JP3551024B2 - 内燃機関の排気ガス還流制御装置 - Google Patents

内燃機関の排気ガス還流制御装置 Download PDF

Info

Publication number
JP3551024B2
JP3551024B2 JP16522998A JP16522998A JP3551024B2 JP 3551024 B2 JP3551024 B2 JP 3551024B2 JP 16522998 A JP16522998 A JP 16522998A JP 16522998 A JP16522998 A JP 16522998A JP 3551024 B2 JP3551024 B2 JP 3551024B2
Authority
JP
Japan
Prior art keywords
valve
control valve
exhaust gas
drive
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16522998A
Other languages
English (en)
Other versions
JPH11351075A (ja
Inventor
富久 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16522998A priority Critical patent/JP3551024B2/ja
Priority to US09/285,117 priority patent/US6182645B1/en
Priority to DE69910496T priority patent/DE69910496T2/de
Priority to EP99107751A priority patent/EP0964141B1/en
Publication of JPH11351075A publication Critical patent/JPH11351075A/ja
Application granted granted Critical
Publication of JP3551024B2 publication Critical patent/JP3551024B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • F02M26/68Closing members; Valve seats; Flow passages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気ガス還流通路を通じて吸気通路に還流される排気ガス量を調整する内燃機関の排気ガス還流制御装置に関し、特に排気ガス還流通路の吸気通路側から排気通路側へと弁体をリフトして開口させる外開弁式の排気ガス還流制御弁を備える装置に採用して好適な制御構造の具現に関する。
【0002】
【従来の技術】
従来、自動車用内燃機関では、エミッション向上や燃費向上の要求を満たすため、内燃機関から排出される排気ガスの一部を吸気通路内に還流して燃焼ガス温度の低減を図る排気ガス還流(EGR)制御が行われれている。このようなEGR制御を行う内燃機関では、排気通路と吸気通路とを連通するEGR通路を設け、同通路に設けられたEGR制御弁の開度調整に基づき還流される排気ガス量を制御している。
【0003】
こうしたEGR制御装置の一例として、特開平9−154299号公報には、ステップモータによってEGR制御弁を開閉駆動するEGR制御装置が示されている。
【0004】
ところで、EGR制御弁には通常、吸気負圧と排気ガス圧(背圧)との差圧等の外力が作用する。そのため、開方向に駆動するときと閉方向に駆動するときとでは同弁に作用する応力が異なり、要求される駆動トルクも異なってくる。また、その駆動方向によって同制御に要求される応答性も異なってくる。
【0005】
例えば、EGR通路の吸気通路側から排気通路側へと弁体をリフトして開口させる外開弁式のEGR制御弁の場合、上記吸気負圧と背圧との差圧やEGR通路内を流れる排気ガスの流動抵抗に基づく応力は閉弁方向に作用する。そのため、こうした外開弁式のEGR制御弁では、閉方向に駆動するときよりも開方向に駆動するときの方が、上記差圧に抗して駆動する必要があるため、要求される駆動トルクは高くなる。また、EGR制御弁では一般に、加速時等のEGR低減遅れによって生じるエミッションの悪化を抑制するため、閉弁時に要求される応答性は開弁時に比べて高くなる。
【0006】
そこで上記公報に記載のEGR制御装置では、開閉方向に応じてEGR制御弁の駆動速度を切り換える制御を行っている。すなわち同装置では、大きな駆動トルクが要求され、応答性に対する要求が低い開弁駆動時には駆動速度を遅くし、駆動トルクに対する要求が低く、高い応答性が要求される閉弁駆動時には駆動速度を速く設定している。
【0007】
なお、同装置においてEGR制御弁の駆動装置として採用されているステップモータ等の電気モータは一般に、発生する駆動トルクと駆動速度(モータの回転数)とが相反する特性を有しており、駆動速度を遅くすると発生する駆動トルクが大きくなり、駆動速度を速くすると発生する駆動トルクが低下する。そのため、上記のように駆動方向によって駆動速度を切り換えることで、開弁駆動時における駆動トルクの確保と閉弁駆動時における応答性の向上との両立を図ることができ、出力の小さな小型・低コストのステップモータであっても好適なEGR制御弁の駆動制御を行うことができるようになる。
【0008】
【発明が解決しようとする課題】
ところで、EGR制御弁に作用する前記差圧等の外力の大きさは常時一定ではなく、内燃機関の運転状態や同制御弁の開度位置等に応じて変化することが発明者によって確認されている。しかしながら、上記公報記載のEGR制御装置では、単に開方向駆動時と閉方向駆動時とで一律に駆動速度を切り換えるようにしている。このため、実際にEGR制御弁に作用している外力が小さく、よってそのとき要求される駆動トルクもそれ程大きくない状況でも不必要に駆動速度を低下させてしまうなど、同制御装置としての十分な応答性能が得られないこともある。
【0009】
本発明は、上記実情に鑑みてなされたものであって、その目的は、排気ガス還流制御弁としての必要とされる駆動トルクを確保しつつも、その開閉駆動時の応答性能を可能な限り高く保持することのできる内燃機関の排気ガス還流制御装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、内燃機関の排気ガス還流制御装置において、内燃機関の排気ガス還流通路内を通じて還流される排気ガスの流量を調整する弁であって、前記排気ガスの圧力が閉弁方向に作用する外開弁式の制御弁と、前記制御弁を開閉するときの駆動速度と駆動トルクとが相反する特性を有して同制御弁を開閉駆動する駆動手段と、前記制御弁の全閉位置からの開弁時における駆動手段の駆動速度を、同制御弁の開弁後の開弁方向への駆動速度よりも遅い第1の駆動速度に制御するとともに、前記駆動手段が前記第1の駆動速度のとき発生する駆動力が排気ガス圧と吸気圧との差圧に基づき前記制御弁に作用する力よりも小さいときには同第1の駆動速度よりも遅い第2の駆動速度に制御し、同第1の駆動速度のとき発生する駆動力が前記制御弁に作用する力よりも大きいときには同第1の駆動速度に制御する制御手段とを備えることをその要旨とする。
【0011】
排気ガス還流(EGR)通路の排気通路側から吸気通路側へと弁体をリフトすることで開弁される外開弁式のEGR制御弁には同EGR通路内を流れる排気ガスの流動抵抗に基づく力等が閉弁方向に作用するため、開弁駆動時に大きな駆動トルクが必要とされる。一方、こうしたEGR制御弁を開閉駆動する駆動手段としてステップモータ等の電動モータが使用されることがあるが、こうした電動モータは駆動速度と駆動トルクとが相反する特性、すなわち駆動速度が大きなほど駆動トルクが小さくなり、駆動速度が小さなほど駆動トルクが大きくなるような特性を有している。
上記外弁式EGR制御弁では、全閉位置に位置するときに排気ガス圧と吸気圧との差圧が弁体にかかるため、全閉位置から開弁駆動を開始するときには特に大きな駆動トルクが要求される。このように、外開弁式EGR制御弁では全閉位置からの開弁駆動を開始するときには、排気ガス圧と吸気圧との差圧が弁体にかかっているため、特に大きな駆動トルクが必要とされる。ただし、一旦、EGR制御弁が全閉位置を離れ開弁されると同弁に作用する外力が小さくなるため、必要とされる駆動トルクも小さくなる。したがって、上記構成によれば、全閉位置からの開弁時の駆動速度を開弁後の駆動速度よりも遅くすることで、全閉位置からの開弁時に必要とされる駆動トルクを確保しながらも、開弁時の応答性を高めることができるようになる。さらに、全閉位置からの駆動速度を吸気圧と排気圧との差圧の大きさに応じて変更することで、必要なだけの駆動トルクを確保しつつも応答性の不必要な低下を防止することができるようにもなる。
【0012】
また、請求項2に記載の発明は、請求項1に記載の内燃機関の排気ガス還流制御装置において、前記制御手段は、前記制御弁に作用する排気ガス圧と吸気圧との差圧に応じて同制御弁を開方向に駆動するときの駆動速度を変更制御することをその要旨とする。
【0013】
前記EGR制御弁に作用する排気ガスの流動抵抗等の外力の大きさは、排気ガス圧と吸気圧との差圧の大きさから把握することができる。よって、上記構成によれば、排気ガス圧と吸気圧との差圧の大きさからEGR制御弁に作用する外力の大きさを把握し、その差圧の大きさに応じて駆動手段の駆動速度を変更制御することで、駆動トルクと応答性能との両立を図ることができるようになる。
【0016】
また、請求項に記載の発明は、請求項またはに記載の内燃機関の排気ガス還流制御装置において、前記制御弁に作用する排気ガス圧と吸気圧との差圧を、当該機関の回転数と負荷とに基づき推定する推定手段を更に備えることをその要旨とする。
【0017】
上記構成によれば、排気ガス圧と吸気圧との差圧の大きさを特別なセンサを設けずとも把握することができるようになるため、構造の簡易化やコスト低減を図ることができるようになる。
【0020】
【発明の実施の形態】
以下、本発明を具体化した一実施の形態について説明する。
まず、本発明にかかる排気ガス還流制御装置の一実施の形態を備える内燃機関の概略構成について、図1に基づき説明する。
【0021】
内燃機関1の吸気通路11に設けられたサージタンク16には、同吸気通路11と排気通路12とを連通する排気ガス還流(EGR)通路62が連結されている。このEGR通路62には、同EGR通路62内を通じて吸気通路11へと還流される排気ガスの量を調整するためのEGR制御弁63が設けられている。このEGR制御弁63は、ステップモータ64によって開閉駆動される。このステップモータ64は、内燃機関1の各種制御を行う電子制御装置51から出力される指令信号に基づき動作する駆動回路52によって駆動される。これらEGR通路62及びEGR制御弁63と、同制御弁63を開閉駆動するステップモータ64、電子制御装置51、駆動回路52等からEGR制御装置60が構成されている。
【0022】
更に吸気通路11のサージタンク16には、同タンク16内の吸入空気の圧力(吸気負圧)PMを検出するための吸気圧センサ37が、また内燃機関1には同機関1の出力軸の回転数(機関回転数)NEを検出するための回転数センサ25が設けられている。これら吸気圧センサ37及び回転数センサ25から出力される検出信号は電子制御装置51へと送られる。
【0023】
以下に、EGR制御装置60の更に詳細な構成について、図2に基づき説明する。
図2には、上記EGR制御弁63とステップモータ64とが収容されたバルブボディ65の断面構造を示している。
【0024】
バルブボディ65は、EGR通路62の途中に設けられている。このバルブボディ65内に設けられた弁体66はEGR通路62中に配設されており、その軸方向にリフトするようになっている。全閉時には、弁体66はバルブシート部67と密着し、EGR通路62を塞ぐかたちとなる。この弁体66は、スプリング68によって閉方向に付勢されるとともに、ロータシャフト72によって開方向に押圧される。なお、このスプリング68は、EGR制御弁63の全閉時において上記弁体66とバルブシート部67との密着性を高め、確実にEGRを遮断する機能のほか、後述するように閉弁駆動時の応答性能を向上させる役割も兼ねている。
【0025】
このバルブボディ65内には、駆動コイル69及びターミナル70、回転子71からなるステップモータ64も収容されている。
駆動コイル69には、駆動回路52(図1)からターミナル70を介して励磁電圧が印加される。この励磁電圧に基づき駆動コイル69は励磁され、永久磁石からなる回転子71は所定の位相に位置される。駆動コイル69に印加される励磁電圧のパターンを順次変化させることで、回転子71は所定角度ずつ回動される。
【0026】
この回転子71は、中空円筒形状を呈しており、その内周面にはねじ溝が形成されている。また、この回転子71の中空部には、上記ロータシャフト72が摺動可能に配設されている。このロータシャフト72の外周にもねじ溝が形成されており、上記回転子71の内周のねじ溝とかみ合わされている。このロータシャフト72の回動は、図示しない凹凸関係によって規制されている。そのためロータシャフト72は回転子71が回動することで、その軸方向に摺動される。このロータシャフト72の摺動にともない、上記弁体66は同ロータシャフト72に押圧され、リフトされる。こうして弁体66の開閉駆動が行われる。
【0027】
上記構成のEGR制御装置60にあって、弁体66のリフト量、すなわちEGR制御弁63の開度は、上記駆動コイル69に印加する励磁電圧のパターンを変更した回数をカウントすることで把握される。また、同EGR制御弁63の開閉駆動速度は、上記パターンの変更周期に基づき変更される。なお、駆動コイル69に印加される励磁電圧のパターンを変更する駆動回路52は上述のように、電子制御装置51から発せられる指令信号に基づき動作する。
【0028】
こうしたステップモータ64では、一般に、駆動速度を速くすると発生するトルクが低下し、駆動速度を遅くすることで高トルクが得られるようになる。
こうしたEGR制御弁63において、全閉時に弁体66に作用する力について、図3に基づき説明する。
【0029】
本実施の形態のEGR制御弁63は、吸気通路11内の吸気負圧PMと排気通路12内の背圧PEとの差圧が閉弁方向にかかる外開弁式のEGR制御弁となっている。こうした外開弁式のEGR制御弁63では、全閉時には上記吸気負圧PMと背圧PEとの差圧の全てが弁体66に直接かかるようになる。なお、同図3において、力Fiは吸気負圧PMに基づき弁体66に作用する力を、力Feは背圧PEに基づき弁体66に作用する力を、力Fmはステップモータ64の発生する駆動力をそれぞれ示している。したがって、全閉位置から開弁駆動を開始する際には、ステップモータ64の駆動力Fmを、これら力Fiと力Feとの合力よりも大きくする必要がある。
【0030】
なお、一旦、EGR制御弁63が開弁し始めると、弁体66に上記のような差圧の全てが直接かかることはなくなるため、ステップモータ64に要求される駆動トルクは小さくなる。しかしながら開弁駆動中、弁体66にはEGR通路62内を流れる排気ガスの流動抵抗や前記スプリング68の付勢力に抗する必要があるため、ある程度の大きさの駆動トルクは要求される。
【0031】
他方、閉弁駆動時には、上記スプリング68の付勢力等によって助勢されるため、ステップモータ64に要求される駆動トルクは小さくてもよい。したがって、閉弁時の駆動速度はある程度まで高めることができる。なお、こうしたEGR制御装置60では、加速時等のEGR低減遅れによって生じるエミッションの悪化を抑制するため、閉弁時には高い応答性が要求されるため、駆動速度を速くする必要がある。そこで本実施の形態のEGR制御弁63のように、弁体66に対して上記差圧やスプリング68の付勢力が閉弁方向に作用する構成とすることで、閉弁時の応答性能を高めることができるようになる。
【0032】
ところで、適切なEGR量は当該機関1の運転状態によって変化する。また、排気ガスの還流は、吸気通路11と排気通路12との圧力差に基づき行われるが、この圧力差も当該機関1の運転状態に応じて変化する。そのため、内燃機関1の運転状態に応じてEGR制御弁63の開度を適宜調整することが望ましい。以下にこうしたEGR制御弁63の開度調整のためのEGR制御装置60の制御態様について説明する。
【0033】
図4及び図5に、上記EGR制御弁63の開度制御を行うEGR制御ルーチンの処理手順を記したフローチャートを示す。
本ルーチンの処理は、前回、同ルーチンの処理が実行されたときに設定された励磁相変更周期WAITが経過する毎に、割り込み処理として電子制御装置51によって実行される。また、このときステップモータ64の駆動回路52は、同じく同ルーチンが前回実行されたときに設定された実励磁パターンRMODEに応じて駆動コイル69に印加する励磁電圧のパターンを変更する。本実施の形態では、この実励磁パターンRMODEの値を順次加算することで、EGR制御弁63が開弁方向に駆動されるように駆動コイル69に印加される励磁電圧のパターンが変更され、同実励磁パターンRMODEを順次減算することで、EGR制御弁63が閉弁方向に駆動されるように駆動コイル69に印加される励磁電圧のパターンが変更される構成となっている。すなわち、EGR制御弁63は、本ルーチンの処理が開始された時点で実際に開閉駆動される。
【0034】
本ルーチンの処理に移行すると、電子制御装置51は、まず処理S100において、前記回転数センサ25の検出結果に基づき算出される機関回転数NEと、吸気圧センサ37によって検出される吸気負圧PMとを入力する。
【0035】
そして、続く処理S105において、電子制御装置51は、これら機関回転数NEと吸気負圧PMとの周知のマップから目標ステップ数TSTEPを算出する。この目標ステップ数TSTEPは、EGR制御弁63の全閉位置を基準(0ステップ)として、その位置から励磁電圧のパターンを変更した回数を示している。先述したように、上記パターンを変更した回数とEGR制御弁63との開度とには完全な対応関係がある。そのため、この目標ステップ数TSTEPは、EGR制御弁63の目標開度を間接的に表すものであり、内燃機関1の運転状態に応じた適切な開度となるように設定される。
【0036】
次に、処理S110において、電子制御装置51は、実ステップ数ASTEPを入力する。この実ステップ数ASTEPは、EGR制御弁63を全閉位置から現在の開度まで駆動するのに要する励磁電圧のパターンの変更回数を示している。この実ステップ数ASTEPも、上記目標ステップ数TSTEPと同様に、EGR制御弁63の現在の開度を間接的に表すものである。なお、本実施の形態では、目標ステップ数TSTEP及び実ステップ数ASTEPの値が大きな程、EGR制御弁63の開度がより開き側となっていることを示している。
【0037】
そして、次の処理S115において、電子制御装置51は、現在の励磁電圧のパターンを示す実励磁パターンRMODEを入力する。
続く処理S120において電子制御装置51は、目標ステップ数TSTEPが実ステップ数ASTEPよりも大きいか否かを判断する。ここで目標ステップ数TSTEPの方が大きいと判断された場合(YES)、このことはEGR制御弁63の実際の開度が目標開度よりも閉じ側にあることを意味しているため、同制御弁63を開弁方向に駆動する必要がある。この場合、電子制御装置51は処理S125に移行する。
【0038】
一方、上記処理S120において、実ステップ数ASTEPの方が大きいと判断された場合(NO)、電子制御装置51は処理S140に移行する。この処理S140において、電子制御装置51は、先の処理S120とは逆に、目標ステップ数TSTEPが実ステップ数ASTEPよりも小さいか否かを判断する。ここで目標ステップ数TSTEPの方が小さいと判断された場合(YES)、このことはEGR制御弁63の実際の開度が目標開度よりも開き側にあることを意味しているため、同制御弁63を閉弁方向に駆動する必要がある。この場合、電子制御装置51は処理S145へと移行する。
【0039】
上記処理S140において、NOと判断された場合、すなわち実ステップ数ASTEPと目標ステップ数TSTEPとが一致する場合、電子制御装置51は、現在の実励磁パターンRMODEを保持したまま、処理S155に移行する。そして、電子制御装置51は、処理S155において、励磁相変更周期WAITに定数Aを入力した後、本ルーチンの処理を一旦終了する。
【0040】
すなわちこの場合、励磁相変更周期WAITの定数A分の時間が経過した後に、次回の本ルーチンの処理が実行される。ただし、このときには実励磁パターンRMODEは変更されていないため、EGR制御弁63の開閉駆動は行われない。
【0041】
次に、上記処理S140において、目標ステップ数TSTEPの方が小さいと判断された場合(YES)、すなわちEGR制御弁63を閉方向に駆動する場合について説明する。
【0042】
この場合、電子制御装置51は処理S145において、実励磁パターンRMODEから1を減算する。そのため、次回、励磁相変更周期WAITが経過した後、EGR制御弁63は、1ステップ分だけ閉方向に駆動される。そして続く処理S150において、電子制御装置51は、実ステップ数ASTEPからも1を減算する。その後、電子制御装置51は、上記処理S155に移行し、励磁相変更周期WAITに定数Aを入力し、本ルーチンの処理を一旦終了する。
【0043】
この場合も、励磁相変更周期WAITの定数A分の時間が経過した後、次回の本ルーチンの処理が実行される。このとき、実励磁相パターンRMODEが1だけ減算されているため、EGR制御弁63は1ステップ分だけ閉弁方向に駆動される。
【0044】
以上のように、EGR制御弁63を閉弁方向に駆動する場合も、開度をそのまま保持する場合も、励磁相変更周期WAITは同じく定数Aが設定される。なお、この励磁相変更周期WAITは、ステップモータ64の駆動速度の逆数と比例関係にある。そのため、この励磁相変更周期WAITの値が大きな程、ステップモータ64の駆動速度は遅くなる。
【0045】
次に、先の処理S120において、実ステップ数ASTEPの方が目標ステップ数TSTEPよりも大きいと判断され(YES)、EGR制御弁63を開弁方向に駆動する場合について説明する。
【0046】
この場合、電子制御装置51は、処理S125において実励磁パターンRMODEに1を加算する。よって、次回励磁相変更周期WAITが経過した後には、EGR制御弁63は開弁方向に1ステップ分だけ駆動されるようになる。そして、電子制御装置51は、続く処理S130において、実ステップ数ASTEPにも1を加算し、図5に示す処理S200に移行する。
【0047】
この処理S200において、電子制御装置51は、実ステップ数ASTEPが定数α未満であるか否かを判断する。実ステップ数ASTEPが定数α未満のとき(YES)には、EGR制御弁63は全閉位置若しくはその近傍にあって、EGR通路62の排気系側と吸気系側とが完全に連通されていない状態にあることを意味している。こうした状態では、EGR制御弁63の弁体66には、図3に示したように、吸気負圧PMと背圧PEとの差圧全体がかかっており、ステップモータ64はこうした差圧に基づく力(Fi+Fe)に抗して弁体66をリフトする必要があるため、駆動するには大きなトルクが必要がある。
【0048】
一方、実ステップ数ASTEPが定数α以上の場合(NO)、EGR通路62の排気系側と吸気系側との連通は既に確保されており、定数α未満の場合(YES)程高いトルクは要求されない。しかしながら、こうした状態でも、EGR制御弁63を開弁方向に駆動するときには、弁体66には排気ガスの流動抵抗が作用し、また、スプリング68の付勢力に抗する必要もあることから、閉弁駆動時よりは高い駆動トルクが要求される。そこで、この場合、電子制御装置51は、処理S220において、先の閉弁駆動する場合に設定した定数Aよりも大きな定数Bを励磁相変更周期WAITに入力する。こうして励磁相変更周期WAITを設定した後、電子制御装置51は本ルーチンの処理を一旦終了する。
【0049】
この場合、励磁相変更周期WAITの定数B分だけの時間が経過した後、次回の本ルーチンの処理が開始される。このときEGR制御弁63は、1ステップ分だけ開弁方向に駆動される。なお、定数Bの値は定数Aの値よりも大きいため、EGR制御弁63が駆動されるまでの時間は、前述した閉方向に駆動する場合よりも長くなる。これは、閉弁駆動時よりもステップモータ64の駆動速度が遅くなり、その分駆動トルクが高くなることを意味している。
【0050】
さて、上記処理S200において、実ステップ数ASTEPが定数α未満の場合、電子制御装置51は処理S205において、前記処理S100において入力した吸気負圧PMから弁体66に作用する吸気負圧PMに基づく力Fiを算出する。
【0051】
こうして弁体66に作用する吸気負圧PMに基づく力Fiを推定した後、電子制御装置51は処理S210において、上記吸気負圧PMに基づく力Fiと背圧PEに基づき弁体66に作用する力Feとの和よりも、励磁相変更周期WAITを定数Cに設定したときのステップモータ64の駆動力Fmの方が大きいか否かを判断する。なお、本実施の形態では、背圧PEの変動は吸気負圧PMの変動に比べて小さいため、この背圧PEに基づき弁体66に作用する力Feは定数として与えている。また、上記の定数Cは、処理S220において設定する定数Bよりも更に大きな値で、ステップモータ64の駆動速度を更に遅くし、駆動トルクを更に高めるべく設定された値である。
【0052】
上記処理S210において、上記状態におけるステップモータ64の駆動力Fmが上記力Fiと力Feの和よりも大きな場合(YES)、電子制御装置51は、処理S225において、励磁相変更周期WAITに上記定数Cを設定する。こうして励磁相変更周期WAITを設定した後、電子制御装置51は本ルーチンの処理を一旦終了する。この場合も、励磁相変更周期WAITの定数C分だけの時間が経過した後に、次回の本ルーチンの処理が実行され、そのときEGR制御弁63は1ステップ分だけ開弁方向に駆動される。定数Cの値は定数Bよりも更に大きいため、ステップモータ64の駆動速度は更に遅くなる。
【0053】
一方、上記処理S210において、上記力Fiと力Feとの和の方が大きいと判断された場合(NO)、励磁相変更周期WAITを定数Cとして駆動速度を更に遅くしたとしても、EGR制御弁63を開弁駆動するだけのトルクを確保することができない状態となっている。こうした場合、電子制御装置51は、処理S215において、励磁相変更周期WAITを定数Cよりも更に大きな値である定数Dとして設定する。こうして励磁相変更周期WAITを設定した後、電子制御装置51は本ルーチンの処理を一旦終了する。
【0054】
この場合も、励磁相変更周期WAITの定数D分だけの時間が経過した後に、次回の本ルーチンの処理が実行され、そのときEGR制御弁63は1ステップ分だけ開弁方向に駆動される。定数Dの値は定数Cよりも更に大きいため、ステップモータ64の駆動速度は更に遅くなり、したがって同モータ64の発生する駆動トルクは更に高くなる。
【0055】
以上説明したEGR制御ルーチンの処理を、以下に要約して説明する。
本ルーチンの処理は、前回本ルーチンが実行されたときに設定された励磁相変更周期WAITが経過する毎に電子制御装置51によって実行される。このとき駆動回路52は、同じく前回本ルーチンが実行されたときに設定された実励磁パターンRMODEに応じて駆動コイル69に印加される励磁電圧のパターンを変化させ、目標とする開度に近づけるべくEGR制御弁63を1ステップ分ずつ開閉駆動する。
【0056】
本ルーチンでは、以下の4通りの場合によって励磁相変更周期WAIT、すなわちステップモータ64の駆動速度を変更している。
i)閉弁駆動時…この場合、弁体66に作用する抗力もなく(あるいは弁体66に閉弁駆動を助勢する方向の力が作用し)、高い応答性が要求されるため、励磁相変更周期WAITに比較的小さな値Aを設定し、十分な駆動速度を確保している。
【0057】
ii)開弁駆動時(全閉位置以外の開度位置)…この場合、弁体66にはスプリング68の付勢力や、EGR通路62を流れる排気ガスの流動抵抗が作用するため、ステップモータ64の駆動速度を幾分か遅くし、必要な駆動トルクを確保すべく、励磁相変更周期WAITに上記定数Aよりも大きな値Bを設定している。
【0058】
iii)開弁駆動時(全閉位置からの駆動開始時)…この場合、弁体66には、吸気負圧PMと背圧PEとの差圧全てがかかるため、特に高い駆動トルクが必要とされる。そこで、励磁相変更周期WAITに上記定数Bよりも更に大きな値Cを設定して、十分な駆動トルクを確保している。
【0059】
iv)開弁駆動時(特定の運転領域)…吸気負圧PMの大きさは内燃機関1の運転状態に応じて変化するため、特定の運転領域では上記弁体66にかかる差圧が特に大きくなり、励磁相変更周期WAITに定数Cを設定して駆動トルクを高めても、必要なだけの駆動トルクを確保することができない。この場合、励磁相変更周期WAITに上記定数Cよりも更に大きな値Dを設定して、駆動速度は遅くとも開弁駆動に必要な駆動トルクを確保することを可能としている。
【0060】
以上のように、本実施の形態では、EGR制御弁63の弁体66に作用する力の大きさに応じてステップモータ64の駆動速度を変更することで、必要なだけの駆動トルクを確保しつつも、不必要な応答性能の低下を抑制している。
【0061】
以上説明したように、本実施の形態によれば、以下の効果を得ることができる。
(1)EGR通路62内を流れる排気ガスの流動抵抗やコイルスプリング68の付勢力に抗するため大きな駆動トルクが必要とされるEGR制御弁63の開弁駆動時に、ステップモータ64の駆動速度を遅くすることで必要な駆動トルクを確保することができるようになる。
【0062】
(2)吸気負圧PMと背圧PEとの差圧がEGR制御弁63の弁体66に直接かかり、特に大きな駆動トルクが要求される全閉位置からの開弁駆動開始時は、ステップモータ64の駆動速度を更に遅くすることで必要な駆動トルクを確保することができるようになる。
【0063】
(3)また、そのときの駆動速度を上記吸気負圧PMと背圧PEとの差圧の大きさに応じて変更することで、必要なだけの駆動トルクを確保しつつも応答性の不必要な低下を防止することができるようにもなる。
【0064】
(4)以上のように大きな駆動トルクが必要とされるときに、必要な駆動トルクを確保可能な分だけステップモータ64の駆動速度を遅くすることで、応答性の低下を抑制することができるようにもなる。
【0065】
(5)一方、必要とされる駆動トルクが小さく、加速時等のEGR低減遅れによるエミッションの悪化を抑制するために高い応答性が要求されるEGR制御弁63の閉弁駆動時には、上記排気ガスの流動抵抗やコイルスプリングに助勢されつつ制御弁の駆動を行うことができるため、ステップモータ64の駆動速度を速くして応答性を向上することができるようになる。
【0066】
(6)以上のように駆動トルクや応答性の必要に応じてステップモータ64の駆動速度を変更することで、出力の小さな小型・低コストのステップモータ64であっても好適なEGR制御弁63の開閉駆動制御を行うことができるようになる。
【0067】
なお、本発明の実施の形態は、以下のように変更してもよい。
・本実施の形態では、全閉位置からの開弁時におけるステップモータ64の駆動速度を弁体66にかかる吸気負圧PMと背圧PEとの差圧の大きさに応じて変更する構成としたが、開弁後の開弁方向への駆動速度も同様に上記差圧に応じて変更する構成としてもよい。この場合、開弁後の開弁方向への駆動時における応答性能も可能な限り高くすることができるようになる。
【0068】
・前記実施の形態では、吸気圧センサ37によって検出される吸気負圧PMから弁体66に作用する吸気負圧PMに基づく力Fiを推定する構成としたが、上記機関回転数NEとスロットル開度とから吸気負圧PMの大きさを推定し、この推定された吸気負圧PMに基づき上記力Fiを算出する構成としてもよい。
【0069】
・また同様に、吸入空気量と機関回転数NEとから吸気負圧PMの大きさを推定し、この推定された吸気負圧PMに基づき弁体66に作用する吸気負圧PMに基づく力Fiを算出する構成としてもよい。
【0070】
・また、同様に機関回転数NEと燃料噴射量とから吸気負圧PMを推定し、上記力Fiを演算する構成としてもよい。
以上のように機関回転数NEと同機関の負荷状態を反映するスロットル開度や吸入空気量、燃料噴射量等のパラメータとから吸気負圧PMを推定してステップモータ64の駆動速度を演算する構成とした場合、吸気圧センサ37を設けない構成の内燃機関にあっても、上記差圧に応じたステップモータ64の駆動速度制御ができるようになる。さらに、上記機関回転数NEとスロットル開度や吸入空気量、燃料噴射量等の当該機関1の負荷状態を反映するパラメータとからEGR制御弁63の目標開度を演算する構成とした場合には、EGR制御弁63の目標開度及びステップモータ64の駆動速度の演算に共通したパラメータを使用することができるため、制御態様を簡易化できるようにもなる。
【0071】
・上記実施の形態あるいは上記構成のように測定あるいは推定された吸気負圧PMからEGR制御弁63に作用する外力(吸気負圧PMと背圧PEとの差圧に基づく力=Fi+Fe)を推定するのではなく、排気通路12内に排気ガス圧を直接測定する圧力センサ(背圧センサ)を設け、測定された排気ガス圧に基づき上記外力を推定する構成としてもよい。また、上記背圧センサと吸気圧センサ37との両方を設け、EGR制御弁63に作用する外力を直接測定する構成としてもよい。このような構成とした場合、排気ガス圧の変動が大きな場合にも適切なEGR制御弁63の開閉駆動制御が可能となる。
【0072】
・上記実施の形態あるいは上記構成のように、検出あるいは推定した吸気負圧PM等から算出された上記力Fiや力Feを算出し、それとステップモータ64の駆動力Fmとの比較に基づき駆動速度を変更するのではなく、内燃機関1の運転領域に応じてステップモータ64の駆動速度を変更する構成としてもよい。ステップモータ64の駆動力Pmと駆動速度との関係は予め求めておくことが可能である。また、内燃機関1の運転領域と、EGR制御弁63の弁体66に作用する吸気負圧PMと背圧PEとの差圧に基づく力の大きさとの関係も予め求めておくことができる。そのため、上記の構成によっても、本実施の形態と同様のEGR制御弁63の駆動制御を行うことは可能である。
【0073】
・また、本実施の形態のEGR制御に際して、従来公知のバッテリ電圧に応じたステップモータの応答性変更等の制御を併用することも可能である。
・上記実施の形態のようにステップモータ64でEGR制御弁63を駆動する構成に限らず、駆動速度と駆動トルクが相反する特性を有し、駆動速度を遅くすることで駆動トルクを向上することが可能な他の駆動手段、例えばステップモータ以外の電動モータを用いる構成としてもよい。
【0074】
【発明の効果】
請求項1に記載の発明によれば、全閉位置からの開弁時の駆動速度を開弁後の駆動速度よりも遅くすることで、全閉位置からの開弁時に必要とされる駆動トルクを確保しながらも、開弁時の応答性を高めることができるようになる。さらに、全閉位置からの駆動速度を吸気圧と排気圧との差圧の大きさに応じて変更することで、必要なだけの駆動トルクを確保しつつも応答性の不必要な低下を防止することができるようにもなる。
【0075】
また、請求項2に記載の発明によれば、排気ガス圧と吸気圧との差圧の大きさからEGR制御弁に作用する外力の大きさを把握し、その差圧の大きさに応じて駆動手段の駆動速度を変更制御することで、駆動トルクと応答性能との両立を図ることができるようになる。
【0077】
また、請求項に記載の発明によれば、排気ガス圧と吸気圧との差圧の大きさを特別なセンサを設けずとも把握することができるようになるため、構造の簡易化やコスト低減を図ることができるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかるEGR制御装置が設けられた内燃機関の概略構成を示す略図。
【図2】同EGR制御装置のEGR制御弁及びステップモータの構造を示す断面図。
【図3】EGR制御弁に作用する外力の関係を示す説明図。
【図4】EGR制御ルーチンの制御手順を示すフローチャート。
【図5】同じくEGR制御ルーチンの制御手順を示すフローチャート。
【符号の説明】
1…内燃機関、11…吸気通路、12…排気通路、16…サージタンク、25…回転数センサ、37…吸気圧センサ、51…電子制御装置、52…駆動回路、60…EGR制御装置、62…EGR通路、63…EGR制御弁、64…ステップモータ。

Claims (3)

  1. 内燃機関の排気ガス還流通路内を通じて還流される排気ガスの流量を調整する弁であって、前記排気ガスの圧力が閉弁方向に作用する外開弁式の制御弁と、
    前記制御弁を開閉するときの駆動速度と駆動トルクとが相反する特性を有して同制御弁を開閉駆動する駆動手段と、
    前記制御弁の全閉位置からの開弁時における駆動手段の駆動速度を、同制御弁の開弁後の開弁方向への駆動速度よりも遅い第1の駆動速度に制御するとともに、前記駆動手段が前記第1の駆動速度のとき発生する駆動力が排気ガス圧と吸気圧との差圧に基づき前記制御弁に作用する力よりも小さいときには同第1の駆動速度よりも遅い第2の駆動速度に制御し、同第1の駆動速度のとき発生する駆動力が前記制御弁に作用する力よりも大きいときには同第1の駆動速度に制御する制御手段と
    を備えることを特徴とする内燃機関の排気ガス還流制御装置。
  2. 前記制御手段は、前記制御弁に作用する排気ガス圧と吸気圧との差圧に応じて同制御弁を開方向に駆動するときの駆動速度を変更制御する
    請求項1に記載の内燃機関の排気ガス還流制御装置。
  3. 請求項1または2に記載の内燃機関の排気ガス還流制御装置において、
    前記制御弁に作用する排気ガス圧と吸気圧との差圧を、当該機関の回転数と負荷とに基づき推定する推定手段を更に備えることを特徴とする内燃機関の排気ガス還流制御装置。
JP16522998A 1998-06-12 1998-06-12 内燃機関の排気ガス還流制御装置 Expired - Fee Related JP3551024B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16522998A JP3551024B2 (ja) 1998-06-12 1998-06-12 内燃機関の排気ガス還流制御装置
US09/285,117 US6182645B1 (en) 1998-06-12 1999-04-01 Exhaust gas recirculation control apparatus for internal combustion engine
DE69910496T DE69910496T2 (de) 1998-06-12 1999-04-19 Abgasrückführungssteuervorrichtung für Brennkraftmaschine
EP99107751A EP0964141B1 (en) 1998-06-12 1999-04-19 Exhaust gas recirculation control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16522998A JP3551024B2 (ja) 1998-06-12 1998-06-12 内燃機関の排気ガス還流制御装置

Publications (2)

Publication Number Publication Date
JPH11351075A JPH11351075A (ja) 1999-12-21
JP3551024B2 true JP3551024B2 (ja) 2004-08-04

Family

ID=15808322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16522998A Expired - Fee Related JP3551024B2 (ja) 1998-06-12 1998-06-12 内燃機関の排気ガス還流制御装置

Country Status (4)

Country Link
US (1) US6182645B1 (ja)
EP (1) EP0964141B1 (ja)
JP (1) JP3551024B2 (ja)
DE (1) DE69910496T2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105209742A (zh) * 2013-05-20 2015-12-30 丰田自动车株式会社 用于内燃发动机的控制装置和控制方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126155A3 (en) * 2000-02-18 2002-08-21 Siemens Automotive Inc. Rotatory valve actuating system
US6675783B1 (en) * 2000-08-14 2004-01-13 Mitsubishi Denki Kabushiki Kaisha Control device of exhaust recirculation valve
JP4480938B2 (ja) * 2000-08-16 2010-06-16 三菱電機株式会社 排気ガス再循環バルブの制御方法
US6415776B1 (en) * 2000-08-25 2002-07-09 Ford Global Technologies, Inc. EGR system using pressure-based feedback control
US6460522B1 (en) * 2000-12-15 2002-10-08 Detroit Diesel Corporation Method and apparatus for controlling engine exhaust gas recirculation
FR2837033B1 (fr) * 2002-03-05 2004-09-24 Moving Magnet Tech Mmt Actionneur lineaire comprenant un moteur electrique polyphase
US6980903B2 (en) * 2002-11-01 2005-12-27 Visteon Global Technologies, Inc. Exhaust gas control using a spark plug ionization signal
CN100532809C (zh) * 2003-07-10 2009-08-26 丰田自动车株式会社 内燃机的进气量推测装置
JP2006161683A (ja) * 2004-12-07 2006-06-22 Mitsubishi Fuso Truck & Bus Corp モータ式ポペット弁及びモータ式ポペット弁を用いた内燃機関のegr装置
US7739027B2 (en) * 2007-08-17 2010-06-15 Gm Global Technology Operations, Inc. Method and apparatus for monitoring an EGR valve in an internal combustion engine
JP5262984B2 (ja) * 2009-05-19 2013-08-14 トヨタ自動車株式会社 流量制御弁
US8423269B2 (en) * 2009-07-08 2013-04-16 Cummins Inc. Exhaust gas recirculation valve contaminant removal
JP5793320B2 (ja) * 2011-03-18 2015-10-14 ヤンマー株式会社 エンジン
JP5734738B2 (ja) * 2011-05-18 2015-06-17 トヨタ自動車株式会社 バルブ構造
JP6041753B2 (ja) * 2012-11-21 2016-12-14 愛三工業株式会社 エンジンの排気還流装置
US20140224231A1 (en) * 2013-02-13 2014-08-14 Woodward, Inc. Controlling an Exhaust Gas Recirculation (EGR) Valve
CN110566381B (zh) * 2018-11-30 2021-07-20 长城汽车股份有限公司 发动机egr***和发动机egr***的诊断策略

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554658A (en) 1978-10-17 1980-04-22 Nippon Soken Inc Electronic controller for internal-combustion engine
US4448177A (en) 1982-11-01 1984-05-15 Honda Motor Co., Ltd. Exhaust gas recirculation control system having variable valve lift correcting speed for exhaust gas recirculation valve
JPS6176748A (ja) * 1984-09-25 1986-04-19 Aisin Seiki Co Ltd 電動式排気ガス再循環バルブ
US4825840A (en) * 1987-03-30 1989-05-02 Robert Shaw Controls Company Exhaust gas recirculation valve construction and method of making the same
JPH0295763A (ja) 1988-09-30 1990-04-06 Aisin Seiki Co Ltd 排気ガス再循環制御装置
JPH05106520A (ja) * 1990-12-28 1993-04-27 Aisan Ind Co Ltd 流量制御弁
JP2833973B2 (ja) * 1993-09-20 1998-12-09 三菱電機株式会社 排気ガス還流制御装置
JPH08114157A (ja) * 1994-10-14 1996-05-07 Nippondenso Co Ltd 排気ガス還流弁制御装置
WO1996020338A1 (fr) 1994-12-26 1996-07-04 Hitachi, Ltd. Commande de debit pour moteur a combustion interne
JP3460431B2 (ja) 1995-05-16 2003-10-27 三菱自動車工業株式会社 排出ガス還流制御装置
JPH09154299A (ja) 1995-11-28 1997-06-10 Nissan Motor Co Ltd ステップモータの駆動制御装置
US5937835A (en) 1997-06-24 1999-08-17 Eaton Corporation EGR system and improved actuator therefor
US6012437A (en) * 1998-07-06 2000-01-11 Eaton Corporation EGR system with improved control logic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105209742A (zh) * 2013-05-20 2015-12-30 丰田自动车株式会社 用于内燃发动机的控制装置和控制方法

Also Published As

Publication number Publication date
EP0964141B1 (en) 2003-08-20
EP0964141A2 (en) 1999-12-15
US6182645B1 (en) 2001-02-06
JPH11351075A (ja) 1999-12-21
DE69910496D1 (de) 2003-09-25
DE69910496T2 (de) 2004-06-24
EP0964141A3 (en) 2000-06-14

Similar Documents

Publication Publication Date Title
JP3551024B2 (ja) 内燃機関の排気ガス還流制御装置
JP4269982B2 (ja) 排気ガス還流装置の故障診断装置
JP2005256784A (ja) 排気ガス還流装置の故障診断装置
JP3695118B2 (ja) 電磁駆動弁の制御装置
US6155240A (en) Actuator control apparatus for internal combustion engine
JPH08200025A (ja) 電磁駆動バルブ制御装置
JP3601386B2 (ja) エンジンの吸入空気量制御装置
JP3496396B2 (ja) ディーゼルエンジンの制御装置
JP3713998B2 (ja) 内燃機関の吸気制御装置
JP2007263051A (ja) 内燃機関の吸入空気量制御装置
JP3352625B2 (ja) 内燃機関システム
JP3478092B2 (ja) アイドル吸気圧学習機能を有するエンジン制御装置
JP3744219B2 (ja) 電子制御スロットル弁の制御装置
JP4042087B2 (ja) 電磁制御バルブの制御装置
JP3885456B2 (ja) 可変動弁の制御装置
JPH08218946A (ja) ディーゼル機関の排気還流制御装置
JP5250006B2 (ja) 燃料圧力制御装置
JP2978962B2 (ja) 内燃機関の電磁駆動弁制御装置
EP0950806A2 (en) Method and device for controlling intake throttle valve of diesel engine
JP2001248487A (ja) 内燃機関の制御装置
JP2658128B2 (ja) 内燃機関の排気ガス再循環制御装置
JPH09154299A (ja) ステップモータの駆動制御装置
JP2917071B2 (ja) エンジンの出力制御装置
JPS6018609Y2 (ja) 内燃機関の排気ガス還流装置
JP3716601B2 (ja) 車両用内燃機関の制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees