JP3541142B2 - 建設機械の制御装置 - Google Patents

建設機械の制御装置 Download PDF

Info

Publication number
JP3541142B2
JP3541142B2 JP11823599A JP11823599A JP3541142B2 JP 3541142 B2 JP3541142 B2 JP 3541142B2 JP 11823599 A JP11823599 A JP 11823599A JP 11823599 A JP11823599 A JP 11823599A JP 3541142 B2 JP3541142 B2 JP 3541142B2
Authority
JP
Japan
Prior art keywords
boom
bucket
hydraulic
pump
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11823599A
Other languages
English (en)
Other versions
JP2000309949A (ja
Inventor
公正 恩田
Original Assignee
新キャタピラー三菱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新キャタピラー三菱株式会社 filed Critical 新キャタピラー三菱株式会社
Priority to JP11823599A priority Critical patent/JP3541142B2/ja
Publication of JP2000309949A publication Critical patent/JP2000309949A/ja
Application granted granted Critical
Publication of JP3541142B2 publication Critical patent/JP3541142B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建設機械に備えられる油圧ポンプの傾転角制御を行なうことによりポンプ吐出流量を制御して、ブームシリンダやバケットシリンダ等の油圧アクチュエータの作動を制御する、建設機械の制御装置に関する。
【0002】
【従来の技術】
一般に、油圧ショベル等の建設機械は、図8に示すように、上部旋回体102と下部走行体100と作業装置118とからなっている。
下部走行体100は、互いに独立して駆動しうる右トラック100R及び左トラック100Lをそなえており、一方、上部旋回体102は、下部走行体100に対して水平面内で旋回可能に設けられている。
【0003】
また、作業装置118は、主にブーム103,スティック104,バケット108等からなっており、ブーム103は、上部旋回体102に対して回動可能に枢着されている。また、ブーム103の先端には、同じく鉛直面内に回動可能にスティック104が接続されている。
また、上部旋回体102とブーム103との間には、ブーム103を駆動するためのブーム駆動用油圧シリンダ(ブームシリンダ,油圧アクチュエータ)105が設けられるとともに、ブーム103とスティック104との間には、スティック104を駆動するためのスティック駆動用油圧シリンダ(スティックシリンダ,油圧アクチュエータ)106が設けられている。また、スティック104とバケット108との間には、バケット108を駆動するためのバケット駆動用油圧シリンダ(バケットシリンダ,油圧アクチュエータ)107が設けられている。
【0004】
また、上述の各シリンダ105〜107には、エンジン(主に、ディーゼルエンジン)により駆動される油圧ポンプ、ブーム用制御弁,スティック用制御弁,バケット用制御弁等の複数の制御弁を備える油圧回路(図示せず)が接続されており、油圧ポンプから各制御弁を介して所定の油圧の作動油が供給され、このようにして供給された作動油圧に応じて駆動されるようになっている。
【0005】
このような構成により、ブーム103は図中矢印a方向及び矢印b方向に、スティック104は図中矢印c方向及び矢印d方向に、バケット108は図中矢印e方向及び矢印f方向に回動可能に構成されている。なお、ブーム103の図中矢印b方向への回動をブームダウンといい、スティック104の図中矢印d方向への回動をスティックインという。また、バケット108の図中矢印e方向への回動をバケットオープンという。
【0006】
また、運転操作室101には、油圧ショベルの作動(走行,旋回,ブーム回動,スティック回動及びバケット回動)を制御するための操作部材として、左レバー,右レバー,左ペダル及び右ペダル等がそなえられている。
そして、例えばオペレータがこれらのレバーやペダル等の操作部材を操作することにより、油圧回路の各制御弁が制御されて、各シリンダ105〜107が駆動され、これにより、ブーム103,スティック104及びバケット108等を回動させうるようになっている。
【0007】
また、各制御弁を制御するために、パイロット油圧回路が設けられている。これにより、ブーム103やスティック104を作動させるには、運転操作室101内のブーム操作部材やスティック操作部材を操作して、パイロット油圧が、パイロット油路を通じて、ブーム用制御弁やスティック用制御弁に作用させて、ブーム用制御弁やスティック用制御弁を所要の位置に駆動させる。これにより、ブーム駆動用油圧シリンダ105やスティック駆動用油圧シリンダ106への作動油が給排調整され、これらのシリンダ105,106が所要の長さに伸縮駆動されることになる。
【0008】
上述のように、油圧ショベルでは、各シリンダ105〜107を伸縮駆動させ、ブーム103,スティック104, バケット108等の作業装置118を駆動させることで、掘削作業等の各種作業を行なうようになっている。
ところで、このような各種作業における一動作として、例えば図8中矢印b方向へのブームダウン操作が行なわれる場合があり、この場合、ブーム103は、以下のようにして駆動される。
【0009】
つまり、ブームダウン操作が行なわれ、ブーム103を下降させるには、ブーム駆動用油圧シリンダ105を収縮させればよい。この場合には、パイロット油路を通じてパイロット油圧をブーム用制御弁に作用させる。これにより、ブーム用制御弁のスプール位置がブーム下げ位置となって、油圧ポンプからの作動油が油路を通じてブーム駆動用油圧シリンダ105の一室へ供給される。この一方で、ブーム駆動用油圧シリンダ105の他室内の作動油が、油路を通じてタンクへ排出される。これにより、ブーム駆動用油圧シリンダ105が収縮しながら、ブーム103を図8中、矢印bで示すように下側へ回動させる。
【0010】
また、このようなブームダウン操作を行なってブームを下げながら、同時に、例えば図8中矢印e方向へのバケットオープン操作を行なってバケットを開く動作が行なわれる場合もある。
ここで、バケット108は、以下のようにして駆動される。
つまり、バケットオープン操作が行なわれ、バケット108を開くには、バケット駆動用油圧シリンダ107を収縮させれば良い。この場合には、パイロット油路を通じてパイロット油圧をバケット用制御弁に作用させる。これにより、バケット用制御弁のスプール位置がバケット開位置となって、油圧ポンプからの作動油が油路を通じてバケット駆動用油圧シリンダ107の一室へ供給される。この一方で、バケット駆動用油圧シリンダ107の他室内の作動油が、油路を通じてタンクへ排出される。これにより、バケット駆動用油圧シリンダ107が収縮しながら、バケット108を図8中、矢印eで示すように開方向へ回動させる。
【0011】
ところで、このようにブームダウン操作と同時にバケットオープン操作が行なわれる場合、従来の建設機械では、油圧ポンプのポンプ吐出圧力が負荷圧力よりも所定圧力(約150kgf/cm2 程度)高くなるように油圧ポンプの傾転角制御を行なうようになっている。
これは、油圧ポンプのポンプ吐出圧力を、少なくとも所定圧力(約150kgf/cm2 程度)高くしなければ、ブーム操作と同時にバケット108を回動させることができないからである。
【0012】
また、ブームダウン操作のみが行なわれる場合にも、ブームダウン操作と同時にバケットオープン操作が行なわれる場合と同様に、油圧ポンプのポンプ吐出圧力が負荷圧力よりも所定圧力(約150kgf/cm2 程度)高くなるように油圧ポンプの傾転角制御が行なわれる。
【0013】
【発明が解決しようとする課題】
しかしながら、このようにブームダウン操作のみが行なわれた場合にも、ブームダウン操作と同時にバケットオープン操作が行なわれる場合と同様に、油圧ポンプのポンプ吐出圧力が負荷圧力よりも所定圧力(約150kgf/cm2 程度)高くなるように油圧ポンプの傾転角制御が行なわれると、過剰な流量の作動油を供給することになり、油圧ポンプからのポンプ吐出圧も過剰に高められることになる。
【0014】
このように、過剰なポンプ吐出圧になるように油圧ポンプのポンプ流量制御を行なうことになるため、その分だけ油圧ポンプを駆動するエンジン出力にロスが生じ、ひいては燃費の悪化につながることになる。
