JPH09152672A - Formation of particle of photographic sensitive material and device - Google Patents

Formation of particle of photographic sensitive material and device

Info

Publication number
JPH09152672A
JPH09152672A JP7719396A JP7719396A JPH09152672A JP H09152672 A JPH09152672 A JP H09152672A JP 7719396 A JP7719396 A JP 7719396A JP 7719396 A JP7719396 A JP 7719396A JP H09152672 A JPH09152672 A JP H09152672A
Authority
JP
Japan
Prior art keywords
aqueous solution
reaction
reaction chamber
reaction tank
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7719396A
Other languages
Japanese (ja)
Inventor
Yasunori Ichikawa
靖典 市川
Mario Ishiyama
真理生 石山
Akira Kato
加藤  明
Eiji Sekino
栄治 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP7719396A priority Critical patent/JPH09152672A/en
Publication of JPH09152672A publication Critical patent/JPH09152672A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming the particles of a photographic sensitive material with which the production of an optimum amt. meeting market needs and the formation of particles having various shapes are possible. SOLUTION: This method for forming the particles comprises the nucleus formation of silver halide in a reaction chamber and the particle formation in a reaction tank by using an apparatus which has the reaction chamber having a stirring machine in the reaction tank housing a gelatin soln. and having addition ports for an aq. silver salt soln. and aq. halogen salt soln. and addition ports for liquid chemicals exclusive of these aq. solns. In such a case, the large and small two devices 9a, 9b of a resembling shape or a mixer on the outside the reaction tank and the larger device are used. The inside of the smaller device 9a or the mixer on the outside of the reaction tank is used mainly as the part for executing the nucleus formation and the larger device 9b is used in series mainly as the part for executing the particle growth. The silver halide crystal nuclei formed in the smaller device 9a or the mixer are transferred into the larger size device and the crystal nuclei are grown on the nucleus particles transferred from the smaller device 9a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は写真感光材料の粒子
形成方法及び装置、更に詳しくはハロゲン化銀、及び、
コロイド銀写真乳剤に於ける粒子形成方法及び装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for forming grains of a photographic light-sensitive material, more specifically silver halide, and
The present invention relates to a grain forming method and apparatus in a colloidal silver photographic emulsion.

【0002】[0002]

【従来の技術】ゼラチン溶液を満たした反応タンクの中
に攪拌機を有する反応室を備え、該反応室への銀塩水溶
液とハロゲン塩水溶液の添加口を有する装置を用い、前
記反応室内において核形成を行い、前記反応タンク内に
おいて粒子成長を行う写真感光材料の粒子形成方法及び
装置としては、 銀塩水溶液とハロゲン化塩水溶液を解膠剤水溶液中
で反応させて均一ハロゲン化銀粒子を製造する方法にお
いて、(イ)ハロゲン化塩と銀塩とを別々に解膠剤水溶
液に混合して二種類の塩含有希釈溶液をつくり、(ロ)
ついで、前記の2種類の塩含有希釈溶液を、攪拌された
残りの解膠剤水溶液に別々に導入することを特徴とする
均一ハロゲン化銀粒子の製造方法。 ’枠体、混合ヘッドおよび混合羽根から成り、枠体の
長軸に平行な第1および第2の流体入口を有し、混合ヘ
ッドは枠体内にあって枠体の長軸周辺を回転し、かつ第
2の流体入口を通して枠体に連結して回転を与えるシャ
フトを有し、混合羽根は、混合室内の上記シャフト上に
あって放射状に配備されており、そのシャフトの回転に
より、流体を上記第1および第2の入口を通して混合室
内に導入し、混合流体を流体出口から放射状に排出する
働きをしていることを特徴とするハロゲン化銀粒子の均
一製造装置(特公昭49−48964号公報参照)。
2. Description of the Related Art Nucleation is carried out in a reaction tank filled with a gelatin solution by using a device having a reaction chamber having a stirrer and an addition port for aqueous silver salt solution and aqueous halogen salt solution to the reaction chamber. As a method and apparatus for forming a grain of a photographic light-sensitive material for performing grain growth in the reaction tank, an aqueous silver salt solution and an aqueous halide salt solution are reacted in an aqueous peptizer solution to produce uniform silver halide grains. In the method, (a) a halogenated salt and a silver salt are separately mixed with a peptizer aqueous solution to prepare two kinds of salt-containing diluted solutions, and (b)
Then, the above-mentioned two kinds of salt-containing diluted solutions are separately introduced into the agitated remaining peptizer aqueous solution, which is a method for producing uniform silver halide grains. 'Consisting of a frame, a mixing head and a mixing vane, having first and second fluid inlets parallel to the longitudinal axis of the frame, the mixing head being within the frame and rotating around the longitudinal axis of the frame, And a mixing vane connected to the frame through the second fluid inlet to provide rotation, the mixing vanes are radially arranged on the shaft in the mixing chamber, and the rotation of the shaft causes the fluid to move to the above An apparatus for uniformly producing silver halide grains, which is introduced into the mixing chamber through the first and second inlets and discharges the mixed fluid radially from the fluid outlet (JP-B-49-48964). reference).

【0003】 調製釜の中に存在する主成分たとえば
ゼラチン塩溶液に供給ポンプ等によって添加成分たとえ
ば硝酸銀溶液を添加し、そしてこれを主成分内に分配さ
せる方式の懸濁物等特にハロゲン化銀含有懸濁物の製造
方法において、調製釜の中に存在する主成分を実質的に
外側環状帯域においては下降し、そして該帯域から分離
された中心部に位置する内側帯域においては高速で上昇
する回転対称形をなして回動する液流となし、そしてす
でに上昇している液流領域内の主成分に第1の添加成分
を、そしてさらに上昇した液流領域内に第2の添加成分
を横断流の形態で添加することを特徴とする懸濁物特に
ハロゲン化銀含有懸濁物の製造方法。 ’ 回転対称体形状の調製釜7の中にこれと同軸的に
配置された外側環状帯域aを中心部に位置する内側帯域
bから仕切るすなわち下降流を上昇流から区分する仕切
管10と、該仕切管の上部セグメント12に接してまた
はその中に配置された回転対称形の回動流を生起せしめ
るための、駆動モータと連結された羽根車15、プロペ
ラ等の間断なく液を送り出す送り出し手段を有する給送
装置14とが配置されており、且つ上記仕切管10の下
部セグメント11の領域内とその上に位置する領域内と
に上記調製釜7および該仕切管10と同軸的にそれぞれ
1個の混合ノズル弁16,17が配置されており、該混
合ノズル弁は装置の垂直軸に対して直角な平面内に位置
し、ほぼ半径方向に向いたリングスリット18,19を
有し、該リングスリットは供給ポンプ3,4等によって
添加成分に付与された圧力によって弾性応力の圧力に抗
してその回転対称形断面を可変的に開口されるようにな
っていることを特徴とする前記特許請求の範囲第1項の
方法を実施するための装置(特公昭53−41114号
公報参照)。
A suspension such as a suspension in which an additional component such as a silver nitrate solution is added to a main component such as a gelatin salt solution existing in a preparation pot by a supply pump and the mixture is distributed in the main component, particularly a silver halide-containing solution In the process for producing a suspension, the rotation of the main components present in the preparation kettle substantially descends in the outer annular zone and rises rapidly in the centrally located inner zone separated from the zone. A symmetrically rotating liquid flow, and a first additive component crossing the main component in the already rising liquid flow region and a second additive component in the further rising liquid flow region Process for preparing a suspension, in particular a silver halide-containing suspension, characterized in that it is added in the form of a stream. ′ A partition tube 10 for partitioning an outer annular zone a coaxially arranged in a preparation vessel 7 having a rotationally symmetrical body shape from an inner zone b located at the center, that is, a partition tube 10 for separating a downward flow from an upward flow, A delivery means for delivering a liquid without interruption to the impeller 15 connected to the drive motor, a propeller, etc. for producing a rotationally symmetrical rotational flow disposed in contact with or in the upper segment 12 of the partition tube. And a feeder 14 having the same, and one is provided coaxially with the preparation vessel 7 and the partition tube 10 in the area of the lower segment 11 of the partition tube 10 and in the area located thereabove. Mixing nozzle valves 16, 17 are arranged in a plane perpendicular to the vertical axis of the device and have ring slits 18, 19 oriented substantially in the radial direction. Slippery Wherein the rotationally symmetrical cross section is variably opened against the pressure of elastic stress by the pressure applied to the additive component by the supply pumps 3, 4 and the like. Apparatus for carrying out the method in the range 1 (see Japanese Patent Publication No. 53-41114).

【0004】 はまぐり型結晶を全ハロゲン化銀結晶
の30重量%以上を含むハロゲン化銀結晶をコロイド水
溶液を含む熟成タンクと連通し、独立に設けた混合器内
に硝酸銀水溶液及びハロゲン化物水溶液を供給して生成
せしめる方法において、該混合器内の銀イオン濃度を Ag+ +×- →AgX(X- はハロゲンイオン) の反応における当量点から、△pAg≦2に保持し、か
つ該混合器内の銀イオン濃度の変化(△EAg)が±4
mV以下になるように硝酸銀水溶液及びハロゲン化物水
溶液を添加し、急速に混合せしめハロゲン化銀の種晶を
生成せしめ、しかるのちこれを成長せしめることを特徴
とするハロゲン化銀結晶の製造方法(特開昭51−71
297号公報参照)
Clam-shaped crystals are connected to silver halide crystals containing 30% by weight or more of all silver halide crystals with a ripening tank containing a colloidal aqueous solution, and an aqueous silver nitrate solution and an aqueous halide solution are supplied into a mixer provided independently. In the mixer, the silver ion concentration in the mixer is maintained at ΔpAg ≦ 2 from the equivalence point in the reaction of Ag + + × → AgX (X is a halogen ion), and Silver ion concentration change (△ EAg) is ± 4
A method for producing a silver halide crystal characterized in that an aqueous solution of silver nitrate and an aqueous solution of halide are added so as to be mV or less and rapidly mixed to form a seed crystal of silver halide, and then the seed crystal is grown. Kaisho 51-71
(See Japanese Patent No. 297)

【0005】 水溶性銀塩溶液と水溶性ハロゲン化物
溶液とを、コロイド水溶液が満たされている反応容器中
にその内部に該コロイド水溶液が満たされる如く設けら
れた混合室内に供給して反応せしめハロゲン化銀粒子を
製造する方法において、該混合室上端部より両反応液を
別個に供給し、該混合室中に満たされた該コロイド水溶
液によりそれぞれ希釈し、該混合室内に設けられた第1
攪拌手段により両反応液を急激に攪拌混合して反応せし
め、ハロゲン化銀粒子を生成させ、ただちに第二攪拌手
段により該ハロゲン化銀粒子を該混合室外の前記反応容
器中に排出せしめ、熟成させることを特徴とするハロゲ
ン化銀粒子製造方法及び装置(特開昭51−72994
号公報参照)
A water-soluble silver salt solution and a water-soluble halide solution are supplied into a reaction chamber filled with a colloidal aqueous solution into a mixing chamber provided so that the colloidal aqueous solution is filled therein to react with each other. In the method for producing silver halide grains, both reaction solutions are separately supplied from the upper end of the mixing chamber, and each is diluted with the colloidal aqueous solution filled in the mixing chamber.
Both reaction liquids are rapidly stirred and mixed by a stirring means to react with each other to form silver halide grains, and immediately, the silver halide grains are discharged to a reaction vessel outside the mixing chamber by a second stirring means and aged. Method and apparatus for producing silver halide grains characterized by the above (Japanese Patent Application Laid-Open No. 51-72994)
No.)

【0006】 水溶性銀塩溶液と水溶性ハロゲン化物
溶液とを、コロイド水溶液が満たされている反応容器中
にその内部に該コロイド水溶液が満たされる如く設けら
れた混合室内に供給して反応せしめハロゲン化銀粒子を
製造する方法において、多角筒のケーシングより成る該
混合室端部より両反応液を別個に供給し、該混合室中に
満たされた該コロイド水溶液によりそれぞれ希釈し、該
混合室内に設けられた第1攪拌手段により両反応液を急
激に攪拌混合して反応せしめ、ハロゲン化銀粒子を生成
させ、ただちに第二攪拌手段により、該ハロゲン化銀粒
子を該混合室上方の前記反応容器中に排出せしめ、熟成
させることを特徴とするハロゲン化銀粒子製造方法及び
装置(特公昭55−10545号公報参照)
A water-soluble silver salt solution and a water-soluble halide solution are supplied into a reaction chamber filled with a colloidal aqueous solution into a mixing chamber provided so as to be filled with the colloidal aqueous solution to react with each other. In the method for producing silver halide grains, both reaction solutions are separately supplied from the end of the mixing chamber consisting of a polygonal casing, diluted with the colloid aqueous solution filled in the mixing chamber, and then introduced into the mixing chamber. Both reaction solutions are rapidly agitated and mixed by the provided first agitating means to react to produce silver halide grains, and immediately the second agitating means causes the silver halide grains to move the silver halide grains above the reaction chamber. Method and apparatus for producing silver halide grains characterized by being discharged into the medium and ripening (see Japanese Patent Publication No. 55-10545)

【0007】 コロイド水溶液が満たされている反応
容器中にその内部に該コロイド水溶液が満たされる如く
設けられた混合器に、その下端部からハロゲン塩水溶液
と銀塩水溶液とを別々に供給し、該両反応液を前記コロ
イド水溶液により各々希釈し、前記混合器に設けられた
攪拌翼により両方応液を急激に攪拌混合して反応せし
め、ハロゲン化銀粒子を生成させ、ただちに該ハロゲン
化銀粒子を該混合器外上方の前記反応容器中に排出せし
め成長させるハロゲン化銀粒子の製造方法において、前
記コロイド水溶液で希釈された両反応液を、前記攪拌翼
の各翼片間の間隙を通すことなく、前記混合器の内周壁
の内方であって前記攪拌翼の翼片先端側外方に形成され
た間隙部に通し、該間隙部において該両反応液を急激に
剪断混合して反応せしめ、ハロゲン化銀粒子を生成させ
ることを特徴とするハロゲン化銀粒子の製造方法及び装
置(特公昭58−58288号公報参照)。
A halogen salt aqueous solution and a silver salt aqueous solution are separately supplied from the lower end portion to a mixer provided inside the reaction vessel filled with the colloidal aqueous solution so that the colloidal aqueous solution is filled therein. Both reaction solutions were each diluted with the colloidal aqueous solution, and both reaction solutions were rapidly agitated and mixed by a stirring blade provided in the mixer to react with each other to form silver halide grains, and the silver halide grains were immediately In the method for producing silver halide grains which is discharged into the reaction vessel above the mixer and grown therein, both reaction solutions diluted with the colloidal aqueous solution are passed through the gap between the blades of the stirring blade. Passing through a gap formed on the inner side of the inner peripheral wall of the mixer and on the outer side of the tip end of the stirring blade, and rapidly reacting the reaction liquids by shearing and mixing in the gap. And a method and apparatus for producing silver halide grains, characterized by producing silver halide grains (see Japanese Patent Publication No. 58-58288).

【0008】 親水性保護コロイド水溶液の存在下
で、銀塩水溶液とハロゲン化物水溶液とを混合して、ハ
ロゲン化銀乳剤を製造する装置において、円筒状外壁の
内側に形成され、内部に水溶液攪拌用の攪拌器を収納し
た反応室と、反応室の内部に設けられて混合すべき一方
の水溶液を導入するよう構成され、かつ円筒状の隔壁に
よって反応室と仕切られている円筒状の第1液導入室
と、上記反応室の外側に形成されて混合すべき他方の水
溶液を導入するよう構成され、かつ上記外壁によって反
応室と仕切られている第2液導入室と、上記外壁に設け
られて反応室と第2液導入室とを連通遮断する開閉自在
の第1連絡開口と、上記隔壁に設けられて反応室と第1
液導入室とを連通遮断する開閉自在の第2連絡開口とを
有することを特徴とするハロゲン化銀写真乳剤の製造装
置(特開昭56−64332号公報参照)
In an apparatus for producing a silver halide emulsion by mixing an aqueous solution of silver salt and an aqueous solution of halide in the presence of an aqueous solution of hydrophilic protective colloid, the apparatus is formed inside a cylindrical outer wall and used for stirring the aqueous solution inside. And a cylindrical first liquid which is provided inside the reaction chamber and is configured to introduce one of the aqueous solutions to be mixed and which is partitioned from the reaction chamber by a cylindrical partition wall. An introduction chamber, a second liquid introduction chamber formed outside the reaction chamber and configured to introduce the other aqueous solution to be mixed, and separated from the reaction chamber by the outer wall, and provided on the outer wall. An openable and closable first communication opening for connecting and disconnecting the reaction chamber and the second liquid introducing chamber, and the reaction chamber and the first chamber provided in the partition wall.
An apparatus for producing a silver halide photographic emulsion, characterized in that it has a second communication opening which can be opened and closed so as to cut off communication with the liquid introduction chamber (see Japanese Patent Laid-Open No. 56-64332).

【0009】[0009]

【発明が解決しようとする課題】以上に紹介する特許は
いずれも反応タンクの中に攪拌機を有する反応室を備え
たハロゲン化銀乳剤の仕込装置であり、いずれの方法も
乳剤粒子形成を行う場合、一つのまとまった装置で核形
成と、粒子成長を行っている。しかるに、この様な装
置で仕込スケールをスケールダウンする場合、ゼラチン
水溶液も減少するので、核形成の場合の発生する核が攪
拌機による泡の影響を受けて全く変化してしまい、実用
化が出来ないという問題点があった。又この様な装置
で製造を行う場合、市場ニーズの多様化により最近新製
品が数多く製造される状態において、必しも上記製造装
置のスケールが製造単位と一致せず、一方製造の際同一
反応装置における仕込量のスケールの拡大・縮少は写真
性能に対し変化が起きる不都合があった。実際に乳剤処
方を設計実施する場合、核の発生数、核の形状等を厳密
にコントロールする必要がある。この様な条件のコント
ロールには攪拌回転数の変更、添加液の濃度、予め反応
タンクに存在する液量、液組成等が影響を与える。又
この様な装置で仕込を行なう場合、結晶構造をコントロ
ールする為、重金属に代表される添加物を利用する方法
が行われているが、この様な方法においてはタンク内に
このような添加薬品を瞬時に均一混合することが重要で
あることが明確になった。
All of the above-mentioned patents are for preparing a silver halide emulsion equipped with a reaction chamber having a stirrer in a reaction tank, and in any of the methods, emulsion grain formation is carried out. , Nucleation and grain growth are carried out by a single unit. However, when the charging scale is scaled down with such an apparatus, the gelatin aqueous solution also decreases, so the nuclei generated in the case of nucleation are completely affected by the bubbles generated by the stirrer and cannot be put to practical use. There was a problem. When manufacturing with such equipment, the scale of the above manufacturing equipment does not necessarily match the manufacturing unit in the state where many new products are manufactured recently due to diversification of market needs, while the same reaction occurs during manufacturing. The expansion / reduction of the scale of the charged amount in the apparatus has a disadvantage that the photographic performance changes. When actually designing and implementing an emulsion formulation, it is necessary to strictly control the number of nuclei generated, the shape of nuclei, and the like. The control of such conditions is affected by the change of the stirring speed, the concentration of the added liquid, the amount of liquid previously present in the reaction tank, the liquid composition, and the like. In addition, when charging with such an apparatus, a method of using an additive represented by a heavy metal is used to control the crystal structure. In such a method, such an additive chemical is stored in the tank. It has become clear that it is important to mix instantly and uniformly.

【0010】本発明の目的は上記問題点を解消し、仕込
量が変化しても写真性能変化が発生せず、市場ニーズに
見合った最適量の製造と種々の形状の粒子形成が可能で
ある写真感光材料の粒子形成方法を提供することにあ
る。
The object of the present invention is to solve the above-mentioned problems, to prevent the photographic performance from changing even when the charged amount is changed, and to manufacture the optimum amount and form particles of various shapes to meet the market needs. Another object of the present invention is to provide a method for forming grains of a photographic light-sensitive material.

【0011】[0011]

【課題を解決するための手段】本発明の上記目的は、 ゼラチン溶液を満たした反応タンクの中に攪拌機を
有する反応室を備え、該反応室への銀塩水溶液とハロゲ
ン塩水溶液の添加口を有する装置を用い、前記反応室内
においてハロゲン化銀の核形成を行い、前記反応タンク
内において粒子成長を行う写真感光材料の粒子形成方法
において、相似形の大小二つの前記装置を用い、小さい
方の装置を主に核形成を行う部分として、大きい方の装
置を主として粒子成長を行う部分として直列に用い、前
記小さい方の装置で形成されたハロゲン化銀結晶核を前
記大きい方の装置に移し、更に前記大きい方の装置にお
いても前記粒子成長に必要なハロゲン化銀結晶核を形成
させ、該結晶核を前記小さい方の装置より移された核粒
子上に成長させることを特徴とする写真感光材料の粒子
形成方法。 ゼラチン溶液を満たした反応タンクの中に攪拌機を
有する反応室を備え、該反応室への銀塩水溶液とハロゲ
ン塩水溶液の添加口を有する装置を用い、前記反応室内
においてハロゲン化銀の核形成を行い、前記反応タンク
内において粒子成長を行う写真感光材料の粒子形成方法
において、前記反応装置の容量が、基礎となる反応装置
の容量の整数分の1で幾何学的に相似な2ケ以上の前記
反応装置を用い、前記反応装置の動作機能も容量比に比
例して行うことを特徴とする写真感光材料の粒子形成方
法。 ゼラチン溶液を満たした反応タンクの中に攪拌機を
有する反応室を備え、街反応室への銀塩水溶液とハロゲ
ン塩水溶液の添加口を有する装置を用い、前記反応室内
においてハロゲン化銀の核形成を行い、前記反応タンク
内において粒子成長を行うハロゲン化銀乳剤粒子の形成
方法において、銀塩水溶液とハロゲン塩水溶液以外の薬
液を反応室内に添加することを特徴とするハロゲン化銀
乳剤粒子の形成方法。 ゼラチン溶液を満たした反応タンクの中に攪拌機を
有する反応室を備え、該反応室への銀塩水溶液とハロゲ
ン塩水溶液の添加口を有する装置を用い、前記反応室内
においてハロゲン化銀の核形成を行い、前記反応タンク
内において粒子成長を行うハロゲン化銀乳剤粒子の形成
方法において、前記反応の主に核形成を行なう反応の部
分を前記反応タンクの外に設けた混合器内で行ない、こ
の液を前記反応タンク内に導入後、粒子成長を行なうこ
とを特徴とするハロゲン化銀乳剤粒子の形成方法。 ゼラチン溶液を満たした反応タンクの中に攪拌機を
有する反応室を供え、前記反応室への銀塩水溶液とハロ
ゲン塩水溶液の添加口を有する装置を用い前記反応室内
においてハロゲン化銀の核形成を行い、前記反応タンク
内において粒子成長を行うハロゲン化銀乳剤粒子の形成
装置において、銀塩水溶液とハロゲン塩水溶液以外の薬
液を反応室内へのコロイド水溶液の取入口近辺に供給口
を設けたことを特徴とするハロゲン銀乳剤粒子の形成装
置。によって達成される。
The above object of the present invention is to provide a reaction chamber having a stirrer in a reaction tank filled with a gelatin solution, and to provide an addition port for the silver salt aqueous solution and the halogen salt aqueous solution to the reaction chamber. In the method of forming a grain of a photographic light-sensitive material in which a silver halide is nucleated in the reaction chamber and grain growth is performed in the reaction tank, the apparatus having two similar sizes, the smaller one, is used. Using the device as a part mainly for nucleation, using the larger device in series as a part for mainly performing grain growth, transferring the silver halide crystal nuclei formed by the smaller device to the larger device, Further, in the larger device, the silver halide crystal nuclei necessary for the grain growth are formed, and the crystal nuclei are grown on the nuclei grains transferred from the smaller device. A method for forming particles of a photographic light-sensitive material, which is characterized. A reaction chamber filled with a gelatin solution is provided with a reaction chamber having a stirrer, and an apparatus having an addition port for the aqueous solution of silver salt and aqueous solution of halogen salt to the reaction chamber is used to nucleate silver halide in the reaction chamber. In the method for forming particles of a photographic light-sensitive material, wherein the particles are grown in the reaction tank, the capacity of the reactor is two or more geometrically similar to an integer fraction of the capacity of the base reactor. A method of forming particles of a photographic light-sensitive material, characterized in that the reaction device is used and the operation function of the reaction device is also performed in proportion to the capacity ratio. A reaction chamber having a stirrer is provided in a reaction tank filled with gelatin solution, and a device having an addition port for the aqueous solution of silver salt and aqueous solution of halogen salt to the town reaction chamber is used to nucleate silver halide in the reaction chamber. A method of forming silver halide emulsion grains for performing grain growth in the reaction tank, wherein a silver salt aqueous solution and a chemical solution other than the halogen salt aqueous solution are added to the reaction chamber. . A reaction chamber filled with a gelatin solution is provided with a reaction chamber having a stirrer, and an apparatus having an addition port for the aqueous solution of silver salt and aqueous solution of halogen salt to the reaction chamber is used to nucleate silver halide in the reaction chamber. In the method for forming silver halide emulsion grains in which the grains are grown in the reaction tank, the reaction mainly involving nucleation is carried out in a mixer provided outside the reaction tank. Is introduced into the reaction tank, and then grain growth is carried out. Provide a reaction chamber having a stirrer in a reaction tank filled with gelatin solution, and perform nucleation of silver halide in the reaction chamber using a device having an addition port for the silver salt aqueous solution and the halogen salt aqueous solution to the reaction chamber. In the apparatus for forming silver halide emulsion grains for grain growth in the reaction tank, a supply port is provided in the vicinity of the colloid aqueous solution intake port for the chemical solution other than the silver salt aqueous solution and the halogen salt aqueous solution into the reaction chamber. Equipment for forming silver halide emulsion grains. Achieved by

【0012】[0012]

【発明の実施の形態】本発明の第1の粒子形成方法の実
施態様の概略を以下に紹介する。図1において主に核形
成反応を行う反応タンク9aと粒子成長を行う反応タン
ク9bを直列に設ける。反応タンク9a、9bは相似形
であり、反応タンクスケール9aは反応タンクスケール
9b以下の大きさである。これらの反応タンクは、反応
タンク内にそれぞれ8a,8bの攪拌機を付けた反応室
12a,12bを有する装置であり、別図4,図5に示
すような構造を有するものである。 反応方法として
は、主に核形成を行う反応を図1に示すタンク9a内に
て行うものであり、硝酸銀水溶液1、ハロゲン塩水溶液
2は反応タンク9a内の反応室12aに供給される。こ
の反応室12aは攪拌機8aによって反応タンク9a内
でハロゲン化銀結晶の核形成を行い、ストップバルブを
有する管を通して次の反応タンク9bに導入される。こ
こで粒子成長を行う為の硝酸銀水溶液3、ハロゲン塩水
溶液4を反応室12b内に添加し、攪拌機8bによって
ハロゲン化銀結晶粒子を形成し、前記反応タンク9aよ
りの核形成を反応タンク9b内で更に成長させる。図
4,図5にこの様な反応装置として、使用可能な反応タ
ンク9及び反応室12,添加管10,11及び攪拌機8
を、それぞれ図4として特公昭55−10545号,図
5として特公昭58−58288号公報に示す装置の概
略を示した。主に核形成を行う反応装置12a、9aの
スケール(V1)は、主に粒子成長を行う反応装置12
a,9bのスケール(V2)に対し、 V2>V1 の関係である反応装置であることが望ましい。又、V1
とV2は基本的に相似の形状である事が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION An outline of an embodiment of the first particle forming method of the present invention will be introduced below. In FIG. 1, a reaction tank 9a that mainly performs a nucleation reaction and a reaction tank 9b that performs particle growth are provided in series. The reaction tanks 9a and 9b are similar in shape, and the reaction tank scale 9a has a size equal to or smaller than the reaction tank scale 9b. These reaction tanks are devices having reaction chambers 12a and 12b in which agitators 8a and 8b are attached, respectively, and have a structure as shown in FIGS. 4 and 5. As a reaction method, a reaction for mainly forming nuclei is performed in the tank 9a shown in FIG. 1, and the silver nitrate aqueous solution 1 and the halogen salt aqueous solution 2 are supplied to the reaction chamber 12a in the reaction tank 9a. This reaction chamber 12a is subjected to nucleation of silver halide crystals in the reaction tank 9a by the stirrer 8a, and is introduced into the next reaction tank 9b through a tube having a stop valve. Here, an aqueous solution of silver nitrate 3 and an aqueous solution of halogen salt 4 for grain growth are added into the reaction chamber 12b, silver halide crystal grains are formed by a stirrer 8b, and nucleation from the reaction tank 9a is performed in the reaction tank 9b. To grow further. 4 and 5, a reaction tank 9 and a reaction chamber 12, addition pipes 10 and 11 and a stirrer 8 which can be used as such a reaction device are shown.
FIG. 4 shows the outline of the apparatus shown in JP-B-55-10545 and FIG. 5 shows the outline of the apparatus shown in JP-B-58-58288. The scale (V1) of the reactors 12a and 9a that mainly perform nucleation is the reactor 12 that mainly performs particle growth.
It is desirable that the reactor has a relationship of V2> V1 with respect to the scale (V2) of a and 9b. Also, V1
It is desirable that V2 and V2 have basically similar shapes.

【0013】本発明の第2の粒子形成方法である請求項
2の実施態様の概略を図2によって示す。図2において
主に核形成反応を行う反応室12a,12b,12cを
粒子成長を行うそれぞれの反応タンク9a,9b,9c
内に設ける。反応室12a,12b,12c、それぞれ
の反応タンク9a,9b,9cはその基本になる反応装
置(図7に示す)と幾何学的に相似形であり、反応タン
ク9のスケールの整数分の1の大きさである。これらの
反応タンクは、反応タンク内に整数分の1の攪拌機8
a,8b,8cを付けた整数分の1の反応室12a,1
2b,12cを有する装置であり、図4(A),(B)
及び,図5(A),(B)に示すような構造を有するも
のである。 反応方法としては、主に核形成を行う反応
を反応室12a,12b,12c内にて行うものであ
り、硝酸銀水溶液1、ハロゲン塩水溶液2はそれぞれ反
応タンク9a,9b,9c内の反応室12a,12b,
12cに供給される。この反応室はそれぞれの攪拌機8
a,8b,8cによって反応室12a,12b,12c
内でハロゲン化銀結晶の核形成を行い、反応室よりの核
形成をそれぞれの反応タンク9a,9b,9c内で更に
成長させる。図4,及び図5に本発明を適用できる反応
装置として、使用可能な反応タンク9及び反応室12,
添加管10,11及び攪拌機8をそれぞれ特公昭55−
10545号,特公昭58−58288号公報に示す装
置にて概略を示した。仕込量の調節は装置の使用台数に
よって行う。
An outline of an embodiment of claim 2 which is the second particle forming method of the present invention is shown in FIG. In FIG. 2, reaction chambers 12a, 12b, and 12c, which mainly perform nucleation reactions, are provided in respective reaction tanks 9a, 9b, and 9c, which perform particle growth.
Provided within. The reaction chambers 12a, 12b, 12c and the respective reaction tanks 9a, 9b, 9c are geometrically similar to the basic reaction apparatus (shown in FIG. 7), and the reaction tank 9 has an integer fraction of the scale of the reaction tank 9. Is the size of. These reaction tanks include an agitator 8 of an integer fraction in the reaction tank.
a, 8b, 8c attached reaction chamber 12a, 1
It is a device having 2b and 12c, and is shown in FIGS.
And, it has a structure as shown in FIGS. 5 (A) and 5 (B). As a reaction method, a reaction mainly for nucleation is carried out in the reaction chambers 12a, 12b, 12c, and the silver nitrate aqueous solution 1 and the halogen salt aqueous solution 2 are respectively reacted in the reaction chambers 12a in the reaction tanks 9a, 9b, 9c. , 12b,
12c. This reaction chamber has 8 agitators
a, 8b, 8c depending on the reaction chamber 12a, 12b, 12c
Nucleation of silver halide crystals is carried out inside, and nucleation from the reaction chamber is further grown in each reaction tank 9a, 9b, 9c. 4 and 5, a reaction tank 9 and a reaction chamber 12 which can be used as a reaction apparatus to which the present invention can be applied,
The addition tubes 10 and 11 and the stirrer 8 are respectively made into Japanese Patent Publication Sho 55-
The outline is shown by the apparatus shown in No. 10545 and Japanese Patent Publication No. 58-58288. The amount to be charged is adjusted according to the number of devices used.

【0014】本発明の請求項3の実施態様の概略を図3
を用いて説明する。図3は本発明の概略を示すフローシ
ートであり、銀塩水溶液3,ハロゲン塩水溶液4,その
他の薬液6としてさらに添加されるべき重金属及びその
溶剤が準備されている。ゼラチン溶液5を満たした反応
タンク9の中に第1の攪拌手段81 と第2の攪拌手段8
2 を有する反応室12を備え、該反応室12への銀塩水
溶液3とハロゲン塩水溶液4の添加管それぞれ10,1
1を有する装置を用い、前記反応室12内においてハロ
ゲン化銀の核形成を行い、前記反応タンク9内において
粒子成長を行うハロゲン化銀乳剤の形成方法において、
銀塩水溶液3とハロゲン塩水溶液4以外の、結晶をコン
トロールする薬液6を反応室12内に添加する方法であ
る。添加口のおき方としては請求項5に示す装置,図
4,図5に示す装置が適当であり、添加管13の吐出口
を反応室12内へのコロイド水溶液の取入口14の近辺
に設けたものである。図4,図5において更に詳しく説
明すると添加管13の吐出口をコロイド水溶液の取入口
14の近辺に設け、第1の攪拌手段81 によって瞬間的
にコロイド水溶液と混合し、ついで添加される銀塩水溶
液,ハロゲン塩水溶液と混合反応せしめ、反応して出来
た核を第2の攪拌手段82 によって反応タンク9内に急
速に拡散させ均一化させるのである。この実施態様は必
要に応じて請求項1,2及び4にも適用することが出来
る。
FIG. 3 is a schematic diagram of an embodiment of claim 3 of the present invention.
This will be described with reference to FIG. FIG. 3 is a flow sheet showing the outline of the present invention, in which a silver salt aqueous solution 3, a halogen salt aqueous solution 4, and other heavy metals to be further added as a chemical liquid 6 and their solvents are prepared. In a reaction tank 9 filled with gelatin solution 5, first stirring means 8 1 and second stirring means 8
2 is provided with a reaction chamber 12, and addition tubes 10 and 1 for the silver salt aqueous solution 3 and the halogen salt aqueous solution 4, respectively, are added to the reaction chamber 12.
In the method for forming a silver halide emulsion in which nucleation of silver halide is carried out in the reaction chamber 12 and grain growth is carried out in the reaction tank 9 using the apparatus having No. 1,
In this method, a chemical liquid 6 for controlling crystals other than the silver salt aqueous solution 3 and the halogen salt aqueous solution 4 is added to the reaction chamber 12. The device shown in claim 5 and the device shown in FIGS. 4 and 5 are suitable for placing the addition port, and the discharge port of the addition pipe 13 is provided near the inlet 14 of the aqueous colloid solution into the reaction chamber 12. It is a thing. In more detail with reference to FIGS. 4 and 5, the discharge port of the addition pipe 13 is provided in the vicinity of the inlet 14 for the colloidal aqueous solution, the first stirring means 8 1 instantaneously mixes with the colloidal aqueous solution, and then the silver to be added. The solution is mixed and reacted with an aqueous salt solution and an aqueous halogen salt solution, and the nuclei formed by the reaction are rapidly diffused into the reaction tank 9 by the second stirring means 8 2 to make them uniform. This embodiment can also be applied to claims 1, 2 and 4 if necessary.

【0015】本発明の請求項4の実施態様の概略を図6
によって説明する。主に核形成の部分を担当する小さい
方の装置が、前記反応タンクの外に設けた攪拌機を内蔵
する混合器12dのみによって形成され、この混合器1
2dに予め溶解しておいた保護コロイド水溶液5を添加
し、さらにここに硝酸銀水溶液1、ハロゲン塩水溶液2
をそれぞれ7a,7bによって混合器内に添加し、攪拌
・混合する事によりハロゲン化銀の微粒子を形成し、次
の成長を行う大きい方の装置の反応タンク9bに添加す
る。大きい方の装置では、核形成量に見合った粒子成長
量の添加量を添加し、大きい方の装置での平均滞留時間
が一定になるように添加時間及び攪拌条件をコントロー
ルする。この様にして反応タンク9bに導入された微粒
子を更に成長させる為、反応タンク9b内に図4
(B),図5(B)に示すような特殊形状の反応室12
bを有する攪拌装置81 ,82 に、粒子成長の為の硝酸
銀水溶液3、及びハロゲン塩水溶液4を添加する。この
添加流量は反応タンク9bに導入した微粒子の核形成量
に合せた核成長量にコントロールする。尚、添加におい
ては、送液ポンプ等の一般的手段が可能である。また、
この添加流量制御器7a,7b,7c,7dには電磁流
量計、オーバル流量計等一般的な流量計と送液ポンプの
組の使用が可能である。更に、核粒子形成時及び、粒子
成長を反応タンク9b内で行う場合にも、pAg検出装
置15の信号によりタンク内のpAgが所定の値になる
様に、添加液1,2,3,4のコントロールを行うこと
も可能である。核形成を行う装置の攪拌器を内蔵する混
合器12dは、粒子成長を行う反応タンク9bの概略を
図4,図5の(A)で示したが、混合器12dと大きい
方の装置の反応室12bとは相似形の大小であり、特殊
構造の攪拌機81 ,82 を有する装置が有効である。し
かし、処方によってはこの様な装置でなく、プロペラ、
ジェット等の攪拌機を使用しても可能である。
FIG. 6 schematically shows an embodiment of claim 4 of the present invention.
It will be explained by. The smaller device mainly in charge of the nucleation part is formed only by the mixer 12d having a stirrer installed outside the reaction tank.
An aqueous solution of protective colloid 5 previously dissolved in 2d is added, and further, an aqueous solution of silver nitrate 1 and an aqueous solution of halogen salt 2 are added thereto.
Are added into the mixer by 7a and 7b, respectively, and fine particles of silver halide are formed by stirring and mixing, and added to the reaction tank 9b of the larger device for the next growth. In the larger device, the addition amount of the particle growth amount corresponding to the nucleation amount is added, and the addition time and stirring conditions are controlled so that the average residence time in the larger device is constant. In order to further grow the fine particles introduced into the reaction tank 9b in this manner, the reaction tank 9b is provided with the fine particles shown in FIG.
(B), reaction chamber 12 having a special shape as shown in FIG. 5 (B)
The silver nitrate aqueous solution 3 and the halogen salt aqueous solution 4 for grain growth are added to the stirring devices 8 1 and 8 2 having b. This addition flow rate is controlled to a nucleus growth amount according to the nucleation amount of the fine particles introduced into the reaction tank 9b. In addition, in addition, general means, such as a liquid feed pump, is possible. Also,
As the addition flow rate controllers 7a, 7b, 7c, 7d, it is possible to use a combination of a general flow meter such as an electromagnetic flow meter and an oval flow meter and a liquid feed pump. Further, even when the core particles are formed and the particles are grown in the reaction tank 9b, the addition liquids 1, 2, 3, 4 are adjusted so that the pAg in the tank becomes a predetermined value by the signal of the pAg detection device 15. It is also possible to control. The mixer 12d, which has a stirrer for the apparatus for nucleation, shows the outline of the reaction tank 9b for particle growth in FIGS. 4 and 5 (A). The chamber 12b is similar in size to the chamber 12b, and it is effective to use a device having agitators 8 1 and 8 2 having a special structure. However, depending on the prescription, it is not such a device, but a propeller,
It is also possible to use a stirrer such as a jet.

【0016】[0016]

【実施例】【Example】

(請求項1の実施例)5リットルスケールの特公昭55
−10544号公報に記載される反応装置(図4)を用
いて、図1に示す。 上記組成の液を使用し、比較例−1の場合は従来の装置
を用い、実施例−1の場合は図1の装置で次の添加を行
った。先ず、反応タンク9a及び反応タンク9bにそれ
ぞれ5a,5b液を60℃の条件で添加し、ここに1,
2液をそれぞれの添加管10a,11aを通して添加流
量5リットル/minで3min間添加し、核形成及び
成長を行わせた。その後上記反応液をストップバルブを
有する管を通して反応タンク9bに移し、更にこの移さ
れた液に1リットル/minの添加流量で3,4液を8
0min間、添加管10b,11bを通して添加を行い
粒子成長を行った。この時、電子顕微鏡写真により粒子
サイズ、サイズ分布の測定を行った。また、1,2液添
加終了時の発泡量も調査した。
(Example of claim 1) Japanese Patent Publication Sho 55 of 5 liter scale
It shows in FIG. 1 using the reactor (FIG. 4) described in -10544. Using the liquid having the above composition, in the case of Comparative Example-1, the conventional apparatus was used, and in the case of Example-1, the following addition was performed with the apparatus shown in FIG. First, liquids 5a and 5b were added to the reaction tank 9a and the reaction tank 9b, respectively, under the condition of 60 ° C.
The two liquids were added through the respective addition tubes 10a and 11a at an addition flow rate of 5 l / min for 3 minutes to cause nucleation and growth. After that, the above reaction solution is transferred to a reaction tank 9b through a tube having a stop valve, and 3 and 4 solutions are added to the transferred solution at a flow rate of 1 liter / min.
During 0 min, addition was performed through addition tubes 10b and 11b to grow particles. At this time, the particle size and size distribution were measured by an electron micrograph. The amount of foaming at the end of addition of the 1 and 2 liquids was also investigated.

【0017】(比較例−1)上記、1,2液の添加条件
に於いて、装置として従来の仕込攪拌装置1台を用い攪
拌機の回転数を変更して行った。この時の発泡量をチェ
ックした。泡のチェック方法としては液をサンプリング
し、トータル容積に対する泡の比率をチェックした。ま
た、この様な種々の回転数で核形成を行った粒子にその
後、反応タンク9bに同一回転数で3,4液を同一仕込
攪拌装置内に添加し粒子成長を行った。このサンプルに
ついては粒子サイズの評価を実施した。
(Comparative Example-1) Under the above-mentioned conditions for adding the 1st and 2nd liquids, one conventional charging stirrer was used as an apparatus and the rotation speed of the stirrer was changed. The amount of foaming at this time was checked. As a method for checking bubbles, the liquid was sampled and the ratio of bubbles to the total volume was checked. In addition, to the particles thus nucleated at various rotation speeds, 3 and 4 liquids were added to the reaction tank 9b at the same rotation speed in the same charge and stirrer to grow the particles. Particle size was evaluated for this sample.

【0018】(実施例−1)核形成を行う1,2液添加
の部分を図1に示す上記反応タンク9bの1/3スケー
ルの反応タンク9aの反応室12aで行う方法を実施し
た。具体的な方法としては、1,2液を添加終了し、次
の3,4液の添加をそれぞれ添加管10b,11bを通
して開始するまで3,4液を添加するタイミングまでに
核形成した液を反応タンク9bにストップバルブを有す
る管を通して移した。その後の条件は上記比較例−1と
同様の方法に従って成長させた。この方法に於いても、
1,2液添加を行う時の攪拌回転数を変更し、発泡量の
評価を行った。また、粒子サイズの評価は上記方法と同
じ条件下に行った。結果を表1に示す。
Example 1 A method was carried out in which the 1 and 2 liquid addition portions for nucleation were carried out in the reaction chamber 12a of the 1/3 scale reaction tank 9a of the reaction tank 9b shown in FIG. As a specific method, liquids that have been nucleated by the timing of adding liquids 3 and 4 until the addition of liquids 1 and 2 is completed and the addition of liquids 3 and 4 is started through the addition tubes 10b and 11b, respectively It was transferred to a reaction tank 9b through a tube having a stop valve. The subsequent conditions were the same as in Comparative Example 1 described above. Even in this method,
The foaming amount was evaluated by changing the stirring rotation speed when adding the 1 and 2 liquids. The particle size was evaluated under the same conditions as in the above method. Table 1 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】この結果を解析すると、比較例−1の場合
には発泡の影響により1000rpm以上の場合、サイズ
分布の標準偏差も大となり回転数を上げる事が不可能で
ある。その一方泡を少なくするための400rpm以下
の低速回転にすると平均粒子サイズもサイズ分布も広く
なる現象が発生して好ましくない。これに対し、実施例
−1の場合、回転数を上げても反応タンク9aが小さい
ことにより発泡量は比較的少なく、発泡が少なくサイズ
分布が最少となる条件は、750〜1000回転の領域
であった。この様な粒子の形状を詳細に観察すると同じ
形状であった。
When this result is analyzed, in the case of Comparative Example-1, the standard deviation of the size distribution becomes large at 1000 rpm or more due to the effect of foaming, and it is impossible to increase the rotation speed. On the other hand, if the rotation speed is reduced to 400 rpm or less to reduce bubbles, a phenomenon that the average particle size and the size distribution are widened occurs, which is not preferable. On the other hand, in the case of Example-1, the amount of foaming is relatively small because the reaction tank 9a is small even if the number of revolutions is increased, and the condition that the amount of foaming is small and the size distribution is the minimum is in the range of 750 to 1000 revolutions. there were. When the shape of such particles was observed in detail, they had the same shape.

【0021】(第2の粒子形成方法である請求項2の比
較例2)反応容器の大きさが最大500リットルの従来
のコントロールダブルジェットの仕込装置を用いて、次
の仕込を行なった。 A液 H2 O:225リットル,KBr:0.45kg,ゼラチン:2kg B液 H2 O:51リットル,KBr:1.26kg,KI:0.45kg, ゼラチン:1.2kg C液 H2 O:60リットル,KBr:18.6kg,KI:0.54kg ゼラチン:1.5kg D液 H2 O:54リットル,AgNO3 :1.85kg 上記組成の液を使用し、先ず従来の反応タンクにA液を
添加し、65℃に保ち、ここに64℃のD液とB液をコ
ントロールダブルジェットpAg=85になるように添
加した。次にD液とC液を同じくコントロールドダブル
ジェットでpAg=8.3になるようにコントロールし
ながら添加を行った。尚、この時の回転数はB液添加時
700rpm,C液添加時900rpm,とした。
(Comparative example 2 of claim 2 which is the second particle forming method) The following charging was carried out using a conventional control double jet charging device having a maximum reaction vessel size of 500 liters. A liquid H 2 O: 225 liters, KBr: 0.45 kg, gelatin: 2 kg B liquid H 2 O: 51 liters, KBr: 1.26 kg, KI: 0.45 kg, gelatin: 1.2 kg C liquid H 2 O: 60 liters, KBr: 18.6 kg, KI: 0.54 kg Gelatin: 1.5 kg D liquid H 2 O: 54 liters, AgNO 3 : 1.85 kg Using the liquid having the above composition, first, in a conventional reaction tank, liquid A Was added to maintain the temperature at 65 ° C., and the liquids D and B at 64 ° C. were added thereto so that the control double jet pAg = 85. Next, the liquids D and C were added by controlled double jet while controlling pAg = 8.3. The rotation speed at this time was 700 rpm when the solution B was added and 900 rpm when the solution C was added.

【0022】(実施例−2)図7に示すような基本とな
る500リットルの反応装置と幾何学的に形状,寸法に
おいて相似な1/5スケールの100リットルの反応タ
ンク5基を図2に示すように設け、添加流量をこの比に
見合った条件で添加した。なお、アレック電子製3次元
流速計で流速を測定し、この速度対流量を割出し、平均
滞留時間が一定になるようにした。
(Example 2) FIG. 2 shows five 1/5 scale 100 liter reaction tanks which are geometrically similar in shape and size to the basic 500 liter reactor shown in FIG. It was provided as shown, and the addition flow rate was added under the conditions corresponding to this ratio. The flow velocity was measured with a three-dimensional flow velocity meter manufactured by Alec Electronics, and the velocity vs. flow rate was calculated to make the average residence time constant.

【0023】(実施例−3)上記のような基本となる5
00リットルの反応装置と幾何学的に形状,寸法におい
て相似な1/10スケールの50リットルタンク10基
を図2に示すように設け、添加流量をこの比に見合った
条件で添加した。この場合の攪拌機の回転数の設定も上
記条件設定に従って行った。
(Embodiment 3) Basic 5 as described above
Two 1/10 scale 50 liter tanks, which are geometrically similar in shape and size to the 00 liter reactor, were provided as shown in FIG. 2, and the addition flow rate was added under the conditions corresponding to this ratio. The rotation speed of the stirrer in this case was also set according to the above-mentioned condition setting.

【0024】(基本装置で仕込み容量を変化した例)、
基本となる500リットルの反応装置を用いて400リ
ットル容量の仕込を行った。この場合の攪拌機の回転数
の数値は平均滞留時間が一定になるように回転数変更を
行った。以上のようにして得た粒子の比較の為に、この
ようにして仕込んだ粒子をサンプリングし、電子顕微鏡
写真により粒子サイズ・標準偏差の評価を行った。その
結果を表2に示す。
(Example in which the charging capacity is changed by the basic device),
A 400 liter capacity was charged using a basic 500 liter reactor. In this case, the number of rotations of the stirrer was changed so that the average residence time was constant. In order to compare the particles obtained as described above, the particles thus charged were sampled and the particle size and standard deviation were evaluated by an electron micrograph. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】この結果を解析すると、比較例−2の場合
(従来の同一タンクで容量を変化させて仕込を行った場
合)、粒子サイズ、標準偏差が変化するが、実施例−
2,−3のように幾何学的に相似の系においては、基本
装置で容量変化した場合とにおけると同様にこのような
問題は起こらないことが明確になった。
When the results are analyzed, in the case of Comparative Example-2 (when charging is performed in the same conventional tank while changing the capacity), the particle size and the standard deviation are changed.
It has been clarified that in a geometrically similar system such as 2 and 3, such a problem does not occur as in the case where the capacitance is changed in the basic device.

【0027】(請求項3の実施例)500リットルスケ
ールの特公昭55−10545号公報に記載の反応装置
を使用し、薬品の添加位置とその薬品の均一化時間の比
較を行った。 (比較例−3)500リットル反応タンク9に蒸留水を
400リットル入れ、ここに伝導度50000μs/c
mのKNO3 水溶液2リットルを添加時間5秒間で添加
し、反応タンク9内の所定の位置に設けた伝導度計によ
り反応タンク内の伝導度が均一になる時間を測定した。
この均一化時間の測定は伝導度計の出力をレコーダーに
書かせ、このデータを解析した。尚、この時の攪拌機の
回転数は750rpm、温度は60℃であった。
(Example of claim 3) Using the reactor described in Japanese Patent Publication No. 55-10545 of 500 liter scale, the addition position of the chemical and the homogenization time of the chemical were compared. (Comparative Example-3) 400 liters of distilled water was placed in a 500 liter reaction tank 9 and the conductivity was set to 50000 μs / c.
2 liters of an aqueous KNO 3 solution of m was added at an addition time of 5 seconds, and the time taken for the conductivity in the reaction tank to become uniform was measured by a conductivity meter provided at a predetermined position in the reaction tank 9.
For the measurement of this homogenization time, the output of the conductivity meter was written on a recorder and this data was analyzed. At this time, the rotation number of the stirrer was 750 rpm and the temperature was 60 ° C.

【0028】(実施例−4)図3に示すように本発明の
反応タンク9内の反応室12に通常硝酸銀水溶液3,ハ
ロゲン塩水溶液4の添加管10,11とは別に、新しく
この伝導度50000μs/cmのKNO3 水溶液を添
加する添加管13を設け、KNO3 水溶液2リットルを
コロイド水溶液取入口14の近辺の添加口より添加時間
5秒間で添加した。この結果についても、上記比較例−
3と同様の方法により均一化時間の測定を行った。比較
例−3と実施例−4の測定結果を表−3に示す。
(Embodiment 4) As shown in FIG. 3, in addition to the addition pipes 10 and 11 for the ordinary silver nitrate aqueous solution 3 and the halogen salt aqueous solution 4, the conductivity is newly provided in the reaction chamber 12 in the reaction tank 9 of the present invention. An addition pipe 13 for adding a KNO 3 aqueous solution of 50,000 μs / cm was provided, and 2 liters of the KNO 3 aqueous solution was added from an addition port near the colloidal aqueous solution inlet 14 at an addition time of 5 seconds. As for this result, the above-mentioned Comparative Example-
The homogenization time was measured by the same method as in 3. Table 3 shows the measurement results of Comparative Example-3 and Example-4.

【0029】[0029]

【表3】 [Table 3]

【0030】以上の結果から明らかな様に反応タンク9
に添加した薬品が均一になる時間は本発明の反応タンク
内に設けた反応室12のコロイド水溶液の取入口近辺に
添加する事が好ましい。
As is clear from the above results, the reaction tank 9
It is preferable to add the chemicals added in the vicinity of the inlet of the colloidal aqueous solution in the reaction chamber 12 provided in the reaction tank of the present invention for a uniform time.

【0031】(請求項4の実施例)図6において次の液
を使用し、検討を行った。 先ず、既に述べた攪拌機を有する混合器12dに5液を
3リットル/minの流量で流している系に1液、2液
を添加流量1リットル/min、反応室12dの攪拌機
3000rpmで攪拌し、ここで形成された微粒子を次
の時間の間、次の反応タンク9bに添加した。 (実施例−5)反応タンク外の混合器12dで作った粒
子を10分間、反応タンク9bに受液した後、反応液
3,4を添加流量500cc/minで60分間反応室
12bに添加した。この添加時の反応装置(9b,12
b)としては特公昭55−10545に記載される装置
を使用した。この時の反応装置の攪拌装置回転数は60
0rpmとした。 (実施例−6)反応タンク外の混合器12dで作った粒
子を5分間、反応タンク9bに受液した後、反応液3,
4を添加流量250cc/minで60分間反応室12
bに添加した。尚、この時の反応装置(9b,12b)
は上記と同一のものを使用した。尚、この時の反応タン
クの攪拌機8bの条件の設定に於いては、アレック電子
(社)製の三次元流速計を使用し、吐出時の流速を測定
し、実施例−5の条件とタンク9b内の平均滞留時間が
一定になる条件に設定して反応を行わせた。この様にし
て得た粒子を比較する為、電子顕微鏡写真を取り、平均
サイズ、標準偏差を求めた。この結果を表4に示す。
(Example of claim 4) The following solutions were used in FIG. First, 1 liquid and 2 liquids are added to a system in which 5 liquids are flown at a flow rate of 3 liters / min in a mixer 12d having an agitator described above, and the addition flow rate is 1 liter / min, and the mixture is stirred with a stirrer 3000 rpm in the reaction chamber 12d, The fine particles formed here were added to the next reaction tank 9b during the next time. (Example-5) After the particles made in the mixer 12d outside the reaction tank were received in the reaction tank 9b for 10 minutes, the reaction solutions 3 and 4 were added to the reaction chamber 12b at an addition flow rate of 500 cc / min for 60 minutes. . Reactor at the time of this addition (9b, 12
As b), the device described in JP-B-55-10545 was used. At this time, the rotation speed of the stirring device of the reaction device is 60
It was set to 0 rpm. (Example-6) After the particles made in the mixer 12d outside the reaction tank were received in the reaction tank 9b for 5 minutes, the reaction solution 3,
4 for 60 minutes at a flow rate of 250 cc / min in the reaction chamber 12
b. In addition, the reaction device (9b, 12b) at this time
Used the same as above. In setting the conditions of the agitator 8b of the reaction tank at this time, a three-dimensional velocity meter manufactured by Alec Electronics Co., Ltd. was used to measure the flow velocity at the time of discharge, and the conditions and tanks of Example-5 were used. The reaction was carried out under the condition that the average residence time in 9b was constant. In order to compare the particles thus obtained, electron micrographs were taken and the average size and standard deviation were determined. Table 4 shows the results.

【0032】[0032]

【表4】 [Table 4]

【0033】以上の結果より、仕込量を半分にしたにも
拘らず、結果として得られた粒子は同等のものであっ
た。
From the above results, although the charged amount was halved, the resulting particles were equivalent.

【0034】[0034]

【発明の効果】本発明の写真感光材料の粒子形成方法に
より、 (a) 従来の反応装置ではスケールダウンした場合、
最低攪拌量の制約で達成出来ない様な低液量での仕込
が、小さい核形成用装置を設けることによって発泡なし
で可能になった。 (b) Ag+ ,X- 添加前の液量の制約が、小さい核
形成用の反応タンクを設けることによって可能となり、
種々の結晶を作る処方設計の自由度を上げる事ができ
た。 (c) トータルの硝酸銀量に対する、核形成、そして
粒子成長に対する分配比率を自由に設計出来、処方設計
の自由度を上げる事が出来た。 (d) 核形成条件に於いて、泡の問題が軽減出来て、
それによって高速回転が可能になり、微粒子核形成条件
の拡大が可能になった。攪拌機の回転数条件の設定が比
較的自由に出来る様になった。この結果、回転数を変更
する中で、従来にない性能(サイズ分布など)の核形成
の可能性が広まった。 (e) 又、同一反応タンクでもあるレンジ幅の中では
スケール可変の可能性を見付け出せた。(この様な傾向
はタンクスケールが小さい程有利であり、タンク内のデ
ッドスペースの大きさ(容積)に依存しているものと思
われる。
According to the method for forming particles of a photographic light-sensitive material of the present invention, (a) when a conventional reactor is scaled down,
A small amount of liquid, which cannot be achieved due to the restriction of the minimum stirring amount, can be prepared without foaming by providing a small nucleation device. (B) The restriction of the amount of liquid before addition of Ag + , X becomes possible by providing a small reaction tank for nucleation,
We were able to increase the degree of freedom in prescription design to make various crystals. (C) The distribution ratio for nucleation and grain growth with respect to the total amount of silver nitrate could be freely designed, and the degree of freedom in prescription design could be increased. (D) In the nucleation condition, the problem of bubbles can be reduced,
This enabled high-speed rotation and expanded the conditions for forming fine particle nuclei. The rotation speed condition of the stirrer can be set relatively freely. As a result, the possibility of nucleation with unprecedented performance (size distribution, etc.) has increased as the number of revolutions is changed. (E) Further, it was possible to find the possibility of changing the scale within the range width of the same reaction tank. (This tendency is more advantageous as the tank scale is smaller, and seems to depend on the size (volume) of the dead space in the tank.

【0035】(請求項3の特別な効果)として、 a) 反応タンクの中の反応室内に薬液をコロイド水溶
液取入口の近辺の添加口によって添加する事により反応
タンク内に添加薬液が均一に広まる時間を大幅に短縮出
来た。 b) 実際の乳剤仕込に於いて、添加薬液に瞬時混合が
促進された事により、結晶構造のコントロール性が向上
した。 c) 結晶構造コントロール性が向上すると共に従来出
来なかった薬液を添加し、サイズ、形状コントロールを
行なえる可能性が出てきた。 (請求項4の特別な効果)としてハロゲン化銀、コロイ
ド銀の仕込に於いて、バッチ生産方式を採用した場合に
スケール変更を行うと写真性能が変化するトラブルが発
生するが、本発明ではこの様なトラブルの原因である添
加開始時の液量が少ない場合の泡によるトラブル、及
び、攪拌混合効率の変化による核発生数の変化、形状変
化等を防止する為、この部分の反応を反応タンクの外に
設けた混合器だけでスケール変化に影響無く行う事を可
能にしたものである。
As a special effect of claim 3, a) by adding a chemical solution into the reaction chamber of the reaction tank through an addition port near the colloid aqueous solution intake port, the additive chemical solution is uniformly spread in the reaction tank. I was able to save a lot of time. b) In the actual preparation of the emulsion, the instantaneous mixing in the additive chemical solution was promoted, so that the controllability of the crystal structure was improved. c) The crystal structure controllability is improved, and there is a possibility of controlling the size and shape by adding a chemical solution that could not be conventionally achieved. As a (special effect of claim 4), in the preparation of silver halide and colloidal silver, if a batch production method is adopted and the scale is changed, a problem that photographic performance changes occurs. In order to prevent problems such as bubbles caused by a small amount of liquid at the start of addition, changes in the number of nuclei generated due to changes in stirring and mixing efficiency, and changes in shape, which are the cause of such problems, the reaction in this part is performed in a reaction tank. It is possible to carry out without affecting the scale change only by the mixer provided outside the.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の写真感光材料の粒子形成方法の第1の
実施態様を説明するフローシート
FIG. 1 is a flow sheet illustrating a first embodiment of a method for forming particles of a photographic light-sensitive material of the present invention.

【図2】本発明の写真感光材料の粒子形成方法の第2の
実施態様を説明するフローシート
FIG. 2 is a flow sheet illustrating a second embodiment of the method for forming particles of a photographic light-sensitive material of the present invention.

【図3】本発明の主反応液以外の薬液の添加方法を説明
するフローシート
FIG. 3 is a flow sheet illustrating a method for adding a chemical liquid other than the main reaction liquid of the present invention.

【図4】本発明を実施する反応タンクの1実施例の縦断
面図(A)、反応室の縦断面図(B)
FIG. 4 is a vertical sectional view (A) of one embodiment of a reaction tank for carrying out the present invention, and a vertical sectional view (B) of a reaction chamber.

【図5】本発明を実施する反応タンクの他の実施例の縦
断面図(A)、反応室の縦断面図(B)
FIG. 5 is a vertical sectional view (A) of another embodiment of the reaction tank for carrying out the present invention, and a vertical sectional view (B) of the reaction chamber.

【図6】本発明の写真感光材料の粒子形成方法の反応タ
ンク外に混合器を設ける方法の実施態様を説明するフロ
ーシート
FIG. 6 is a flow sheet illustrating an embodiment of a method of providing a mixer outside a reaction tank in the method of forming particles of a photographic light-sensitive material of the present invention.

【図7】本発明を実施する反応装置の基本となる反応装
置の側断面図
FIG. 7 is a side cross-sectional view of a reactor which is the basis of the reactor for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 銀塩水溶液 2 ハロゲン塩水溶液 3 銀塩水溶液 4 ハロゲン塩水溶液 5,5a,5b ゼラチン水溶液 6 その他の薬品 7a,7b,7c,7d 流量制御器(流量検出計+ポ
ンプ) 8,8a,8b,8c 攪拌機 81 第1の攪拌手段 82 第2の攪拌手段 9,9a,9b,9c 反応タンク 10,10a,10b,10c 銀塩水溶液添加管 11,11a,11b,11c ハロゲン塩添加管 12,12a,12b,12c 反応室 12d 反応タンク外に設けた混合器 13 その他の薬品の添加管 14 コロイド水溶液の取入口
1 Silver salt aqueous solution 2 Halogen salt aqueous solution 3 Silver salt aqueous solution 4 Halogen salt aqueous solution 5, 5a, 5b Gelatin aqueous solution 6 Other chemicals 7a, 7b, 7c, 7d Flow rate controller (flow rate detector + pump) 8, 8a, 8b, 8c Stirrer 8 1 First stirring means 8 2 Second stirring means 9, 9a, 9b, 9c Reaction tanks 10, 10a, 10b, 10c Silver salt aqueous solution addition pipes 11, 11a, 11b, 11c Halogen salt addition pipes 12, 12a, 12b, 12c Reaction chamber 12d Mixer provided outside reaction tank 13 Addition pipe for other chemicals 14 Intake of aqueous colloid solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関野 栄治 神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiji Sekino 210 Nakanuma, Minamiashigara City, Kanagawa Prefecture Fuji Photo Film Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ゼラチン溶液を満たした反応タンクの中
に攪拌機を有する反応室を備え、該反応室への銀塩水溶
液とハロゲン塩水溶液の添加口を有する装置を用い、前
記反応室内においてハロゲン化銀の核形成を行い、前記
反応タンク内において粒子成長を行う写真感光材料の粒
子形成方法において、相似形の大小二つの前記装置を用
い、小さい方の装置を主に核形成を行う部分として、大
きい方の装置を主として粒子成長を行う部分として直列
に用い、前記小さい方の装置で形成されたハロゲン化銀
結晶核を前記大きい方の装置に移し、更に前記大きい方
の装置においても前記粒子成長に必要なハロゲン化銀結
晶核を形成させ、該結晶核を前記小さい方の装置より移
された核粒子上に成長させることを特徴とする写真感光
材料の粒子形成方法。
1. Halogenation in the reaction chamber using a device having a reaction chamber having a stirrer in a reaction tank filled with a gelatin solution and having an addition port for the silver salt aqueous solution and the halogen salt aqueous solution to the reaction chamber. In the method for forming particles of a photographic light-sensitive material, which performs nucleation of silver and grows particles in the reaction tank, two devices of similar size, large and small, are used, and the smaller device is mainly used for nucleation. The larger device is mainly used in series as a part for grain growth, the silver halide crystal nuclei formed in the smaller device are transferred to the larger device, and the grain growth is performed in the larger device. Forming a silver halide crystal nucleus necessary for the above, and growing the crystal nucleus on the core particle transferred from the smaller device. .
【請求項2】 ゼラチン溶液を満たした反応タンクの中
に攪拌機を有する反応室を備え、該反応室への銀塩水溶
液とハロゲン塩水溶液の添加口を有する装置を用い、前
記反応室内においてハロゲン化銀の核形成を行い、前記
反応タンク内において粒子成長を行う写真感光材料の粒
子形成方法において、前記反応装置の容量が、基礎とな
る反応装置の容量の整数分の1で幾何学的に相似な2ケ
以上の前記反応装置を用い、前記反応装置の動作機能も
容量比に比例して行うことを特徴とする写真感光材料の
粒子形成方法。
2. A halogenation in the reaction chamber using a device having a reaction chamber having a stirrer in a reaction tank filled with gelatin solution and having an addition port for the silver salt aqueous solution and the halogen salt aqueous solution to the reaction chamber. In the method for forming particles of a photographic light-sensitive material, in which nucleation of silver is carried out and particles are grown in the reaction tank, the capacity of the reactor is geometrically similar to an integer fraction of the capacity of the base reactor. A method for forming particles of a photographic light-sensitive material, characterized in that two or more of the reactors are used, and the operation function of the reactors is also performed in proportion to the capacity ratio.
【請求項3】 ゼラチン溶液を満たした反応タンクの中
に攪拌機を有する反応室を備え、街反応室への銀塩水溶
液とハロゲン塩水溶液の添加口を有する装置を用い、前
記反応室内においてハロゲン化銀の核形成を行い、前記
反応タンク内において粒子成長を行うハロゲン化銀乳剤
粒子の形成方法において、 銀塩水溶液とハロゲン塩水溶液以外の薬液を反応室内に
添加することを特徴とするハロゲン化銀乳剤粒子の形成
方法。
3. Halogenation in the reaction chamber using a device having a reaction chamber having a stirrer in a reaction tank filled with gelatin solution and having an addition port for the silver salt aqueous solution and the halogen salt aqueous solution to the town reaction chamber. In the method for forming silver halide emulsion grains for nucleating silver and growing the grains in the reaction tank, a silver halide aqueous solution and a chemical solution other than the halogen salt aqueous solution are added to the reaction chamber. Method of forming emulsion grains.
【請求項4】 ゼラチン溶液を満たした反応タンクの中
に攪拌機を有する反応室を備え、該反応室への銀塩水溶
液とハロゲン塩水溶液の添加口を有する装置を用い、前
記反応室内においてハロゲン化銀の核形成を行い、前記
反応タンク内において粒子成長を行うハロゲン化銀乳剤
粒子の形成方法において、前記反応の主に核形成を行な
う反応の部分を前記反応タンクの外に設けた混合器内で
行ない、この液を前記反応タンク内に導入後、粒子成長
を行なうことを特徴とするハロゲン化銀乳剤粒子の形成
方法。
4. Halogenation in the reaction chamber using a device having a reaction chamber having a stirrer in a reaction tank filled with a gelatin solution and having an addition port for the silver salt aqueous solution and the halogen salt aqueous solution to the reaction chamber. In a method of forming silver halide emulsion grains in which silver nucleation is carried out and grain growth is carried out in the reaction tank, in a mixer in which a reaction part mainly performing nucleation of the reaction is provided outside the reaction tank. The method for forming silver halide emulsion grains is characterized in that the grain growth is carried out after introducing this solution into the reaction tank.
【請求項5】 ゼラチン溶液を満たした反応タンクの中
に攪拌機を有する反応室を供え、前記反応室への銀塩水
溶液とハロゲン塩水溶液の添加口を有する装置を用い前
記反応室内においてハロゲン化銀の核形成を行い、前記
反応タンク内において粒子成長を行うハロゲン化銀乳剤
粒子の形成装置において、銀塩水溶液とハロゲン塩水溶
液以外の薬液を反応室内へのコロイド水溶液の取入口近
辺に供給口を設けたことを特徴とするハロゲン銀乳剤粒
子の形成装置。
5. A silver halide is provided in the reaction chamber by using a device provided with a reaction chamber having a stirrer in a reaction tank filled with gelatin solution and having an addition port for the aqueous solution of silver salt and aqueous solution of halogen salt to the reaction chamber. In the apparatus for forming silver halide emulsion grains for performing nucleation of and performing grain growth in the reaction tank, a chemical solution other than the silver salt aqueous solution and the halogen salt aqueous solution is provided with a supply port near the inlet of the colloidal aqueous solution into the reaction chamber. An apparatus for forming a silver halide emulsion grain characterized by being provided.
JP7719396A 1995-06-05 1996-03-29 Formation of particle of photographic sensitive material and device Pending JPH09152672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7719396A JPH09152672A (en) 1995-06-05 1996-03-29 Formation of particle of photographic sensitive material and device

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP13807595 1995-06-05
JP24470195 1995-09-22
JP7-138075 1995-09-29
JP25347195 1995-09-29
JP7-253471 1995-09-29
JP7-244701 1995-09-29
JP7719396A JPH09152672A (en) 1995-06-05 1996-03-29 Formation of particle of photographic sensitive material and device

Publications (1)

Publication Number Publication Date
JPH09152672A true JPH09152672A (en) 1997-06-10

Family

ID=27466020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7719396A Pending JPH09152672A (en) 1995-06-05 1996-03-29 Formation of particle of photographic sensitive material and device

Country Status (1)

Country Link
JP (1) JPH09152672A (en)

Similar Documents

Publication Publication Date Title
US4289733A (en) Apparatus for making silver halide grains
US6422736B1 (en) Scalable impeller apparatus for preparing silver halide grains
CA1115585A (en) Method and apparatus suitable for the preparation of agx-emulsions
JP2003103152A (en) Method and device for mixing liquid or solution
US4309501A (en) Crystallization process
US6645713B2 (en) Method of manufacturing silver halide emulsions and apparatus thereof
EP0374954B1 (en) Control process and apparatus for the formation of silver halide grains
US3782954A (en) Method for the uniform preparation of silver halide grains
JP3165923B2 (en) Method for producing poorly water-soluble salt crystal particles and apparatus for producing the same
US6513965B2 (en) Apparatus for manufacturing photographic emulsions
JPH04292416A (en) Plug flow modulus for nucleation of halogenated silver crystal
US3785777A (en) Apparatus for the uniform preparation of silver halide grains
JPH02167817A (en) Apparatus for forming silver halide particle
JPH09152672A (en) Formation of particle of photographic sensitive material and device
JPH02167818A (en) Production of silver halide particle
JP2000292878A (en) Formation of silver halide grain
EP0729062B1 (en) Sonic micro reaction zones in silver halide emulsion precipitation process
JP3575642B2 (en) Method and apparatus for producing silver halide emulsion
EP0374853A1 (en) Process of producing silver halide grains
JP2001286745A (en) Method for mixing liquid or solution and device therefor
JPH0934043A (en) Production of silver halide emulsion and apparatus therefor
JPH09146197A (en) Production of photographing emulsion and apparatus therefor
JPH07219092A (en) Device for preparing silver halide photographic emulsion
JP2003107608A (en) Method for producing silver halide emulsion and equipment therefor
JP4248297B2 (en) Method for producing a silver halide photographic emulsion

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040128

A521 Written amendment

Effective date: 20040325

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040512