JP3558019B2 - 還元剤供給装置の異常検出装置 - Google Patents

還元剤供給装置の異常検出装置 Download PDF

Info

Publication number
JP3558019B2
JP3558019B2 JP2000223049A JP2000223049A JP3558019B2 JP 3558019 B2 JP3558019 B2 JP 3558019B2 JP 2000223049 A JP2000223049 A JP 2000223049A JP 2000223049 A JP2000223049 A JP 2000223049A JP 3558019 B2 JP3558019 B2 JP 3558019B2
Authority
JP
Japan
Prior art keywords
reducing agent
pressure
agent supply
exhaust
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000223049A
Other languages
English (en)
Other versions
JP2002038940A (ja
Inventor
正明 小林
広樹 松岡
富久 小田
泰生 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000223049A priority Critical patent/JP3558019B2/ja
Priority to JP2001010663A priority patent/JP3473583B2/ja
Priority to EP01117847A priority patent/EP1176292B1/en
Priority to DE60122984T priority patent/DE60122984T2/de
Priority to KR10-2001-0044368A priority patent/KR100446843B1/ko
Publication of JP2002038940A publication Critical patent/JP2002038940A/ja
Application granted granted Critical
Publication of JP3558019B2 publication Critical patent/JP3558019B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/121
    • Y02T10/144
    • Y02T10/47

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気通路に配置された排気浄化触媒へ還元剤を供給することにより排気中に含まれる窒素酸化物(NOx)を浄化する還元剤供給装置の異常を検出する技術に関する。
【0002】
【従来の技術】
近年、自動車などに搭載される内燃機関、特にディーゼル機関や希薄燃焼式ガソリン機関のように酸素過剰状態の混合気(所謂、リーン空燃比の混合気)によって運転される内燃機関では、排気中の窒素酸化物(NOx)量を低減させるべく様々な技術が提案されている。
【0003】
このような技術の一つとしては、選択還元型NOx触媒や吸蔵還元型NOx触媒などのリーンNOx触媒を内燃機関の排気通路に配置する技術が知られている。
【0004】
選択還元型NOx触媒は、酸素過剰の雰囲気下で炭化水素(HC)が存在するときに窒素酸化物(NOx)を還元または分解する触媒である。
【0005】
このような選択還元型NOx触媒を利用して窒素酸化物(NOx)を浄化する場合は、選択還元型NOx触媒へ適量の炭化水素(HC)等の還元剤を供給する必要があるが、内燃機関がリーン空燃比で運転されているときは排気中の炭化水素(HC)量が極めて少なくなるため、内燃機関がリーン空燃比で運転されているときに排気中の窒素酸化物(NOx)を浄化するには、選択還元型NOx触媒に対して炭化水素(HC)などの還元剤を別途供給する必要がある。
一方、吸蔵還元型NOx触媒は、該吸蔵還元型NOx触媒に流入する排気の空燃比がリーン空燃比のときは排気中の窒素酸化物(NOx)を吸蔵し、該吸蔵還元型NOx触媒に流入する排気の酸素濃度が低下し且つ還元剤が存在するときは吸蔵していた窒素酸化物(NOx)を放出しつつ還元する触媒である。
【0006】
このような吸蔵還元型NOx触媒が吸蔵可能な窒素酸化物(NOx)量には限りがあるため、内燃機関がリーン空燃比で長期間運転されると、吸蔵還元型NOx触媒のNOx吸蔵能力が飽和し、排気中に含まれる窒素酸化物(NOx)が浄化されずに大気中へ放出されることになる。従って、吸蔵還元型NOx触媒を用いて窒素酸化物(NOx)の浄化を行う場合は、吸蔵還元型NOx触媒のNOx吸蔵能力が飽和する前に、該吸蔵還元型NOx触媒に流入する排気の空燃比をリッチ空燃比として排気中の酸素濃度を低下させるとともに排気中に含まれる炭化水素(HC)量を増加させる必要がある。
【0007】
上述したようなリーンNOx触媒を利用して排気中の窒素酸化物(NOx)を浄化する具体的な技術としては、例えば、特開平11−93641号公報に記載された「内燃機関の排気浄化装置」が提案されている。
【0008】
前記の特開平11−93641号公報に記載された内燃機関の排気浄化装置は、その途中で第1排気通路と第2排気通路に分岐された排気通路と、第1排気通路に設けられ吸蔵還元型NOx触媒を収容した第1触媒コンバータと、第2排気通路に設けられ選択還元型NOx触媒を収容した第2触媒コンバータと、第1排気管と第2排気管との分岐部に設けられ、排気温度が高温から低温へ変化しているときは第1排気通路を遮断するとともに排気温度が低温から高温へ変化しているときは第2排気通路を遮断する切換弁と、第1触媒コンバータへ還元剤を供給する還元剤供給手段と、を備えている。
【0009】
このような内燃機関の排気浄化装置は、排気が高温から低温に変化しているときのように選択還元型NOx触媒のNOx浄化率が吸蔵還元型NOx触媒より高くなるときは、排気が第2排気通路を流れるよう切換弁を制御するとともに、膨張行程もしくは排気行程で副次的に燃料噴射を行わせるべく内燃機関を制御し、排気が高温から低温に変化している以外のときのように吸蔵還元型NOx触媒のNOx浄化率が選択還元型NOx触媒より高くなるときは、排気が第1排気通路を流れるよう切換弁を制御するとともに、吸蔵還元型NOx触媒へ還元剤が添加されるよう還元剤添加手段を制御することにより、選択還元型NOx触媒と吸蔵還元型NOx触媒とをそれぞれの特性に応じて使い分け、以て窒素酸化物(NOx)の浄化率を向上させようとするものである。
【0010】
尚、上記した公報では、還元剤供給手段として、第1触媒コンバータに取り付けられた噴射ノズルと、燃料ポンプから吐出された燃料を蓄圧した上で燃料噴射弁へ分配するための蓄圧室から一部の燃料を噴射ノズルへ導く還元剤配管と、還元剤配管の途中に設けられて該還元剤配管を流れる燃料の流量を調整する還元剤弁と、を備えた機構が開示されている。
【0011】
【発明が解決しようとする課題】
ところで、前述した特開平11−93641号公報に記載されたような従来の技術では、リーンNOx触媒へ還元剤を供給する機構における燃料の漏出を検出することも重要である。
【0012】
例えば、還元剤供給機構から排気管へ燃料が漏出すると、リーンNOx 触媒へ過剰な量の燃料が供給され、リーンNOx 触媒において過剰な量の燃料が燃焼し、若しくは燃料の一部がリーンNOx 触媒で浄化されずに大気中に放出されることが想定され、その結果、リーンNOx触媒の過熱による劣化や、破損、若しくは排気エミッションの悪化が誘発される虞れがある。
【0013】
また、還元剤供給機構から排気管以外へ燃料が漏出すると、リーンNOx 触媒に対して所望量の燃料を供給することが困難となり、リーンNOx触媒における窒素酸化物(NOx)の浄化率が低下し、以て排気エミッションが悪化する虞れがある。
【0014】
本発明は、上述したような種々の事情に鑑みてなされたものであり、内燃機関の排気通路に設けられたリーンNOx触媒へ還元剤を供給する還元剤供給装置における還元剤の漏出を検出することができる技術を提供することにより、還元剤の漏出に起因したリーンNOx 触媒の劣化や破損、または排気エミッションの悪化を防止することを目的とする。
【0015】
【課題を解決するための手段】
本発明は、上記した課題を解決するために以下のような手段を採用した。
【0016】
すなわち、本発明に係る還元剤供給装置の異常検出装置は、
内燃機関の排気通路に設けられ還元剤の存在下で排気中の有害ガス成分を浄化する排気浄化触媒と、
前記排気浄化触媒より上流の排気通路へ還元剤を供給する還元剤供給機構と、
前記還元剤供給機構における還元剤の圧力を検出する圧力検出手段と、
前記圧力検出手段で検出された圧力に基づいて前記還元剤供給機構の異常を判定する異常判定手段と、
を備えたことを特徴としている。
【0017】
このように構成された還元剤供給装置の異常検出装置では、排気浄化触媒へ還元剤を供給するときに、還元剤供給機構が排気浄化触媒より上流の排気通路へ還元剤を供給する。
【0018】
排気通路に供給された還元剤は、排気通路の上流から流れてくる排気とともに排気浄化触媒へ流入する。これにより、排気浄化触媒は、還元剤を利用して排気中の有害ガス成分を還元及び浄化することになる。
【0019】
一方、圧力検出手段は、還元剤供給機構における還元剤の圧力を検出する。その際、還元剤供給機構において還元剤が漏出していると、圧力検出手段によって検出される圧力は、還元剤供給機構において還元剤が漏出していないときの圧力と異なる値となる。
【0020】
従って、異常判定手段は、圧力検出手段によって検出された圧力に基づいて還元剤供給機構の異常を判定することが可能となる。
【0021】
尚、還元剤供給機構において還元剤の漏出が発生していないときであっても、還元剤の温度等によって圧力が変化するため、例えば、異常判定手段は、圧力検出手段によって検出された圧力が所定の範囲から外れたとき、より具体的には圧力検出手段によって検出された圧力が所定の下限値を下回ったときに、還元剤供給機構が異常であると判定するようにしてもよい。
【0022】
また、本発明に係る還元剤供給機構は、
還元剤を所定の圧力で吐出する還元剤吐出部と、
排気浄化触媒より上流の排気通路に設けられ排気通路を流れる排気中に還元剤を添加する還元剤添加部と、
還元剤吐出部から吐出された還元剤を還元剤添加部へ導く還元剤供給路と、
を備えるようにしてもよい。
【0023】
また、本発明に係る還元剤供給装置の異常検出装置において、還元剤供給機構は、
還元剤を所定の圧力で吐出する還元剤吐出部と、
前記排気浄化触媒より上流の排気通路に設けられ前記排気通路を流れる排気中に還元剤を添加する還元剤添加部と、
前記還元剤吐出部から吐出された還元剤を前記還元剤添加部へ導く還元剤供給路と、
前記還元剤吐出部から前記還元剤供給路への還元剤の流れを遮断する遮断部と、
を備え、
前記還元剤圧力検出手段は、前記遮断部より下流の前記還元剤供給路内の圧力を検出し、
前記異常判定手段は、前記遮断部が前記還元剤供給路の還元剤の流れを遮断したときに前記圧力検出手段によって検出された圧力の変化に基づいて前記還元剤供給機構の異常を判定するようにしてもよい。
【0024】
この場合、異常判定手段は、還元剤供給機構における遮断部から還元剤添加部に至る経路が閉塞されたとき、言い換えれば、還元剤供給機構内に閉塞された空間が形成されたときに、その閉空間の圧力に基づいて還元剤供給機構の異常を判定することになる。
【0025】
例えば、前記閉空間内から外部へ還元剤が漏出している場合は、閉空間内の圧力が低下し、前記閉空間の外部から該閉空間内へ還元剤が漏出している場合、すなわち前記遮断部に還元剤の漏れが発生している場合は、閉空間内の圧力が上昇する。
【0026】
従って、異常判定手段は、前記閉空間の圧力の低下又は上昇により還元剤供給機構における還元剤の漏出を判定することが可能となる。
【0027】
但し、還元剤の圧力は、温度等の要因によって変化するため、異常判定手段は、前記閉空間の圧力の変化量が所定量を越えると、還元剤供給機構が異常であると判定するようにしてもよい。
【0028】
また、内燃機関の運転が停止された際に遮断部が還元剤吐出部から還元剤供給路への還元剤の流れを遮断して閉空間を形成しておき、圧力検出手段が内燃機関の運転停止時に前記閉空間の圧力を検出するとともに内燃機関の再始動時に前記閉空間の圧力を再度検出し、異常判定手段が内燃機関の運転停止時から再始動時までの期間における前記閉空間の圧力変化量を求め、その圧力変化量が所定量を越えていると還元剤供給機構が異常であると判定するようにしてもよい。
【0029】
この場合、内燃機関の運転停止時から再始動時までの比較的長い期間における閉空間の圧力変化に基づいて還元剤の漏出が判定されることになるため、還元剤の微量の漏出も検出し易くなる。
【0030】
本発明において、内燃機関としては、筒内直接噴射式のリーンバーンガソリン機関やディーゼル機関等の希薄燃焼式内燃機関を例示することができる。
【0031】
本発明において、排気浄化触媒としては、吸蔵還元型NOx触媒や選択還元型NOx触媒等を例示することができる。
【0032】
本発明において、還元剤としては、軽油、ガソリンなどの炭化水素(HC)を含むものを例示することができる。
【0033】
本発明において、還元剤供給機構の還元剤吐出部としては、内燃機関の出力軸(クランクシャフト)の回転トルクを駆動源とする燃料ポンプを例示することができる。
【0034】
【発明の実施の形態】
以下、本発明に係る還元剤供給装置の異常検出装置の具体的な実施態様について図面に基づいて説明する。ここでは、本発明に係る還元剤供給装置の異常検出装置を車両駆動用のディーゼル機関に適用した場合を例に挙げて説明する。
【0035】
<実施の形態1>
先ず、本発明に係る還元剤供給装置の異常検出装置の第1の実施態様について図1〜図5に基づいて説明する。
【0036】
図1は、本発明に係る還元剤供給装置の異常検出装置を適用する内燃機関とその吸排気系の概略構成を示す図である。
【0037】
図1に示す内燃機関1は、4つの気筒2を有する水冷式の4ストローク・サイクル・ディーゼル機関である。
【0038】
内燃機関1は、各気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。各燃料噴射弁3は、燃料を所定圧まで蓄圧する蓄圧室(コモンレール)4と接続されている。このコモンレール4には、該コモンレール4内の燃料の圧力に対応した電気信号を出力するコモンレール圧センサ4aが取り付けられている。
【0039】
前記コモンレール4は、燃料供給管5を介して燃料ポンプ6と連通している。この燃料ポンプ6は、内燃機関1の出力軸(クランクシャフト)の回転トルクを駆動源として作動するポンプであり、該燃料ポンプ6の入力軸に取り付けられたポンププーリ6が内燃機関1の出力軸(クランクシャフト)に取り付けられたクランクプーリ1aとベルト7を介して連結されている。
【0040】
このように構成された燃料噴射系では、クランクシャフトの回転トルクが燃料ポンプ6の入力軸へ伝達されると、燃料ポンプ6は、クランクシャフトから該燃料ポンプ6の入力軸へ伝達された回転トルクに応じた圧力で燃料を吐出する。
【0041】
前記燃料ポンプ6から吐出された燃料は、燃料供給管5を介してコモンレール4へ供給され、コモンレール4にて所定圧まで蓄圧されて各気筒2の燃料噴射弁3へ分配される。そして、燃料噴射弁3に駆動電流が印加されると、燃料噴射弁3が開弁し、その結果、燃料噴射弁3から気筒2内へ燃料が噴射される。
【0042】
次に、内燃機関1には、吸気枝管8が接続されており、吸気枝管8の各枝管は、各気筒2の燃焼室と図示しない吸気ポートを介して連通している。
【0043】
前記吸気枝管8は、吸気管9に接続され、この吸気管9は、エアクリーナボックス10に接続されている。前記エアクリーナボックス10より下流の吸気管9には、該吸気管9内を流れる吸気の質量に対応した電気信号を出力するエアフローメータ11と、該吸気管9内を流れる吸気の温度に対応した電気信号を出力する吸気温度センサ12とが取り付けられている。
【0044】
前記吸気管9における吸気枝管8の直上流に位置する部位には、該吸気管9内を流れる吸気の流量を調節する吸気絞り弁13が設けられている。この吸気絞り弁13には、ステッパモータ等で構成されて該吸気絞り弁13を開閉駆動する吸気絞り用アクチュエータ14が取り付けられている。
【0045】
前記エアフローメータ11と前記吸気絞り弁13との間に位置する吸気管9には、排気の熱エネルギを駆動源として作動する遠心過給機(ターボチャージャ)15のコンプレッサハウジング15aが設けられ、コンプレッサハウジング15aより下流の吸気管9には、前記コンプレッサハウジング15a内で圧縮されて高温となった吸気を冷却するためのインタークーラ16が設けられている。
【0046】
このように構成された吸気系では、エアクリーナボックス10に流入した吸気は、該エアクリーナボックス10内の図示しないエアクリーナによって吸気中の塵や埃等が除去された後、吸気管9を介してコンプレッサハウジング15aに流入する。
【0047】
コンプレッサハウジング15aに流入した吸気は、該コンプレッサハウジング15aに内装されたコンプレッサホイールの回転によって圧縮される。前記コンプレッサハウジング15a内で圧縮されて高温となった吸気は、インタークーラ16にて冷却された後、必要に応じて吸気絞り弁13によって流量を調節されて吸気枝管8に流入する。吸気枝管8に流入した吸気は、各枝管を介して各気筒2の燃焼室へ分配され、各気筒2の燃料噴射弁3から噴射された燃料を着火源として燃焼される。
【0048】
一方、内燃機関1には、排気枝管18が接続され、排気枝管18の各枝管が図示しない排気ポートを介して各気筒2の燃焼室と連通している。
【0049】
前記排気枝管18は、前記遠心過給機15のタービンハウジング15bと接続されている。前記タービンハウジング15bは、排気管19と接続され、この排気管19は、下流にて図示しないマフラーに接続されている。
【0050】
前記排気管19の途中には、排気中の有害ガス成分を浄化するための排気浄化触媒20が配置されている。排気浄化触媒20より下流の排気管19には、該排気管19内を流れる排気の空燃比に対応した電気信号を出力する空燃比センサ23と、該排気管19内を流れる排気の温度に対応した電気信号を出力する排気温度センサ24とが取り付けられている。
【0051】
前記した空燃比センサ23及び排気温度センサ24より下流の排気管19には、該排気管19内を流れる排気の流量を調節する排気絞り弁21が設けられている。この排気絞り弁21には、ステッパモータ等で構成されて該排気絞り弁21を開閉駆動する排気絞り用アクチュエータ22が取り付けられている。
【0052】
このように構成された排気系では、内燃機関1の各気筒2で燃焼された混合気(既燃ガス)が排気ポートを介して排気枝管18へ排出され、次いで排気枝管18から遠心過給機15のタービンハウジング15bへ流入する。タービンハウジング15bに流入した排気は、該排気が持つ熱エネルギを利用してタービンハウジング15b内に回転自在に支持されたタービンホイールを回転させる。その際、タービンホイールの回転トルクは、前述したコンプレッサハウジング15aのコンプレッサホイールへ伝達される。
【0053】
前記タービンハウジング15bから排出された排気は、排気管19を介して排気浄化触媒20へ流入し、排気中の有害ガス成分が除去又は浄化される。排気浄化触媒20にて有害ガス成分を除去又は浄化された排気は、必要に応じて排気絞り弁21によって流量を調節された後にマフラーを介して大気中に放出される。
【0054】
また、排気枝管18と吸気枝管8とは、排気枝管18内を流れる排気の一部を吸気枝管8へ再循環させる排気再循環通路(EGR通路)25を介して連通されている。このEGR通路25の途中には、電磁弁などで構成され、印加電力の大きさに応じて前記EGR通路25内を流れる排気(以下、EGRガスと称する)の流量を変更する流量調整弁(EGR弁)26が設けられている。
【0055】
前記EGR通路25においてEGR弁26より上流の部位には、該EGR通路25内を流れるEGRガスを冷却するEGRクーラ27が設けられている。
【0056】
このように構成された排気再循環機構では、EGR弁26が開弁されると、EGR通路25が導通状態となり、排気枝管18内を流れる排気の一部が前記EGR通路25へ流入し、EGRクーラ27を経て吸気枝管8へ導かれる。
【0057】
その際、EGRクーラ27では、EGR通路25内を流れるEGRガスと所定の冷媒との間で熱交換が行われ、EGRガスが冷却されることになる。
【0058】
EGR通路25を介して排気枝管18から吸気枝管8へ還流されたEGRガスは、吸気枝管8の上流から流れてきた新気と混ざり合いつつ各気筒2の燃焼室へ導かれ、燃料噴射弁3から噴射される燃料を着火源として燃焼される。
【0059】
ここで、EGRガスには、水(HO)や二酸化炭素(CO)などのように、自らが燃焼することがなく、且つ、吸熱性を有する不活性ガス成分が含まれているため、EGRガスが混合気中に含有されると、混合気の燃焼温度が低められ、以て窒素酸化物(NOx)の発生量が抑制される。
【0060】
更に、EGRクーラ27においてEGRガスが冷却されると、EGRガス自体の温度が低下するとともにEGRガスの体積が縮小されるため、EGRガスが燃焼室内に供給されたときに該燃焼室内の雰囲気温度が不要に上昇することがなくなるとともに、燃焼室内に供給される新気の量(新気の体積)が不要に減少することもない。
【0061】
次に、本実施の形態に係る排気浄化触媒20について具体的に説明する。
【0062】
排気浄化触媒20は、還元剤の存在下で排気中の窒素酸化物(NOx)を浄化するNOx触媒である。このようなNOx触媒としては、選択還元型NOx触媒や吸蔵還元型NOx触媒等を例示することができるが、ここでは吸蔵還元型NOx触媒を例に挙げて説明する。以下、排気浄化触媒20を吸蔵還元型NOx触媒20と称するものとする。
【0063】
吸蔵還元型NOx触媒20は、例えば、アルミナ(Al)を担体とし、この担体上に例えばカリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)のようなアルカリ金属と、バリウム(Ba)、カルシウム(Ca)、のようなアルカリ土類と、ランタン(La)イットリウム(Y)のような希土類との中から選ばれた少なくとも1つと、白金(Pt)のような貴金属とを坦持して構成されている。
【0064】
このように構成された吸蔵還元型NOx触媒20は、該吸蔵還元型NOx触媒20に流入する排気の空燃比(以下、排気空燃比と称する)がリーン空燃比であるときは排気中の窒素酸化物(NOx)を吸蔵し、流入排気の酸素濃度が低下し且つ還元剤が存在するときは吸蔵していた窒素酸化物(NOx)を放出しつつ還元及び浄化する。
【0065】
尚、ここでいう排気空燃比とは、排気浄化触媒より上流の排気通路、燃焼室、吸気通路等に供給された空気量の合計と燃料(炭化水素)量の合計との比を意味するものとする。従って、吸蔵還元型NOx触媒20より上流の排気通路内に燃料、還元剤、あるいは空気が供給されない限りは、排気空燃比は燃焼室に供給される混合気の空燃比と一致する。
【0066】
ここで、吸蔵還元型NOx触媒20のNOx吸放出メカニズムについて、アルミナからなる担体上に白金(Pt)及びバリウム(Ba)が担持された吸蔵還元型NOx触媒を例に挙げて説明する。
【0067】
吸蔵還元型NOx触媒20のNOx吸放出作用は、おおよそ図2に示されるようなメカニズムで行われていると考えられている。
【0068】
先ず、吸蔵還元型NOx触媒20は、該吸蔵還元型NOx触媒20に流入する排気の空燃比がリーン空燃比となって排気中の酸素濃度が高まると、図2(A)に示されるように、排気中の酸素(O)がO またはO2−の形で白金(Pt)の表面上に付着し、排気中の一酸化窒素(NO)が白金(Pt)の表面上でO またはO2−と反応して二酸化窒素(NO)を形成する(2NO+O→2NO)。二酸化窒素(NO)は、白金(Pt)の表面上で酸化されつつ酸化バリウム(BaO)と結合して硝酸イオン(NO )を形成する。このように排気中の窒素酸化物(NOx)は、硝酸イオン(NO3−)として吸蔵還元型NOx触媒に吸蔵される。
【0069】
上記したようなNOx吸蔵作用は、流入排気の空燃比がリーンであり、且つ吸蔵還元型NOx触媒のNOx吸蔵能力が飽和しない限り継続される。
【0070】
これに対して、吸蔵還元型NOx触媒20は、流入排気の酸素濃度が低下すると、二酸化窒素(NO)の生成量が減少するため、酸化バリウム(BaO)と結合していた硝酸イオン(NO3−)が逆に二酸化窒素(NO)や一酸化窒素(NO)となって吸蔵還元型NOx触媒から離脱する。
【0071】
すなわち、吸蔵還元型NOx触媒20に流入する排気の酸素濃度が低下すると、硝酸イオン(NO3−)の形で吸蔵還元型NOx触媒に吸蔵されていた窒素酸化物(NOx)が二酸化窒素(NO)や一酸化窒素(NO)となって吸蔵還元型NOx触媒から放出されることになる。
【0072】
吸蔵還元型NOx触媒20から放出された窒素酸化物(NOx)は、図2(B)に示されるように、排気中に含まれる還元成分(例えば、吸蔵還元型NOx触媒20の白金(Pt)上の酸素O2−またはO2−と反応して部分酸化した炭化水素(HC)や一酸化炭素(CO)等の活性種)と反応して窒素(N)等に還元せしめられる。
【0073】
即ち、排気中の炭化水素(HC)及び一酸化炭素(CO)は、白金(Pt)上でO またはO2−と反応して酸化せしめられ、それにより白金(Pt)上のO またはO2−が消費されてもなお炭化水素(HC)や一酸化炭素(CO)が残存していれば、それらの炭化水素(HC)や一酸化炭素(CO)が吸蔵還元型NOx触媒20から放出された窒素酸化物(NOx)及び内燃機関1から排出された窒素酸化物(NOx)と反応し、その結果、窒素酸化物(NOx)が窒素(N)に還元せしめられる。
【0074】
従って、吸蔵還元型NOx触媒20に流入する排気の空燃比を理論空燃比もしくはリッチ空燃比とすることにより、吸蔵還元型NOx触媒20に吸蔵されていた窒素酸化物(NOx)を放出させつつ還元することが可能となる。
【0075】
ところで、吸蔵還元型NOx触媒20のNOx吸蔵能力には限りがあるため、長期にわたってリーン空燃比の排気が吸蔵還元型NOx触媒20に流入すると、吸蔵還元型NOx触媒20のNOx吸蔵能力が飽和し、排気中の窒素酸化物(NOx)が吸蔵還元型NOx触媒20にて除去又は浄化されずに大気中に放出されてしまうことになる。
【0076】
しかしながら、内燃機関1のようなディーゼル機関では、大部分の運転領域においてリーン空燃比の混合気が燃焼され、それに応じて大部分の運転領域において排気の空燃比がリーン空燃比となるため、吸蔵還元型NOx触媒20のNOx吸蔵能力が飽和し易い。
【0077】
従って、ディーゼル機関のような希薄燃焼式内燃機関に吸蔵還元型NOx触媒20を適用する場合は、吸蔵還元型NOx触媒20のNOx吸蔵能力が飽和する前に所定のタイミングで排気の空燃比を理論空燃比又はリッチ空燃比とする必要がある。
【0078】
これに対し、本実施の形態に係る内燃機関1は、吸蔵還元型NOx触媒20より上流の排気通路を流れる排気中に還元剤たる燃料(軽油)を添加する還元剤供給機構を備えるようにした。
【0079】
前記還元剤供給機構は、図1に示されるように、その噴孔が排気枝管18内に臨むよう内燃機関1のシリンダヘッドに取り付けられ、所定の開弁圧以上の燃料が印加されたときに開弁して燃料を噴射する還元剤噴射弁28と、前述した燃料ポンプ6から吐出された燃料を前記還元剤噴射弁28へ導く還元剤供給路29と、この還元剤供給路29の途中に設けられ該還元剤供給通路29内を流れる燃料の流量を調整する流量調整弁30と、この流量調整弁30より上流の還元剤供給路29に設けられて該還元剤供給路29内の燃料の流れを遮断する遮断弁31と、前記流量調整弁30より上流の還元剤供給路29に取り付けられ該還元剤供給路29内の圧力に対応した電気信号を出力する還元剤圧力センサ32と、を備えている。
【0080】
尚、還元剤噴射弁28は、該還元剤噴射弁28の噴孔が排気枝管18におけるEGR通路25との接続部位より下流であって、排気枝管18における4つの枝管の集合部に最も近い気筒2の排気ポートに突出するとともに、排気枝管18の集合部へ向くようシリンダヘッドに取り付けられることが好ましい。
【0081】
これは、還元剤噴射弁28から噴射された還元剤(未燃の燃料成分)がEGR通路25へ流入するのを防止するとともに、還元剤が排気枝管18内に滞ることなく遠心過給機のタービンハウジング15bへ到達するようにするためである。
【0082】
尚、図1に示す例では、内燃機関1の4つの気筒2のうち1番(#1)気筒2が排気枝管18の集合部と最も近い位置にあるため、1番(#1)気筒2の排気ポートに還元剤噴射弁28が取り付けられているが、1番(#1)気筒2以外の気筒2が排気枝管18の集合部と最も近い位置にあるときは、その気筒2の排気ポートに還元剤噴射弁28が取り付けられるようにする。
【0083】
また、前記還元剤噴射弁28は、シリンダヘッドに形成された図示しないウォータージャケットを貫通、あるいはウォータージャケットに近接して取り付けられるようにし、前記ウォータージャケットを流れる冷却水を利用して還元剤噴射弁28を冷却するようにしてもよい。
【0084】
このような還元剤供給機構では、流量調整弁30が開弁されると、燃料ポンプ6から吐出された高圧の燃料が還元剤供給路29を介して還元剤噴射弁28へ印加される。そして、還元剤噴射弁28に印加される燃料の圧力が開弁圧以上に達すると、該還元剤噴射弁28が開弁して排気枝管18内へ還元剤としての燃料が噴射される。
【0085】
還元剤噴射弁28から排気枝管18内へ噴射された還元剤は、排気枝管18の上流から流れてきた排気ととともにタービンハウジング15bへ流入する。タービンハウジング15b内に流入した排気と還元剤とは、タービンホイールの回転によって撹拌されて均質に混合され、リッチ空燃比の排気を形成する。
【0086】
このようにして形成されたリッチ空燃比の排気は、タービンハウジング15bから排気管19を介して吸蔵還元型NOx触媒20に流入し、吸蔵還元型NOx触媒20に吸蔵されていた窒素酸化物(NOx)を放出させつつ窒素(N)に還元することになる。
【0087】
その後、流量調整弁30が閉弁されて燃料ポンプ6から還元剤噴射弁28への還元剤の供給が遮断されると、還元剤噴射弁28に印加される燃料の圧力が前記開弁圧未満となり、その結果、還元剤噴射弁28が閉弁し、排気枝管18内への還元剤の添加が停止される。
【0088】
上記したように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニット(ECU:Electronic Control Unit)35が併設されている。このECU35は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。
【0089】
ECU35には、コモンレール圧センサ4a、エアフローメータ11、吸気温度センサ12、吸気管圧力センサ17、空燃比センサ23、排気温度センサ24、還元剤圧力センサ32、クランクポジションセンサ33、水温センサ34、アクセル開度センサ36等の各種センサが電気配線を介して接続され、上記した各種センサの出力信号がECU35に入力されるようになっている。
【0090】
一方、ECU35には、燃料噴射弁3、吸気絞り用アクチュエータ14、排気絞り用アクチュエータ22、EGR弁26、流量調整弁30、遮断弁31等が電気配線を介して接続され、上記した各部をECU35が制御することが可能になっている。
【0091】
ここで、ECU35は、図3に示すように、双方向性バス350によって相互に接続された、CPU351と、ROM352と、RAM353と、バックアップRAM354と、入力ポート356と、出力ポート357とを備えるとともに、前記入力ポート356に接続されたA/Dコンバータ(A/D)355を備えている。
【0092】
前記入力ポート356は、クランクポジションセンサ33のようにデジタル信号形式の信号を出力するセンサの出力信号を入力し、それらの出力信号をCPU351やRAM353へ送信する。
【0093】
前記入力ポート356は、コモンレール圧センサ4a、エアフローメータ11、吸気温度センサ12、吸気管圧力センサ17、空燃比センサ23、排気温度センサ24、還元剤圧力センサ32、水温センサ34、アクセル開度センサ36、等のように、アナログ信号形式の信号を出力するセンサのA/D355を介して入力し、それらの出力信号をCPU351やRAM353へ送信する。
【0094】
前記出力ポート357は、燃料噴射弁3、吸気絞り用アクチュエータ14、排気絞り用アクチュエータ22、EGR弁26、流量調整弁30、遮断弁31等と電気配線を介して接続され、CPU351から出力される制御信号を、前記した燃料噴射弁3、吸気絞り用アクチュエータ14、排気絞り用アクチュエータ22、EGR弁26、流量調整弁30、あるいは遮断弁31へ送信する。
【0095】
前記ROM352は、燃料噴射弁3を制御するための燃料噴射弁制御ルーチン、吸気絞り弁13を制御するための吸気絞り制御ルーチン、排気絞り弁21を制御するための排気絞り制御ルーチン、EGR弁26を制御するためのEGR制御ルーチン、流量調整弁30を制御するための還元剤添加制御ルーチン等の各種アプリケーションプログラムに加え、還元剤添加機構における還元剤の漏れを判定するための還元剤漏れ判定制御ルーチンを記憶している。
【0096】
前記ROM352は、上記したアプリケーションプログラムに加え、各種の制御マップを記憶している。前記制御マップは、例えば、内燃機関1の運転状態と基本燃料噴射量(基本燃料噴射時間)との関係を示す燃料噴射量制御マップ、内燃機関1の運転状態と基本燃料噴射時期との関係を示す燃料噴射時期制御マップ、内燃機関1の運転状態と吸気絞り弁13の目標開度との関係を示す吸気絞り弁開度制御マップ、内燃機関1の運転状態と排気絞り弁21の目標開度との関係を示す排気絞り弁開度制御マップ、内燃機関1の運転状態とEGR弁26の目標開度との関係を示すEGR弁開度制御マップ、内燃機関1の運転状態と流量調整弁30の開弁時期との関係を示す流量調整弁制御マップ等である。
【0097】
前記RAM353は、各センサからの出力信号やCPU351の演算結果等を格納する。前記演算結果は、例えば、クランクポジションセンサ33がパルス信号を出力する時間的な間隔に基づいて算出される機関回転数である。これらのデータは、クランクポジションセンサ33がパルス信号を出力する都度、最新のデータに書き換えられる。
【0098】
前記バックアップRAM354は、内燃機関1の運転停止後もデータを記憶可能な不揮発性のメモリである。
【0099】
前記CPU351は、前記ROM352に記憶されたアプリケーションプログラムに従って動作して、燃料噴射弁制御、吸気絞り制御、排気絞り制御、EGR制御、還元剤添加制御に加え、本発明の要旨となる還元剤漏れ判定制御を実行する。
【0100】
例えば、燃料噴射弁制御では、CPU351は、先ず、燃料噴射弁3から噴射される燃料量を決定し、次いで燃料噴射弁3から燃料を噴射する時期を決定する。
【0101】
燃料噴射量を決定する場合は、CPU351は、RAM353に記憶されている機関回転数とアクセル開度センサ36の出力信号(アクセル開度)とを読み出す。CPU351は、燃料噴射量制御マップへアクセスし、前記機関回転数及び前記アクセル開度に対応した基本燃料燃料噴射量(基本燃料噴射時間)を算出する。CPU351は、エアフローメータ11、吸気温度センサ12、水温センサ34等の出力信号値等に基づいて前記基本燃料噴射時間を補正し、最終的な燃料噴射時間を決定する。
【0102】
燃料噴射時期を決定する場合は、CPU351は、燃料噴射開始時期制御マップへアクセスし、前記機関回転数及び前記アクセル開度に対応した基本燃料噴射時期を算出する。CPU351は、エアフローメータ11、吸気温度センサ12、水温センサ34等の出力信号値をパラメータとして前記基本燃料噴射時期を補正し、最終的な燃料噴射時期を決定する。
【0103】
燃料噴射時間と燃料噴射時期とが決定されると、CPU351は、前記燃料噴射時期とクランクポジションセンサ33の出力信号とを比較し、前記クランクポジションセンサ33の出力信号が前記燃料噴射開始時期と一致した時点で燃料噴射弁3に対する駆動電力の印加を開始する。CPU351は、燃料噴射弁3に対する駆動電力の印加を開始した時点からの経過時間が前記燃料噴射時間に達した時点で燃料噴射弁3に対する駆動電力の印加を停止する。
【0104】
尚、燃料噴射制御において内燃機関1の運転状態がアイドル運転状態にある場合は、CPU351は、水温センサ34の出力信号値や、車室内用空調装置のコンプレッサのようにクランクシャフトの回転力を利用して作動する補機類の作動状態等をパラメータとして内燃機関1の目標アイドル回転数を算出する。そして、CPU351は、実際のアイドル回転数が目標アイドル回転数と一致するよう燃料噴射量をフィードバック制御する。
【0105】
また、吸気絞り制御では、CPU351は、例えば、RAM353に記憶されている機関回転数とアクセル開度とを読み出す。CPU351は、吸気絞り弁開度制御マップへアクセスし、機関回転数及びアクセル開度に対応した目標吸気絞り弁開度を算出する。CPU351は、前記目標吸気絞り弁開度に対応した駆動電力を吸気絞り用アクチュエータ14に印加する。その際、CPU351は、吸気絞り弁13の実際の開度を検出して、実際の吸気絞り弁13の開度と目標吸気絞り弁開度との差分に基づいて前記吸気絞り用アクチュエータ14をフィードバック制御するようにしてもよい。
【0106】
また、排気絞り制御では、CPU351は、例えば、内燃機関1が冷間始動後の暖機運転状態にある場合や、車室内用ヒータが作動状態にある場合などに排気絞り弁21を閉弁方向へ駆動すべく排気絞り用アクチュエータ22を制御する。
【0107】
この場合、内燃機関1の負荷が増大し、それに対応して燃料噴射量が増量されることなる。その結果、内燃機関1の発熱量が増加し、内燃機関1の暖機が促進されるとともに、車室内用ヒータの熱源が確保される。
【0108】
また、EGR制御では、CPU351は、RAM353に記憶されている機関回転数、水温センサ34の出力信号(冷却水温度)、アクセル開度センサ36の出力信号(アクセル開度)等を読み出し、EGR制御の実行条件が成立しているか否かを判別する。
【0109】
上記したEGR制御実行条件としては、冷却水温度が所定温度以上にある、内燃機関1が始動時から所定時間以上連続して運転されている、アクセル開度の変化量が正値である等の条件を例示することができる。
【0110】
上記したようなEGR制御実行条件が成立していると判定した場合は、CPU351は、機関回転数とアクセル開度とをパラメータとしてEGR弁開度制御マップへアクセスし、前記機関回転数及び前記アクセル開度に対応した目標EGR弁開度を算出する。CPU351は、前記目標EGR弁開度に対応した駆動電力をEGR弁26に印加する。一方、上記したようなEGR制御実行条件が成立していないと判定した場合は、CPU351は、EGR弁26を全閉状態に保持すべく制御する。
【0111】
更に、EGR制御では、CPU351は、内燃機関1の吸入空気量をパラメータとしてEGR弁26の開度をフィードバック制御する、いわゆるEGR弁フィードバック制御を行うようにしてもよい。
【0112】
EGR弁フィードバック制御では、例えば、CPU351は、アクセル開度や機関回転数等をパラメータとして内燃機関1の目標吸入空気量を決定する。その際、アクセル開度と機関回転数と目標吸入空気量との関係を予めマップ化しておき、そのマップとアクセル開度と機関回転数とから目標吸入空気量が算出されるようにしてもよい。
【0113】
上記した手順により目標吸入空気量が決定されると、CPU351は、RAM353に記憶されたエアフローメータ11の出力信号値(実際の吸入空気量)を読み出し、実際の吸入空気量と目標吸入空気量とを比較する。
【0114】
前記した実際の吸入空気量が前記目標吸入空気量より少ない場合には、CPU351は、EGR弁26を所定量閉弁させる。この場合、EGR通路25から吸気枝管8へ流入するEGRガス量が減少し、それに応じて内燃機関1の気筒2内に吸入されるEGRガス量が減少することになる。その結果、内燃機関1の気筒2内に吸入される新気の量は、EGRガスが減少した分だけ増加する。
【0115】
一方、実際の吸入空気量が目標吸入空気量より多い場合には、CPU351は、EGR弁26を所定量開弁させる。この場合、EGR通路25から吸気枝管8へ流入するEGRガス量が増加し、それに応じて内燃機関1の気筒2内に吸入されるEGRガス量が増加する。この結果、内燃機関1の気筒2内に吸入される新気の量は、EGRガスが増加した分だけ減少することになる。
【0116】
また、還元剤添加制御では、CPU351は、先ず、還元剤添加条件が成立しているか否かを判別する。この還元剤添加条件としては、例えば、吸蔵還元型NOx触媒20が活性状態にある、排気温度センサ24の出力信号値(排気温度)が所定の上限値以下である、吸蔵還元型NOx触媒20のSOx被毒などを回復すべく昇温制御やSOx被毒再生制御等が実行されていない、等の条件を例示することができる。
【0117】
CPU351は、上記したような還元剤添加条件が成立していると判定した場合は、吸蔵還元型NOx触媒20に流入する排気の空燃比が比較的短い周期でスパイク的に理論空燃比もしくはリッチ空燃比となるように流量調整弁30を制御することにより、吸蔵還元型NOx触媒20に吸蔵された窒素酸化物(NOx)を短周期的に放出及び還元する。
【0118】
その際、CPU351は、RAM353に記憶されている機関回転数、アクセル開度センサ36の出力信号(アクセル開度)、エアフローメータ11の出力信号値(吸入空気量)、燃料噴射量等を読み出す。CPU351は、前記した機関回転数、アクセル開度、吸入空気量、及び燃料噴射量をパラメータとしてROM352の流量調整弁制御マップへアクセスし、流量調整弁30の開弁時期を算出する。CPU351は、前記開弁時期に従って流量調整弁30を開弁させる。
【0119】
この場合、燃料ポンプ6から吐出された高圧の燃料が還元剤供給路29を介して還元剤噴射弁28へ供給され、それにより還元剤噴射弁28に印加される燃料の圧力が開弁圧以上に達すると、該還元剤噴射弁28が開弁して排気枝管18内へ還元剤としての燃料を噴射する。
【0120】
還元剤噴射弁28から排気枝管18内へ噴射された還元剤は、排気枝管18の上流から流れてきた排気と混ざり合って理論空燃比もしくはリッチ空燃比の排気を形成し、そのような理論空燃比又はリッチ空燃比の排気が吸蔵還元型NOx触媒20に流入することになる。
【0121】
このように、理論空燃比もしくはリッチ空燃比の排気が吸蔵還元型NOx触媒20に流入すると、吸蔵還元型NOx触媒20に吸蔵されていた窒素酸化物(NOx)が放出されつつ窒素(N)等に還元される。
【0122】
次に、本発明の要旨となる還元剤漏れ判定制御について述べる。
【0123】
還元剤添加機構では、流量調整弁30が開弁されると、燃料ポンプ6から吐出された燃料の一部が還元剤供給路29を介して還元剤噴射弁28に供給され、それにより還元剤噴射弁28に印加される燃料の圧力が開弁圧以上になると、還元剤噴射弁28が開弁して還元剤としての燃料を排気枝管18内へ噴射する。
【0124】
流量調整弁30が開弁状態から閉弁状態へ切り換えられると、燃料ポンプ6から還元剤噴射弁28への燃料の供給が遮断され、還元剤噴射弁28に印加される燃料の圧力が開弁圧未満まで低下するため、還元剤噴射弁28が自動的に閉弁することになる。
【0125】
その際、流量調整弁30より上流の還元剤供給路29には燃料ポンプ6から吐出された燃料が供給されるため、燃料ポンプ6から流量調整弁30に至る経路において燃料の漏出が発生していなければ、流量調整弁30より上流の還元剤供給路29内の圧力(以下、添加燃圧と称する)は、燃料ポンプ6の吐出圧力に対応した圧力(以下、ポンプ対応圧力と称する)となる。
【0126】
一方、流量調整弁30の閉弁不良等によって該流量調整弁30より上流の還元剤供給路29から該流量調整弁30より下流の還元剤供給路29へ燃料が漏出した場合、燃料ポンプ6から流量調整弁30に至る経路の破損等により経路内の燃料が経路外へ漏出した場合等の添加燃圧は、ポンプ対応圧力より低くなる。
【0127】
従って、添加燃圧が還元剤圧力センサ32の出力信号値(添加燃圧)がポンプ対応圧力より低ければ、還元剤供給機構において燃料が漏出していると判定することができる。
【0128】
ところで、本実施の形態に係る燃料ポンプ6は、クランクシャフトの回転トルクを駆動源としているため、燃料ポンプ6の吐出圧力が機関回転数に応じて変化し、流量調整弁30より上流の還元剤供給路29におけるポンプ対応圧力も、図4に示すように、機関回転数に応じて変化することになる。
【0129】
これに対し、本実施の形態に係る還元剤漏れ判定制御では、CPU351は、流量調整弁30が閉弁状態にあるときの還元剤圧力センサ32の出力信号値(添加燃圧)を入力するとともに、その時点における機関回転数に対応したポンプ対応圧力を算出し、それら添加燃圧とポンプ対応圧力とを比較して還元剤の漏出を判定するようにした。
【0130】
但し、燃料の圧力は、還元剤供給路29の壁面温度や外気温等の外的要因によって変化する場合があるため、CPU351は、添加燃圧がポンプ対応圧力より所定圧以上低いときに、還元剤が漏出していると判定することが好ましい。
【0131】
また、機関回転数とポンプ対応圧力との関係は、予め実験的に求めておき、それらの関係をマップ化してROM352に記憶させるようにしてもよい。
【0132】
以下、本実施の形態に係る還元剤漏れ判定制御について図5のフローチャート図に沿って説明する。
【0133】
図5に示すフローチャートは、還元剤漏れ判定制御ルーチンを示すフローチャートであり、前記還元剤漏れ判定制御ルーチンは、CPU351によって所定時間毎(例えば、クランクポジションセンサ33が所定数のパルス信号を出力する度)に繰り返し実行されるルーチンである。
【0134】
還元剤漏れ判定制御ルーチンでは、CPU351は、先ず、S501において、
RAM353に設定されている還元剤漏出フラグ記憶領域に“1”が記憶されていないか否かを判別する。
【0135】
前記還元剤漏出フラグ記憶領域は、還元剤添加機構において還元剤(燃料)の漏出が判定されたときに“1”がセットされ、還元剤の漏出していないと判定されたときに“0”がリセットされる記憶領域である。
【0136】
前記S501において前記還元剤漏出フラグ記憶領域に“1”が記憶されていないと判定された場合、言い換えれば前記還元剤漏出フラグ記憶領域に“0”が記憶されていると判定された場合は、CPU351は、S502へ進み、RAM353に設定されている還元剤添加実行フラグ記憶領域に“1”が記憶されていないか否かを判別する。
【0137】
前記還元剤添加実行フラグ記憶領域は、別途の還元剤添加制御ルーチンにおいて還元剤の添加が実行されるときに“1”がセットされ、還元剤添加の実行が停止されるときに“0”がリセットされる記憶領域である。
【0138】
前記S502において前記還元剤添加実行フラグ記憶領域に“1”が記憶されていると判定された場合は、CPU351は、流量調整弁30が閉弁状態にないとみなし、本ルーチンの実行を一旦終了する。
【0139】
一方、前記S502において前記還元剤添加実行フラグ記憶領域に“1”が記憶されていない、すなわち前記還元剤添加実行フラグ記憶領域に“0”が記憶されていると判定された場合は、CPU351は、流量調整弁30が閉弁状態にあるとみなし、S503へ進む。
【0140】
S503では、CPU351は、RAM353へアクセスし、最新の機関回転数と還元剤圧力センサ32の出力信号値(添加燃圧)とを読み出す。
【0141】
S504では、CPU351は、機関回転数とポンプ対応圧力との関係を示すマップへアクセスし、前記S503で読み出した機関回転数に対応したポンプ対応圧力を算出する。
【0142】
S505では、CPU351は、前記S504で算出されたポンプ対応圧力から前記S503で読み出した添加燃圧を減算して得られた差圧が所定圧力より高いか否かを判別する。
【0143】
前記S505において前記ポンプ対応圧力から前記添加燃圧を減算して得られた差圧が所定圧力以下であると判定された場合は、CPU351は、還元剤添加機構において燃料の漏出が発生していないとみなしてS508へ進み、RAM353の還元剤漏出フラグ記憶領域に“0”をリセットし、本ルーチンの実行を終了する。
【0144】
一方、前記S505において前記ポンプ対応圧力から前記添加燃圧を減算して得られた差圧が所定圧力より高いと判定された場合は、CPU351は、還元剤添加機構において燃料の漏出が発生しているとみなしてS506へ進む。
【0145】
S506では、CPU351は、RAM353の還元剤漏出フラグ記憶領域に“1”をセットする。
【0146】
S507では、CPU351は、車室内に設けられた図示しない警告ランプを点灯させ、本ルーチンの実行を終了する。尚、CPU351は、前記警告ランプを点灯させるとともに、遮断弁31を閉弁させて還元剤の添加を禁止するようにしてもよい。
【0147】
このようにCPU351が前述したような還元剤漏れ判定制御ルーチンを実行することにより、本発明に係る異常判定手段が実現される。
【0148】
以上述べた実施の形態によれば、還元剤供給路29における燃料圧力に基づいて還元剤添加機構における還元剤の漏れを検出することが可能となるため、還元剤の漏れを還元剤添加制御に反映させることにより、吸蔵還元型NOx触媒20に対する還元剤の過剰供給や添加不足を抑制することが可能となり、排気エミッションの悪化を最小限に抑制することが可能となる。
【0149】
更に、本実施の形態によれば、還元剤添加機構における還元剤漏れが検出された際に、遮断弁31を閉弁させて還元剤の添加を禁止すれば、還元剤供給機構から外部への還元剤の漏れや還元剤供給機構から排気枝管18への不用意な還元剤の添加を防止することも可能となる。これにより、吸蔵還元型NOx触媒20に対する還元剤の過剰添加に起因した吸蔵還元型NOx触媒20の過熱を防止することも可能となる。
【0150】
<実施の形態2>
次に、本発明に係る還元剤供給装置の異常検出装置の第2の実施態様について図6に基づいて説明する。ここでは前述した第1の実施の形態と異なる構成について説明し、同様の構成については説明を省略する。
【0151】
前述した第1の実施の形態に係る還元剤漏れ判定制御では、流量調整弁30が閉弁状態にあり且つ遮断弁31が開弁状態にあるときの添加燃圧に基づいて還元剤の漏出が判定されるため、比較的多量の還元剤漏れが発生した場合には、還元剤の漏れを検出し易いが、微量の還元剤漏れが発生した場合には、その漏れ量を燃料ポンプ6の吐出量が上回ってしまう可能性があり、微量の還元剤漏れを検出することが困難となる可能性がある。
【0152】
これに対し、本実施の形態では、CPU351は、流量調整弁30が閉弁状態にあり且つ遮断弁31が閉弁状態にあるときの添加燃圧の変化に基づいて還元剤の漏出を判定するようにした。
【0153】
流量調整弁30と遮断弁31の双方が閉弁状態にあると、流量調整弁30と遮断弁31との間の還元剤供給路29が閉空間となり、その閉空間にはポンプ対応圧力が掛かった燃料が閉じこめられることになる。
【0154】
その際、流量調整弁30の閉弁不良等による流量調整弁30より上流の還元剤供給路29から下流の還元剤供給路29への還元剤の漏れ、遮断弁31の閉弁不良等による遮断弁31より上流の還元剤供給路29から下流の還元剤供給路29への還元剤の漏れ、或いは、遮断弁31から流量調整弁30に至る経路の破損等により経路内から経路外への還元剤の漏れ等が発生していると、前記閉空間の添加燃圧が低下あるいは上昇することになる。
【0155】
前記閉空間における還元剤の漏れが比較的少ない場合は、前記閉空間の添加燃圧が徐々に変化することになるが、ある程度の期間を置いて添加燃圧の変化を検出することにより、比較的少量の還元剤の漏れを検出し易くなる。
【0156】
そこで、本実施の形態に係る還元剤漏れ判定制御では、CPU351は、流量調整弁30が閉弁状態にあるときに遮断弁31を所定期間閉弁させ、その所定期間における添加燃圧の変化を検出し、その添加燃圧の変化量が所定量以上であると、還元剤供給機構に還元剤の漏れが発生していると判定するようにした。
【0157】
以下、本実施の形態に係る還元剤漏れ判定制御について図6のフローチャートに沿って説明する。
【0158】
図6に示すフローチャートは、還元剤漏れ判定制御ルーチンを示すフローチャートであり、前記還元剤漏れ判定制御ルーチンは、CPU351によって所定時間毎(例えば、クランクポジションセンサ33が所定数のパルス信号を出力する度)に繰り返し実行されるルーチンである。
【0159】
還元剤漏れ判定制御ルーチンでは、CPU351は、先ずS601において、RAM353の還元剤漏出フラグ記憶領域へアクセスし、その還元剤漏出フラグ記憶領域に“1”が記憶されていないか否かを判別する。
【0160】
前記S601において還元剤漏出フラグ記憶領域に既に“1”が記憶されていると判定した場合は、CPU351は、S610へ進み、車室内に設けられた警告ランプを点灯させ、車両の運転者へ還元剤供給機構の補修を促す。
【0161】
一方、前記S601において還元剤漏出フラグ記憶領域に“1”が記憶されていないと判定された場合は、CPU351は、S602へ進み、RAM353に設定されている還元剤添加実行フラグ記憶領域に“1”が記憶されていないか否かを判別する。
【0162】
前記S602において前記還元剤添加実行フラグ記憶領域に“1”が記憶されていると判定された場合は、CPU351は、流量調整弁30が閉弁状態にないとみなし、本ルーチンの実行を一旦終了する。
【0163】
一方、前記S602において前記還元剤添加実行フラグ記憶領域に“1”が記憶されていない、すなわち前記還元剤添加実行フラグ記憶領域に“0”が記憶されていると判定された場合は、CPU351は、流量調整弁30が閉弁状態にあるとみなし、S603へ進む。
【0164】
S603では、CPU351は、遮断弁31を閉弁させて、遮断弁31から流量調整弁30に至る還元剤供給路29を閉空間とする。
【0165】
S604では、CPU351は、還元剤圧力センサ32の出力信号値(前記閉空間の添加燃圧):P1を入力し、その添加燃圧:P1をRAM353に記憶させる。
【0166】
S605では、CPU351は、RAM353の所定領域に設定されているカウンタ記憶領域にアクセスし、そのカウンタ記憶領域に記憶されているカウンタ値:Cを1つインクリメントする。前記カウンタ記憶領域は、添加燃圧:P1を入力した時点からの経過時間を記憶する領域である。
【0167】
S606では、CPU351は、前記S605で更新されたカウンタ値:Cが所定時間:Cb以上であるか否か、言い換えれば、添加燃圧:P1を入力した時点からの経過時間が所定時間:Cb以上となったか否かを判別する。
【0168】
前記S606において前記カウンタ値:Cが所定時間:Cb未満であると判定した場合は、CPU351は、前記カウンタ値:Cが所定時間:Cb以上に達するまで前述したS605以降の処理を繰り返し実行する。
【0169】
前記S606において前記カウンタ値:Cが所定時間:Cb以上であると判定した場合、すなわち添加燃圧:P1を入力した時点からの経過時間が所定時間:Cb以上に達したと判定された場合は、CPU351は、S607へ進み、その時点における還元剤圧力センサ32の出力信号値(前記閉空間の添加燃圧):P2を再度入力する。
【0170】
S608では、CPU351は、前記S604で検出された添加燃圧:P1をRAM353から読み出す。CPU351は、前記添加燃圧:P1と前記S607で入力された添加燃圧:P2との差の絶対値を算出し、算出された絶対値(|P1−P2|)が所定の変化量:△P以上であるか否かを判別する。
【0171】
尚、前記した変化量:△Pは、還元剤供給機構に還元剤の漏れが発生してない時の添加燃圧の変化量を予め実験的に求めた値と、外気温や燃料の温度等の外的要因を考慮したマージンとを加算して得られた値である。この変化量:△Pは、予めROM352の所定領域に記憶されているようにしてもよい。
【0172】
前記S608において前記添加燃圧:P1と前記添加燃圧:P2との差の絶対値(|P1−P2|)が前記変化量:△P未満であると判定された場合は、CPU351は、還元剤供給機構において燃料の漏出が発生していないとみなしてS612へ進む。
【0173】
S612では、CPU351は、RAM353の還元剤漏出フラグ記憶領域に“0”をリセットする。このS612の処理を実行し終えたCPU351は、S611において前記カウンタ記憶領域のカウンタ値:Cを“0”にリセットした後に、本ルーチンの実行を終了する。
【0174】
一方、前記S608において前記添加燃圧:P1と前記添加燃圧:P2との差の絶対値(|P1−P2|)が前記変化量:△P以上であると判定された場合は、CPU351は、還元剤供給機構において燃料の漏出が発生しているとみなしてS609へ進む。
【0175】
S609では、CPU351は、RAM353の還元剤漏出フラグ記憶領域に“1”をセットする。
【0176】
S610では、CPU351は、車室内に設けられた図示しない警告ランプを点灯させる。
【0177】
S611では、CPU351は、前記カウンタ記憶領域のカウンタ値:Cを“0”にリセットする。CPU351は、S611の処理を実行し終えると、本ルーチンの実行を終了する。
【0178】
以上述べた実施の形態によれば、還元剤添加機構内に閉空間を形成し、その閉空間の所定期間の圧力変化に基づいて還元剤の漏れが判定されるため、比較的少量の還元剤の漏れを検出することが可能となる。
【0179】
<実施の形態3>
次に、本発明に係る還元剤供給装置の異常検出装置の第3の実施態様について図7及び図8に基づいて説明する。ここでは前述した第2の実施の形態と異なる構成について説明し、同様の構成については説明を省略する。
【0180】
前述した第2の実施の形態では、還元剤添加機構内に閉空間を形成し、その閉空間の所定期間の圧力変化に基づいて還元剤の漏れを判定する例について述べたが、その際の所定期間(判定期間)が長くなるほど、微少な圧力変化を検出し易くなるため、極微量の還元剤の漏れを検出する上では、判定期間を長くすることが好ましい。
【0181】
但し、還元剤漏れ判定制御が実行されているときは流量調整弁30及び遮断弁31が閉弁状態に保持され、還元剤の添加制御を実行することができないため、還元剤漏れ判定の判定期間が長くなると、還元剤添加制御の実行禁止期間が長くなり、排気エミッションの悪化を招く可能性がある。
【0182】
そこで、本実施の形態に係る還元剤漏れ判定制御では、CPU351は、内燃機関1の運転停止時から再始動時までの期間において流量調整弁30及び遮断弁31を閉弁状態に保持して、その期間の添加燃圧の変化に基づいて還元剤の漏れを判定するようにした。
【0183】
以下、本実施の形態に係る還元剤漏れ判定制御について、図7及び図8のフローチャートに沿って説明する。
【0184】
図7に示すフローチャートは、第1の還元剤漏れ判定制御ルーチンを示すフローチャートであり、この第1の還元剤漏れ判定制御ルーチンは、CPU351によって所定時間毎(例えば、クランクポジションセンサ33が所定数のパルス信号を出力する度)に繰り返し実行されるルーチンである。
【0185】
一方、図8に示すフローチャートは、第2の還元剤漏れ判定制御ルーチンを示すフローチャートであり、この第2の還元剤漏れ判定制御ルーチンは、内燃機関1の始動時に、具体的には図示しないイグニッションスイッチがオフからオンへ切り換えられたことをトリガにしてCPU351によって実行されるルーチンである。
【0186】
先ず、第1の還元剤漏れ判定制御ルーチンでは、CPU351は、S701において、内燃機関1の運転が停止されたか否かを判別する。内燃機関1の運転停止を判定する方法としては、図示しないイグニッションスイッチがオンからオフへ切り換えられたことを条件に内燃機関1の運転停止を判定する方法、機関回転数が所定回数未満に低下することを条件に内燃機関1の運転停止を判定する方法、等を例示することができる。
【0187】
前記S701において内燃機関1の運転が停止されていない、言い換えれば、内燃機関1が運転状態にあると判定された場合は、CPU351は、本ルーチンの実行を一旦終了する。
【0188】
一方、前記S701において内燃機関1の運転が停止されたと判定した場合は、CPU351は、S702へ進み、流量調整弁30及び遮断弁31をともに閉弁させ、流量調整弁30から遮断弁31に至る経路を閉空間とする。
【0189】
S703では、CPU351は、還元剤圧力センサ32の出力信号値(機関運転停止直後の添加燃圧):P1を入力する。
【0190】
S704では、CPU351は、前記S703で入力された添加燃圧:P1をバックアップRAM354の所定領域に記憶させる。このS704の処理を実行し終えたCPU351は、本ルーチンの実行を終了する。
【0191】
次に、第2の添加剤漏れ判定制御ルーチンでは、CPU351は、先ずS801において、内燃機関1が始動状態又は始動完了状態にあるか否かを判別する。内燃機関1の始動状態を判定する方法としては、図示しないスタータースイッチがオフからオンへ切り換えられたことを条件に内燃機関1が始動状態にあると判定する方法を例示することができる。また、内燃機関1の始動完了状態を判定する方法としては、機関回転数が所定回転数以上となったことを条件に内燃機関1が始動完了状態にあると判定する方法を例示することができる。
【0192】
前記S801において内燃機関1が始動状態及び始動完了状態にないと判定された場合、すなわち内燃機関1が運転停止状態にあると判定された場合は、CPU351は、本ルーチンの実行を終了する。
【0193】
一方、前記S801において内燃機関1が始動状態又は始動完了状態にあると判定された場合は、CPU351は、S802へ進み、RAM353の還元剤漏出フラグ記憶領域へアクセスして“1”が記憶されていないか否かを判別する。
【0194】
前記S802において還元剤漏出フラグ記憶領域に既に“1”が記憶されていると判定した場合は、CPU351は、S810へ進み、車室内に設けられた警告ランプを点灯させ、車両の運転者へ還元剤供給機構の補修を促す。
【0195】
一方、前記S802において還元剤漏出フラグ記憶領域に“1”が記憶されていないと判定された場合は、CPU351は、S803へ進み、水温センサ34の出力信号値(冷却水温度)を入力する。
【0196】
S804では、CPU351は、前記S803で入力された冷却水温が所定温度以上であるか否かを判別する。
【0197】
前記S804において前記冷却水温が所定温度未満であると判定された場合は、CPU351は、内燃機関1の運転停止時から再始動時までに過剰な時間が経過しているとみなし、本ルーチンの実行を終了する。
【0198】
これは、内燃機関1の運転停止時から再始動時までの経過時間が過剰に長くなると、たとえ前記閉空間に還元剤の漏れが発生していなくても、外気温、車両のエンジンルーム内温度、或いは燃料温度などの外的要因によって前記閉空間の添加燃圧が大きく変化する可能性があり、そのような状況下で還元剤の漏れ判定が実行されると、誤判定を招く場合があるからである。
【0199】
尚、内燃機関1の運転停止時から再始動時までの経過時間を推定するパラメータとしては、冷却水温の代わりに内燃機関1の潤滑油の温度(油温)を用いてもよく、冷却水温と油温の双方を用いるようにしてもよい。
【0200】
一方、前記S804において前記冷却水温が所定温度以上であると判定された場合は、CPU351は、内燃機関1の運転停止時から再始動時までに過剰な時間が経過していないとみなし、S805へ進む。
【0201】
S805では、CPU351は、流量調整弁30及び遮断弁31の閉弁状態を維持して、遮断弁31から流量調整弁30に至る還元剤供給路29を閉空間に保つ。
【0202】
S806では、CPU351は、還元剤圧力センサ32の出力信号値(前記閉空間の添加燃圧):P2を入力する。
【0203】
S807では、CPU351は、バックアップRAM354の所定領域から内燃機関1の運転停止直後に検出された添加燃圧:P1を読み出す。
【0204】
S808では、CPU351は、前記S806で検出された添加燃圧:P2と前記S807で読み出された添加燃圧:P1との差の絶対値を算出し、算出された絶対値(|P1−P2|)が所定の変化量:△P以上であるか否かを判別する。
【0205】
尚、前記した変化量:△Pは、還元剤供給機構に還元剤の漏れが発生してない時の添加燃圧の変化量を予め実験的に求めた値と、外気温や燃料の温度等の外的要因を考慮したマージンとを加算して得られた値である。
【0206】
前記S808において前記添加燃圧:P1と前記添加燃圧:P2との差の絶対値(|P1−P2|)が前記変化量:△P未満であると判定された場合は、CPU351は、還元剤供給機構において燃料の漏出が発生していないとみなしてS811へ進む。
【0207】
S811では、CPU351は、RAM353の還元剤漏出フラグ記憶領域に“0”をリセットする。このS811の処理を実行し終えたCPU351は、本ルーチンの実行を終了する。
【0208】
一方、前記S808において前記添加燃圧:P1と前記添加燃圧:P2との差の絶対値(|P1−P2|)が前記変化量:△P以上であると判定された場合は、CPU351は、還元剤供給機構において燃料の漏出が発生しているとみなしてS809へ進む。
【0209】
S809では、CPU351は、RAM353の還元剤漏出フラグ記憶領域に“1”をセットする。
【0210】
S810では、CPU351は、車室内に設けられた図示しない警告ランプを点灯させる。このS810の処理を実行し終えたCPU351は、本ルーチンの実行を終了する。
【0211】
以上述べた実施の形態によれば、内燃機関1の運転停止時から再始動時までの比較的長い期間に、還元剤添加機構内に閉空間を形成し、その閉空間の圧力変化に基づいて還元剤の漏れが判定されるため、極微量の還元剤の漏れを検出することが可能となる。
【0212】
【発明の効果】
本発明に係る還元剤供給装置の異常検出装置によれば、還元剤供給機構内における還元剤の圧力に基づいて還元剤の漏れを検出することが可能となるため、還元剤の漏れを還元剤の添加制御に反映させることができ、以て排気浄化触媒に対する還元剤の過剰供給や供給不足に起因した排気エミッションの悪化抑制や排気浄化触媒の破損防止等に寄与することができる。
【0213】
また、本発明に係る還元剤供給装置の異常検出装置が還元剤吐出部から還元剤供給路への還元剤の流れを遮断する遮断部を備えている場合は、還元剤供給機構における遮断部から還元剤添加部に至る経路を閉塞された空間とし、その閉空間の圧力変化に基づいて還元剤の漏れを判定することができるため、比較的少量の還元剤の漏れを検出することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る還元剤供給装置の異常検出装置を適用する内燃機関とその吸排気系の概略構成を示す図
【図2】(A)吸蔵還元型NOx触媒のNOx吸蔵メカニズムを説明する図
(B)吸蔵還元型NOx触媒のNOx放出メカニズムを説明する図
【図3】ECUの内部構成を示すブロック図
【図4】ポンプ対応圧力と機関回転数との関係を示す図
【図5】第1の実施の形態に係る還元剤漏れ判定制御ルーチンを示すフローチャート図
【図6】第2の実施の形態に係る還元剤漏れ判定制御ルーチンを示すフローチャート図
【図7】第3の実施の形態における第1の還元剤漏れ判定制御ルーチンを示すフローチャート図
【図8】第3の実施の形態における第2の還元剤漏れ判定制御ルーチンを示すフローチャート図
【符号の説明】
1・・・・内燃機関
2・・・・気筒
3・・・・燃料噴射弁
4・・・・コモンレール
5・・・・燃料供給管
6・・・・燃料ポンプ
18・・・排気枝管
19・・・排気管
20・・・吸蔵還元型NOx触媒
21・・・排気絞り弁
25・・・EGR通路
26・・・EGR弁
27・・・EGRクーラ
28・・・還元剤噴射弁
29・・・還元剤供給路
30・・・流量調整弁
31・・・遮断弁
32・・・還元剤圧力センサ
33・・・クランクポジションセンサ
34・・・水温センサ
35・・・ECU
351・・CPU
352・・ROM
353・・RAM
354・・バックアップRAM

Claims (4)

  1. 内燃機関の排気通路に設けられ還元剤の存在下で排気中の有害ガス成分を浄化する排気浄化触媒と、前記排気浄化触媒より上流の排気通路へ還元剤を供給する還元剤供給機構と、前記還元剤供給機構における還元剤の圧力を検出する圧力検出手段と、前記圧力検出手段で検出された圧力に基づいて前記還元剤供給機構の異常を判定する異常判定手段と、を備える還元剤供給装置の異常検出装置であって、
    前記還元剤供給機構は、還元剤を所定の圧力で吐出する還元剤吐出部と、前記排気浄化触媒より上流の排気通路に設けられ前記排気通路を流れる排気中に還元剤を添加する還元剤添加部と、前記還元剤吐出部から吐出された還元剤を前記還元剤添加部へ導く還元剤供給路と、前記還元剤吐出部から前記還元剤供給路への還元剤の流れを遮断する遮断部と、を備え、
    前記還元剤圧力検出手段は、前記遮断部より下流の前記還元剤供給路内の圧力を検出し、
    前記異常判定手段は、前記遮断部が前記還元剤供給路の還元剤の流れを遮断したときに前記圧力検出手段によって検出された圧力に基づいて前記還元剤供給機構の異常を判定することを特徴とする還元剤供給装置の異常検出装置。
  2. 前記異常判定手段は、前記遮断部が前記還元剤吐出部から前記還元剤供給路への還元剤の流れを遮断しているときに前記圧力検出手段が検出する圧力の変化量が所定量を越えると、前記還元剤供給機構が異常であると判定することを特徴とする請求項1に記載の還元剤供給装置の異常検出装置。
  3. 前記異常判定手段は、前記内燃機関の運転が停止された時に前記圧力検出手段が検出した圧力と前記内燃機関が再始動された時に前記圧力検出手段が検出した圧力との偏差が所定量を越えると前記還元剤供給機構が異常であると判定することを特徴とする請求項2に記載の還元剤供給装置の異常検出装置。
  4. 前記異常判定手段は、前記内燃機関の運転停止時から再始動時までの経過時間が所定時間以上であると、前記還元剤供給機構の異常判定を禁止することを特徴とする請求項3に記載の還元剤供給装置の異常検出装置。
JP2000223049A 2000-07-24 2000-07-24 還元剤供給装置の異常検出装置 Expired - Fee Related JP3558019B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000223049A JP3558019B2 (ja) 2000-07-24 2000-07-24 還元剤供給装置の異常検出装置
JP2001010663A JP3473583B2 (ja) 2000-07-24 2001-01-18 内燃機関の排気浄化装置
EP01117847A EP1176292B1 (en) 2000-07-24 2001-07-23 Exhaust gas purifying apparatus of internal combustion engine
DE60122984T DE60122984T2 (de) 2000-07-24 2001-07-23 Vorrichtung zur Abgasreinigung für eine Brennkraftmaschine
KR10-2001-0044368A KR100446843B1 (ko) 2000-07-24 2001-07-24 내연 기관의 배기 정화 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223049A JP3558019B2 (ja) 2000-07-24 2000-07-24 還元剤供給装置の異常検出装置

Publications (2)

Publication Number Publication Date
JP2002038940A JP2002038940A (ja) 2002-02-06
JP3558019B2 true JP3558019B2 (ja) 2004-08-25

Family

ID=18717204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223049A Expired - Fee Related JP3558019B2 (ja) 2000-07-24 2000-07-24 還元剤供給装置の異常検出装置

Country Status (1)

Country Link
JP (1) JP3558019B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009464B4 (de) * 2005-03-02 2016-07-21 Robert Bosch Gmbh Verfahren zur Diagnose eines Systems zur Dosierung von Reagenzmittel und Druckluft in den Abgasbereich einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
JP2006255539A (ja) * 2005-03-15 2006-09-28 Toyota Motor Corp 排ガス浄化装置
FR2891304B1 (fr) * 2005-09-23 2007-12-21 Renault Sas Systeme et procede de regeneration d'un filtre a particules catalytique situe dans la ligne d'echappement d'un moteur diesel
JP2007154772A (ja) * 2005-12-06 2007-06-21 Mitsubishi Fuso Truck & Bus Corp 内燃機関の制御装置
US7849672B2 (en) * 2006-04-26 2010-12-14 Toyota Jidosha Kabushiki Kaisha Failure diagnosis method for reducing agent addition valve
EP2147202B1 (en) 2007-04-19 2012-02-01 Volvo Lastvagnar AB Method and arrangement for monitoring of injector
JP6223024B2 (ja) * 2013-07-10 2017-11-01 日野自動車株式会社 燃料遮断弁の閉固着検出装置
JP7091647B2 (ja) 2017-12-20 2022-06-28 いすゞ自動車株式会社 内燃機関の排気浄化装置
CN113050019B (zh) * 2021-03-04 2023-07-11 国网湖南省电力有限公司 数据驱动评估结果和检定规程融合的电压互感器评估方法及***

Also Published As

Publication number Publication date
JP2002038940A (ja) 2002-02-06

Similar Documents

Publication Publication Date Title
KR100446843B1 (ko) 내연 기관의 배기 정화 장치
JP3929296B2 (ja) 内燃機関
JP3617450B2 (ja) 内燃機関の排気浄化装置
EP1176290B1 (en) Exhaust gas purification device for internal combustion engine
JP3514230B2 (ja) 内燃機関の排気浄化装置
JP3558019B2 (ja) 還元剤供給装置の異常検出装置
JP2002155724A (ja) 内燃機関の排気浄化装置
JP3504920B2 (ja) 内燃機関の排気浄化装置
JP3680727B2 (ja) 内燃機関の排気浄化装置
JP3685033B2 (ja) 内燃機関の排気浄化装置
JP3674511B2 (ja) 内燃機関の排気浄化装置
JP3912001B2 (ja) 内燃機関の排気浄化装置
JP2002129996A (ja) 内燃機関の排気浄化装置
JP3798623B2 (ja) 内燃機関の排気浄化装置
JP3674507B2 (ja) 内燃機関の排気浄化装置
JP2002161733A (ja) 内燃機関の排気浄化装置
JP3791312B2 (ja) 内燃機関の排気浄化装置
JP2002180816A (ja) 内燃機関の排気浄化装置
JP3800065B2 (ja) 内燃機関の排気浄化装置
JP3620446B2 (ja) 内燃機関の排気浄化装置
JP3651382B2 (ja) 内燃機関の排気浄化装置
JP2002364439A (ja) 内燃機関の排気浄化装置
JP3743272B2 (ja) 内燃機関
JP3851151B2 (ja) 内燃機関
JP3624810B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees