合室を反応容器外に出し、粒子形成する方法、及び装置。
(b) 反応容器内に混合室を有する方法及び装置である。
【0003】
(a) 混合室を反応容器外に出し、粒子形成する方法及び装置としては、
▲1▼ 動力駆動ポンプあるいはポンプ群により循環される循環コロイド溶液の別々の流れが別々の混合域中に通過せしめられ、これらの区域中で一方は銀塩溶液とまた他方はハライド塩溶液と混合され、これらの流れは次いで銀塩とハライド塩の反応でハロゲン化銀結晶が作られるよう一つの反応域中で一諸に混合され、循環コロイド溶液は時間と共にハロゲン化銀結晶の含有量が増大し、該循環は予定された濃度のハロゲン化銀乳剤が得られるまで続行せられる方法であって、前記コロイド溶液のそれぞれの流れにベンチュリー型ポンプのノズルから前記混合液のそれぞれ一方を通じ、さらに反応域中へと強制送りされ、銀塩溶液および/またはハライド塩溶液の流れは状況に応じて各ベンチュリー型ポンプのベンチュリー吸引効果の影響下または実質的効果にある混合液中へと供給せしめられ前記ベンチュリーポンプ群は乳剤の循環に用いられるポンプあるいはポンプ群の固有特性に起因する高周波(1Hz以上)pAg振動を制動するような条件下に操作されることを特徴とする感光性ハロゲン化銀乳剤の製造方法および装置(特開昭53−37414号公報参照)。
【0004】
▲2▼ ゼラチン溶液を熟成タンクよりポンプによって循環する系の途中に、硝酸銀溶液及びハロゲン塩溶液を注入ポンプにより注入し、混合し反応させる。また熟成タンク内のpAgを測定しpAgが一定になるように前記注入ポンプを制御することを特徴とする写真乳剤の調製装置(米国特許第3,897,935号明細書参照)。
【0005】
▲3▼ 第1のハロゲン化銀粒子の沈澱は流れの中で行われ、そして第1のハロゲン化銀粒子の第2の可溶性ハライドによる部分的置換がハライド変換によって容器中で行われて混晶ハロゲン化銀が生成され、最初に生成した混晶ハロゲン化銀粒子は前記流れ中に再循環されてそこで第1のハロゲン化銀の追加の沈澱が混晶表面上に起こってこれを成長させ、この成長された結晶は再循環流れから容器中に供給されてここでハロゲン置換による追加の置換が達成されることを特徴とする。制御された粒子サイズ,構造及びサイズ分布を有する写真用乳剤の製造方法(特開昭49−60526号公報参照)。
【0006】
▲4▼ (イ) 水性ゼラチン溶液を含有する沈澱容器から再循環された第1の流れに硝酸銀を加え、そして前記流れを前記容器に再び戻すこと、
(ロ)前記沈澱容器から再循環された第2の流れに単一アルカリ金属ハライド又は混合ハライド溶液を加え、そして前記流れを前記容器に戻すこと。
(ハ)前記容器中で両方の再循環流れを混合してハロゲン化銀粒子をその中で沈澱させること。
【0007】
そして
(ニ)前記沈澱容器内容物を前記第1および第2の流れ中に再循環させ、そしてそこから沈澱容器に戻し、それによって追加のハロゲン化銀粒子を最初に沈澱した粒子上に沈澱させて類似された構造、サイズおよびサイズ分布のハロゲン化銀粒子を生成させることからなり、
しかもそれらの再循環流れを相互に非常に近接して位置され且つ容器の液体水面下で終っている高速下方向ジエットの形で沈澱容器に導入し、それによって再循環流れを規制された部域内で均一に混合させ、そしてハロゲン化銀粒子を均一なpAgで沈澱させることを特徴とする、制御されたハロゲン化銀粒子サイズ、構造およびサイズ分布を有する写真乳剤を製造する方法(特開昭54−158,220号公報参照)。等が開示されている。
【0008】
(b) 反応容器内に混合室を有する方法及び装置としては
▲5▼ 銀塩水溶液とハロゲン化塩水溶液を解膠剤水溶液中で反応させて均一ハロゲン化銀粒子を製造する方法において、
(イ)ハロゲン化塩と銀塩とを別々に解膠剤水溶液に混合して二種類の塩含有希釈溶液をつくり、
(ロ)ついで、前記の2種類の塩含有希釈溶液を、攪拌された残りの解膠剤水溶液に別々に導入することを特徴とする均一ハロゲン化銀粒子の製造方法。
【0009】
▲5▼’枠体、混合ヘッドおよび混合羽根から成り、枠体の長軸に平行な第1および第2の流体入口を有し、混合ヘッドは枠体内にあって枠体の長軸周辺を回転し、かつ第2の流体入口を通して枠体に連結して回転を与えるシャットを有し、混合羽根は、混合室内の上記シャフト上にあって放射状に配備されており、そのシャフトの回転により、流体を上記第1および第2の入口を通して混合室内に導入し、混合流体を流体出口から放射状に排出する働きをしていることを特徴とする、ハロゲン化銀粒子の均一製造装置(特公昭49−48964号公報参照)。
【0010】
▲6▼ 調製釜の中に存在する主成分たとえばゼラチン塩溶液に供給ポンプ等によって添加成分たとえば硝酸銀溶液を添加し、そしてこれを主成分内に分配させる方式の懸濁物等特にハロゲン化銀含有懸濁物の製造方法において、調製釜の中に存在する主成分を実質的に外側環状帯域においては下降し、そして該帯域から分離された中心部に位置する内側帯域においては高速で上昇する回転対称形をなして回動する液流となし、そしてすでに上昇している液流領域内の主成分に第1の添加成分を、そしてさらに上昇した液流領域内に第2の添加成分を横断流の形態で添加することを特徴とする懸濁物特にハロゲン化銀含有懸濁物の製造方法。
【0011】
▲6▼’ 回転対称体形状の調製釜7の中にこれと同軸的に配置された外側環状帯域aを中心部に位置する内側帶域bから仕切るすなわち下降流を上昇流から区分する仕切管10と、該仕切管の上部セグメント12に接してまたはその中に配置された回転対称形の回動流を生起せしめるための、駆動モータと連結された羽根車15、プロペラ等の間断なく液を送り出す送り出し手段を有する給送装置14とが配置されており、且つ上記仕切管10の下部セグメント11の領域内とその上に位置する領域内とに上記調製釜7および該仕切管10と同軸的にそれぞれ1個の混合ノズル弁16,17が配置されており、該混合ノズル弁は装置の垂直軸に対して直角な平面内に位置し、ほぼ半径方向に向いたリングスリット18,19を有し、該リングスリットは供給ポンプ3,4等によって添加成分に付与された圧力によって弾性応力の圧力に抗してその回転対称形断面を可変的に開口されるようになっていることを特徴とする前記特許請求の範囲第1項の方法を実施するための装置(特公昭53−41114号公報参照)。
【0012】
▲7▼ 水溶性銀塩溶液と水溶性ハロゲン化物溶液とを、コロイド水溶液が満たされている反応容器中にその内部に該コロイド水溶液が満たされる如く設けられた混合室内に供給して反応せしめハロゲン化銀粒子を製造する方法において、多角筒のケーシングより成る該混合室下端部より両反応液を別個に供給し、該混合室中に満たされた該コロイド水溶液によりそれぞれ希釈し、該混合室内に設けられた第1攪拌手段により両反応液を急激に攪拌混合して反応せしめ、ハロゲン化銀粒子を生成させ、ただちに第二攪拌手段により、該ハロゲン化銀粒子を該混合室上方の前記反応容器中に排出せしめ、熟成させることを特徴とするハロゲン化銀粒子製造方法及び装置(特公昭55−10545号公報参照)
▲8▼ コロイド水溶液が満たされている反応容器中にその内部に該コロイド水溶液が満たされる如く設けられた混合器に、その下端部からハロゲン塩水溶液と銀塩水溶液とを別々に供給し、該両反応液を前記コロイド水溶液により各々希釈し、前記混合器に設けられた攪拌翼により両方応液を急激に攪拌混合して反応せしめ、ハロゲン化銀粒子を生成させ、ただちに該ハロゲン化銀粒子を該混合器外上方の前記反応容器中に排出せしめ成長させるハロゲン化銀粒子の製造方法において、前記コロイド水溶液で希釈された両反応液を、前記攪拌翼の各翼片間の間隙を通すことなく、前記混合器の内周壁の内方であって前記攪拌翼の翼片先端側外方に形成された間隙部に通し、該間隙部において該両反応液を急激に剪断混合して反応せしめ、ハロゲン化銀粒子を生成させることを特徴とするハロゲン化銀粒子の製造方法及び装置(特公昭58−58288号公報参照)。
【0013】
▲9▼ 反応容器中に攪拌翼とその周囲に固定されたケーシングからなる混合器を有し、該ケーシングは下端部にハロゲン塩水溶液、銀塩水溶液及び保護コロイド水溶液を該混合器に導入する開口部を有し、該上端部開口部は排出される液流が攪拌翼回転軸方向の鉛直流となる充分な攪拌翼回転軸方向高さをもち、回転軸方向に開口する複数の導通路よりなるハロゲン化銀写真乳剤の製造装置において、該下端部開口部を2個以上有し、ハロゲン塩水溶液と銀塩水溶液を別々の該開口部から導入するようにしたことを特徴とするハロゲン化銀写真乳剤の製造装置(特開昭63−89837号公報参照)等が開示されている。
【0014】
【発明が解決しようとする課題】
しかしながら、▲1▼,▲2▼,▲3▼,▲4▼の混合室を反応容器外に出し、粒子形成する方法及び装置も、又▲5▼,▲6▼,▲7▼,▲8▼,▲9▼の反応容器内に混合室を有する方法及び装置においても、ハロゲン塩溶液をとして種々のハロゲンの混合組成液を用いるか、又は第2の可溶性ハライドによる部分的置換を反応容器内で行なうかであり、いずれの場合にしても、
(1) 本来欲しい微粒子の中に形状の異なる微粒子が混在し、これが他の微粒子の溶解時間と異なる為、粒子成長時に本来溶解して欲しいのに溶解せず、その他の微粒子により成長してしまう場合が発生し、この処置に困っているか、又は
(2) ハロゲン組成により形成される微粒子のサイズ、サイズ分布が異なり、このサイズコントロールが思うようには出来ない。
【0015】
等の問題点を有していた。
【0016】
本発明の目的は上記問題点を解消し、出来るだけ均一な粒子サイズ分布の粒子を形成し、可能な限り、小さい粒子を形成するハロゲン化銀乳剤の製造方法及び装置を提供することにある。
【0017】
【課題を解決するための手段】
本発明の上記目的は、
▲1▼ 水溶性銀塩溶液と複数種の水溶性ハロゲン塩溶液とを、粒子成長を行う反応容器の系外に設けたコロイド水溶液の流れる混合室内に添加し、混合・反応させてハロゲン化銀乳剤を製造する方法において、前記水溶性ハロゲン塩溶液を2種ハロゲン塩溶液に分け、前記水溶性銀塩溶液と第1のハロゲン塩溶液とを先ず混合室に添加・混合・反応させ第1のハロゲン化銀の微粒子を形成させた後、該微粒子を含むコロイド溶液に第2のハロゲン塩溶液を添加・混合し第1のハロゲン化銀粒子の表面の第1のハロゲンを、第2のハロゲンにコンバージョンさせた後、該溶液を反応容器に移し熟成させることを特徴とするハロゲン化銀乳剤の製造方法。
【0018】
▲2▼ 水溶性銀塩溶液と複数種の水溶性ハロゲン塩溶液とを、粒子成長を行う反応容器の系外に設けたコロイド水溶液の流れる混合室内に添加し、混合・反応させてハロゲン化銀乳剤を製造する装置において、前記混合室が2室より成り、最初の室に水溶性銀塩溶液と第1のハロゲン塩溶液の添加口とコロイド水溶液の添加口及び第1のハロゲン化銀を含むコロイド水溶液の出口を有し、第2の室に最初の室よりの第1のハロゲン化銀結晶を含むコロイド水溶液の入口と第2のハロゲン塩溶液の添加口及び第1のハロゲン化銀結晶の表面に第2のハロゲン化銀を置換した結晶を含むコロイド水溶液の出口を有し、該溶液を受ける反応容器を有することを特徴とするハロゲン化銀乳剤の製造装置。
【0019】
▲3▼ 前記第2の室が、第2の室混合用攪拌機を有することを特徴とする請求項2記載のハロゲン化銀乳剤の製造装置。
▲4▼ 前記第2の室が、静的混合器であることを特徴とする請求項2記載のハロゲン化銀乳剤の製造装置。
▲5▼ 前記第2の室が、完全混合可能な速度で回転する攪拌翼を有する混合室であることを特徴とする請求項2記載のハロゲン化銀乳剤の製造装置。
【0020】
によって達成される。
【0021】
【発明の実施の形態】
本発明において水溶性銀塩溶液と複数種の水溶性ハロゲン塩溶液とを粒子成長を行う反応容器の系外に設けたコロイド水溶液の流れる混合室内に添加し、混合反応させてハロゲン化銀乳剤を製造する方法とは、従来の技術では水溶性ハロゲン塩溶液の添加口に複数種のハロゲン塩水溶液を混合した状態で添加するか、又はコロイド水溶液の中に異種のハロゲン塩溶液を加える方法であったが、本発明では水溶性銀塩溶液に対し複数種のハロゲン塩水溶液を混合した状態ではなく、2つの室に分けて初めの室に第1のハロゲン塩水溶液を加えて混合・反応によって第1のハロゲン化銀微粒子を形成させ、ついで第2の室で前記第1のハロゲン化銀粒子のハロゲンを第2のハロゲンとコンバージョンさせることによって第1のハロゲン化銀結晶の表面に第2のハロゲン塩結晶を作るということである。そうすることにより、先ず平均サイズの小さい粒子を、及び/又はサイズ分布の狭い、粒子を形成後、この液中にコンバージョンさせるハロゲンイオンを導入し、第1のハロゲンイオンと完全にコンバージョンさせてから反応容器に移し熟成させることによって、形状の異なる微粒子が混在することも無く出来上る平均サイズとサイズ分布が小さく平均サイズの揃った粒子を得ることが出来る。
【0022】
本発明の実施態様を図を用いて説明する。図1において、水溶性銀塩溶液調製タンク1と複数種の水溶性ハロゲン塩溶液調製タンク2,4よりのそれぞれの溶液とを、コロイド水溶液調製タンク3で作られたコロイド水溶液の流れる、粒子成長を行う反応容器17の系外に設けられた、混合室12内に添加し、混合・反応させてハロゲン化銀乳剤を製造する方法において、前記ハロゲン塩溶液を2種のハロゲンX,X塩溶液に分け、そしてコロイド水溶液を添加口9より、水溶性銀塩溶液を添加口10より、第1のハロゲンX塩溶液をそれぞれ添加口11より混合室12に添加・混合・反応させ、第1のハロゲン化銀の微粒子を形成させ、該微粒子を含むコロイド水溶液に第2のハロゲンX塩の溶液を添加・混合し、第1のハロゲン化銀粒子の表面の第1のハロゲンXを第2のハロゲンXにコンバージョンさせた後、該溶液を反応容器17に移し、熟成させることを特徴とするハロゲン化銀乳剤の製造方法である。
【0023】
本発明はコロイド水溶液をコロイド水溶液調製タンク3より混合室12に供給しているが、本発明者が先に提案した特願平7−142388号明細書のように反応容器に一度供給し、その後循環系を通して混合室に供給する方法も採用することが出来る。
又、銀塩水溶液、ハロゲン塩水溶液も一度循環系のコロイド水溶液によって希釈してそれから混合室に供給する方法をとれば、添加液の希釈も充分に行うことが出来るので、ハロゲン化銀結晶の設計範囲を広くすることが出来る。
【0024】
次に装置的に説明すると、図1において、混合室12が2室より成り、最初の室に水溶性銀塩溶液と第1のハロゲン塩溶液の添加口それぞれ10,11と、コロイド水溶液の添加口9より、及び出口として攪拌機と室壁との隙間があり、混合室12の第2の室に最初の室よりの第1のハロゲン化銀結晶を含むコロイド水溶液の入口と第2のハロゲン塩溶液の添加口13、及び第1のハロゲン化銀結晶の表面に第2のハロゲン化銀がくっついた粒子を含むコロイド水溶液の出口14を有することを特徴とするものである。尚、21は流量制御器、22は駆動用モータである。
【0025】
本発明の装置の混合室の変形について説明すると、
図2において、混合室12の第2の室に混合用の攪拌機15を有し、混合室12の第1の室の混合攪拌機15と共軸になっている。しかし共軸にこだわることなく別軸で異った回転数でも構わない。第1室の攪拌機は高速回転が必要だが、第2室の攪拌機は完全に混合しさえすればよい程度である。
【0026】
又、図3においては第2の室が静的混合器、具体的にはスタティックミクサー18と言われるものであって、液自身が送液圧によって回転して混合するものでもよい。
又図4に示すように、第1の室を出た第1のハロゲン化銀微粒子を含むコロイド水溶液が、別に存在する混合室19で、完全混合可能な速度で回転する攪拌翼20を有したものであっても良い。
【0027】
【実施例】
(実施例−1)
本発明の方法であり、2%ゼラチン水溶液を500cc/min,1モル硝酸銀水溶液を100cc/min,1モルの塩化カリウム水溶液100cc/minを図1に示した混合室12に添加して攪拌機15によって500rpm の速度で攪拌し、微粒子の塩化銀粒子を形成後、次の部屋に1モルのシュウ化カリウムを添加し、コンバージョンを行った。この粒子を70℃の反応容器に10分間添加し、更に20分間物理熟成を行ない成長させた。
【0028】
(比較例−1)
本発明の方法と比較する為にコンバージョンを行わない方法をテストした。2%ゼラチン水溶液500cc/min,1モル硝酸銀水溶液を100cc/min,シュウ化カリウム水溶液を100cc/minの流量で上記と同じ混合室に添加し、攪拌気15によって500rpm の速度で攪拌し、微粒子の臭化銀を形成し反応容器に添加した。実施例−1と比較する為に、この方法では塩化カリウムを100cc/minの流量で直接反応容器に添加した。この場合の反応容器の温度を70℃とし、10分間添加後、更に20分間物理熟成を行い成長させた。
【0029】
上記のようにして得た反応容器中のハロゲン化銀をサンプリングし、電子顕微鏡による平均粒子サイズ、サイズ分布及び結晶形状について調べた結果、平均サイズは実施例が0.56μmに対し比較例は0.62μmであり、サイズ分布は実施例±0.10に対し比較例±0.21μmであり、結晶形成は実施例が立法晶形に対し、比較例は不定型であり、かつ平板状粒子が混在した。即ち、実施例は比較例に比し、粒子サイズも小さく、サイズ分布も狭く、かつ形成も均一であった。
【0030】
本発明のハロゲン化銀乳剤の製造方法及び装置により、
(a) 従来臭化銀等の微粒子を形成する場合、平板粒子等成長速度の速い粒子が形成されてしまうとこの粒子が反応容器中で溶解せずに、成長してしまう場合がある。この様な場合に平板状粒子を発生しにくい塩化銀の微粒子を形成し反応容器に添加するまでの間にコンバージョンさせる事で形状の均一な、粒子サイズの揃った微粒子形成が可能となった。
【0031】
(b) コンバージョン法を旨く利用する事により平均サイズ分布を狭くすることが重要なもの、平均サイズが小さい事が重要なもの等の使い分けが可能になり、混合室で微粒子形成を行う様な仕込方法においてはこの適用範囲を大幅に拡大できた。
【図面の簡単な説明】
【図1】本発明のハロゲン化銀乳剤の製造方法及び装置の一実施例のフローシート図
【図2】本発明のハロゲン化銀乳剤の製造装置の一変形例の側面図
【図3】本発明のハロゲン化銀乳剤の製造装置の他の変形例の側面図
【図4】本発明のハロゲン化銀乳剤の製造装置のもう一つの他の変形例の側面図
【符号の説明】
1 水溶性銀塩溶液の調製タンク
2 水溶性ハロゲンX塩溶液の調製タンク
3 コロイド水溶液の調製タンク
4 水溶性ハロゲンX塩溶液の調製タンク
5 銀塩水溶液の送液ポンプ
6 ハロゲンX塩水溶液の送液ポンプ
7 コロイド水溶液の送液ポンプ
8 ハロゲンX塩水溶液の送液ポンプ
9 コロイド水溶液の混合室添加口
10 銀塩水溶液の混合室添加口
11 ハロゲンX塩水溶液の混合室添加口
12 混合室
13 ハロゲンX塩水溶液の混合室添加口
14 混合室よりのハロゲン化銀粒子を含むコロイド水溶液の出口
15 混合室の攪拌機
15 混合室第1室の攪拌機
15 混合室第2室の攪拌機
16 反応容器の攪拌機
17 反応容器
18 静的混合器(ステタティックミクサー)
19 滞留時間の小さい混合室
20 混合室19の攪拌機
21 流量制御器
22 駆動用モータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for producing a photographic silver halide emulsion, in particular, a mixing chamber is provided outside a reaction vessel, and different kinds of halogens are added until the fine particles formed here are added to the reaction vessel. It is a method and a device about conversion.
[0002]
[Prior art]
Patents related to the present invention include the following two tendencies. Since the present invention is a compromise between the two, both patents are introduced for reference.
(A) A method and an apparatus for taking a mixing chamber out of a reaction vessel and forming particles.
(B) A method and apparatus having a mixing chamber in a reaction vessel.
[0003]
(A) The method and apparatus for taking the mixing chamber out of the reaction vessel and forming particles include:
{Circle around (1)} Separate streams of circulating colloidal solution circulated by a power driven pump or pumps are passed through separate mixing zones, where one mixes with a silver salt solution and the other with a halide salt solution. These streams are then mixed together in one reaction zone to form silver halide crystals by the reaction of silver and halide salts, and the circulating colloid solution increases in silver halide crystal content over time. Wherein the circulation is continued until a predetermined concentration of silver halide emulsion is obtained, wherein each flow of said colloid solution is further reacted through a nozzle of a Venturi pump through each one of said mixtures. And the flow of the silver salt solution and / or halide salt solution is affected by the venturi suction effect of each venturi pump according to the situation. The Venturi pumps which are fed into the lower or substantially effective mixture are subjected to conditions such as to dampen high frequency (1 Hz or more) pAg vibrations caused by the inherent characteristics of the pumps or pumps used for emulsion circulation. And a method and apparatus for producing a photosensitive silver halide emulsion (see JP-A-53-37414).
[0004]
{Circle around (2)} A silver nitrate solution and a halogen salt solution are injected by an injection pump into a system in which a gelatin solution is circulated from an aging tank by a pump, mixed and reacted. An apparatus for preparing a photographic emulsion, wherein the injection pump is controlled so that the pAg in the ripening tank is measured and the pAg is kept constant (see US Pat. No. 3,897,935).
[0005]
{Circle around (3)} The precipitation of the first silver halide grains is carried out in a stream, and the partial replacement of the first silver halide grains with the second soluble halide is carried out in a vessel by halide conversion to form a mixed crystal. Silver halide is produced and the initially formed mixed crystal silver halide grains are recycled into said stream, where additional precipitation of the first silver halide occurs on the mixed crystal surface to grow it; The grown crystals are fed from a recycle stream into a vessel, where additional substitution by halogen substitution is achieved. A method for producing a photographic emulsion having a controlled grain size, structure and size distribution (see JP-A-49-60526).
[0006]
{Circle around (4)} (a) adding silver nitrate to the first stream recycled from the precipitation vessel containing the aqueous gelatin solution, and returning the stream to the vessel again;
(B) adding a single alkali metal halide or mixed halide solution to the second stream recycled from the precipitation vessel, and returning the stream to the vessel.
(C) mixing both recycle streams in said vessel to precipitate silver halide grains therein.
[0007]
And (d) recirculating the contents of the precipitation vessel into the first and second streams and from there back to the precipitation vessel, thereby causing additional silver halide grains to precipitate on the initially precipitated grains. Producing silver halide grains of similar structure, size and size distribution,
Moreover, the recirculation streams are introduced into the settling vessel in the form of a high-speed downward jet located very close to each other and terminating below the liquid level of the vessel, thereby restricting the recirculation stream in a restricted area. For producing a photographic emulsion having a controlled silver halide grain size, structure and size distribution, characterized in that the silver halide grains are uniformly mixed with each other and that the silver halide grains are precipitated with a uniform pAg (Japanese Patent Application Laid-Open No. Sho 54). -158,220). Are disclosed.
[0008]
(B) The method and apparatus having a mixing chamber in a reaction vessel include: (5) a method for producing a uniform silver halide grain by reacting an aqueous silver salt solution and an aqueous halide salt solution in an aqueous deflocculant solution;
(A) A halide salt and a silver salt are separately mixed in a peptizer aqueous solution to form two kinds of salt-containing diluted solutions,
(B) A method for producing uniform silver halide grains, which comprises separately introducing the two kinds of salt-containing diluted solutions into the remaining aqueous solution of the deflocculant which has been stirred.
[0009]
{Circle around (5)} ′ The frame includes a frame, a mixing head, and mixing blades, and has first and second fluid inlets parallel to the long axis of the frame. A shut-off that rotates and is connected to the frame through the second fluid inlet to provide rotation, wherein the mixing vanes are radially disposed on the shaft in the mixing chamber and the rotation of the shaft causes A device for uniformly producing silver halide grains, characterized in that a fluid is introduced into the mixing chamber through the first and second inlets and that the mixed fluid is discharged radially from the fluid outlet (Japanese Patent Publication No. 49-49). -48964).
[0010]
{Circle around (6)} A component such as a silver nitrate solution is added to a main component such as a gelatin salt solution present in the preparation tank by a supply pump or the like, and the suspension is dispersed in the main component. In the process for producing a suspension, the main component present in the preparation vessel is lowered substantially in the outer annular zone and rapidly increased in the centrally located inner zone separated therefrom. A symmetrically rotating liquid flow and traversing the first additive component in the main component in the already rising liquid flow region and the second additional component in the further rising liquid flow region A process for producing a suspension, in particular a suspension containing silver halide, characterized in that it is added in the form of a stream.
[0011]
{Circle around (6)} ′ A partition pipe which separates an outer annular zone a coaxially arranged therein from a centrally located inner zone b in a rotationally symmetric body-shaped preparation tank 7, that is, separates a downward flow from an upward flow. 10 and an impeller 15, a propeller, etc., connected to a drive motor for generating a rotationally symmetrical rotational flow arranged in contact with or in the upper segment 12 of the partition tube. A feeding device 14 having a feeding means for feeding out is arranged, and in the region of the lower segment 11 of the partition tube 10 and in the region located thereon, the feeding device 14 is coaxial with the preparation kettle 7 and the partition tube 10. Are each arranged with a mixing nozzle valve 16, 17 which is located in a plane perpendicular to the vertical axis of the device and has substantially radially oriented ring slits 18, 19; And the ring The lit is characterized in that the lit is variably opened in its rotationally symmetrical cross section against the pressure of elastic stress by the pressure applied to the added component by the feed pumps 3, 4 or the like. (See JP-B-53-41114).
[0012]
{Circle around (7)} A water-soluble silver salt solution and a water-soluble halide solution are supplied into a reaction vessel filled with a colloid aqueous solution into a mixing chamber provided so as to be filled with the colloid aqueous solution, and reacted to form a halogen. In the method for producing silver halide particles, the two reaction solutions are separately supplied from the lower end of the mixing chamber formed of a polygonal cylindrical casing, diluted with the aqueous colloid solution filled in the mixing chamber, and placed in the mixing chamber. The two reaction liquids are rapidly stirred and mixed by the first stirring means provided to cause the reaction, and silver halide grains are generated. Immediately by the second stirring means, the silver halide grains are transferred to the reaction vessel above the mixing chamber. A method and an apparatus for producing silver halide grains, characterized in that they are discharged into a container and ripened (see Japanese Patent Publication No. 55-10545).
{Circle around (8)} A halogen salt aqueous solution and a silver salt aqueous solution are separately supplied from a lower end portion thereof to a mixer provided inside a reaction vessel filled with a colloid aqueous solution so as to be filled with the colloid aqueous solution. The two reaction solutions were each diluted with the aqueous colloid solution, and the two reaction solutions were rapidly stirred and mixed by a stirring blade provided in the mixer to react with each other, thereby producing silver halide grains. In the method for producing silver halide grains discharged and grown in the reaction vessel above and outside the mixer, the two reaction solutions diluted with the aqueous colloid solution are passed through the gap between the blades of the stirring blade. Passing through a gap formed inside the inner peripheral wall of the mixer and outside the tip of the agitating blade, the two reaction liquids are rapidly sheared and mixed in the gap to react. Halo A method and an apparatus for producing silver halide grains, characterized in that silver halide grains are produced (see Japanese Patent Publication No. 58-58288).
[0013]
{Circle around (9)} In the reaction vessel, there is provided a mixer comprising a stirring blade and a casing fixed therearound, and the casing has an opening at the lower end for introducing an aqueous solution of a halogen salt, an aqueous solution of silver salt and an aqueous solution of protective colloid into the mixer. The opening at the upper end has a sufficient height in the rotation axis direction of the stirring blade so that the liquid flow to be discharged is a vertical flow in the rotation axis direction of the stirring blade, and is formed from a plurality of conductive paths opened in the rotation axis direction. A silver halide photographic emulsion manufacturing apparatus, comprising: two or more openings at the lower end, wherein an aqueous solution of a halogen salt and an aqueous solution of a silver salt are introduced from separate openings. A photographic emulsion manufacturing apparatus (see JP-A-63-89837) and the like are disclosed.
[0014]
[Problems to be solved by the invention]
However, the method and apparatus for removing the mixing chambers (1), (2), (3) and (4) out of the reaction vessel to form particles are also described in (5), (6), (7) and (8). In the methods and apparatuses having a mixing chamber in the reaction vessel of (9) and (9), a mixed solution of various halogens is used as the halogen salt solution, or the partial replacement with the second soluble halide is performed in the reaction vessel. Or in any case,
(1) Fine particles of different shapes are mixed in the originally desired fine particles, and this is different from the dissolution time of the other fine particles. In some cases, this treatment is troublesome, or (2) the size and size distribution of the fine particles formed by the halogen composition are different, and this size control cannot be performed as expected.
[0015]
And so on.
[0016]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide a method and apparatus for producing a silver halide emulsion which forms grains having a grain size distribution as uniform as possible and forms grains as small as possible.
[0017]
[Means for Solving the Problems]
The above object of the present invention is
{Circle around (1)} A water-soluble silver salt solution and a plurality of water-soluble halogen salt solutions are added to a mixing chamber in which a colloid aqueous solution flows outside a reaction vessel for performing grain growth, and mixed and reacted to form a silver halide. In the method for producing an emulsion, the water-soluble silver salt solution is divided into two kinds of halogen salt solutions, and the water-soluble silver salt solution and the first halogen salt solution are first added to a mixing chamber, mixed, and reacted to form a first halide salt solution. After forming the fine particles of silver halide, a second halogen salt solution is added to and mixed with the colloid solution containing the fine particles, and the first halogen on the surface of the first silver halide particles is converted into the second halogen. After the conversion, the solution is transferred to a reaction vessel and ripened.
[0018]
{Circle around (2)} A water-soluble silver salt solution and a plurality of types of water-soluble halogen salt solutions are added to a mixing chamber in which an aqueous colloid solution is provided outside a reaction vessel for growing particles, and mixed and reacted to form a silver halide. In the apparatus for producing an emulsion, the mixing chamber is composed of two chambers, and the first chamber contains an addition port for a water-soluble silver salt solution, a first halide salt solution, an addition port for a colloidal aqueous solution, and a first silver halide. An outlet for the aqueous colloid solution, an inlet for the aqueous colloid solution containing the first silver halide crystal from the first chamber, an addition port for the second halide salt solution, and an outlet for the first silver halide crystal in the second chamber. An apparatus for producing a silver halide emulsion, comprising an outlet for an aqueous colloid solution containing crystals substituted for a second silver halide on the surface thereof, and a reaction vessel for receiving the solution.
[0019]
(3) The apparatus for producing a silver halide emulsion according to claim 2, wherein the second chamber has a stirrer for mixing the second chamber.
(4) The apparatus according to claim 2, wherein the second chamber is a static mixer.
(5) The apparatus for producing a silver halide emulsion according to claim 2, wherein the second chamber is a mixing chamber having a stirring blade rotating at a speed capable of completely mixing.
[0020]
Achieved by
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a water-soluble silver salt solution and a plurality of water-soluble halogen salt solutions are added to a mixing chamber in which a colloid aqueous solution flows outside a reaction vessel for performing grain growth, and a mixing reaction is performed to form a silver halide emulsion. According to the conventional technique, the production method is a method of adding a mixture of a plurality of types of halogen salt aqueous solutions to an addition port of a water-soluble halogen salt solution, or adding a different type of halogen salt solution to a colloid aqueous solution. However, in the present invention, a water-soluble silver salt solution is not mixed with a plurality of kinds of halogen salt aqueous solutions, but is divided into two chambers, and a first halogen salt aqueous solution is added to the first chamber, followed by mixing and reaction. One silver halide fine grain is formed, and then the halogen of the first silver halide grain is converted into the second halogen in the second chamber to form the first silver halide crystal. Is that of creating a second halide salt crystals on the surface. By doing so, first, particles having a small average size and / or particles having a narrow size distribution are formed, and then halogen ions to be converted are introduced into the liquid, and completely converted to the first halogen ions. By transferring the mixture to a reaction vessel and aging it, particles having an average size and a small size distribution can be obtained without mixing fine particles having different shapes.
[0022]
An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the aqueous solution of a colloidal aqueous solution formed in an aqueous colloidal aqueous solution preparation tank 3 is used for particle growth by using a water-soluble silver salt solution preparation tank 1 and the respective solutions from a plurality of types of water-soluble halogen salt solution preparation tanks 2 and 4. In a method for producing a silver halide emulsion by adding and mixing and reacting in a mixing chamber 12 provided outside of a reaction vessel 17 for performing silver halide emulsion, the halogen salt solution is mixed with two kinds of halogens X 1 and X 2. divided into salt solution and from the added port 9 colloidal solution, from addition port 10 of a water-soluble silver salt solution, was added and mixed, the reaction first halogen X 1 salt solution into the mixing chamber 12 from the respective addition port 11, to form fine particles of the first silver halide, a solution of the second halogen X 2 salts were added and mixed to the aqueous colloidal solution containing fine particles, the first halogen X 1 of the surface of the first silver halide grains After a second conversion to a halogen X 2, The solution was transferred to a reaction vessel 17, a method for producing a silver halide emulsion, characterized in that ripen.
[0023]
According to the present invention, the aqueous colloid solution is supplied from the aqueous colloid aqueous solution preparation tank 3 to the mixing chamber 12, but is supplied once to the reaction vessel as described in Japanese Patent Application No. 7-142388 previously proposed by the present inventor. A method of supplying the mixture to the mixing chamber through a circulation system can also be adopted.
If the silver salt aqueous solution and the halogen salt aqueous solution are once diluted with the circulating colloid aqueous solution and then supplied to the mixing chamber, the addition liquid can be sufficiently diluted, so that the silver halide crystal is designed. The range can be widened.
[0024]
Next, in terms of the apparatus, in FIG. 1, the mixing chamber 12 is composed of two chambers. In the first chamber, the addition ports 10 and 11 for the water-soluble silver salt solution and the first halide salt solution, and the addition of the aqueous colloid solution, respectively. There is a gap between the stirrer and the chamber wall as the outlet 9 and as an outlet, and the second chamber of the mixing chamber 12 has the inlet of the aqueous colloid solution containing the first silver halide crystal from the first chamber and the second halogen salt. It is characterized by having an addition port 13 for the solution and an outlet 14 for an aqueous colloid solution containing particles having the second silver halide attached to the surface of the first silver halide crystal. Incidentally, 21 is a flow controller, and 22 is a driving motor.
[0025]
The deformation of the mixing chamber of the apparatus of the present invention will be described.
2, has a stirrer 15 2 for mixing the second chamber of the mixing chamber 12, a mixing agitator 15 of the first chamber of the mixing chamber 12 has a coaxial. However, a different rotation speed may be used on another axis without being particular about the coaxial axis. Although the stirrer in the first chamber requires high-speed rotation, the stirrer in the second chamber only needs to be completely mixed.
[0026]
In FIG. 3, the second chamber is a static mixer, specifically, a so-called static mixer 18, and the liquid itself may be rotated and mixed by the liquid sending pressure.
Further, as shown in FIG. 4, a stirring chamber 20 which rotates at a speed at which a colloid aqueous solution containing the first silver halide fine particles exiting the first chamber can be completely mixed was provided in a separate mixing chamber 19. It may be something.
[0027]
【Example】
(Example-1)
In the method of the present invention, a 2% aqueous gelatin solution is added to the mixing chamber 12 shown in FIG. 1 by adding 500 cc / min of a 1% aqueous silver nitrate solution, 100 cc / min of a 1 molar aqueous silver nitrate solution and 100 cc / min of a 1 molar aqueous potassium chloride solution. After stirring at a speed of 500 rpm to form fine silver chloride particles, 1 mol of potassium oxalate was added to the next room to perform conversion. The particles were added to a reaction vessel at 70 ° C. for 10 minutes, and further subjected to physical ripening for 20 minutes to grow.
[0028]
(Comparative Example-1)
The method without conversion was tested for comparison with the method of the present invention. A 2% gelatin aqueous solution of 500 cc / min, a 1 molar silver nitrate aqueous solution of 100 cc / min and a potassium oxalate aqueous solution of 100 cc / min are added to the same mixing chamber as above, and the mixture is stirred with a stirring gas 15 at a speed of 500 rpm. Silver bromide was formed and added to the reaction vessel. In this method, potassium chloride was directly added to the reaction vessel at a flow rate of 100 cc / min for comparison with Example 1. In this case, the temperature of the reaction vessel was set to 70 ° C., and after adding for 10 minutes, physical ripening was further performed for 20 minutes to grow.
[0029]
As a result of sampling the silver halide in the reaction vessel obtained as described above and examining the average grain size, size distribution and crystal shape by an electron microscope, the average size was 0.56 μm in the example and 0 in the comparative example. .62 μm, the size distribution was ± 0.21 μm in the comparative example compared to the example ± 0.10, and the crystal formation was in the cubic form in the example, the amorphous form in the comparative example, and tabular grains were mixed. did. That is, in the example, the particle size was small, the size distribution was narrow, and the formation was uniform as compared with the comparative example.
[0030]
According to the method and apparatus for producing a silver halide emulsion of the present invention,
(A) Conventionally, when fine particles such as silver bromide are formed, if particles having a high growth rate such as tabular grains are formed, the particles may grow without dissolving in the reaction vessel. In such a case, fine particles of silver chloride having a uniform shape and a uniform particle size can be formed by forming silver chloride fine particles which are unlikely to generate tabular grains and converting the fine particles before adding them to the reaction vessel.
[0031]
(B) By making good use of the conversion method, it is possible to selectively use those in which it is important to narrow the average size distribution and those in which it is important that the average size is small, and use such preparations as to form fine particles in the mixing chamber. In the method, this scope could be greatly expanded.
[Brief description of the drawings]
FIG. 1 is a flow sheet diagram of an embodiment of a method and an apparatus for producing a silver halide emulsion of the present invention. FIG. 2 is a side view of a modification of an apparatus for producing a silver halide emulsion of the present invention. FIG. 4 is a side view of another modification of the apparatus for producing a silver halide emulsion of the present invention. FIG. 4 is a side view of another modification of the apparatus for producing a silver halide emulsion of the present invention.
REFERENCE SIGNS LIST 1 Water-soluble silver salt solution preparation tank 2 Water-soluble halogen X 1 Salt solution preparation tank 3 Colloid aqueous solution preparation tank 4 Water-soluble halogen X 2 salt solution preparation tank 5 Silver salt aqueous solution sending pump 6 Halogen X 1 salt Aqueous solution pump 7 Colloid aqueous solution pump 8 Halogen X 2 salt aqueous solution pump 9 Colloid aqueous solution mixing chamber addition port 10 Silver salt aqueous solution mixing chamber addition port 11 Halogen X 1 salt aqueous solution mixing chamber addition port 12 Mixing room 13 Halogen X 2 Salt solution mixing room addition port 14 Colloid aqueous solution containing silver halide particles from mixing room 15 Mixing room stirrer 15 1 Mixing room first room stirrer 2 Mixing room second room Stirrer for reaction vessel 16 Stirrer for reaction vessel 17 Reaction vessel 18 Static mixer (static mixer)
19 Mixing chamber 20 with short residence time Stirrer 21 in mixing chamber 19 Flow controller 22 Driving motor

Claims (5)

水溶性銀塩溶液と複数種の水溶性ハロゲン塩溶液とを、粒子成長を行う反応容器の系外に設けたコロイド水溶液の流れる混合室内に添加し、混合反応させてハロゲン化銀乳剤を製造する方法において、前記水溶性ハロゲン塩溶液を2種のハロゲン塩溶液に分け、前記水溶性銀塩溶液と第1のハロゲン塩溶液とを先ず混合室に添加・混合・反応させ第1のハロゲン化銀の微粒子を形成させた後、該微粒子を含むコロイド溶液に第2のハロゲン塩溶液を添加・混合し第1のハロゲン化銀粒子の表面の第1のハロゲンを第2のハロゲンにコンバージョンさせた後、該溶液を反応容器に移し熟成させることを特徴とするハロゲン化銀乳剤の製造方法。A water-soluble silver salt solution and a plurality of water-soluble halogen salt solutions are added to a mixing chamber in which a colloid aqueous solution is provided outside a reaction vessel for performing grain growth, and mixed and reacted to produce a silver halide emulsion. In the method, the water-soluble silver salt solution is divided into two types of halogen salt solutions, and the water-soluble silver salt solution and the first halide salt solution are first added to a mixing chamber, mixed and reacted to form a first silver halide solution. After forming the fine particles of the above, the second halogen salt solution is added to and mixed with the colloid solution containing the fine particles to convert the first halogen on the surface of the first silver halide particles into the second halogen. Transferring the solution to a reaction vessel and ripening the solution. 水溶性銀塩溶液と複数種の水溶性ハロゲン塩溶液とを、粒子成長を行う反応容器の系外に設けたコロイド水溶液の流れる混合室内に添加し、混合反応させてハロゲン化銀乳剤を製造する装置において、前記混合室が2室より成り、最初の室に水溶性銀塩溶液と第1のハロゲン塩溶液の添加とコロイド水溶液の添加口及び第1のハロゲン化銀を含むコロイド水溶液の出口を有し、第2の室に最初の室よりの第1のハロゲン化銀を含むコロイド水溶液の入口と第2のハロゲン塩溶液の添加口及び第1のハロゲン化銀結晶の表面に第2のハロゲン化銀を置換した結晶を含むコロイド水溶液の出口を有し、該溶液を受ける反応容器を有することを特徴とするハロゲン化銀乳剤の製造装置。A water-soluble silver salt solution and a plurality of water-soluble halogen salt solutions are added to a mixing chamber in which a colloid aqueous solution is provided outside a reaction vessel for performing grain growth, and mixed and reacted to produce a silver halide emulsion. In the apparatus, the mixing chamber is composed of two chambers, and the first chamber is provided with a water-soluble silver salt solution and a first halide salt solution, a colloid aqueous solution addition port and a first silver halide-containing colloid aqueous solution outlet. The second chamber has an inlet for an aqueous colloid solution containing the first silver halide from the first chamber, an addition port for the second halide salt solution, and a second halogen in the surface of the first silver halide crystal. An apparatus for producing a silver halide emulsion, comprising an outlet for an aqueous colloid solution containing crystals in which silver halide has been replaced, and a reaction vessel for receiving the solution. 前記第2の室が、第2の室混合用攪拌器を有することを特徴とする請求項2記載のハロゲン化銀乳剤の製造装置。3. The apparatus according to claim 2, wherein the second chamber has a second chamber mixing stirrer. 前記第2の室が、静的混合器であることを特徴とする請求項2記載のハロゲン化銀乳剤の製造装置。3. The apparatus according to claim 2, wherein the second chamber is a static mixer. 前記第2の室が、反応容器内に存在する完全混合可能な速度で回転する攪拌翼を有する混合室であることを特徴とする請求項2記載のハロゲン化銀乳剤の製造装置。3. The silver halide emulsion producing apparatus according to claim 2, wherein the second chamber is a mixing chamber having a stirring blade which is present in the reaction vessel and rotates at a speed allowing complete mixing.
JP20672795A 1995-07-21 1995-07-21 Method and apparatus for producing silver halide emulsion Expired - Fee Related JP3575642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20672795A JP3575642B2 (en) 1995-07-21 1995-07-21 Method and apparatus for producing silver halide emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20672795A JP3575642B2 (en) 1995-07-21 1995-07-21 Method and apparatus for producing silver halide emulsion

Publications (2)

Publication Number Publication Date
JPH0934044A JPH0934044A (en) 1997-02-07
JP3575642B2 true JP3575642B2 (en) 2004-10-13

Family

ID=16528112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20672795A Expired - Fee Related JP3575642B2 (en) 1995-07-21 1995-07-21 Method and apparatus for producing silver halide emulsion

Country Status (1)

Country Link
JP (1) JP3575642B2 (en)

Also Published As

Publication number Publication date
JPH0934044A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
US4289733A (en) Apparatus for making silver halide grains
US6422736B1 (en) Scalable impeller apparatus for preparing silver halide grains
JP2003103152A (en) Method and device for mixing liquid or solution
JP2001290231A (en) Method and apparatus for manufacturing silver halide emulsion
US5690428A (en) Mixing device comprising concentric tubes for supplying solutions onto and mixing on a rotor
JPH052231A (en) Method and device for producing sparingly water-soluble salt crystal grain
JPH02167817A (en) Apparatus for forming silver halide particle
US6513965B2 (en) Apparatus for manufacturing photographic emulsions
JP3575642B2 (en) Method and apparatus for producing silver halide emulsion
US6050720A (en) Stirring apparatus with coaxial stirring impellers
JP2700676B2 (en) Method for producing silver halide grains
JPS5858289B2 (en) Method and apparatus for producing silver halide grains
EP0729062B1 (en) Sonic micro reaction zones in silver halide emulsion precipitation process
JP2001286745A (en) Method for mixing liquid or solution and device therefor
JPH0934043A (en) Production of silver halide emulsion and apparatus therefor
JP2000292878A (en) Formation of silver halide grain
JP2624589B2 (en) Equipment for manufacturing silver halide photographic emulsions
JPH09152672A (en) Formation of particle of photographic sensitive material and device
JPH09146197A (en) Production of photographing emulsion and apparatus therefor
JP2003107608A (en) Method for producing silver halide emulsion and equipment therefor
JPH0254932B2 (en)
JPH02172815A (en) Device for forming silver halide grain
JPH09179225A (en) Preparation of photographing emulsion and device used for the same
JP4248297B2 (en) Method for producing a silver halide photographic emulsion
JPH01171636A (en) Reactor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees