JP2003103152A - Method and device for mixing liquid or solution - Google Patents

Method and device for mixing liquid or solution

Info

Publication number
JP2003103152A
JP2003103152A JP2001299398A JP2001299398A JP2003103152A JP 2003103152 A JP2003103152 A JP 2003103152A JP 2001299398 A JP2001299398 A JP 2001299398A JP 2001299398 A JP2001299398 A JP 2001299398A JP 2003103152 A JP2003103152 A JP 2003103152A
Authority
JP
Japan
Prior art keywords
liquid
solution
mixing
mixed
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001299398A
Other languages
Japanese (ja)
Inventor
Koichi Saito
浩一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001299398A priority Critical patent/JP2003103152A/en
Publication of JP2003103152A publication Critical patent/JP2003103152A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To steadily stably and continuously generate superfine particles having a finer and uniform particle size in a manufacture of photographic emulsion particles such as silver halide particles. SOLUTION: A plurality of liquids or solutions to be mixed are ejected from nozzle ports 46A of respective supply pipes 46 into a rotating hollow body 44 which rotates at high speed together with fin vanes 42 attached to the inside surface, are stirred and mixed by the fin vanes 42 and the stirred and mixed liquid mixture is discharged from the inside of the rotating hollow body 44 via a discharge pipe 48. At this time, ultrasonic vibration energy is imparted to the liquid or solution which is ejected from the supply pipe 46 into the rotating hollow body 44 and, at the same time, the ultrasonic vibration energy is imparted to a liquid mixture flowing through the discharge pipe 48.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は液体又は溶液の混合
方法及び装置に係り、特に、ハロゲン化銀粒子からなる
感光性微粒子を製造するための混合方法及び装置であっ
て、さらに詳しくは、均一性が高く微細なハロゲン化銀
粒子を安定かつ連続的に製造するための液体又は溶液の
混合方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid or solution mixing method and apparatus, and more particularly to a mixing method and apparatus for producing photosensitive fine particles composed of silver halide grains, and more specifically, to a uniform method. The present invention relates to a liquid or solution mixing method and apparatus for stably and continuously producing fine silver halide grains having high properties.

【0002】[0002]

【従来の技術】ハロゲン化銀粒子は、2つの主過程、即
ち核形成と成長からなっている。ジェームス(T.H.
James)ザ・セオリー・オブ・ザー・フォトグラフ
ィック・プロセス第4版(マクミラン社、1977年発
行)には、「核形成は全く新しい結晶が生成し、結晶の
数の急激な増加が起こる過程である。成長は、既に存在
している結晶に新たな層が付加される過程である。また
上記の核形成と成長の他に写真乳剤粒子の粒子形成のあ
る条件下では、更にもう2つの過程、即ちオストワルド
熟成と再結晶が起こる。オストワルド熟成は、比較的高
い温度とハロゲン化銀溶剤下で粒子サイズ分布が広い場
合に起こりやすい。再結晶化は、結晶組成が変化する過
程である」と記載されている。つまり、ハロゲン化銀粒
子の形成においては、その初期に核が形成され、その後
の成長においてはもっぱら既に存在する核でのみ成長が
起こる為、成長過程中の粒子の数は増加することがな
い。
BACKGROUND OF THE INVENTION Silver halide grains consist of two main processes: nucleation and growth. James (TH
James) The Theory of the Photographic Process 4th Edition (Macmillan, published in 1977) states: "Nucleation is a process in which an entirely new crystal forms and a sharp increase in the number of crystals occurs. Growth is the process in which a new layer is added to an already existing crystal, and under some conditions of grain formation of photographic emulsion grains in addition to the above nucleation and growth, there are two more processes. That is, Ostwald ripening and recrystallization occur. Ostwald ripening tends to occur when the grain size distribution is wide under relatively high temperature and silver halide solvent. Recrystallization is a process in which the crystal composition changes. " Have been described. That is, in the formation of silver halide grains, nuclei are formed in the initial stage, and in the subsequent growth, the growth occurs exclusively in the already existing nuclei, so that the number of grains during the growth process does not increase.

【0003】一般的にハロゲン化銀粒子は反応容器中の
コロイド水溶液において、銀塩水溶液とハライド水溶液
を反応させることにより製造される。反応容器中にゼラ
チンのような保護コロイド及びハライド塩水溶液を添加
し、強く攪拌しながらこれに銀塩水溶液をある時間かけ
て添加するシングルジェット法や、反応容器中にゼラチ
ン水溶液を添加して、銀塩水溶液とハライド水溶液をそ
れぞれある時間同時に添加するダブルジェット法が知ら
れている。両者を比較すると、ダブルジェット法の方が
粒子径分布の狭いハロゲン化銀粒子が得られ、さらに粒
子の成長に伴って、そのハライド組成を自由に変えるこ
とができる。
Generally, silver halide grains are produced by reacting an aqueous silver salt solution with an aqueous halide solution in a colloidal aqueous solution in a reaction vessel. A protective colloid such as gelatin and an aqueous halide salt solution are added to a reaction vessel, and a single jet method in which a silver salt aqueous solution is added over a period of time with vigorous stirring, or an aqueous gelatin solution is added to a reaction vessel, A double jet method is known in which an aqueous silver salt solution and an aqueous halide solution are simultaneously added for a certain period of time. Comparing the two, a silver halide grain having a narrower grain size distribution can be obtained by the double jet method, and the halide composition can be freely changed as the grain grows.

【0004】またハロゲン化銀粒子の核形成或いは成長
は、反応溶液中の銀イオン(ハライド)濃度、ハロゲン
化銀溶剤の濃度、過飽和度、温度などにより大きく変化
することが知られている。特に反応容器に添加される銀
塩水溶液とハライド水溶液によって作り出される銀イオ
ン濃度或いはハライドイオン濃度の不均一は、各々の不
均一分布により反応容器内に過飽和度及び溶解度の分布
を生ぜしめ、その為に核形成速度或いは粒子成長速度が
容器内で分布を生じ、結果として生じたハロゲン化銀結
晶に不均一が生じる。
It is known that the nucleation or growth of silver halide grains greatly changes depending on the silver ion (halide) concentration in the reaction solution, the concentration of silver halide solvent, the degree of supersaturation, the temperature and the like. In particular, the non-uniformity of silver ion concentration or halide ion concentration created by the aqueous silver salt solution and the aqueous halide solution added to the reaction vessel causes the distribution of supersaturation and solubility in the reaction vessel due to each non-uniform distribution. The nucleation rate or grain growth rate is distributed in the container, resulting in nonuniformity of the resulting silver halide crystals.

【0005】このハロゲン化銀結晶の不均一を減少させ
る為には、ハロゲン化銀粒子形成中の反応容器中の銀イ
オン濃度或いはハライドイオン濃度を均一にすべく、コ
ロイド溶液に供給する銀塩水溶液とハライド塩水溶液を
迅速に均一混合して反応させることが必要である。この
均一混合を実現する為にこれまで多くの研究がなされて
きた。
In order to reduce the inhomogeneity of the silver halide crystals, an aqueous silver salt solution supplied to the colloidal solution in order to make the silver ion concentration or the halide ion concentration in the reaction vessel during the formation of silver halide grains uniform. It is necessary to rapidly and uniformly mix and the halide salt aqueous solution. Many studies have been conducted to realize this uniform mixing.

【0006】例えば、米国特許第3415650号、英
国特許第1323464号、米国特許第3692283
号、特公昭55−10545号公報、特開昭57−92
528号公報には、上記の問題を解決する為の混合器の
工夫が開示されている。これらに開示されている混合器
は、反応容器中に設けられた開放部を有するケーシング
と、そのケーシング内部に回転体をもった構造を有し、
銀塩水溶液とハライド水溶液をその混合器内に添加し、
両者を反応容器内のコロイド水溶液で希釈しながら、迅
速に混合するものである。
For example, US Pat. No. 3,415,650, British Patent No. 1323464, and US Pat. No. 3,692,283.
No. 5, JP-B-55-10545, JP-A-57-92.
Japanese Patent No. 528 discloses a device of a mixer for solving the above problem. The mixers disclosed in these have a casing having an opening provided in the reaction vessel and a structure having a rotating body inside the casing,
Add silver salt solution and halide solution into the mixer,
Both are rapidly mixed while being diluted with the colloidal aqueous solution in the reaction vessel.

【0007】しかし、これらの装置によれば、確かに反
応容器中における銀イオンの濃度及びハライドイオンの
濃度の局所的な不均一は解消できるが、混合器内には依
然として濃度の不均一は存在する。特に、銀塩水溶液及
びハライド水溶液を供給するノズルの近傍及び攪拌羽根
部分にはかなり大きな濃度分布が存在する。保護コロイ
ドと共に混合器に供給されたハロゲン化銀粒子は、この
様な不均一部分を通過し、さらに注目すべきことは、ハ
ロゲン化銀粒子はこれらの不均一な部分において急速に
成長することである。これはハロゲン化銀粒子の成長が
濃度不均一部分で起こることを意味し、この結果ハロゲ
ン化銀粒子を均一に成長させることはできない。
However, although these devices can eliminate the local nonuniformity of the silver ion concentration and the halide ion concentration in the reaction vessel, the nonuniformity of the concentration still exists in the mixer. To do. Particularly, there is a considerably large concentration distribution in the vicinity of the nozzle for supplying the silver salt aqueous solution and the halide aqueous solution and in the stirring blade portion. The silver halide grains fed into the mixer with the protective colloid pass through these non-uniform areas and, more notably, the silver halide grains grow rapidly in these non-uniform areas. is there. This means that the growth of silver halide grains occurs in the non-uniform concentration portion, and as a result, silver halide grains cannot be grown uniformly.

【0008】さらにより完全な混合によって、この銀イ
オン、ハライドイオンの濃度の不均一分布を解消すべ
く、反応容器と混合器をそれぞれ独立させた製造法が、
特開昭59−37414号公報、特公昭48−2104
5号公報、米国特許第3897935号に開示されてい
る。しかし、これらも反応容器内のコロイド水溶液か混
合器に循環されており、ハロゲン化銀粒子は同様に不均
一部分を通過して粒子成長することになり、前述したと
同様に、ハロゲン化銀粒子を均一に成長させることはで
きない。
In order to eliminate the non-uniform distribution of the concentration of silver ions and halide ions by more thorough mixing, a production method in which the reaction vessel and the mixer are independent of each other is
JP-A-59-37414, JP-B-48-2104
5, and U.S. Pat. No. 3,897,935. However, these are also circulated in the colloidal aqueous solution in the reaction vessel or in the mixer, and the silver halide grains similarly pass through the non-uniform portion to grow the grains. Cannot be grown uniformly.

【0009】また、反応容器中に添加注入された銀塩水
溶液及びハロゲン化物水溶液が迅速かつ均一に混合され
ないと、反応容器内における銀イオンまたはハロゲンイ
オン濃度に分布が生じ過飽和および溶解度が変化するこ
とにより粒子核生成速度が変化し不均一となる。このこ
とから、特開平8−332364号公報には溶液を混合
するための混合装置が開示されている。この混合装置
は、内部空間を有する本体部と、本体部の内部空間に連
結された複数の入口を有し、混合反応される溶液が該入
口を通して添加注入される。そして、添加注入された溶
液を混合するための混合手段が本体部に設けられている
と共に、本体部の内部空間をその外部に連結する出口を
有し、混合された溶液が該出口を通して混合装置から排
出される。また、前記複数の入口が、混合される溶液を
混合手段に方向付ける複数の同心オリフィスの各々に連
結されるように構成されている。
If the aqueous solution of silver salt and the aqueous solution of halide added and injected into the reaction vessel are not mixed rapidly and uniformly, distribution of silver ion or halogen ion concentration occurs in the reaction vessel, and supersaturation and solubility change. As a result, the particle nucleation rate changes and becomes non-uniform. From this, Japanese Patent Laid-Open No. 8-332364 discloses a mixing device for mixing solutions. This mixing device has a main body having an internal space and a plurality of inlets connected to the internal space of the main body, and a solution to be mixed and reacted is added and injected through the inlets. The mixing means for mixing the added and injected solution is provided in the main body portion, and has an outlet for connecting the internal space of the main body portion to the outside thereof. Emitted from. Also, the plurality of inlets are configured to be connected to each of a plurality of concentric orifices that direct the mixed solution to the mixing means.

【0010】しかし、本体部に設けられた混合手段は、
本体部を貫通する駆動軸により回転する単なる回転空洞
体であり、回転方向に層流的な流動パターンを形成する
のみであるので、添加注入された溶液は、混合領域で充
分均一に混合されずショートパスして出口より排出され
てしまうという欠点がある。この結果、均一な微粒子を
生成することが困難であった。また、この構造の混合装
置の場合には、本体部内の液体が外部に漏出しないよう
に本体部と駆動軸との間の軸シールを行うことが必要で
ある。しかし、より均一な混合を達成するためには、回
転空洞体を高速回転させる必要があり、この高速回転に
よってシール部材が激しく磨耗しシールが不完全となる
ので、この構造の混合装置での高速回転混合は実用的に
は不可能である。
However, the mixing means provided in the main body is
It is a mere rotating hollow body that is rotated by a drive shaft that penetrates the main body, and only forms a laminar flow pattern in the rotation direction, so the added and injected solution is not sufficiently uniformly mixed in the mixing region. There is a shortcoming that it will be short-passed and discharged from the exit. As a result, it was difficult to generate uniform fine particles. Further, in the case of the mixing device having this structure, it is necessary to perform shaft sealing between the main body and the drive shaft so that the liquid in the main body does not leak outside. However, in order to achieve more uniform mixing, it is necessary to rotate the rotating hollow body at a high speed, and this high speed rotation causes the seal member to be severely worn and the seal to be incomplete. Rotational mixing is practically impossible.

【0011】この対策として、高速回転に必要な潤滑性
を付与するために液封シールをすることが考えられる
が、液封されたシール液が混合器内に不純物として漏出
することが避けられず、形成されるハロゲン化銀粒子の
品質低下を招くと共に、安定した均一な微粒子を得るこ
とが困難である。
As a countermeasure against this, it is conceivable to use a liquid-sealing in order to provide the lubricity required for high speed rotation, but it is unavoidable that the liquid-sealed sealing liquid leaks into the mixer as an impurity. The quality of the silver halide grains formed is deteriorated, and it is difficult to obtain stable and uniform fine grains.

【0012】この高速混合回転の軸シールを解消する手
段として、特開平10−43570号公報では、図3に
示すように、混合対象の液体を流入させる所定数の供給
口1、2、3と攪拌処理を終えた液体を排出する排出口
4とを備えた攪拌槽5と、該攪拌槽5内の相対向する2
箇所に離間して配置されてお互いに逆向きに回転駆動さ
れることで該攪拌槽内の液体の攪拌状態を制御する一対
の攪拌羽根6、6と、各攪拌羽根6、6と近接した攪拌
槽壁外側に配列されて貫通軸を持たない磁気カップリン
グと各攪拌羽根とで形成する外部磁石7、7を攪拌槽外
に配備して、外部磁石7、7を回転駆動させて各攪拌羽
根6、6を回転させる駆動手段8、8とを備えた攪拌装
置が示されている。この攪拌装置では、貫通軸をもたい
ないので、攪拌槽5内の液体が外部に漏出することなく
攪拌を行うことができるが、攪拌羽根6、6がシールプ
レート9、9に接触しているため、攪拌羽根6、6が高
速回転すると摩擦熱の発生で生成物の性能変化が生じた
り、攪拌羽根6、6及びシールプレート9、9の摩耗が
おこり削れ屑が不純物として混入し品質上好ましい状態
が発生するという欠点がある。また、供給口1、2、3
より槽5本体の側壁面に添加注入された液体の一部は、
攪拌羽根6、6の回転による遠心力で槽5本体の壁面に
おいやられ槽壁面に沿って充分に混合されない状態で、
未反応状態の液が排出口4から排出され、均一な極微粒
子を生成することが困難であった。
As means for eliminating the shaft seal of the high speed mixing rotation, in Japanese Patent Laid-Open No. 10-43570, as shown in FIG. 3, a predetermined number of supply ports 1, 2 and 3 through which liquids to be mixed are introduced. A stirring tank 5 provided with a discharge port 4 for discharging the liquid after the stirring process, and 2 facing each other in the stirring tank 5.
A pair of stirring blades 6 and 6 which are arranged separately from each other and are driven to rotate in opposite directions to each other to control the stirring state of the liquid in the stirring tank, and stirring in proximity to the stirring blades 6 and 6. External magnets 7, 7 formed by magnetic couplings having no through shaft arranged outside the tank wall and each stirring blade are arranged outside the stirring tank, and the external magnets 7, 7 are rotationally driven to each stirring blade. A stirrer with drive means 8, 8 for rotating 6, 6 is shown. Since this stirring device does not have a through shaft, stirring can be performed without leaking the liquid in the stirring tank 5 to the outside, but the stirring blades 6, 6 are in contact with the seal plates 9, 9. Therefore, when the stirring blades 6 and 6 rotate at a high speed, frictional heat is generated to change the performance of the product, and the stirring blades 6 and 6 and the seal plates 9 and 9 are worn, and scraps are mixed as impurities, which is preferable in terms of quality. The drawback is that a condition occurs. Also, the supply ports 1, 2, 3
A part of the liquid added and injected to the side wall surface of the main body of the tank 5 is
In a state where the centrifugal force generated by the rotation of the stirring blades 6 causes the wall surface of the tank 5 body to be sufficiently mixed with the wall surface of the tank 5,
The unreacted liquid was discharged from the discharge port 4, and it was difficult to generate uniform ultrafine particles.

【0013】そこで、本出願人は、高速攪拌により短時
間な混合を可能とし、その混合の際に槽内の液体の流れ
が定常化して混合が不十分なままで排出されることを防
止でき、更に高速攪拌時の磨耗による削れ屑が不純物と
して混合液に混入したり、磨耗による発熱のために品質
を損なうことを防止でき、更に混合液が槽外に漏出する
のを防止できる混合装置として、特願2000−103
428を出願した。
Therefore, the applicant of the present invention is capable of performing short-time mixing by high-speed stirring, and at the time of the mixing, it is possible to prevent the liquid flow in the tank from becoming steady and being discharged while the mixing is insufficient. As a mixing device that can prevent shavings due to wear during high-speed stirring from entering the mixed solution as impurities, or impairing the quality due to heat generation due to wear, and preventing the mixed solution from leaking out of the tank. , Japanese Patent Application 2000-103
Filed 428.

【0014】特願2000−103428の混合装置
は、図4に示すように、高速回転する内槽16と共に回
転する攪拌羽根28が形成する内槽16内の回転領域
に、複数のノズル管30、30から液体又は溶液を吐出
して攪拌混合するようにして、短時間での攪拌混合と混
合液の高度な乱流状態が形成されるようにした。また、
混合液は攪拌羽根28によって形成される内槽16内か
ら隙間24への流れにのって、内槽16内から直ちに隙
間24に流出され、隙間24を流れてから外槽22の底
面に形成された排出口31から排出管29に排出される
ように構成した。
As shown in FIG. 4, the mixing device of Japanese Patent Application No. 2000-103428 has a plurality of nozzle tubes 30 in a rotating region in the inner tank 16 formed by a stirring blade 28 rotating together with the inner tank 16 rotating at a high speed. The liquid or solution was discharged from 30 to stir and mix, so that the stir and mixing in a short time and a highly turbulent flow state of the mixed liquid were formed. Also,
The mixed liquid flows from the inside of the inner tank 16 to the gap 24, which is formed by the stirring blades 28, and immediately flows from the inside of the inner tank 16 into the gap 24. After flowing through the gap 24, it is formed on the bottom surface of the outer tank 22. It is configured to be discharged to the discharge pipe 29 from the discharged outlet 31.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、ノズル
管30から内槽16内に供給される液体又は溶液の流量
が少なくなり、ノズル管30出口の吐出流速が約50c
m/分以下になると、吐出される液体又は溶液が反応物
を形成する場合には、ノズル管30出口で反応生成され
た反応物がノズル管30の出口近傍に析出し、これが凝
集粒子となり易い。これにより、生成された粒子中に粒
子サイズの大きい粒子が混在し、均一な超微粒子を生成
することが困難な場合がある。
However, the flow rate of the liquid or solution supplied from the nozzle tube 30 into the inner tank 16 is reduced, and the discharge flow rate at the outlet of the nozzle tube 30 is about 50c.
If the discharged liquid or solution forms a reaction product at m / min or less, the reaction product produced by the reaction at the outlet of the nozzle tube 30 precipitates in the vicinity of the outlet of the nozzle tube 30, which easily becomes agglomerated particles. . As a result, particles having a large particle size are mixed in the generated particles, and it may be difficult to generate uniform ultrafine particles.

【0016】また、攪拌回転による混合のみでは、混合
によって形成される流体のミクロ混合渦の最小の大きさ
にも限界がある。従って、攪拌回転数を上げても攪拌エ
ネルギーが熱となって発散し、反応系の温度が上がって
しまうので、ナノメータ(nm)オーダーの粒径を有す
る超微粒子を、定常的に安定且つ連続的に生成させるこ
とが困難であった。
In addition, there is a limit to the minimum size of the micro-mixing vortex of the fluid formed by mixing only by mixing by stirring and rotating. Therefore, even if the stirring rotation speed is increased, the stirring energy becomes heat and is dissipated, and the temperature of the reaction system rises, so that ultrafine particles having a particle size on the order of nanometer (nm) are constantly and stably and continuously. Was difficult to generate.

【0017】かかる事情に鑑みてなされたもので、従来
の欠点を解消し、均一且つ瞬間的なミクロ混合を行うこ
とができるので、特に、ハロゲン化銀粒子等の写真乳剤
粒子の製造に使用すれば、より細かく粒径の揃った超微
粒子を定常的に安定且つ連続的に生成させることのでき
る混合方法及び混合装置を提供することを目的とする。
In view of the above circumstances, the conventional drawbacks can be solved and uniform and instantaneous micromixing can be carried out. Therefore, it can be particularly used for the production of photographic emulsion grains such as silver halide grains. Thus, it is an object of the present invention to provide a mixing method and a mixing device capable of constantly and stably producing fine ultrafine particles having a uniform particle size.

【0018】[0018]

【課題を解決するための手段】本発明は前記目的を達成
するために、内側面に取り付けられた攪拌羽根と共に高
速回転する回転空洞体内に、混合される複数の液体又は
溶液をそれぞれの供給管のノズル口から吐出して前記攪
拌羽根により攪拌混合すると共に、攪拌混合された混合
液を前記回転空洞体内から排出管を介して排出する液体
又は溶液の混合方法において、前記供給管から前記回転
空洞体内に吐出される液体又は溶液、及び前記排出管を
流れる混合液に超音波振動エネルギーを付与することを
特徴とする。
In order to achieve the above object, the present invention provides a plurality of liquids or solutions to be mixed in a rotating cavity that rotates at a high speed together with a stirring blade attached to the inner surface of each supply pipe. In the method of mixing a liquid or a solution, which is discharged from the nozzle port of and is stirred and mixed by the stirring blade, and the stirred mixed liquid is discharged from the rotary cavity body through a discharge pipe, Ultrasonic vibration energy is applied to the liquid or solution discharged into the body and the mixed liquid flowing through the discharge pipe.

【0019】また、本発明は前記目的を達成するため
に、複数の液体又は溶液を混合する混合装置において、
内側に設けられた攪拌羽根と共に高速回転して該攪拌羽
根により前記複数の液体又は溶液を攪拌混合する回転空
洞体と、前記複数の液体又は溶液をそれぞれ前記回転空
洞体内に吐出するノズル口を備えた複数の供給管と、前
記回転空洞体内で攪拌混合された混合液を前記回転空洞
体内から排出する排出管と、前記供給管から前記回転空
洞体内に吐出される液体又は溶液、及び前記排出管を流
れる混合液に超音波振動エネルギーを付与する超音波振
動発生手段と、を備えたことを特徴とする。
In order to achieve the above object, the present invention provides a mixing device for mixing a plurality of liquids or solutions,
A rotating cavity body that rotates at high speed together with an agitating blade provided inside and agitates and mixes the plurality of liquids or solutions with the agitating blade, and a nozzle port that discharges the plurality of liquids or solutions into the rotating cavity body, respectively. A plurality of supply pipes, a discharge pipe for discharging the mixed liquid stirred and mixed in the rotary cavity body from the rotary cavity body, a liquid or a solution discharged from the supply pipe into the rotary cavity body, and the discharge pipe Ultrasonic vibration generating means for applying ultrasonic vibration energy to the mixed liquid flowing through.

【0020】本発明によれば、それぞれの供給管のノズ
ル口から回転空洞体内に吐出された液体又は溶液は、回
転空洞体で攪拌羽根により攪拌混合される。このとき、
供給管から回転空洞体内に吐出される液体又は溶液に超
音波振動エネルギーが付与される。これにより、回転空
洞体内に吐出された液体又は溶液は、攪拌羽根による攪
拌混合と超音波振動エネルギーによるミクロ混合とによ
り、均一且つ瞬間的な混合が行なわれる。また、超音波
振動エネルギーは、供給管のノズル口から吐出される液
体又は溶液の分散性を向上させるので、吐出流量が少な
くなって供給口での供給流速が約50cm/分以下にな
っても混合によって形成される反応物がノズル口近傍に
析出して凝集粒子となることがない。そして、回転空洞
体内で混合された混合液は排出管から排出されるが、こ
の排出管で排出される途中でも混合液に超音波振動エネ
ルギーが付与されるので、ミクロ混合を行いながら混合
液を排出させることができる。これにより、それぞれの
供給管から回転空洞体内に吐出された液体又は溶液の混
合により反応物が生じる場合には、反応系の温度が上が
るほど攪拌羽根を高速回転しなくても流体のミクロ混合
渦の大きさを小さくできるので、混合性能を良くするこ
とができる。また、それぞれの供給管から液体又は溶液
を回転空洞体内に吐出したときから、回転空洞体内での
混合して得られた混合液を排出管から排出するまでに、
濃度分布のない均一な混合液を維持することができるの
で、特に、写真乳剤粒子として、より細かく粒径の揃っ
た超微粒子を定常的に安定且つ連続的に生成させること
ができる。
According to the present invention, the liquid or solution discharged from the nozzle ports of the respective supply pipes into the rotary cavity is agitated and mixed by the agitating blades in the rotary cavity. At this time,
Ultrasonic vibration energy is applied to the liquid or solution discharged from the supply pipe into the rotary cavity. As a result, the liquid or solution discharged into the rotating cavity is uniformly and instantaneously mixed by the stirring and mixing by the stirring blade and the micro mixing by the ultrasonic vibration energy. Further, since the ultrasonic vibration energy improves the dispersibility of the liquid or solution discharged from the nozzle port of the supply pipe, even if the discharge flow rate is reduced and the supply flow velocity at the supply port is about 50 cm / min or less. The reaction product formed by mixing does not deposit in the vicinity of the nozzle opening to form agglomerated particles. Then, the mixed liquid mixed in the rotating cavity is discharged from the discharge pipe, but ultrasonic vibration energy is applied to the mixed liquid even while being discharged through the discharge pipe, so that the mixed liquid is discharged while performing micro mixing. Can be discharged. As a result, when a reaction product is generated by mixing the liquid or solution discharged from each supply pipe into the rotary cavity, the micro mixing vortex of the fluid is increased as the temperature of the reaction system is increased without rotating the stirring blade at a high speed. Since the size of can be reduced, the mixing performance can be improved. Further, from the time when the liquid or the solution is discharged from the respective supply pipes into the rotary cavity to the time when the mixed liquid obtained by mixing in the rotary cavity is discharged from the discharge pipe,
Since a uniform mixed solution having no concentration distribution can be maintained, ultrafine particles having a finer grain size can be constantly and stably produced continuously as photographic emulsion grains.

【0021】[0021]

【発明の実施の形態】以下、添付図面により本発明の液
体又は溶液の混合方法及び装置の好ましい実施の形態に
ついて詳説する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the liquid and solution mixing method and apparatus of the present invention will be described in detail below with reference to the accompanying drawings.

【0022】図1は本発明の混合装置の実施の形態を示
した断面図であり、図2は混合装置の要部を拡大した要
部拡大断面図である。
FIG. 1 is a sectional view showing an embodiment of a mixing apparatus of the present invention, and FIG. 2 is an enlarged sectional view of an essential part in which an essential part of the mixing apparatus is enlarged.

【0023】これらの図に示すように、本発明の混合装
置40は、主として、内側に配設された複数(2〜4
枚)のフィン翼42と共に高速回転して該フィン翼42
により複数の液体又は溶液を攪拌混合する回転空洞体5
8と、前記複数の液体又は溶液をそれぞれ回転空洞体5
8内に吐出する複数(2〜4本)の供給管46と、回転
空洞体58内で攪拌混合された混合液を回転空洞体58
内から排出する排出管48と、供給管46の吐出46A
から回転空洞体58内に吐出される液体又は溶液、及び
排出管48を流れる混合液に超音波振動エネルギーを付
与する超音波振動発生手段50と、で構成される。
As shown in these figures, the mixing device 40 of the present invention is mainly composed of a plurality (2-4) arranged inside.
The fin blade 42 is rotated at a high speed together with the fin blade 42
Rotating hollow body 5 for stirring and mixing a plurality of liquids or solutions by means of
8 and the plurality of liquids or solutions, respectively
8 and a plurality of (2 to 4) supply pipes 46 to be discharged into the rotary cavity body 58, and the mixed liquid stirred and mixed in the rotary cavity body 58.
Discharge pipe 48 for discharging from inside and discharge 46A of supply pipe 46
The ultrasonic vibration generating means 50 for applying ultrasonic vibration energy to the liquid or solution discharged from the inside into the rotary hollow body 58 and the mixed liquid flowing through the discharge pipe 48.

【0024】回転空洞体58内には次のようにして混合
室64が形成される。即ち、上部に鍔部52を有すると
共に該鍔部52より上の上端部54が円柱状に形成され
た支持体ブロック56(鍔部52より下側は円柱状でも
矩形柱状でもよい)と、下側が凹状に形成された回転空
洞体58とを、上側が凹状に形成されると共に中央部に
支持体ブロック56の上端部54が嵌入される孔60を
有する外部ブロック62を介してそれぞれ嵌合すること
により形成される。即ち、外部ブロック62の孔60を
支持体ブロック56の上端部54に挿入して鍔部52に
当接させ、支持体ブロック56の上端部54が外部ブロ
ック62の孔60から突出するようにする。この状態
で、回転空洞体58の外側を外部ブロック62の凹状部
に嵌合させると共に、回転空洞体58の凹状部を支持体
ブロック56の上端部54に嵌合する。この場合、回転
空洞体58の凹状部の深さ寸法が支持体ブロック56の
上端部54の突出寸法よりも少しだけ長く形成されてお
り、これにより回転空洞体58と支持体ブロック56と
の間に狭隘な混合室64が形成される。また、支持体ブ
ロック56、外部ブロック62、回転空洞体58の嵌合
隙間は、それぞれシール部材66、66…により液密状
態にシールされる。これにより、内側にフィン翼42を
有すると共に、底面が支持体ブロック56により塞がれ
た液密状態の回転空洞体44が形成される。混合室64
の容積としては、混合された混合液が混合室64で滞留
することなく直ちに排出管48から排出される程度の狭
隘なスペースにすることが好ましい。
A mixing chamber 64 is formed in the rotary cavity 58 as follows. That is, a support block 56 having a flange portion 52 at the upper portion and an upper end portion 54 above the flange portion 52 formed in a column shape (the lower side of the flange portion 52 may be a column shape or a rectangular column shape), and The rotary hollow body 58 whose side is formed in a concave shape is fitted through an outer block 62 which is formed in a concave shape in the upper side and which has a hole 60 in the center thereof into which the upper end portion 54 of the support block 56 is fitted. It is formed by That is, the hole 60 of the outer block 62 is inserted into the upper end portion 54 of the support block 56 and brought into contact with the flange portion 52 so that the upper end portion 54 of the support block 56 projects from the hole 60 of the outer block 62. . In this state, the outer side of the rotary hollow body 58 is fitted into the concave portion of the outer block 62, and the concave portion of the rotary hollow body 58 is fitted into the upper end portion 54 of the support block 56. In this case, the depth dimension of the concave portion of the rotary cavity body 58 is formed to be slightly longer than the projecting dimension of the upper end portion 54 of the support block 56, so that between the rotary cavity body 58 and the support block 56. A narrow mixing chamber 64 is formed. Further, the fitting gaps of the support block 56, the outer block 62, and the rotary cavity body 58 are sealed in a liquid-tight state by the seal members 66, 66 ,. As a result, a liquid-tight rotary cavity 44 having the fin blades 42 on the inner side and having the bottom surface closed by the support block 56 is formed. Mixing chamber 64
It is preferable that the volume of the space is such a narrow space that the mixed liquid is immediately discharged from the discharge pipe 48 without staying in the mixing chamber 64.

【0025】また、回転空洞体58は、ブロック内部に
被駆動磁石68が埋め込まれると共に、駆動磁石70が
埋め込まれた外部磁石ブロック72を回転自在に収納す
る収納機枠74の円柱軸76に軸受78を介して連結保
持される。軸受78はオールセラミック製のものが好適
である。そして、外部磁石ブロック72は、混合装置4
0を支持する壁面80等に支持された駆動モータ82の
駆動軸84に連結される。駆動モータ82は回転数が可
変可能なものが使用される。これにより、回転空洞体5
8の被駆動磁石68と、外部磁石ブロック72の駆動磁
石70とは磁気カップリング構造が形成される。従っ
て、駆動モータ82を所望の速度で高速回転駆動する
と、回転空洞体58がそれに応じた速度で高速回転す
る。これにより、回転軸の挿通部をもたない密閉構造の
回転空洞体44を形成することができる。
The rotary hollow body 58 has a driven magnet 68 embedded inside the block, and a bearing on a cylindrical shaft 76 of a storage frame 74 for rotatably storing an external magnet block 72 in which a drive magnet 70 is embedded. It is connected and held via 78. The bearing 78 is preferably made of all-ceramic. Then, the external magnet block 72 is connected to the mixing device 4
It is connected to a drive shaft 84 of a drive motor 82 supported by a wall surface 80 or the like that supports 0. The drive motor 82 used has a variable rotation speed. Thereby, the rotary cavity body 5
The driven magnet 68 of No. 8 and the driving magnet 70 of the external magnet block 72 form a magnetic coupling structure. Therefore, when the drive motor 82 is rotationally driven at a desired speed at a high speed, the rotary cavity body 58 is rotated at a high speed at a speed corresponding thereto. As a result, it is possible to form the rotary hollow body 44 having a hermetically sealed structure that does not have a rotary shaft insertion portion.

【0026】支持体ブロック56のブロック内には、混
合する複数の液体又は溶液を供給する複数(2〜4本)
の供給管46が配設され、供給管46の一方端が回転空
洞体58内に連通し、他方端が支持体ブロック56の側
部から外部に延設される。また、支持体ブロック56の
ブロック内には、回転空洞体58内で混合された混合液
を排出する排出管48が配設され、排出管48の一方端
が回転空洞体58内に連通し、他方端が支持体ブロック
56の側部から外部に延設される。
In the block of the support block 56, a plurality (2-4) of a plurality of liquids or solutions to be mixed are supplied.
The supply pipe 46 is provided, one end of the supply pipe 46 communicates with the inside of the rotary cavity 58, and the other end extends from the side portion of the support block 56 to the outside. Further, in the block of the support block 56, a discharge pipe 48 for discharging the mixed liquid mixed in the rotary cavity body 58 is arranged, and one end of the discharge pipe 48 communicates with the rotary cavity body 58. The other end extends from the side of the support block 56 to the outside.

【0027】超音波振動発生手段50は、超音波振動子
を内蔵した本体部50Aと、排出管48内に挿入された
棒状部50Bとで構成され、棒状部50Bの太さは排出
管48の径の半分程度に形成される。また、棒状部50
Bの先端50Cは、混合室64内に突出される。そし
て、棒状部50Bが貫通する排出管48の貫通部はシー
ル部材86によりシールされる。これにより、回転空洞
体58内に吐出される液体又は溶液と、排出管48内を
流れる混合液とに超音波振動エネルギーが付与される。
この場合、支持体ブロック56に配設される供給管46
と排出管48との配置は、支持体ブロック56の中心線
位置に排出管48を配置し、その周囲に供給管46を配
置することが好ましい。これにより、複数の供給管46
のノズル口46A近傍に均等に超音波振動エネルギーを
付与し易くなる。超音波振動の周波数は、10KHz〜1
0MHzの範囲であることが好ましい。また、超音波振動
発生手段の超音波振動子入力強度は、0.1〜10W/
cm2 の範囲であることが好ましい。
The ultrasonic vibration generating means 50 is composed of a main body portion 50A containing an ultrasonic vibrator and a rod-shaped portion 50B inserted into the discharge pipe 48, and the thickness of the rod-shaped portion 50B is equal to that of the discharge pipe 48. It is formed to about half the diameter. In addition, the rod-shaped portion 50
The tip 50C of B is projected into the mixing chamber 64. Then, the penetrating portion of the discharge pipe 48 through which the rod-shaped portion 50B penetrates is sealed by the seal member 86. As a result, ultrasonic vibration energy is applied to the liquid or solution discharged into the rotary cavity 58 and the mixed liquid flowing in the discharge pipe 48.
In this case, the supply pipe 46 arranged in the support block 56
Regarding the arrangement of the discharge pipe 48 and the discharge pipe 48, it is preferable that the discharge pipe 48 is arranged at the center line position of the support block 56 and the supply pipe 46 is arranged around it. Thereby, the plurality of supply pipes 46
It becomes easy to uniformly apply ultrasonic vibration energy to the vicinity of the nozzle opening 46A. The frequency of ultrasonic vibration is 10 kHz to 1
It is preferably in the range of 0 MHz. Further, the ultrasonic oscillator input strength of the ultrasonic vibration generating means is 0.1 to 10 W /
It is preferably in the range of cm 2 .

【0028】次に上記の如く構成された本発明の混合装
置40の作用について、ゼラチン水溶液、銀塩溶液、ハ
ロゲン塩溶液を導入してハロゲン化銀粒子を製造する例
で説明する。
Next, the operation of the mixing apparatus 40 of the present invention constructed as described above will be described with reference to an example in which an aqueous gelatin solution, a silver salt solution and a halogen salt solution are introduced to produce silver halide grains.

【0029】ゼラチン水溶液、銀塩溶液、ハロゲン塩溶
液の溶液は、支持体ブロック56内に配設された複数の
供給管46を通って、フィン翼42と共に高速回転する
狭隘なスペースの回転空洞体58内、即ち混合室64に
吐出される。この吐出の際に超音波振動発生手段50の
棒状部先端50Cからの超音波振動エネルギーが溶液に
直接付与される。これにより、複数の溶液がフィン翼4
2による攪拌混合と、超音波振動発生手段50の超音波
振動エネルギーによるミクロ混合とにより、均一且つ瞬
間的に混合反応されて粒子核が形成される。この場合、
超音波振動エネルギーは、供給管46のノズル口46A
にも付与される。これにより、ノズル口46Aから吐出
される液体又は溶液の流量が少なくなってノズル口46
Aでの供給流速が約50cm/分以下になったり、溶液
の濃度が高くなっても、ノズル口46Aから吐出された
溶液は、直ちに分散される。また、混合反応により形成
された粒子核がノズル口46Aに付着することも防止さ
れる。従って、混合によって形成される粒子核がノズル
口46A近傍に析出して凝集粒子となることを防止でき
る。
A solution of an aqueous gelatin solution, a silver salt solution, and a halogen salt solution passes through a plurality of supply pipes 46 arranged in a support block 56, and rotates at a high speed together with the fin blade 42. It is discharged in 58, that is, in the mixing chamber 64. At the time of this ejection, the ultrasonic vibration energy from the rod-shaped tip 50C of the ultrasonic vibration generating means 50 is directly applied to the solution. As a result, a plurality of solutions can be applied to the fin blade 4
The stirring and mixing by 2 and the micro mixing by the ultrasonic vibration energy of the ultrasonic vibration generating means 50 cause a uniform and instantaneous mixing reaction to form particle nuclei. in this case,
The ultrasonic vibration energy is the nozzle port 46A of the supply pipe 46.
Is also given to. As a result, the flow rate of the liquid or solution discharged from the nozzle opening 46A is reduced, and the nozzle opening 46A
Even if the supply flow rate at A is about 50 cm / min or less or the concentration of the solution becomes high, the solution discharged from the nozzle port 46A is immediately dispersed. Further, the particle nuclei formed by the mixing reaction are prevented from adhering to the nozzle opening 46A. Therefore, it is possible to prevent the particle nuclei formed by mixing from being deposited in the vicinity of the nozzle opening 46A and becoming agglomerated particles.

【0030】回転空洞体58内で混合された混合液は、
直ちに排出管48を流れて外部に排出されるが、この排
出管48を流れる途中でも混合液にも超音波振動エネル
ギーが直接付与されるので、効果的なミクロ混合を行い
ながら混合液を排出させることができる。即ち、混合液
を排出する過程で更にミクロ混合の機会が付与される。
これにより、それぞれの供給管46から溶液を回転空洞
体58内に吐出したときから、回転空洞体58内での混
合して得られた混合液を排出管48から排出するまで
に、濃度分布のない均一な混合液を維持することができ
る。従って、ハロゲン化銀粒子を製造する際に重要な均
一且つ瞬間的なミクロ混合を行うことができるので、従
来の攪拌羽根のみによる攪拌混合のように、反応系の温
度が上がるほど攪拌羽根を高速回転しなくても混合性能
を良くできる。
The mixed liquid mixed in the rotary cavity 58 is
Although it immediately flows through the discharge pipe 48 and is discharged to the outside, ultrasonic vibration energy is directly applied to the mixed liquid even while flowing through the discharge pipe 48, so that the mixed liquid is discharged while performing effective micro mixing. be able to. That is, an opportunity for further micro-mixing is given in the process of discharging the mixed liquid.
Thereby, from the time when the solution is discharged from the respective supply pipes 46 into the rotary hollow body 58 until the time when the mixed liquid obtained by mixing in the rotary hollow body 58 is discharged from the discharge pipe 48, the concentration distribution of It is possible to maintain a non-uniform mixture. Therefore, since it is possible to carry out uniform and instantaneous micro-mixing, which is important when producing silver halide grains, the stirring blade can be operated at a higher speed as the temperature of the reaction system rises, unlike the conventional stirring and mixing with only a stirring blade. The mixing performance can be improved without rotating.

【0031】更に、回転空洞体58は、セラミック製の
軸受78により回転自在に支持されているので、高速回
転しても磨耗による削り屑や発熱がなく、更には液体や
溶液が酸やアルカリであっても耐食性がある。これによ
り、高速攪拌時の磨耗による削れ屑が不純物として混合
液に混入したり、磨耗による発熱のために品質を損なう
ことがないので、良質なハロゲン化銀粒子を製造するこ
とができる。
Further, since the rotary hollow body 58 is rotatably supported by the ceramic bearing 78, it does not generate shavings or heat due to wear even when it is rotated at a high speed, and the liquid or solution is acid or alkali. Even if it exists, it has corrosion resistance. As a result, shavings due to abrasion during high-speed stirring are not mixed as impurities in the mixed solution, and the quality is not impaired due to heat generation due to abrasion, so that high-quality silver halide grains can be produced.

【0032】以上の特徴を備えた本発明の混合装置40
は、ハロゲン化銀粒子等の写真感光材料の製造工程等
で、希釈や感光材料成分を溶解した溶液相互の均質な混
合等を瞬時に実現することができるので、例えば以下の
ことを行うのに用いるとよい。 (1)本発明の混合装置40にゼラチン水溶液もしくは
水溶性保護コロイドポリマー溶液、銀塩溶液、ハロゲン
塩溶液を導入してハロゲン化銀粒子の形成を行うことが
できる。この際、ゼラチン水溶液をメイン流として混合
装置40に導入して、銀塩溶液とハロゲン塩溶液をダブ
ルジェット方式で導入しても良い。この混合装置40を
用いて粒子形成することで、従来よりさらに小さな極微
粒子を調製できることはもとより、粒径分布の狭い微粒
子、およびハロゲン組成分布の均一な微粒子を調製でき
る。また、双晶を有する結晶核形成を行うこともでき
る。 (2)本発明の混合装置40にハロゲン化銀粒子を含ん
だ写真乳剤を写真添加剤(分光増感色素、化学増感剤
等)を導入することで該写真用添加剤をハロゲン化銀剤
をハロゲン化銀粒子に均一に吸着させることができる。 (3)本発明の混合装置40にハロゲン化銀粒子を含ん
だ写真乳剤をハロゲン塩、もしくはハロゲン化銀粒子を
導入することで該ハロゲン化銀のハロゲンコンバージョ
ンを行うことができる。また、この混合装置40を用い
ることでハロゲン化銀粒子に均一にハロゲンコンバージ
ョンを行うことができる。 (4)本発明の混合装置40にハロゲン化銀粒子を含ん
だ写真乳化剤と銀塩水溶液、ハロゲン塩水溶液、および
金属錯体水溶液を導入することで該金属錯体をハロゲン
化銀粒子にドープすることができる。この際、金属錯体
は銀塩またはハロゲン塩に溶解しておいてもよい。その
際に、この混合装置40を用いることで、金属錯体をハ
ロゲン化銀粒子に均一にドープすることができる。 (5)本発明の混合装置40にゼラチン水溶液(もしく
は、保護コロイドポリマー水溶液)、銀塩溶液、ハロゲ
ン塩溶液を導入してハロゲン化銀粒子の形成を行う際
に、同時に写真用添加剤を導入することで該写真用添加
剤のハロゲン化銀への吸着を強化・増加させることがで
き、また該写真用添加剤の吸着で更にサイズの小さい微
粒子の調製も可能である。その際に、この混合装置40
を用いることで該写真用添加剤をハロゲン化銀粒子に均
一に吸着させることができる。 (6)本発明の混合装置40に複数の写真用添加剤を導
入して該写真添加剤を混合することができる。その際
に、この混合装置40を用いることで迅速かつ均一に該
写真用添加剤を混合することができる。
The mixing device 40 of the present invention having the above characteristics
Can instantly realize dilution or homogeneous mixing of solutions in which photosensitive material components are dissolved in the manufacturing process of photographic photosensitive materials such as silver halide grains. Good to use. (1) An aqueous gelatin solution or a water-soluble protective colloidal polymer solution, a silver salt solution, or a halogen salt solution can be introduced into the mixing device 40 of the present invention to form silver halide grains. At this time, an aqueous gelatin solution may be introduced into the mixing device 40 as a main stream, and the silver salt solution and the halogen salt solution may be introduced by a double jet method. By forming particles using this mixing device 40, not only fine particles having a smaller size than in the past can be prepared, but also fine particles having a narrow particle size distribution and fine particles having a uniform halogen composition distribution can be prepared. It is also possible to form crystal nuclei having twins. (2) A photographic emulsion containing silver halide grains is introduced into the mixing device 40 of the present invention by introducing a photographic additive (spectral sensitizing dye, chemical sensitizer, etc.) into the silver halide agent. Can be uniformly adsorbed on the silver halide grains. (3) The halogen conversion of the silver halide can be carried out by introducing a halogen salt or a silver halide grain into the photographic emulsion containing the silver halide grain in the mixing device 40 of the present invention. Further, by using the mixing device 40, halogen conversion can be uniformly performed on silver halide grains. (4) The silver halide grains can be doped with the metal complex by introducing a photographic emulsifier containing silver halide grains, a silver salt aqueous solution, a halogen salt aqueous solution, and a metal complex aqueous solution into the mixing device 40 of the present invention. it can. At this time, the metal complex may be dissolved in a silver salt or a halogen salt. At this time, by using the mixing device 40, the silver halide grains can be uniformly doped with the metal complex. (5) When a gelatin aqueous solution (or a protective colloid polymer aqueous solution), a silver salt solution and a halogen salt solution are introduced into the mixing device 40 of the present invention to form silver halide grains, a photographic additive is introduced at the same time. By doing so, the adsorption of the photographic additive on silver halide can be enhanced / increased, and the adsorption of the photographic additive can prepare finer particles having a smaller size. At that time, this mixing device 40
By using, the photographic additive can be uniformly adsorbed on the silver halide grains. (6) A plurality of photographic additives can be introduced into the mixing device 40 of the present invention to mix the photographic additives. At this time, by using the mixing device 40, the photographic additives can be mixed rapidly and uniformly.

【0033】尚、本発明の混合装置40を上記(1)〜
(6)に用いる場合、混合装置40を1基で構成しても
よく、混合装置40を複数直列又は並列に接続して用い
てもよい。
The mixing device 40 of the present invention is used in the above (1).
When used in (6), the mixing device 40 may be composed of one unit, or a plurality of mixing devices 40 may be connected in series or in parallel and used.

【0034】[0034]

【実施例】(比較例1)図4の特願2000−1034
28に示した従来の混合装置を用いて行った。混合槽の
実質液容量(内槽容量+外槽と内槽とで形成される隙間
容量)を5.2ccとし、内槽を2000rpmの回転
速度で回転させて内槽と共に攪拌羽根を回転させた。そ
して、一方のノズル管から2モル/lの硝酸銀水溶液を
12.5cc/分の流量で吐出すると共に、他方のノズ
ル管から低分子量ゼラチン2.3%を溶解した0.28
6モル/lの臭化カリウム水溶液を92.5cc/分の
流量で吐出して混合反応を行った。そして、混合反応さ
れた混合液を排出口から排出し、これによりハロゲン化
銀粒子乳剤を製造した。即ち、特願2000−1034
28での実施例1の溶液濃度を2倍にして、送液流量を
1/2として、吐出流速を小さくしてハロゲン化銀粒子
の生成を行った。
EXAMPLES (Comparative Example 1) Japanese Patent Application No. 2000-1034 of FIG.
It was carried out using a conventional mixing device shown in FIG. The actual liquid capacity of the mixing tank (the inner tank capacity + the gap capacity formed by the outer tank and the inner tank) was set to 5.2 cc, and the inner tank was rotated at a rotation speed of 2000 rpm to rotate the stirring blade together with the inner tank. . Then, a 2 mol / l silver nitrate aqueous solution was discharged from one nozzle tube at a flow rate of 12.5 cc / min, and 0.28% of low molecular weight gelatin 2.3% was dissolved from the other nozzle tube.
A 6 mol / l potassium bromide aqueous solution was discharged at a flow rate of 92.5 cc / min to carry out a mixing reaction. Then, the mixed solution which had undergone the mixing reaction was discharged from the discharge port, whereby a silver halide grain emulsion was produced. That is, Japanese Patent Application No. 2000-1034
In 28, the solution concentration of Example 1 was doubled, the liquid supply flow rate was halved, and the discharge flow rate was reduced to generate silver halide grains.

【0035】その結果、得られたハロゲン化銀粒子の平
均粒径は0.018μmであり、粒径変動係数は36%
であった。 (実施例1)図1及び図2で説明した本発明の混合装置
を用いて行った。フィン翼と共に回転する回転空洞体内
の実質液容量を比較例1の半分の2.6ccと小さく
し、回転体ブロックを2000rpmの回転速度で回転
させた。そして、一方のノズル管から2モル/lの硝酸
銀水溶液を12.5cc/分の流量で吐出すると共に、
他方のノズル管から低分子量ゼラチン2.3%を溶解し
た0.286モル/lの臭化カリウム水溶液を92.5
cc/分の流量で吐出して混合反応を行った。そして、
混合反応された混合液を排出口から排出し、これにより
ハロゲン化銀粒子乳剤を製造した。この混合・排出過程
において、超音波振動発生手段の棒状部によって、供給
管のノズル部から回転空洞体内に吐出される溶液に周波
数40KHz、0.5W/cm2 の超音波振動エネルギー
を付与すると共に、回転空洞体内で混合反応されて排出
管を流れる混合液に超音波振動エネルギーを付与した。
As a result, the average grain size of the obtained silver halide grains was 0.018 μm, and the grain size variation coefficient was 36%.
Met. (Example 1) This was carried out using the mixing apparatus of the present invention described with reference to FIGS. The substantial liquid volume in the rotary cavity rotating with the fin blade was reduced to 2.6 cc, which is half of that in Comparative Example 1, and the rotary block was rotated at a rotational speed of 2000 rpm. Then, while discharging a 2 mol / l silver nitrate aqueous solution from one nozzle tube at a flow rate of 12.5 cc / min,
From the other nozzle tube, add 92.5% of 0.286 mol / l potassium bromide aqueous solution in which 2.3% of low molecular weight gelatin was dissolved.
A mixed reaction was performed by discharging at a flow rate of cc / min. And
The mixed solution which had undergone the mixing reaction was discharged from the discharge port, whereby a silver halide grain emulsion was produced. In the mixing / discharging process, the rod-shaped portion of the ultrasonic vibration generating means applies ultrasonic vibration energy of frequency 40 KHz and 0.5 W / cm 2 to the solution discharged from the nozzle portion of the supply pipe into the rotary cavity. , Ultrasonic vibration energy was applied to the mixed liquid which was mixed and reacted in the rotating cavity and flowed through the discharge pipe.

【0036】その結果、得られたハロゲン化銀粒子の平
均粒径は0.011μmであり、粒径変動係数は23%
であった。
As a result, the average grain size of the obtained silver halide grains was 0.011 μm, and the grain size variation coefficient was 23%.
Met.

【0037】比較例1と実施例1との対比から分かるよ
うに、本発明の混合装置を用いることにより、従来の混
合装置を用いた場合に比べて、高濃度反応溶液を用いた
粒子生成反応においてもハロゲン化銀粒子の平均粒子径
を小さくでき、且つ、粒径分布を狭くすることができ
た。
As can be seen from the comparison between Comparative Example 1 and Example 1, by using the mixing apparatus of the present invention, the particle formation reaction using the high-concentration reaction solution is higher than that in the case of using the conventional mixing apparatus. The average grain size of the silver halide grains can be reduced and the grain size distribution can be narrowed.

【0038】尚、ハロゲン化銀粒子の平均粒子径の測定
方法については、実施例及び比較例を同じ方法で測定す
ることで、実施例と比較例の対比を行うことができるの
で詳細な説明を省略するが、参考までに記載すると、J.
Imag.Sci.Tech.第37巻272 〜280 頁に記載の方法に基づ
いて光散乱強度を基に計算した。そして、計算は、波長
600nmでの光散乱強度を基に行った。
Regarding the method for measuring the average grain size of silver halide grains, it is possible to make a comparison between the examples and the comparative examples by measuring the examples and the comparative examples in the same manner. Although omitted, J.
It was calculated based on the light scattering intensity based on the method described in Imag. Sci. Tech. Vol. 37, pages 272-280. Then, the calculation was performed based on the light scattering intensity at a wavelength of 600 nm.

【0039】[0039]

【発明の効果】以上説明したように、本発明の液体又は
溶液の混合方法及び装置によれば、羽根による攪拌混合
と超音波振動エネルギーによるミクロ混合を併用するこ
とにより、従来よりも均一且つ瞬間的な混合を行うこと
ができる。従って、本発明の混合方法及び装置をハロゲ
ン化銀粒子等の写真乳剤粒子の製造に使用すれば、より
細かく粒径の揃った超微粒子を定常的に安定且つ連続的
に生成させることができる。
As described above, according to the liquid and solution mixing method and apparatus of the present invention, the stirring and mixing by the blade and the micro mixing by the ultrasonic vibration energy are used in combination to make the mixing more uniform and instantaneous. Mixing can be performed. Therefore, by using the mixing method and apparatus of the present invention for producing photographic emulsion grains such as silver halide grains, finer ultrafine grains having a uniform grain size can be constantly and stably produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液体又は溶液の混合装置の断面図FIG. 1 is a sectional view of a liquid or solution mixing apparatus of the present invention.

【図2】本発明の液体又は溶液の混合装置の要部を拡大
した要部拡大断面図
FIG. 2 is an enlarged cross-sectional view of an essential part of the liquid or solution mixing device of the present invention.

【図3】従来の混合装置の断面図FIG. 3 is a sectional view of a conventional mixing device.

【図4】従来の別の混合装置の断面図FIG. 4 is a sectional view of another conventional mixing device.

【符号の説明】[Explanation of symbols]

40…混合装置、42…フィン翼、46…供給管、48
…排出管、50…超音波振動発生手段、56…支持体ブ
ロック、58…回転空洞体、62…外部ブロック、64
…混合室、66、86…シール部材、68…被駆動磁
石、70…駆動磁石、72…外部磁石ブロック、74…
機枠、76…円柱軸、78…軸受、82…駆動モータ、
84…駆動モータの駆動軸
40 ... Mixing device, 42 ... Fin blade, 46 ... Supply pipe, 48
... Discharge pipe, 50 ... Ultrasonic vibration generating means, 56 ... Support block, 58 ... Rotating hollow body, 62 ... External block, 64
... mixing chamber, 66, 86 ... sealing member, 68 ... driven magnet, 70 ... driving magnet, 72 ... external magnet block, 74 ...
Machine frame, 76 ... Cylindrical shaft, 78 ... Bearing, 82 ... Drive motor,
84 ... Drive motor drive shaft

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03C 1/015 G03C 1/015 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) G03C 1/015 G03C 1/015

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】内側面に取り付けられた攪拌羽根と共に高
速回転する回転空洞体内に、混合される複数の液体又は
溶液をそれぞれの供給管のノズル口から吐出して前記攪
拌羽根により攪拌混合すると共に、攪拌混合された混合
液を前記回転空洞体内から排出管を介して排出する液体
又は溶液の混合方法において、 前記供給管から前記回転空洞体内に吐出される液体又は
溶液、及び前記排出管を流れる混合液に超音波振動エネ
ルギーを付与することを特徴とする液体又は溶液の混合
方法。
1. A plurality of liquids or solutions to be mixed are discharged from the nozzle ports of respective supply pipes into a rotary cavity that rotates at a high speed together with a stirring blade attached to an inner surface, and the liquid is stirred and mixed by the stirring blade. A method for mixing a liquid or a solution for discharging a mixed liquid which is agitated and mixed from the rotary cavity through a discharge pipe, wherein the liquid or the solution discharged from the supply pipe into the rotary cavity and the discharge pipe A method for mixing a liquid or a solution, which comprises applying ultrasonic vibration energy to the mixed liquid.
【請求項2】前記超音波振動エネルギーは、前記液体又
は溶液、及び前記混合液に直接付与されることを特徴と
する請求項1の液体又は溶液の混合方法。
2. The method for mixing a liquid or a solution according to claim 1, wherein the ultrasonic vibration energy is directly applied to the liquid or the solution and the mixed liquid.
【請求項3】複数の液体又は溶液を混合する混合装置に
おいて、 内側面に取り付けられた攪拌羽根と共に高速回転して該
攪拌羽根により前記複数の液体又は溶液を攪拌混合する
回転空洞体と、 前記複数の液体又は溶液をそれぞれ前記回転空洞体内に
吐出するノズル口を備えた複数の供給管と、 前記回転空洞体内で攪拌混合された混合液を前記回転空
洞体内から排出する排出管と、 前記供給管から前記回転空洞体内に吐出される液体又は
溶液、及び前記排出管を流れる混合液に超音波振動エネ
ルギーを付与する超音波振動発生手段と、 を備えたことを特徴とする液体又は溶液の混合装置。
3. A mixing device for mixing a plurality of liquids or solutions, comprising: a rotating hollow body that rotates together with a stirring blade attached to an inner surface at a high speed to stir and mix the plurality of liquids or solutions with each other; A plurality of supply pipes each having a nozzle port for discharging a plurality of liquids or solutions into the rotary cavity; a discharge pipe for discharging a mixed liquid stirred and mixed in the rotary cavity from the rotary cavity; A liquid or solution discharged from a pipe into the rotary cavity, and an ultrasonic vibration generating means for applying ultrasonic vibration energy to the mixed liquid flowing through the discharge pipe; apparatus.
【請求項4】前記超音波振動発生手段は、前記排出管内
に挿入された棒状部を有し、該棒状部の先端を前記回転
空洞体内に突出させたことを特徴とする請求項3に記載
の液体又は溶液の混合装置。
4. The ultrasonic vibration generating means has a rod-shaped portion inserted into the discharge pipe, and a tip of the rod-shaped portion is projected into the rotary cavity. Liquid or solution mixing device.
【請求項5】前記超音波振動の周波数は、20KHz〜1
0MHzであることを特徴とする請求項3又は4に記載の
液体又は溶液の混合装置。
5. The frequency of the ultrasonic vibration is 20 KHz to 1
The mixing apparatus for liquid or solution according to claim 3 or 4, characterized in that the frequency is 0 MHz.
【請求項6】超音波振動発生手段の超音波振動子入力強
度は、0.1〜10W/cm2 であることを特徴とする
請求項3、4又は5に記載の液体又は溶液の混合装置。
6. The liquid or solution mixing device according to claim 3, 4 or 5, wherein the ultrasonic vibrator input strength of the ultrasonic vibration generating means is 0.1 to 10 W / cm 2. .
JP2001299398A 2001-09-28 2001-09-28 Method and device for mixing liquid or solution Pending JP2003103152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001299398A JP2003103152A (en) 2001-09-28 2001-09-28 Method and device for mixing liquid or solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001299398A JP2003103152A (en) 2001-09-28 2001-09-28 Method and device for mixing liquid or solution

Publications (1)

Publication Number Publication Date
JP2003103152A true JP2003103152A (en) 2003-04-08

Family

ID=19120158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001299398A Pending JP2003103152A (en) 2001-09-28 2001-09-28 Method and device for mixing liquid or solution

Country Status (1)

Country Link
JP (1) JP2003103152A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018251A (en) * 2007-07-11 2009-01-29 Reika Kogyo Kk Homogenizing apparatus
WO2009083910A3 (en) * 2007-12-28 2009-10-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
WO2009083909A3 (en) * 2007-12-28 2009-10-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
WO2009083911A3 (en) * 2007-12-28 2009-10-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7703698B2 (en) 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7785674B2 (en) 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
US8034286B2 (en) 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
WO2012008497A1 (en) * 2010-07-13 2012-01-19 国立大学法人東京工業大学 Apparatus for producing micro liquid drops
US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
JP2013039567A (en) * 2007-07-06 2013-02-28 M Technique Co Ltd Fluid treatment apparatus and treatment method
US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US9239036B2 (en) 2006-09-08 2016-01-19 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment and delivery system and process
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034286B2 (en) 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US9239036B2 (en) 2006-09-08 2016-01-19 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment and delivery system and process
US7703698B2 (en) 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
US8616759B2 (en) 2006-09-08 2013-12-31 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
JP2013039567A (en) * 2007-07-06 2013-02-28 M Technique Co Ltd Fluid treatment apparatus and treatment method
US8708550B2 (en) 2007-07-06 2014-04-29 M. Technique Co., Ltd. Fluid processing apparatus and processing method
JP2009018251A (en) * 2007-07-11 2009-01-29 Reika Kogyo Kk Homogenizing apparatus
KR101553420B1 (en) 2007-07-12 2015-09-15 킴벌리-클라크 월드와이드, 인크. Ultrasonic treatment chamber having electrode properties
KR101553419B1 (en) 2007-07-12 2015-09-15 킴벌리-클라크 월드와이드, 인크. Treatment chamber for separating compounds from aqueous effluent
US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7785674B2 (en) 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
KR101514703B1 (en) 2007-12-28 2015-04-24 킴벌리-클라크 월드와이드, 인크. Ultrasonic treatment chamber for particle dispersion into formulations
CN101909733B (en) * 2007-12-28 2013-12-11 金伯利-克拉克环球有限公司 Ultrasonic treatment chamber for particle dispersion into formulations
US8206024B2 (en) 2007-12-28 2012-06-26 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
US8143318B2 (en) 2007-12-28 2012-03-27 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8215822B2 (en) 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
WO2009083910A3 (en) * 2007-12-28 2009-10-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
WO2009083911A3 (en) * 2007-12-28 2009-10-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
WO2009083909A3 (en) * 2007-12-28 2009-10-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
WO2012008497A1 (en) * 2010-07-13 2012-01-19 国立大学法人東京工業大学 Apparatus for producing micro liquid drops
US9200938B2 (en) 2010-07-13 2015-12-01 Toyota Institute of Technology Microdroplet-producing apparatus

Similar Documents

Publication Publication Date Title
JP2003103152A (en) Method and device for mixing liquid or solution
JP3717014B2 (en) Stirrer
US6422736B1 (en) Scalable impeller apparatus for preparing silver halide grains
JP5625216B2 (en) Distributed method and distributed system
US6645713B2 (en) Method of manufacturing silver halide emulsions and apparatus thereof
JPS5858288B2 (en) Method and apparatus for producing silver halide grains
US5690428A (en) Mixing device comprising concentric tubes for supplying solutions onto and mixing on a rotor
JP3165923B2 (en) Method for producing poorly water-soluble salt crystal particles and apparatus for producing the same
US6513965B2 (en) Apparatus for manufacturing photographic emulsions
JPH02167817A (en) Apparatus for forming silver halide particle
JP2001286745A (en) Method for mixing liquid or solution and device therefor
JPH1176783A (en) Stirring device
JP5678381B2 (en) Centrifugal dispersion device
JPH08248545A (en) Method for reaction of plurality of components
JP3575642B2 (en) Method and apparatus for producing silver halide emulsion
JP2000271463A (en) Inline dynamic mixing device
JP2003107608A (en) Method for producing silver halide emulsion and equipment therefor
WO1990001462A1 (en) Process for producing silver halide grains
JP2000292878A (en) Formation of silver halide grain
JPH06355A (en) Continuous production of minute cellulosic solidified grain
JPH0934043A (en) Production of silver halide emulsion and apparatus therefor
JP4248297B2 (en) Method for producing a silver halide photographic emulsion
JP2987011B2 (en) Method for producing silver halide emulsion
JP2001176776A (en) Device for forming coating film
JPH09152672A (en) Formation of particle of photographic sensitive material and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080208