本発明は、このような課題に鑑み創案されたもので、ブームダウン操作のみが行なわれる場合にポンプ吐出圧力が過剰に上昇しないようにポンプ流量制御を行なうようにして、エンジン出力のロスを抑制し、ひいては燃費の悪化を防止できるようにした、建設機械の制御装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
このため、請求項1記載の本発明の建設機械の制御装置は、タンク内の作動油を吐出する油圧ポンプと、オペレータによる操作量に応じて電気信号を出力するように構成される複数の操作部材と、該油圧ポンプからの吐出流量を制御する制御手段とを備え、該制御手段が、上記の複数の操作部材のうちのブーム用操作部材からの電気信号に基づいてブーム操作が行なわれたかを判定するブーム操作判定手段と、上記の複数の操作部材のうちのバケット用操作部材からの電気信号に基づいてバケット操作が行なわれたかを判定するバケット操作判定手段と、該ブーム操作判定手段及び該バケット操作判定手段によってブーム操作及びバケット操作が行なわれたと判定された場合は、ネガティブフローコントロールによって該油圧ポンプの傾転角制御を行なう一方、該ブーム操作判定手段及び該バケット操作判定手段によってブーム操作のみが行なわれたと判定された場合は、該ブーム用操作部材の操作量に応じて該油圧ポンプの傾転角制御を行なうポンプ傾転角制御手段とを備えることを特徴としている。
【0016】
請求項2記載の本発明の建設機械の制御装置は、タンク内の作動油を吐出する油圧ポンプと、油圧アクチュエータへの作動油の給排を行なう油路に設けられた圧力センサと、オペレータによる操作量に応じて電気信号を出力するように構成される複数の操作部材と、該油圧ポンプからの吐出流量を制御する制御手段とを備え、該制御手段が、上記の複数の操作部材のうちのブーム用操作部材からの電気信号に基づいてブーム操作が行なわれたかを判定するブーム操作判定手段と、上記の複数の操作部材のうちのバケット用操作部材からの電気信号に基づいてバケット操作が行なわれたかを判定するバケット操作判定手段と、該ブーム操作判定手段及び該バケット操作判定手段によってブーム操作及びバケット操作が行なわれたと判定された場合は、該圧力センサからの検出信号に基づいて該油圧ポンプの傾転角制御を行なう一方、該ブーム操作判定手段及び該バケット操作判定手段によってブーム操作のみが行なわれたと判定された場合は、該ブーム用操作部材の操作量に応じて該油圧ポンプの傾転角制御を行なうポンプ傾転角制御手段とを備えることを特徴としている。
請求項3記載の本発明の建設機械の制御装置は、請求項1又は2記載の構成において、該ブーム操作判定手段が、ブームダウン操作が行なわれたかを判定するものとして構成されるとともに、該バケット操作判定手段が、バケットオープン操作が行なわれたかを判定するものとして構成され、該ポンプ傾転角制御手段が、該ブーム操作判定手段及び該バケット操作判定手段によってブームダウン操作のみが行なわれたと判定された場合に該ブーム用操作部材からの操作量に応じて該油圧ポンプの傾転角制御を行なうことを特徴としている。
【0017】
請求項4記載の本発明の建設機械の制御装置は、請求項1又は3記載の構成において、ポンプ傾転角制御手段が、該ブーム操作判定手段及び該バケット操作判定手段によってブーム操作のみが行なわれたと判定された場合は、該油圧ポンプからの吐出流量が該ネガティブフローコントロールによる該油圧ポンプの吐出流量よりも減るように該油圧ポンプの傾転角制御を行なうことを特徴としている。
【0018】
【発明の実施の形態】
以下、図面により、本発明の実施の形態について説明する。
まず、本実施形態にかかる建設機械について説明する。
本建設機械は、従来技術(図8参照)で既に説明したように、油圧ショベル等の建設機械(作業機械)であって、上部旋回体102と下部走行体100と作業装置118とからなっている。
【0019】
下部走行体100は、互いに独立して駆動しうる右トラック100R及び左トラック100Lをそなえており、一方、上部旋回体102は、下部走行体100に対して水平面内で旋回可能に設けられている。
また、作業装置118は、主にブーム103,スティック104,バケット108等からなっており、ブーム103は、上部旋回体102に対して回動可能に枢着されている。また、ブーム103の先端には、同じく鉛直面内に回動可能にスティック104が接続されている。
【0020】
また、上部旋回体102とブーム103との間には、ブーム103を駆動するためのブーム駆動用油圧シリンダ(ブームシリンダ,油圧アクチュエータ)105が設けられるとともに、ブーム103とスティック104との間には、スティック104を駆動するためのスティック駆動用油圧シリンダ(スティックシリンダ,油圧アクチュエータ)106が設けられている。また、スティック104とバケット108との間には、バケット108を駆動するためのバケット駆動用油圧シリンダ(バケットシリンダ,油圧アクチュエータ)107が設けられている。
【0021】
そして、このような構成により、ブーム103は図中a方向及びb方向に、スティック104は図中c方向及びd方向に、バケット108は図中e方向及びf方向に回動可能に構成されている。
ここで、図2はこのような油圧ショベルの油圧回路の要部を模式的に示す図である。
【0022】
図2に示すように、上述の左トラック100L及び右トラック100Rには、それぞれ独立した動力源としての走行モータ109L,109Rが設けられ、また、上部旋回体102には、下部走行体100に対して上部旋回体102を旋回駆動させるための旋回モータ110が設けられている。
これらの走行モータ109L,109Rや旋回モータ110は、油圧により作動する油圧モータとして構成されており、後述するようにエンジン(主に、ディーゼルエンジン)50により駆動される複数(ここでは2つ)の油圧ポンプ51,52からの作動油が油圧回路53を介して所定圧力とされて供給され、このようにして供給される作動油圧に応じて各油圧モータ109L,109R,110が駆動されるようになっている。
【0023】
ここで、油圧ポンプ51,52は、リザーバタンク70内の作動油を所定油圧として吐出するもので、ここでは、斜板回転式ピストンポンプ(ピストン型可変容量ポンプ,可変吐出量形ピストンポンプ)として構成されている。これらの油圧ポンプ51,52は、油圧ポンプ内に設けられたピストン(図示略)のストローク量を変更することでポンプ吐出流量を調整しうるようになっている。
【0024】
つまり、これらの油圧ポンプ51,52では、上記ピストンの一端が斜板(クリーププレート:図示略)に当接するように構成されており、この斜板の傾き(傾転角)を後述するコントローラ1からの作動信号に基づいて変更することでピストンのストローク量を変更してポンプ吐出流量を調整しうるようになっている。
【0025】
このようにコントローラ1からの作動信号に基づいて斜板の傾きを変更しうるようになっており、油圧回路を構成する油路内の作動油の圧力のほかに、オペレータによる各操作部材54の操作量をも加味することができるため、従来のように油路内の作動油の圧力を導いて斜板の傾きを変更するものに比べ、オペレータの運転フィーリングを向上させることができることになる。
【0026】
また、エンジン50は、オペレータがエンジン回転数設定ダイヤルを切り替えることでエンジン回転数を設定できるようになっており、ここでは、最大エンジン回転数(例えば約2000rpm)と最小エンジン回転数(例えば約1000rpm)との間で複数段階に切り換えられるようになっている。なお、エンジン回転数はこのように段階的に切り換えるものに限られず、滑らかに変更しうるものであっても良い。また、エンジン50の全馬力はこれらの油圧ポンプ51,52及び後述するパイロットポンプ83を駆動するために消費される。
【0027】
また、各シリンダ105〜107についても、これらの走行モータ109L,109Rや旋回モータ110と同様に、エンジン50により駆動される複数(ここでは2つ)の油圧ポンプ51,52から供給される作動油の油圧により駆動されるようになっている。
また、運転操作室101には、油圧ショベルの作動(走行,旋回,ブーム回動,スティック回動及びバケット回動)を制御するために左レバー,右レバー,左ペダル及び右ペダル等の複数の操作部材54が備えられている。これらの操作部材54は電気式操作部材(例えば電気式操作レバー)として構成され、その操作量に応じた電気信号を後述するコントローラ(制御手段)1へ出力するようになっている。
【0028】
そして、例えばオペレータがこれらの操作部材54を操作することにより、油圧回路53に介装される各制御弁57〜60,62〜65が制御されて、各シリンダ105〜107や油圧モータ109L,109R,110が駆動される。これにより、上部旋回体102を旋回させたり、ブーム103,スティック104及びバケット108等を回動させたり、油圧ショベルを走行させることができるのである。
【0029】
なお、ブーム103を回動させる場合に操作するものをブーム用操作部材54aといい、スティック104を回動させる場合に操作するものをスティック用操作部材54bといい、バケット108を回動させる場合に操作するものをバケット用操作部材54cという。
次に、これらの各シリンダ等を制御するための油圧回路53について説明する。
【0030】
油圧回路53は、図2に示すように、第1回路部55と、第2回路部56とを備える。
このうち、第1回路部55は、第1油圧ポンプ51に接続される油路61と、油路61に介装される右走行モータ用制御弁57,バケット用制御弁58,第1ブーム用制御弁59,第2スティック用制御弁60等の制御弁とを備えて構成される。
【0031】
そして、第1油圧ポンプ51からの作動油が、油路61,右走行モータ用制御弁57を介して右走行モータ109Rへ供給され、右走行モータ109Rを駆動するようになっている。また、第1油圧ポンプ51からの作動油は、油路61,バケット用制御弁58を介してバケット駆動用油圧シリンダ107へ供給されるとともに、油路61,第1ブーム用制御弁59を介してブーム駆動用油圧シリンダ105へ供給され、さらに油路61,第2スティック用制御弁60を介してスティック駆動用油圧シリンダ106へ供給され、これにより、各シリンダ105,106,107が駆動されるようになっている。
【0032】
また、第1回路部55の油路61の下流側には絞り(リリーフ弁付き絞り)81が備えられており、この絞り81を通じて第1油圧ポンプ51からの作動油をリザーバタンク70へ戻すようになっている。
第2回路部56は、第2油圧ポンプ52に接続される油路66と、油路66に介装される左走行モータ用制御弁62,旋回モータ用制御弁63,第1スティック用制御弁64,第2ブーム用制御弁65等の制御弁と、絞り82とを備えて構成される。
【0033】
そして、第2油圧ポンプ52からの作動油が、油路66,左走行モータ用制御弁62を介して左走行モータ109Lへ供給され、これにより、左走行モータ109Lが駆動されるようになっている。また、第2油圧ポンプ52からの作動油は、油路66,旋回モータ用制御弁63を介して旋回モータ110へ供給され、これにより、旋回モータ110が駆動されるようになっている。さらに、第2油圧ポンプ52からの作動油は、油路66,第1スティック用制御弁64を介してスティック駆動用油圧シリンダ106へ供給されるとともに、油路66,第2ブーム用制御弁65を介してブーム駆動用油圧シリンダ105へ供給され、これにより、各シリンダ105,106が駆動されるようになっている。
【0034】
また、第2回路部56の油路66の下流側には絞り(リリーフ弁付き絞り)82が備えられており、この絞り82を通じて第2油圧ポンプ52からの作動油をリザーバタンク70へ戻すようになっている。
なお、各制御弁57〜60,62〜65は、図示しないコントロールユニット内に収納されている。
【0035】
このように、本実施形態では、建設機械の作業において重要なスティック104に他の作業機118との同時操作時においても十分な作動油が供給されるように、第2回路部56の第2油圧ポンプ52からの作動油に加え、第1回路部55の第1油圧ポンプ51からの作動油もスティック駆動用油圧シリンダ106へ供給されるようになっている。
【0036】
このため、第2回路部56の油路66に第1スティック用制御弁64が介装され、第1回路部55の油路61に第2スティック用制御弁60が介装されている。そして、第1スティック用制御弁64を比例制御弁64a,64bにより制御するとともに、第2スティック用制御弁60を比例制御弁60a,60bにより制御することにより、スティック駆動用油圧シリンダ106への作動油の給排を行なえるようになっている。
【0037】
同様に、他の作業機118との同時操作時においてもブーム103に十分な作動油が供給されるように、第1回路部55の第1油圧ポンプ51からの作動油に加え、第2回路部56の第2油圧ポンプ52からの作動油もブーム駆動用油圧シリンダ105へ供給されるようになっている。
このため、第1回路部55の油路61に第1ブーム用制御弁59が介装され、第2回路部56の油路66に第2ブーム用制御弁65が介装されている。そして、第1ブーム用制御弁59を比例制御弁59a,59bにより制御するとともに、第2ブーム用制御弁65を比例制御弁65a,65bにより制御することにより、ブーム駆動用油圧シリンダ105への作動油の給排を行なえるようになっている。
【0038】
また、本実施形態では、スティック駆動用油圧シリンダ106への作動油の給排を行なう油路67,68にはスティック用再生弁76が介装されており、作動油排出側油路から作動油供給側油路へ所定量の作動油を再生できるようになっている。
同様に、ブーム駆動用油圧シリンダ105への作動油の給排を行なう油路78,79にもブーム用再生弁77が介装されており、作動油排出側油路から作動油供給側油路へ所定量の作動油を再生できるようになっている。
【0039】
ここで、各制御弁57〜60,62〜65は、図3に示すように、スプール弁として構成され、いずれも複数(ここでは5つ)の絞りを備えて構成される。
つまり、各制御弁57〜60,62〜65は、図3に示すように、第1油圧ポンプ51,第2油圧ポンプ52とスティック駆動用油圧シリンダ106とを連通する油路(作動油供給通路,P−C通路)61a,66aに介装されるP−C絞り8と、スティック駆動用油圧シリンダ106とリザーバタンク70とを連通する油路(作動油排出通路,C−T通路)66b,69に介装されるC−T絞り9と、第1油圧ポンプ51,第2油圧ポンプ52とリザーバタンク70とを連通する油路(バイパス通路)61b,66cに介装されるバイパス通路絞り10とを備えて構成される。
【0040】
なお、図3ではスティック用制御弁60,64はスティック下げ位置になっているが、スティック用制御弁60,64を、図3中、上方向へ移動させて、スティック用制御弁60,64のバイパス通路絞り10をバイパス通路61b,66cに介装させることで、スティック用制御弁60,64を中立位置とすることができ、また、スティック用制御弁60,64を、図3中、最も上方向へ移動させて、スティック用制御弁60,64のP−C絞り8をP−C通路61a,66aに介装させるとともに、スティック用制御弁60,64のC−T絞り9をC−T通路66b,69に介装させることで、スティック用制御弁60,64をスティック上げ位置にすることができる。
【0041】
なお、絞り8,9,10の径の設定においては、ブーム103やスティック104等の作業装置118の連動性を確保すべく、各操作部材がフル操作されている場合に全ての作業装置118が動くように考慮される。
そして、P−C絞り8によって、第1油圧ポンプ51,第2油圧ポンプ52とスティック駆動用油圧シリンダ106とを連通する油路61a,66aの開口面積(作動油供給通路の開口面積,P−C開口面積)が調整される。
【0042】
C−T絞り9によって、スティック駆動用油圧シリンダ106とリザーバタンク70とを連通する油路66b,69の開口面積(作動油排出通路の開口面積,C−T開口面積)が調整される。
バイパス通路絞り10によって、第1油圧ポンプ51,第2油圧ポンプ52とリザーバタンク70とを連通する油路61b,66cの開口面積(バイパス通路の開口面積)が調整される。
【0043】
ところで、本実施形態では、図2に示すように、各制御弁57〜60,62〜65を制御するために、パイロットポンプ83と、比例減圧弁57a〜60a,57b〜60b,62a〜65a,62b〜65bとを備えるパイロット油圧回路が設けられている。なお、図2では、パイロット油圧回路に備えられるパイロットポンプ83及び比例減圧弁57a〜60a,57b〜60b,62a〜65a,62b〜65bのみを図示し、パイロット油路を省略してパイロット油圧を符号Pで示している。
【0044】
ここで、比例減圧弁57a〜60a,57b〜60b,62a〜65a,62b〜65bは、電磁弁であって、後述するコントローラ1からの作動信号により作動されるようになっている。これにより、パイロットポンプ83からのパイロット油圧をコントローラ1からの作動信号に基づいて所定圧として各制御弁57〜60,62〜65に作用させるようになっている。
【0045】
このような構成により、例えばブーム103を作動させるには、運転操作室101内の操作部材54を操作して、パイロットポンプ83からのパイロット油圧Pを図示しないパイロット油路を通じて、ブーム用制御弁59,65に作用させて、ブーム用制御弁59,65を所要の位置に移動させる。これにより、ブーム駆動用油圧シリンダ105の作動油が給排調整され、これらのシリンダ105が所要の長さに伸縮駆動され、これにより、ブーム103が作動される。
【0046】
例えば、ブーム103を下側へ回動させる(ブームダウン)には、ブーム駆動用油圧シリンダ105を収縮させればよい。この場合には、パイロット油路を通じてパイロット油圧を第1ブーム用制御弁59に作用させる。これにより、第1ブーム用制御弁59のスプール位置がブーム下側回動位置(ブームダウン位置)となって、第1回路部55の第1油圧ポンプ51からの作動油が油路95,79を経て、ブーム駆動用油圧シリンダ105の一室へ供給され、ブーム駆動用油圧シリンダ105の一室へ供給される。この一方で、ブーム駆動用油圧シリンダ105の他室内の作動油が、油路78,69を経てリザーバタンク70へ排出される。これにより、ブーム駆動用油圧シリンダ105が収縮しながら、ブーム103を図8中、矢印bで示すように下側へ回動させる。
【0047】
逆に、ブーム103を上側へ回動させる(ブームアップ)には、ブーム駆動用油圧シリンダ105を伸長させればよい。この場合には、パイロット油路を通じてパイロット油圧を第1ブーム用制御弁59,第2ブーム用制御弁65に作用させる。これにより、第1ブーム用制御弁59,第2ブーム用制御弁65のスプール位置がブーム上側回動位置(ブームアップ位置)となって、第1回路部55の第1油圧ポンプ51からの作動油が油路95,78を経て、ブーム駆動用油圧シリンダ105の一室へ供給され、さらに、第2回路部56の第2油圧ポンプ52からの作動油が油路66a,90,78を経て、ブーム駆動用油圧シリンダ105の他室へ供給される。この一方で、ブーム駆動用油圧シリンダ105の一室内の作動油が、油路79,91,66b又は、油路79,69を経てリザーバタンク70へ排出される。これにより、ブーム駆動用油圧シリンダ105が収縮しながら、ブーム103を図8中、矢印aで示すように上側へ回動させる。
【0048】
さらに、ブーム駆動用油圧シリンダ105の現状態を保持するには、パイロット油圧を第1ブーム用制御弁59,第2ブーム用制御弁65に適宜作用させて、第1ブーム用制御弁59,第2ブーム用制御弁65の各スプールの位置を中立位置(油圧給排路遮断位置)にすればよい。これにより、ブーム駆動用油圧シリンダ105の各油室における作動油の給排が停止され、ブーム103が現位置に保持される。
【0049】
また、例えばバケット108を作動させるには、運転操作室101内の操作部材54を操作して、パイロットポンプ83からのパイロット油圧Pを図示しないパイロット油路を通じて、バケット用制御弁58に作用させて、バケット用制御弁58を所要の位置に移動させる。これにより、バケット駆動用油圧シリンダ107の作動油が給排調整され、これらのシリンダ107が所要の長さに伸縮駆動され、これにより、バケット108が作動される。
【0050】
例えば、バケット108を内側へ回動させる(バケットイン)には、バケット駆動用油圧シリンダ107を伸長させればよい。この場合には、パイロット油路を通じてパイロット油圧をバケット用制御弁58に作用させる。これにより、バケット用制御弁58のスプール位置がバケット内側回動位置(バケットイン位置)となって、第1回路部55の第1油圧ポンプ51からの作動油が油路61,92を経て、バケット駆動用油圧シリンダ107の一室へ供給される。この一方で、バケット駆動用油圧シリンダ107の他室内の作動油が、油路93,69を経てリザーバタンク70へ排出される。これにより、バケット駆動用油圧シリンダ107が収縮しながら、バケット108を図8中、矢印fで示すように内側へ回動させる。
【0051】
逆に、バケット108を外側へ回動させる(バケットオープン)には、バケット駆動用油圧シリンダ107を収縮させればよい。この場合には、パイロット油路を通じてパイロット油圧をバケット用制御弁58に作用させる。これにより、バケット用制御弁58のスプール位置がバケット外側回動位置(バケットオープン位置)となって、第1回路部55の第1油圧ポンプ51からの作動油が油路94,93を経て、バケット駆動用油圧シリンダ107の他室へ供給される。この一方で、バケット駆動用油圧シリンダ107の一室内の作動油が、油路92,69を経てリザーバタンク70へ排出される。これにより、バケット駆動用油圧シリンダ107が収縮しながら、バケット108を図8中、矢印eで示すように外側へ回動させる。
【0052】
さらに、バケット駆動用油圧シリンダ107の現状態を保持するには、パイロット油圧をバケット用制御弁58に適宜作用させて、バケット用制御弁58のスプールの位置を中立位置(油圧給排路遮断位置)にすればよい。これにより、バケット駆動用油圧シリンダ107の油室における作動油の給排が停止され、バケット108が現位置に保持される。
【0053】
ところで、このように構成される建設機械には、種々のセンサが取り付けられており、各センサからの検出信号は後述するコントローラ1へ送られるようになっている。
例えば、油圧ポンプ51,52を駆動するエンジン50にはエンジン回転数センサ71が取り付けられており、このエンジン回転数センサ71からの検出信号は後述するコントローラ1へ送られるようになっている。そして、コントローラ1は、実際のエンジン回転数がオペレータによりエンジン回転数設定ダイヤルで設定された目標エンジン回転数になるようにフィードバック制御するようになっている。
【0054】
また、第1回路部55の第1油圧ポンプ51及び第2回路部56の第2油圧ポンプ52の吐出側には、ポンプ吐出圧を検出すべくそれぞれ圧力センサ(P/S−P1)72,圧力センサ(P/S−P2)73が備えられており、これらの圧力センサ72,73からの検出信号は後述するコントローラ1へ送られるようになっている。
【0055】
また、第1回路部55の油路61の各制御弁57〜60及び第2回路部56の油路66の各制御弁62〜65の下流側には、それぞれ圧力センサ(P/S−N1)74,圧力センサ(P/S−N2)75が備えられており、これらの圧力センサ74,75からの検出信号は後述するコントローラ1へ送られるようになっている。
【0056】
また、ブーム駆動用油圧シリンダ105への作動油の給排を行なう油路には圧力センサ(P/S−BMd)80が設けられており、この圧力センサ80によってブーム駆動用油圧シリンダ105のロッド側圧力(負荷圧力)を検出できるようになっている。そして、この圧力センサ80からの検出信号は後述するコントローラ1へ送られるようになっている。
【0057】
そして、本実施形態では、上述のように構成される建設機械を制御すべく、コントローラ1が備えられている。
コントローラ1は、上述の各センサ71〜75,80からの検出信号や操作部材54からの電気信号に基づいて、第1油圧ポンプ51,第2油圧ポンプ52,各再生弁76,77,各制御弁57〜60,62〜65へ作動信号を出力することにより、第1油圧ポンプ51,第2油圧ポンプ52の傾転角制御,各制御弁57〜60,62〜65の位置制御,各再生弁76,77の位置制御等を行なうようになっている。
【0058】
このうち、コントローラ1による第1油圧ポンプ51,第2油圧ポンプ52の傾転角制御は、第1回路部55のバイパス通路61bの下流側及び第2回路部56のバイパス通路66cの下流側に設けられたそれぞれの圧力センサ74,75からの検出信号に基づいてネガティブフローコントロールにより行なわれるようになっている。なお、圧力センサ74,75により検出される圧力に基づいてネガティブフローコントロールが行なわれるため、圧力センサ74,75により検出される圧力をネガコン圧ともいう。
【0059】
ここで、ネガティブフローコントロール(電子式ネガティブフローコントローシステム)とは、バイパス通路61b,66cの下流側の圧力が上がったらポンプ吐出流量を減らすようなネガティブな特性のポンプ流量制御をいう。
ここで、ネガティブフローコントロールは、操作部材54の操作量、即ちネガコン圧に応じてポンプ吐出流量が制御される流量制御と、アクチュエータにかかる負荷圧力、即ちポンプ吐出圧力に応じてポンプ吐出流量が制御される馬力制御とに分けられる。
【0060】
このうち、流量制御は、許容馬力内でアクチュエータ(各シリンダ)のスピードを制御しうるものである。つまり、ポンプ吐出流量を操作部材54の操作量、即ちネガコン圧に応じて制御でき、これにより、アクチュエータのスピードを制御できるものである。
ところで、操作部材54がフル操作され、ポンプ吐出流量が最大となり、アクチュエータのスピードが最大となる場合、ポンプ吐出流量(即ち、アクチュエータのスピード)は、次式により決定される。
【0061】
ポンプ吐出流量Q=許容馬力W/ポンプ吐出圧力P
この状態で、アクチュエータにかかる負荷圧力が変動するとポンプ吐出圧力Pも変動し、上式より、ポンプ吐出流量Qも変動することになるため、これにより、アクチュエータのスピードも変動することになる。
このように、ポンプ吐出流量Qが、操作部材54の操作量に応じて制御されるのではなく、アクチュエータにかかる負荷圧力、即ちポンプ吐出圧力Pに応じて制御され、ポンプ吐出流量Qの大小は第1油圧ポンプ51,第2油圧ポンプ52を駆動するエンジン50の許容馬力Wに依存するような状態における制御を馬力制御という。
【0062】
このような馬力制御が行なわれる場合には、オペレータが操作部材54をフル操作し、アクチュエータの最大スピードを要求しても、実際のアクチュエータのスピードは負荷圧力の大きさによって決まることになる。この場合、エンジン50の馬力は許容最大値となる。
また、例えば複数のアクチュエータを同時操作するような場合、各々の操作部材54がフル操作されていない状態であっても、それぞれのアクチュエータへ作動油が供給されてネガコン圧が低下し、要求流量が許容馬力によって決定される許容流量を超えているときは馬力制御における許容流量になるようにポンプ傾転角制御が行なわれる。
【0063】
ところで、操作部材54が中立位置の場合、即ちオペレータが操作部材54を操作していない場合は、作業機118は何ら仕事せず、アクチュエータを駆動させる必要がないため、油圧ポンプ51,52からのポンプ吐出流量は望ましくはゼロにしたい。
このため、本実施形態では、各制御弁57〜60,62〜65はオープンセンタ(スプール中立位置でバイパス通路61b,66cがオープンになるように配設すること)にして、操作部材54が中立位置の場合は、油圧ポンプ51,52から供給される作動油はバイパス通路61b,66cを通じてリザーバタンク70へ戻るようになっている。
【0064】
これにより、操作部材54が中立位置の場合は、バイパス通路61b,66cの下流側に介装された絞り81,82の直上流側の圧力が大きくなり、ネガティブフローコントロールによって、可変容量油圧ポンプ51,52からのポンプ吐出流量が減少するように制御されるようになっている。
一方、操作部材54が操作された場合には、その操作量に応じた量の作動油が各アクチュエータ(シリンダ等)へ供給され、残りの作動油がバイパス通路61b,66cを通じてリザーバタンク70へ戻るようになっている。
【0065】
また、バイパス通路61b,66cの下流側には、上述したように絞り(オリフィス)81,82が設けられている。そして、これらの絞り81,82の直上流側のバイパス通路61b,66cに圧力センサ74,75が介装され、これらの圧力センサ74,75により検出される絞り81,82の直上流側の圧力に基づいて油圧ポンプ51,52の傾転角制御が行なわれるようになっている。
【0066】
そして、オペレータが操作部材54を操作すると、操作部材54の操作量に応じて制御弁57〜60,62〜65が移動してバイパス通路61b,66cが絞られ、バイパス通路61b,66cを流れる作動油の流量が減少するが、絞り81,82の径は一定であるため、流量が減った分だけ絞り81,82の直上流側の圧力、即ち圧力センサ74,75により検出される圧力が低下し、この低下した圧力に応じてポンプ吐出流量が多くなるように可変容量油圧ポンプ51,52の傾転角制御が行なわれることになる。
【0067】
これは、オペレータの要求、即ちオペレータによる操作部材54の操作量に応じてポンプ吐出流量が多くなるように制御されることを意味し、これはオペレータが操作部材54を操作することで油圧ポンプ51,52からのポンプ吐出流量を制御してアクチュエータ(各シリンダ)のスピードを制御できることを意味する。
【0068】
ここで、コントローラ1によるネガティブフローコントロールにおける基本的なポンプ傾転角制御について説明する。
つまり、コントローラ1は、圧力センサ74,75によって検出された作動油圧(ネガコン圧)PN1,PN2を読み込んで、ネガコン圧PN と要求流量QN とを関係づけた図4に示すようなマップから、読み込まれたネガコン圧PN1,PN2に対応する要求流量QN1,QN2(具体的には要求流量QN1,QN2に相当するポンプ傾転角VN1,VN2)を設定するようになっている。なお、要求流量とは、ネガティブフローコントロールにおいて要求される流量をいう。また、図4ではネガコン圧PN1に対応する要求流量QN1(具体的には要求流量QN1,に相当するポンプ傾転角VN1)のみ示している。
【0069】
一方、コントローラ1は、圧力センサ72,73によって検出されたポンプ吐出圧PP1,PP2を読み込んで、ポンプ吐出圧PP と許容流量QP とを関係づけた図5に示すようなマップから、読み込まれたポンプ吐出圧PP1,PP2に対応する許容流量QP1,QP2(具体的には許容流量QP1,QP2に相当するポンプ傾転角VP1,VP2)を設定するようになっている。なお、許容流量とは第1油圧ポンプ51及び第2油圧ポンプ52を駆動するエンジン50の許容馬力に応じたポンプ吐出流量をいう。また、図5ではポンプ吐出圧PP1に対応する許容流量QP1(具体的には許容流量QP1に相当するポンプ傾転角VP1)のみ示している。
【0070】
そして、コントローラ1は、上述の要求流量QN1,QN2と許容流量QP1,QP2とを比較し、小さい方のポンプ流量(要求流量QN1,QN2又は許容流量QP1,QP2)になるようにポンプ傾転角(ポンプ傾転角VN1,VN2又はポンプ傾転角VP1,VP2)を設定し、これを傾転角制御信号として第1油圧ポンプ51及び第2油圧ポンプ52へ出力するようになっている。
【0071】
次に、ネガティブフローコントロールにおける基本的なポンプ傾転角制御の動作について、図6のフローチャートを参照しながら説明する。
つまり、まずステップS10でネガコン圧PN1,PN2を読み込むとともに、ステップS20でポンプ吐出圧PP1,PP2を読み込む。
次に、ステップS30でステップS10で読み込まれたネガコン圧PN1,PN2に対応する要求流量QN1,QN2を図4のマップから算出するとともに、ステップ40でステップS20で読み込まれたポンプ吐出圧PP1,PP2に対応する許容流量QP1,QP2を図5のマップから算出する。
【0072】
そして、ステップS50で要求流量QN1,QN2が許容流量QP1,QP2よりも小さいか否かを判定し、この判定の結果、要求流量QN1,QN2が許容流量QP1,QP2よりも小さいと判定された場合は、ステップS60に進み、要求流量QN1,QN2をポンプ流量として設定し、リターンする。これにより、第1油圧ポンプ51及び第2油圧ポンプ52の傾転角が要求流量QN1,QN2に応じた傾転角となるように設定される。
【0073】
一方、要求流量QN1,QN2が許容流量QP1,QP2以上であると判定された場合は、ステップS70に進み、許容流量QP1,QP2をポンプ流量として設定し、リターンする。これにより、第1油圧ポンプ51及び第2油圧ポンプ52の傾転角が許容流量QP1,QP2に応じた傾転角となるように設定される。
本実施形態にかかる建設機械の制御装置は、上述のように構成され、コントローラ1による各種の制御が行なわれ、本実施形態では、ブームダウン操作のみ行なわれた場合と、ブームダウン操作とバケットオープン操作とが同時に行なわれた場合とで異なるポンプ流量制御が行なわれる。
【0074】
次に、本実施形態にかかる建設機械の制御装置において特徴となるポンプ流量制御について説明する。
ここで、図1は本実施形態にかかる建設機械の制御装置によるポンプ流量制御を説明するための制御ブロック図である。
本実施形態では、図1に示すように、コントローラ1は、ブームダウン判定手段(ブーム操作判定手段)2と、バケットオープン判定手段(バケット操作判定手段)3と、ポンプ傾転角制御手段4とを備えて構成される。
【0075】
このうち、ブームダウン判定手段2は、操作部材54からの電気信号に基づいてブームダウン操作が行なわれたか否かを判定し、その判定結果をポンプ傾転角制御手段4へ信号を出力するものである。
バケットオープン判定手段3は、操作部材54からの電気信号に基づいてバケットオープン操作が行なわれたか否かを判定し、その判定結果をポンプ傾転角制御手段4へ信号を出力するものである。
【0076】
ポンプ傾転角制御手段4は、ブームダウン判定手段2及びバケットオープン判定手段3からの信号に基づいて、ブームダウン操作のみが行なわれたと判定した場合には、ブームダウン操作時の最適ポンプ流量になるように、ブーム用操作部材54aの操作量に相当する電気信号に基づいて油圧ポンプ51,52のポンプ傾転角制御を行なうものである。
【0077】
具体的には、本実施形態では、ポンプ傾転角制御手段4は、以下のように油圧ポンプ51,52の傾転角制御を行なう。
このポンプ傾転角制御手段4では、基本的にはネガティブフローコントロールにより油圧ポンプ51,52の傾転角制御を行なう。
このネガティブフローコントロールでは、ブーム用操作部材54aが操作されると、これらの操作部材54aの操作量に応じて各制御弁59,65の移動量が制御され、ブーム駆動用油圧シリンダ105へ作動油が供給されるため、これらの各制御弁59,65の下流側の作動油の圧力(バイパス通路61b,66c内の作動油の圧力)は低下し、この圧力が圧力センサ74,75により検出されてネガティブフローコントロールにおいて用いられ、ポンプ吐出流量が増加するように油圧ポンプ51,52の傾転角が制御される。
【0078】
このようなネガティブフローコントロールでは、ブームダウン操作のみが行なわれた場合であっても、ブームダウン操作と同時にバケットオープン操作が行なわれる場合と同様に、油圧ポンプ51,52のポンプ吐出圧力が負荷圧力よりも所定圧力(約150kgf/cm2 程度)高くなるように油圧ポンプ51,52の傾転角制御が行なわれる。
【0079】
このため、ブームダウン操作のみが行なわれた場合には、過剰なポンプ吐出流量となるように油圧ポンプ51,52の傾転角制御が行なわれることになる。
そこで、本実施形態では、ポンプ傾転角制御手段5は、ブームダウン操作のみが行なわれたと判定した場合に、ブーム用操作部材54aからの電気信号に基づいて、ブーム用操作部材54aの操作量に応じてポンプ吐出流量が減るように油圧ポンプ51,52のポンプ傾転角制御を行なうようになっている。
【0080】
このようにして、油圧ポンプ51,52のポンプ傾転角制御が行なわれると、例えばブースト圧(油圧ポンプ51,52のポンプ吐出圧力と負荷圧力との差圧)は所定圧力(約50〜60kgf/cm2 )となる。このため、ポンプ吐出圧力が負荷圧力よりも所定圧力(約50〜60kgf/cm2 )高くなるようにブーム用操作部材54a,スティック用操作部材54b及びバケット用操作部材54cからの電気信号に基づいてポンプ傾転角制御を行なっても良い。
【0081】
一方、ポンプ傾転角制御手段4は、ブームダウン判定手段2及びバケットオープン判定手段3からの信号に基づいて、ブームダウン操作とバケットオープン操作とが同時に行なわれたと判定した場合には通常のネガティブフローコントロールにより同時操作時の最適ポンプ流量になるように油圧ポンプ51,52のポンプ傾転角制御を行なうようになっている。
【0082】
ここで、通常のネガティブフローコントロールとは、上述のように、各操作部材54の操作量に応じて各制御弁58,59,65が作動し、バイパス油路61b,66cの作動油の流量が変化することにより発生する圧力(ネガコン圧)を圧力センサ74,75により検出して、油圧ポンプ51,52のポンプ傾転角を制御してポンプ流量制御を行なうものである。なお、この場合には、ブーム用操作部材54a及びバケット用操作部材54cからの電気信号に基づくポンプ傾転角制御は行なわない。
【0083】
このようにして、油圧ポンプ51,52のポンプ傾転角制御が行なわれると、例えばブースト圧は所定圧力(約150kgf/cm2 )となる。このため、ポンプ吐出圧力が負荷圧力よりも所定圧力(約150kgf/cm2 )高くなるようにポンプ傾転角制御を行なうこともできる。
なお、これらのブーム103及びバケット108の同時操作性を確保するためには、油圧ポンプ51,52から吐出される作動油の圧力はこれらの作業機118の作動圧力のうちの最大圧力(最大圧力値)になるように設定する必要がある。このため、上述のネガティブフローコントロールの制御バランスも、各シリンダ105,107へ供給する作動油の合計流量よりもポンプ吐出流量を少し多くして、余剰ポンプ吐出流量を各制御弁のバイパス通路絞りで絞って圧力を上昇させるように設定されている。
【0084】
本実施形態にかかる建設機械の制御装置は、上述のように構成され、最適ポンプ流量制御を行なうべく、図7のフローチャートに示すように動作する。
つまり、ステップA10では操作部材54からの電気信号を読み込み、ステップA20に進む。
ステップA20では、ブームダウン判定手段2によってブームダウン操作が行なわれたか否かが判定される。
【0085】
その判定の結果、ブームダウン操作が行なわれたと判定された場合は、ステップA30に進み、バケットオープン判定手段3によってバケットオープン判定手段3によってバケットオープン操作が行なわれたか否かが判定され、その結果、バケットオープン操作が行なわれていると判定された場合は、ステップA40に進み、ブームダウン操作とバケットオープン操作とが同時に行なわれたことになるため、ポンプ傾転角制御手段4によってブーム・バケット同時操作時の最適ポンプ流量になるように通常のネガティブフローコントロールによりポンプ傾転角制御を行ない、リターンする。
【0086】
一方、ステップA30で、バケットオープン判定手段3によってバケットオープン操作が行なわれていないと判定された場合はブームダウン操作のみが行なわれたことになるため、ステップA50に進み、ブームダウン操作時の最適ポンプ流量になるようにブーム用操作部材54aの操作量に応じてポンプ傾転角制御を行ない、リターンする。
【0087】
したがって、本実施形態によれば、ブームダウン操作のみが行なわれる場合にポンプ吐出圧が過剰に上昇しないように油圧ポンプ51,52の傾転角制御を行なうようにして、エンジン出力のロスを抑制することができ、ひいては燃費を良くすることができるという利点がある。
したがって、本実施形態によれば、ブーム用操作部材54a及びバケット用操作部材54cの操作量に基づいてブームダウンのみが行なわれる場合にブームダウン時のみを行なう場合の最適なポンプ流量となるように油圧ポンプ51,52の傾転角制御を行なうため、油圧ポンプ51,52を駆動するエンジン50の出力ロスを抑制することができ、ひいては燃費を良くすることができるという利点がある。
【0088】
また、ブーム用操作部材54a及びバケット用操作部材54cの操作量に基づいてブームダウンのみが行なわれる場合に、ポンプ吐出圧が過剰に上昇しないようにブーム用操作部材54aの操作量に応じて油圧ポンプ51,52の傾転角制御を行なうため、つまりポンプ吐出流量を減らすように油圧ポンプ51,52の傾転角を制御するため、油圧ポンプ51,52を駆動するエンジン50の出力ロスを抑制することができ、ひいては燃費を良くすることができるという利点がある。
【0089】
なお、上述の実施形態では、ブームダウン操作とバケットオープン操作とが同時に行なわれる場合及びブームダウン操作のみが行なわれる場合について説明したが、これに限られるものではなく、ブームアップ操作(ブーム操作)とバケットイン操作(バケット操作)とが同時に行なわれる場合及びブームアップ操作(ブーム操作)のみが行なわれる場合であっても、本発明を同様に適用できる。この場合、ブーム操作判定手段2は、ブーム用操作部材54aの操作に基づいてブームアップ操作が行なわれたかを判定するものとして構成されるとともに、バケット操作判定手段3は、バケット用操作部材54cの操作に基づいてバケットイン操作が行なわれたかを判定するものとして構成される。そして、ポンプ傾転角制御手段4が、ブーム操作判定手段2及びバケット操作判定手段3の判定結果に基づいて油圧ポンプ51,52の傾転角制御を行なうことになる。
【0090】
なお、上述の実施形態では、制御手段1は操作部材54a,54cからの電気信号に基づいてポンプ傾転角制御を行なうようにしているが、これに限られるものではなく、操作部材54a,54cが操作されたことを示す信号が制御手段1へ入力されるようになっていれば良く、例えば、従来のように操作部材54a,54cの操作に応じて各制御弁にパイロット油圧を作用させるようなものである場合には、圧力センサによりパイロット油路内のパイロット油圧を検出し、この圧力センサからの検出信号に基づいてポンプ傾転角制御を行なうようにしても良い。
【0091】
また、上述の実施形態では、本発明をネガティブフローコントロールを行なう建設機械の制御装置に適用する場合について説明しているが、本発明をポジティブフローコントロールを行なう建設機械の制御装置に適用しても良い。
【0092】
【発明の効果】
以上詳述したように、請求項1,2記載の本発明の建設機械の制御装置によれば、ブーム操作のみが行なわれた場合に、ブーム用操作部材の操作量に応じてブーム操作のみが行なわれた場合の最適なポンプ流量となるように油圧ポンプの傾転角制御を行なうため、油圧ポンプを駆動するエンジンの出力ロスを抑制することができ、ひいては燃費を良くすることができるという利点がある。
【0093】
また、請求項3記載の本発明の建設機械の制御装置によれば、ブームダウンのみが行なわれた場合に、ブーム用操作部材の操作量に応じてブームダウンのみが行なわれた場合の最適なポンプ流量となるように油圧ポンプの傾転角制御を行なうため、油圧ポンプを駆動するエンジンの出力ロスを抑制することができ、ひいては燃費を良くすることができるという利点がある。
【0094】
また、請求項4記載の本発明の建設機械の制御装置によれば、ブームダウン操作のみが行なわれた場合に、ポンプ吐出圧が過剰に上昇しないようにブーム用操作部材の操作量に応じてポンプ吐出流量を減らすように油圧ポンプの傾転角を制御するため、油圧ポンプを駆動するエンジンの出力ロスを抑制することができ、ひいては燃費を良くすることができるという利点がある。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる建設機械の制御装置における油圧ポンプの傾転角制御を説明するための制御ブロック図である。
【図2】本発明の一実施形態にかかる建設機械の制御装置の全体構成図である。
【図3】本発明の一実施形態にかかる建設機械の制御装置の制御弁を説明するための模式図である。
【図4】本発明の一実施形態にかかる建設機械の制御装置におけるネガティブフローコントロールの要求流量とネガコン圧との関係を示す図である。
【図5】本発明の一実施形態にかかる建設機械の制御装置におけるネガティブフローコントロールの許容流量とポンプ吐出圧との関係を示す図である。
【図6】本発明の一実施形態にかかる建設機械の制御装置におけるネガティブフローコントロールを説明するためのフローチャートである。
【図7】本発明の一実施形態にかかる建設機械の制御装置におけるポンプ傾転角制御を説明するためのフローチャートである。
【図8】従来の建設機械を示す模式的斜視図である。
【符号の説明】
1 コントローラ(制御手段)
2 ブームダウン判定手段(ブーム操作判定手段)
3 バケットオープン判定手段(バケット操作判定手段)
4 ポンプ傾転角制御手段
51 第1油圧ポンプ
52 第2油圧ポンプ
54 操作部材
54a ブーム用操作部材
54b スティック用操作部材
54c バケット用操作部材
72,73,74,75 圧力センサ
103 ブーム
104 スティック
108 バケット

Claims (4)

  1. タンク内の作動油を吐出する油圧ポンプと、
    オペレータによる操作量に応じて電気信号を出力するように構成される複数の操作部材と、
    該油圧ポンプからの吐出流量を制御する制御手段とを備え、
    該制御手段が、
    上記の複数の操作部材のうちのブーム用操作部材からの電気信号に基づいてブーム操作が行なわれたかを判定するブーム操作判定手段と、
    上記の複数の操作部材のうちのバケット用操作部材からの電気信号に基づいてバケット操作が行なわれたかを判定するバケット操作判定手段と、
    該ブーム操作判定手段及び該バケット操作判定手段によってブーム操作及びバケット操作が行なわれたと判定された場合は、ネガティブフローコントロールによって該油圧ポンプの傾転角制御を行なう一方、該ブーム操作判定手段及び該バケット操作判定手段によってブーム操作のみが行なわれたと判定された場合は、該ブーム用操作部材の操作量に応じて該油圧ポンプの傾転角制御を行なうポンプ傾転角制御手段とを備えることを特徴とする、建設機械の制御装置。
  2. タンク内の作動油を吐出する油圧ポンプと、
    油圧アクチュエータへの作動油の給排を行なう油路に設けられた圧力センサと、
    オペレータによる操作量に応じて電気信号を出力するように構成される複数の操作部材と、
    該油圧ポンプからの吐出流量を制御する制御手段とを備え、
    該制御手段が、
    上記の複数の操作部材のうちのブーム用操作部材からの電気信号に基づいてブーム操作が行なわれたかを判定するブーム操作判定手段と、
    上記の複数の操作部材のうちのバケット用操作部材からの電気信号に基づいてバケット操作が行なわれたかを判定するバケット操作判定手段と、
    該ブーム操作判定手段及び該バケット操作判定手段によってブーム操作及びバケット操作が行なわれたと判定された場合は、該圧力センサからの検出信号に基づいて該油圧ポンプの傾転角制御を行なう一方、該ブーム操作判定手段及び該バケット操作判定手段によってブーム操作のみが行なわれたと判定された場合は、該ブーム用操作部材の操作量に応じて該油圧ポンプの傾転角制御を行なうポンプ傾転角制御手段とを備えることを特徴とする、建設機械の制御装置。
  3. 該ブーム操作判定手段が、ブームダウン操作が行なわれたかを判定するものとして構成されるとともに、
    該バケット操作判定手段が、バケットオープン操作が行なわれたかを判定するものとして構成され、
    該ポンプ傾転角制御手段が、該ブーム操作判定手段及び該バケット操作判定手段によってブームダウン操作のみが行なわれたと判定された場合に該ブーム用操作部材からの操作量に応じて該油圧ポンプの傾転角制御を行なうことを特徴とする、請求項1又は2記載の建設機械の制御装置。
  4. ポンプ傾転角制御手段が、該ブーム操作判定手段及び該バケット操作判定手段によってブーム操作のみが行なわれたと判定された場合は、該油圧ポンプからの吐出流量が該ネガティブフローコントロールによる該油圧ポンプの吐出流量よりも減るように該油圧ポンプの傾転角制御を行なうことを特徴とする、請求項1又は3記載の建設機械の制御装置。
JP11823599A 1999-04-26 1999-04-26 建設機械の制御装置 Expired - Fee Related JP3541142B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11823599A JP3541142B2 (ja) 1999-04-26 1999-04-26 建設機械の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11823599A JP3541142B2 (ja) 1999-04-26 1999-04-26 建設機械の制御装置

Publications (2)

Publication Number Publication Date
JP2000309949A JP2000309949A (ja) 2000-11-07
JP3541142B2 true JP3541142B2 (ja) 2004-07-07

Family

ID=14731586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11823599A Expired - Fee Related JP3541142B2 (ja) 1999-04-26 1999-04-26 建設機械の制御装置

Country Status (1)

Country Link
JP (1) JP3541142B2 (ja)

Also Published As

Publication number Publication date
JP2000309949A (ja) 2000-11-07

Similar Documents

Publication Publication Date Title
US6564548B2 (en) Speed control apparatus of working vehicle and speed control method thereof
JP3179786B2 (ja) 油圧ポンプ制御装置
JP5013452B2 (ja) 建設機械における油圧制御回路
JP6383676B2 (ja) 作業機械
JP3576064B2 (ja) 建設機械の制御装置
JP2018132178A (ja) 油圧機械の制御装置
EP3683453B1 (en) Driving device of construction equipment
EP3872354B1 (en) Construction machine with open and closed hydraulic circuits
JP3634980B2 (ja) 建設機械の制御装置
JP3539720B2 (ja) 建設機械の制御装置
JP4731033B2 (ja) 油圧駆動制御装置
JP3594837B2 (ja) 建設機械の制御装置
US7607245B2 (en) Construction machine
JP3645740B2 (ja) 建設機械の制御装置
JP3629382B2 (ja) 建設機械の制御装置
JP3541142B2 (ja) 建設機械の制御装置
JP7444032B2 (ja) 建設機械
JPWO2019176076A1 (ja) 建設機械
JP3541154B2 (ja) 建設機械の制御装置
JP2721383B2 (ja) 作業機械の油圧回路
JP3612253B2 (ja) 建設機械の制御装置及びその制御方法
JP2020122270A (ja) 建設機械
WO2023074809A1 (ja) ショベル
WO2022201676A1 (ja) 作業機械
WO2021039926A1 (ja) 建設機械

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees