JP3527635B2 - Hydrodesulfurization method for heavy oil - Google Patents

Hydrodesulfurization method for heavy oil

Info

Publication number
JP3527635B2
JP3527635B2 JP14366098A JP14366098A JP3527635B2 JP 3527635 B2 JP3527635 B2 JP 3527635B2 JP 14366098 A JP14366098 A JP 14366098A JP 14366098 A JP14366098 A JP 14366098A JP 3527635 B2 JP3527635 B2 JP 3527635B2
Authority
JP
Japan
Prior art keywords
catalyst
regenerated catalyst
hydrodesulfurization
oil
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14366098A
Other languages
Japanese (ja)
Other versions
JPH11335677A (en
Inventor
隆一郎 岩本
隆生 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP14366098A priority Critical patent/JP3527635B2/en
Priority to KR1020007000823A priority patent/KR100600189B1/en
Priority to TW088108550A priority patent/TW483931B/en
Priority to EP99921262A priority patent/EP1010744A1/en
Priority to US09/463,387 priority patent/US6406615B1/en
Priority to PCT/JP1999/002743 priority patent/WO1999061557A1/en
Publication of JPH11335677A publication Critical patent/JPH11335677A/en
Application granted granted Critical
Publication of JP3527635B2 publication Critical patent/JP3527635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、重質油の水素化脱
硫方法に関するものである。さらに詳しくは、触媒の一
部として再生触媒を用いた、重質油の水素化脱硫方法に
関するものである。
TECHNICAL FIELD The present invention relates to a method for hydrodesulfurizing heavy oil. More specifically, it relates to a method for hydrodesulfurizing heavy oil, which uses a regenerated catalyst as a part of the catalyst.

【0002】[0002]

【従来の技術】石油精製においては各種の留分を水素化
により精製する工程は多数ある。ナフサ、灯油、軽油等
の脱硫や、重質軽油の脱硫、分解、さらには残油、重油
の脱硫などがある。そのうちでも、比較的沸点が低く、
バナジウム等の金属不純物含有量のほとんどないナフサ
や灯油、軽油を処理する水素化脱硫工程に用いられる触
媒は使用による劣化の度合いが少ない。
2. Description of the Related Art In petroleum refining, there are many steps for refining various fractions by hydrogenation. Desulfurization of naphtha, kerosene, gas oil, etc., desulfurization and decomposition of heavy gas oil, and desulfurization of residual oil and heavy oil. Among them, the boiling point is relatively low,
The catalyst used in the hydrodesulfurization process for treating naphtha, kerosene, and light oil, which has almost no metal impurities such as vanadium, is less deteriorated by use.

【0003】また、これらの触媒は使用による劣化はほ
とんど少量の炭素質の蓄積によるものであり、これを燃
焼等により除去してやれば再使用可能であった。さらに
炭素質の除去についても、触媒上の炭素質の量が少ない
ため厳密な燃焼制御は必要としないで再使用可能な触媒
がえられる。また、一旦使用した触媒でも劣化の度合い
が少ない触媒もあり、このようなものはそのまま再使用
できる。これらの触媒は特別の注意を払うことなく再度
ナフサ、灯油、軽油等の脱硫に用いられている。
The deterioration of these catalysts due to use is due to the accumulation of a small amount of carbonaceous matter, and they could be reused if they were removed by combustion or the like. Further, regarding the removal of carbonaceous matter, a reusable catalyst can be obtained without requiring strict combustion control because the amount of carbonaceous matter on the catalyst is small. In addition, there is a catalyst that has been used only once and has a small degree of deterioration, and such a catalyst can be reused as it is. These catalysts are used again for desulfurization of naphtha, kerosene, gas oil, etc. without special care.

【0004】また、最近は重質軽油や減圧軽油の水素化
処理触媒についても、再生等により再使用をしている
が、その再生、使用方法についても確立されている。こ
れらの水素化処理に用いられた触媒は、処理原料油中に
金属不純物がないので触媒上にも原料に起因するバナジ
ウム等の金属の堆積は少ない。また、炭素質の堆積も少
ないだけでなく、炭素質の質も燃焼させ易いものであり
燃焼による再生時にも触媒表面はそれほど高温になら
ず、触媒担体の細孔構造や活性金属相の担持状態等の変
化も小さく、再度重質軽油や減圧軽油等の留出油の処理
に使用することはできていた。
Recently, the hydrotreating catalysts for heavy gas oil and vacuum gas oil have been reused by regeneration, etc., but the methods for regeneration and use have also been established. Since the catalysts used for these hydrotreatments have no metal impurities in the treated feedstock oil, the deposition of metals such as vanadium due to the feedstock on the catalyst is small. Moreover, not only is the amount of carbonaceous material deposited, but also the quality of carbonaceous material is easily combusted, and the catalyst surface does not become so hot during regeneration by combustion, and the pore structure of the catalyst carrier and the state of active metal phase loading The change in the above was small, and it could be used again for treating distillates such as heavy gas oil and vacuum gas oil.

【0005】しかし、残渣油のようなさらに沸点の高
い、あるいは蒸留できない留分を含む重質油の水素化処
理においては、原料油中に含まれる金属不純物やアスフ
ァルテン分等の炭素質化し易い成分が多く、これらが使
用済み触媒上に多量の金属分や炭素質を堆積させる。ま
た、質的にも金属分と炭素質が同時に蓄積した使用済み
触媒は簡単には炭素質の燃焼除去ができなかった。(S
tadies in Surface and Cat
alysis vol.88 P199(1994),
Catal.Today vol.17 No.4 P
539(1993),Catal.Rev.Sci.E
ng.33(3&4)P281(1991))このた
め、これらの使用済み触媒は再利用されることはなく処
分されていた。
However, in hydrotreating a heavy oil containing a fraction having a higher boiling point such as residual oil or a non-distillable fraction, components such as metal impurities and asphaltenes contained in the feed oil are easily carbonized. , Which deposit large amounts of metal and carbonaceous materials on the spent catalyst. Also, qualitatively, the used catalyst in which the metal content and the carbonaceous matter were accumulated at the same time could not easily remove the carbonaceous matter by combustion. (S
tadies in Surface and Cat
alysis vol. 88 P199 (1994),
Catal. Today vol. 17 No. 4 P
539 (1993), Catal. Rev. Sci. E
ng. 33 (3 & 4) P281 (1991)) Therefore, these used catalysts were not reused but were disposed of.

【0006】[0006]

【発明が解決しようとする課題】本発明は、重質油等の
水素化処理プロセスにおいて使用により失活し、利用さ
れていなかった触媒を再生処理し、有効に活用する重質
油の水素化脱硫方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a hydrogenation method for a heavy oil which is deactivated by the use in a hydroprocessing process for a heavy oil or the like and which is not used and is regenerated and effectively utilized. It is intended to provide a desulfurization method.

【0007】[0007]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、重質油等の水素化処理プロセスにおいて使用によ
り失活した触媒を再生処理し、同時に使用する新触媒と
の配置方法を最適化することにより好適な脱硫効果が得
られること、さらには失活した触媒に付着した不純物量
や物理性状を制御することが有効であることを見出し、
この知見に基づいて本発明を完成したものである。
Means for Solving the Problems As a result of intensive studies, the present inventors have found a method for arranging a catalyst that has been deactivated by use in a hydrotreatment process of heavy oil or the like and re-process it with a new catalyst to be used at the same time. It is found that a suitable desulfurization effect can be obtained by optimizing, and further, it is effective to control the amount of impurities attached to the deactivated catalyst and the physical properties,
The present invention has been completed based on this finding.

【0008】すなわち、本発明の要旨は下記のとおりで
ある。 (1) 触媒を充填した反応ゾーンで重質油を水素化脱
硫するにあたり、脱メタルゾーン、脱スケールゾーン以
外の脱硫反応ゾーンの前段側に新触媒を、後段側に再生
触媒を配置することを特徴とする重質油の水素化脱硫方
法。 (2) 前記の脱硫反応ゾーンにおける再生触媒の充填
量が5〜80体積%、新触媒の充填量が20〜95体積
%である(1)記載の水素化脱硫方法。 (3) 再生触媒のバナジウム含有量が再生触媒基準で
酸化物として35重量%以下である(1)または(2)
記載の水素化脱硫方法。 (4) 再生触媒の炭素含有量が再生触媒基準で15重
量%以下である(1)〜(3)のいずれかに記載の水素
化脱硫方法。 (5) 再生触媒の比表面積が60〜200m2/gで
ある(1)〜(4)のいずれかに記載の水素化脱硫方
法。 (6) 再生触媒の細孔容積が0.3〜1.0cc/g
である(1)〜(5)のいずれかに記載の水素化脱硫方
法。 (7) 再生触媒が、酸化物担体にモリブデン、タング
ステン、コバルトまたは、ニッケルのうち少なくとも一
種類の金属種を担持した触媒を水素化処理プロセスで使
用した後、再生処理したものである(1)〜(6)のい
ずれかに記載の水素化脱硫方法。 (8) 酸化物担体がアルミナで担持金属種がニッケル
およびモリブデンである(7)記載の水素化脱硫方法。 (9) 酸化物担体が、リン、ほう素、けい素の酸化物
のうち少なくとも一種類を含むアルミナで、担持金属種
がニッケルまたはコバルト、およびモリブデンである
(7)記載の水素化脱硫方法。 (10) 担持金属種であるニッケルまたはコバルトの
含有量が再生触媒基準で酸化物として0.1〜10重量
%、およびモリブデンの含有量が再生触媒基準で酸化物
として0.1〜25重量%の範囲内にある、(7)〜
(9)のいずれかに記載の水素化脱硫方法。
That is, the gist of the present invention is as follows. (1) In hydrodesulfurizing heavy oil in a reaction zone filled with a catalyst, demetalization zone, descaling zone
A method for hydrodesulfurization of heavy oil, comprising arranging a new catalyst on the front side and a regenerated catalyst on the rear side of the outer desulfurization reaction zone. (2) The hydrodesulfurization method according to (1), wherein the amount of the regenerated catalyst in the desulfurization reaction zone is 5 to 80% by volume and the amount of the new catalyst is 20 to 95% by volume. (3) The vanadium content of the regenerated catalyst is 35% by weight or less as an oxide based on the regenerated catalyst (1) or (2).
The hydrodesulfurization method described. (4) The hydrodesulfurization method according to any one of (1) to (3), wherein the carbon content of the regenerated catalyst is 15% by weight or less based on the regenerated catalyst. (5) The hydrodesulfurization method according to any one of (1) to (4), wherein the regenerated catalyst has a specific surface area of 60 to 200 m 2 / g. (6) Pore volume of regenerated catalyst is 0.3 to 1.0 cc / g
The hydrodesulfurization method according to any one of (1) to (5). (7) The regenerated catalyst is one obtained by using a catalyst having at least one metal species selected from molybdenum, tungsten, cobalt or nickel on an oxide carrier in a hydrotreating process and then regenerating it (1). ~ The hydrodesulfurization method according to any one of (6). (8) The hydrodesulfurization method according to (7), wherein the oxide carrier is alumina and the supported metal species are nickel and molybdenum. (9) The hydrodesulfurization method according to (7), wherein the oxide carrier is alumina containing at least one kind of oxides of phosphorus, boron and silicon, and the supported metal species are nickel or cobalt and molybdenum. (10) The content of nickel or cobalt which is a supported metal species is 0.1 to 10% by weight as an oxide based on the regenerated catalyst, and the content of molybdenum is 0.1 to 25% by weight as an oxide based on the regenerated catalyst. Within the range of (7)-
The hydrodesulfurization method according to any one of (9).

【0009】[0009]

【発明の実施の形態】以下に本発明の実施の形態につき
説明する。本発明は、触媒を充填した反応ゾーン中で重
質油を水素化脱硫するにあたり、再生触媒と新触媒を特
定の組み合わせで使用することを特徴としている。すな
わち、少なくとも一部の反応ゾーン中に充填する触媒の
配置を、前段側に新触媒、後段側に再生触媒、とする組
合せとすることである。 なお、ここで反応ゾーン中に
充填する触媒とは脱硫反応のみを目的としているものを
言うだけでなく、脱スケール、脱金属を主目的としてい
る触媒も含む。それ故、反応ゾーンとは、いわゆる狭義
の脱硫反応ゾーンはもちろん、脱メタルゾーン、脱スケ
ールゾーンなどを含んだ脱硫プロセスの反応帯域全体の
触媒層のことを言う。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The present invention is characterized by using a regenerated catalyst and a new catalyst in a specific combination for hydrodesulfurizing a heavy oil in a reaction zone filled with the catalyst. That is, the arrangement of the catalysts filled in at least a part of the reaction zones is a combination of a new catalyst on the front side and a regenerated catalyst on the rear side. It should be noted that the catalyst filled in the reaction zone here not only means a catalyst intended only for desulfurization reaction but also includes a catalyst mainly intended for descaling and demetalization. Therefore, the reaction zone means not only the so-called desulfurization reaction zone in a narrow sense, but also the catalyst layer of the entire reaction zone of the desulfurization process including the demetalization zone, the descaling zone and the like.

【0010】そのうち、すくなくとも一部の反応ゾーン
とは反応ゾーン全体であってもよいが、上記狭義の脱硫
反応ゾーン、脱メタルゾーン、脱スケールゾーンなどの
いずれか、あるいはそれらの一部であってもよく、各種
反応ゾーンに跨がるものでもよい。また、一つの反応器
であったり、反応器中の一つのベッド部分であってもよ
い。さらに、ひとつの反応器の下流部と次の反応器の上
流部にわたるものでもよい。すなわち、目的の主従を問
わずいくぶんかでも脱硫反応が起こっているひとつのま
とまった部分を言うものである。
Of these, at least a part of the reaction zone may be the entire reaction zone, but it may be any one of the desulfurization reaction zone, the demetalization zone, the descaling zone, etc. in the narrow sense, or a part thereof. It may be one that spans various reaction zones. Further, it may be one reactor or one bed portion in the reactor. Further, it may extend downstream of one reactor and upstream of the next reactor. That is, it refers to a single cohesive part where the desulfurization reaction takes place in some way regardless of the purpose of the master.

【0011】少なくとも一部の反応ゾーンの典型的な態
様としては、脱メタルゾーンのみの場合や、脱メタルゾ
ーン、脱スケールゾーンを除いた狭義の脱硫ゾーン、そ
の脱硫ゾーンの中のひとつあるいは複数の反応器、また
は反応器中のひとつあるいは複数のベットの場合があ
る。触媒の配置において、少なくとも一部の反応ゾーン
の前段側には新触媒、後段側には再生触媒を配置するこ
とが重要である。これは、重質油の脱硫反応においては
最初に原料重質油をできるだけ水素化反応させ、この水
素化された反応中間体をさらに水素化反応させて脱硫油
と硫化水素にする反応方法が有効な脱硫方法であると考
えられる。そのためには、相対的に水素化活性の高い新
触媒を前段側に、活性の少し低い再生触媒を後段側に配
置することで良い結果を得ることができる。
As a typical embodiment of at least a part of the reaction zone, there is a demetalization zone only, a desulfurization zone in a narrow sense excluding the demetalization zone and the descaling zone, and one or more of the desulfurization zones. There may be a reactor, or one or more beds in the reactor. In arranging the catalyst, it is important to arrange a new catalyst on the front side and a regenerated catalyst on the rear side of at least a part of the reaction zone. This is because in the desulfurization reaction of heavy oil, first, the raw material heavy oil is hydrogenated as much as possible, and this hydrogenated reaction intermediate is further hydrogenated to produce desulfurized oil and hydrogen sulfide. It is considered to be a desulfurization method. For that purpose, a good result can be obtained by arranging a new catalyst having a relatively high hydrogenation activity on the front stage side and a regenerated catalyst having a slightly lower activity on the rear stage side.

【0012】水素化脱硫プロセスの少なくとも一部の反
応ゾーン(以下「特定ゾーン」という)においてこの効
果を十分に期待するには、新触媒を特定ゾーンの20%
(触媒の充填状態での特定ゾーンの全触媒に対する体積
%を言う、以下同じ)以上、できれば40%以上使用す
ることが好ましい。逆に再生触媒を特定ゾーンの5%以
上、好ましくは10%以上使用していないと触媒の配置
による脱硫効果の向上は顕著ではない。触媒の配置にお
ける前段側、後段側と言うのは反応物の流れの上流、下
流を表しており、相対的に上流側にあるものを前段側、
下流側にあるものを後段側としている。
In order to fully expect this effect in at least a part of the reaction zone (hereinafter referred to as "specific zone") of the hydrodesulfurization process, a new catalyst is used in an amount of 20% of the specific zone.
It is preferable to use (volume% with respect to the total catalyst in a specific zone in the filled state of the catalyst, the same applies hereinafter), and if possible, 40% or more. On the contrary, unless the regenerated catalyst is used in an amount of 5% or more, preferably 10% or more of the specific zone, the desulfurization effect due to the arrangement of the catalyst is not remarkable. The upstream side and the downstream side in the arrangement of the catalyst represent upstream and downstream of the flow of the reactants, and those relatively upstream are the upstream side and the upstream side.
The one on the downstream side is the latter stage.

【0013】また、本発明における重質油とは常圧残
油、減圧残油などの蒸留残渣分を含むものを言い、灯
油、軽油、減圧軽油などの留出油のみからなるものは含
まない。通常、重質油中には硫黄分1重量%以上、窒素
分200重量ppm以上、残炭分5重量%以上、バナジ
ウム5ppm以上、アスファルテン分0.5%以上が含
まれている。たとえば、前記常圧残油等の他原油、アス
ファルト油、熱分解油、タールサンド油あるいはこれら
を含む混合油などがあげられる。なお、本発明の対象と
する水素化脱硫プロセスとは固定床反応器を用いるもの
を言い、移動床や沸騰床などの反応形式のプロセスは対
象外である。ただし、反応物の流れとしては上昇流でも
下降流でもよい。
The heavy oil in the present invention means one containing a distillation residue such as atmospheric residual oil and vacuum residual oil, and does not include one consisting only of distillate oil such as kerosene, light oil and vacuum light oil. . Usually, heavy oil contains 1 wt% or more of sulfur content, 200 wt ppm or more of nitrogen content, 5 wt% or more of residual carbon content, 5 ppm or more of vanadium, and 0.5% or more of asphaltene content. For example, other crude oil such as the atmospheric residual oil, asphalt oil, pyrolysis oil, tar sand oil, or mixed oil containing these may be used. The hydrodesulfurization process targeted by the present invention refers to a process using a fixed bed reactor, and does not include a reaction type process such as a moving bed or a boiling bed. However, the flow of the reactant may be upflow or downflow.

【0014】つぎに、新触媒、再生触媒および再生処理
につき説明する。まず、新触媒とは通常、重質油等の水
素化脱硫触媒として製造されたものを言うが、脱メタ
ル、脱窒素、分解などの水素化処理触媒として製造され
たものでも、脱硫機能を合わせ持っているものでもよ
い。これらは、一般に市販されている脱硫触媒、脱メタ
ル触媒などや、特別に脱硫触媒として製造した触媒を含
んでいる。さらに、一度も水素化処理に使用されていな
いものはもちろん、一旦水素化処理に使用されたが装置
上のトラブル等のため短期間で使用を中断し、再度その
まま使用するものも含む。すなわち、一時的に使用され
ても特別の賦活処理をしなくとも、当初から想定されて
いる脱硫活性がまだ十分にある触媒も含まれる。
Next, the new catalyst, the regenerated catalyst and the regenerating process will be described. First, new catalysts are usually produced as hydrodesulfurization catalysts for heavy oil, but even those produced as hydrotreating catalysts for demetalization, denitrification, cracking, etc., have the same desulfurization function. You may have one. These include commercially available desulfurization catalysts, demetalization catalysts, and the like, and catalysts specially manufactured as desulfurization catalysts. Furthermore, it includes not only those which have never been used for hydrotreating but also those which have once been used for hydrotreating but whose use has been suspended for a short period of time due to troubles on the equipment and then used as they are. That is, it includes a catalyst that has sufficient desulfurization activity expected from the beginning even if it is used temporarily and without special activation treatment.

【0015】再生触媒とは、上記新触媒を一旦重質油等
の水素化処理に使用し、そのままでは十分な脱硫活性が
得られなくなった触媒(使用済み触媒と言う。)を再生
処理により賦活したものである。水素化処理される重質
油等とは常圧残油、減圧残油などの重質油はもちろん、
減圧軽油、重質軽油、分解軽油などやこれらの混合油も
含む。また、水素化処理は脱硫処理が一般的であるが、
脱金属、脱窒素、脱芳香族などの処理でもよい。
The term "regenerated catalyst" means that the above-mentioned new catalyst is once used for hydrogenation treatment of heavy oil and the like, and a catalyst for which sufficient desulfurization activity cannot be obtained as it is (called a used catalyst) is activated by regeneration treatment. It was done. With heavy oil to be hydrotreated, not only heavy oil such as atmospheric residual oil and vacuum residual oil,
Includes vacuum gas oil, heavy gas oil, cracked gas oil, and mixed oils of these. In addition, desulfurization is generally used for hydrotreating,
Treatments such as demetalization, denitrification, and dearomatization may be performed.

【0016】再生処理には溶剤洗浄による油分等の除
去、炭素質の燃焼による除去、塊状化したり細粒化した
触媒の除去による正常な形状の触媒の選別などがある
が、本発明における再生処理とは、酸化による炭素質の
除去、好ましくは反応器外での酸化による炭素質の除
去、を含む処理を言う。代表的な態様としての再生処理
としては、使用済み触媒をまず溶剤洗浄する。溶剤とし
てはトルエン、アセトン、アルコールや、ナフサ、灯
油、軽油などの石油類が好ましい。その他の溶剤でも、
使用済み触媒上に付着した有機物を溶かし易い溶剤であ
れば良い。この洗浄処理は触媒が水素化処理反応器中に
あるうちに軽油を循環させて洗浄し、その後50〜20
0℃程度の窒素ガス等を流通させて乾燥させることでも
達成できる。あるいは、軽油を循環させて洗浄した後そ
のまま抜き出し、発熱や自然発火を防ぐため軽油で濡れ
た状態にしておき必要な時に乾燥してもよい。また、反
応器から抜き出した使用済み触媒から塊状物を粉砕した
り、粉化触媒、スケール等を除去し、これを軽油で洗浄
しさらにナフサで洗浄して乾燥し易くする方法もある。
少量の場合は、トルエンで洗浄する方法が油分を完全に
除去するのに適している。
Regeneration treatments include removal of oils by solvent washing, removal of carbonaceous matter by combustion, and selection of catalysts of normal shape by removal of agglomerated or atomized catalysts. The term "treatment" includes removal of carbonaceous matter by oxidation, preferably removal of carbonaceous matter by oxidation outside the reactor. As a typical example of the regeneration treatment, the used catalyst is first washed with a solvent. As the solvent, toluene, acetone, alcohol, and petroleum such as naphtha, kerosene, and light oil are preferable. With other solvents,
Any solvent may be used as long as it can easily dissolve the organic substances attached to the used catalyst. In this washing treatment, light oil is circulated while the catalyst is in the hydrotreatment reactor to wash the catalyst, and then 50 to 20
It can also be achieved by circulating nitrogen gas or the like at about 0 ° C. and drying. Alternatively, light oil may be circulated and washed, and then withdrawn as it is, and in order to prevent heat generation and spontaneous ignition, it may be wet with light oil and dried when necessary. There is also a method of pulverizing a lump from the used catalyst extracted from the reactor or removing powdered catalyst, scale, etc., and washing this with light oil and further with naphtha to facilitate drying.
In the case of a small amount, a method of washing with toluene is suitable for completely removing oil.

【0017】洗浄により油分および不純物を除去した触
媒に十分な活性を発揮させるには、さらに酸化処理によ
り炭素質を除去することが必要である。酸化処理は一般
には雰囲気温度および酸素濃度を制御した燃焼処理によ
り行う。雰囲気温度が高すぎたり、酸素濃度が高すぎる
と触媒表面が高温になり、担持金属の結晶形や担持状態
が変化したり、担体の細孔が減少し触媒活性が低下して
しまう。また、雰囲気温度が低すぎたり、酸素濃度が低
すぎると燃焼による炭素質の除去が不十分となり十分な
活性回復が望めない。望ましい雰囲気温度としては20
0〜800℃、特に望ましくは300〜600℃であ
る。
In order for the catalyst from which oil and impurities have been removed by washing to exhibit sufficient activity, it is necessary to further remove carbonaceous matter by oxidation treatment. The oxidation treatment is generally performed by a combustion treatment in which the atmospheric temperature and the oxygen concentration are controlled. If the atmospheric temperature is too high or the oxygen concentration is too high, the temperature of the surface of the catalyst becomes high, the crystal form and the supported state of the supported metal change, the pores of the carrier decrease, and the catalytic activity decreases. Further, if the atmospheric temperature is too low or the oxygen concentration is too low, the removal of carbonaceous matter by combustion becomes insufficient and sufficient activity recovery cannot be expected. 20 is desirable ambient temperature
The temperature is 0 to 800 ° C, particularly preferably 300 to 600 ° C.

【0018】酸素濃度は1〜21%の範囲で制御するこ
とが望ましいが、燃焼方法、特に燃焼ガスと触媒との接
触状態に対応して制御することが好ましい。雰囲気温
度、酸素濃度、雰囲気ガスの流速などを調製して触媒の
表面温度を制御し、再生後の触媒の比表面積や細孔容量
の低下を防ぎ、水素化活性金属であるニッケルやモリブ
デンなどの結晶構造や結晶粒子の担持状態の変化を抑え
ることが重要である。
It is desirable to control the oxygen concentration within the range of 1 to 21%, but it is preferable to control it in accordance with the combustion method, particularly the contact state between the combustion gas and the catalyst. By controlling the surface temperature of the catalyst by adjusting the atmospheric temperature, oxygen concentration, the flow rate of the atmospheric gas, etc., it is possible to prevent the reduction of the specific surface area and pore volume of the catalyst after regeneration, and to prevent hydrogenation active metals such as nickel and molybdenum. It is important to suppress changes in the crystal structure and the supported state of crystal particles.

【0019】燃焼処理した触媒は粉化したもの等を除去
し正常な形状のもののみを再生触媒として使用すること
が望ましい。この操作をしないと初期活性は十分望める
場合もあるが、触媒層で詰まりや偏流を起こしたり反応
器中での流体の圧力損失を大きくし正常な運転が継続で
きなくなることがある。
It is desirable to remove powdered substances from the burned catalyst and use only those having a normal shape as the regenerated catalyst. If this operation is not carried out, the initial activity may be sufficiently expected, but it may cause clogging or uneven flow in the catalyst layer or increase the pressure loss of the fluid in the reactor to prevent normal operation from continuing.

【0020】つぎに、再生触媒の組成、物性について説
明する。水素化処理プロセスでの使用による劣化の指標
として、バナジウムと炭素質がある。バナジウムは通
常、触媒成分としては含まれていないが水素化処理され
る原料油中に含まれる微量不純物に起因するものであ
り、使用による劣化の指標とすることができる。バナジ
ウム含有量は再生触媒基準で35%(触媒中の金属分含
有量は、対象触媒を測定前に400℃以上で減量しなく
なるまで酸化処理したものを基準として、その金属の酸
化物としての重量%で表わすものとする、以下金属含有
量については同じ)以下、好ましくは25%以下、さら
に好ましくは15%以下であることが望ましい。バナジ
ウム含有量が35%を超えると再生触媒の活性が低すぎ
て全体としての脱硫反応が十分進まない。なお、バナジ
ウム含有量が2%より少ない場合は再生触媒自身に活性
が十分に残っており、触媒の配置による脱硫効果の差は
小さくなることが多い。よって、バナジウム含有量2〜
35%のときに触媒配置による再生触媒の活性の引出し
効果は最も良くなる。
Next, the composition and physical properties of the regenerated catalyst will be described. Vanadium and carbonaceous substances are indicators of deterioration due to use in hydrotreating processes. Vanadium is generally not contained as a catalyst component but is caused by a trace amount of impurities contained in the feedstock to be hydrotreated, and can be used as an index of deterioration due to use. The vanadium content is 35% on the basis of the regenerated catalyst (the metal content in the catalyst is the weight of the metal as an oxide based on the catalyst that has been oxidized at 400 ° C. or higher before measurement until it does not decrease). %, The same applies to the metal content hereinafter), preferably 25% or less, more preferably 15% or less. When the vanadium content exceeds 35%, the activity of the regenerated catalyst is too low, and the desulfurization reaction as a whole does not proceed sufficiently. When the vanadium content is less than 2%, sufficient activity remains in the regenerated catalyst itself, and the difference in desulfurization effect due to the arrangement of the catalyst is often small. Therefore, the vanadium content of 2
At 35%, the effect of extracting the activity of the regenerated catalyst by the catalyst arrangement is the best.

【0021】なお、バナジウム等の元素分析については
650℃で1時間焼成した後、Mo,P,Vについては
灰分を酸で溶解後、誘導結合プラズマ発光吸光分析法に
て、また、Co,Ni,Alについては灰分と四ほう酸
リチウムの混合物を高周波過熱でビードを作り、蛍光X
線分析法で分析した。炭素含有量についても、15%
(触媒中の炭素分含有量は、対象触媒を400℃以上で
減量しなくなるまで酸化処理したものを基準として、対
象触媒中の炭素の重量%で表わすものとする、以下同
じ)以下好ましくは10%以下とすることが望ましい。
炭素含有量は使用済み段階では10〜70%程度である
ことが多いが、再生処理により炭素分を触媒上から除去
しその含有量を低減できる。炭素分が多すぎるとこれが
触媒表面を覆い触媒活性を低下させるが、再生処理によ
り炭素含有量を減少させれば活性を回復させることがで
きる。なお、炭素、硫黄の分析は粉砕試料をC−S同時
分析計で分析した。
For elemental analysis of vanadium and the like, after burning at 650 ° C. for 1 hour, for Mo, P and V, the ash content was dissolved with an acid, and then by inductively coupled plasma atomic absorption spectrophotometry and Co and Ni. , Al, a mixture of ash and lithium tetraborate was heated by high-frequency heating to form beads, and fluorescent X
It was analyzed by the line analysis method. 15% for carbon content
(The carbon content in the catalyst is expressed in% by weight of carbon in the target catalyst based on the amount of the target catalyst that has been oxidized at 400 ° C. or higher until it does not decrease, and the same applies hereinafter). % Or less is desirable.
The carbon content is often about 10 to 70% in the used stage, but the carbon content can be removed from the catalyst by regeneration treatment to reduce the content. If the carbon content is too high, it covers the surface of the catalyst and reduces the catalytic activity. However, if the carbon content is reduced by the regeneration treatment, the activity can be recovered. In addition, the analysis of carbon and sulfur analyzed the ground sample with the C-S simultaneous analyzer.

【0022】しかし、再生処理では酸化処理とくに一般
的な方法としては燃焼処理を伴うので、そのときに触媒
表面が過熱して触媒の細孔構造や担持金属の担持状態が
変化し、触媒活性が低下してしまうことがある。これら
を評価する指標として触媒の比表面積と細孔容量があ
る。触媒の比表面積や細孔容量は水素化処理反応での使
用中にも不純物の付着や反応中の熱による劣化等により
徐々に減少するが、再生触媒として使用可能であるため
には、再生後の触媒に使用前の新触媒であった時のおよ
そ70%の比表面積および細孔容量が残っていることが
好ましい。これを、再生触媒の物性としてみればそれぞ
れ比表面積60〜200m2/g、好ましくは100〜20
0m2/g、細孔容積0.3〜1.0cc/gであることが望ま
しい。なお、これらの測定法は窒素吸着法である。
However, in the regenerating treatment, an oxidizing treatment, particularly a combustion treatment is involved as a general method, and at that time, the catalyst surface is overheated, and the pore structure of the catalyst and the state of the supported metal are changed, so that the catalytic activity is deteriorated. It may decrease. The specific surface area and pore volume of the catalyst are indexes for evaluating these. The specific surface area and pore volume of the catalyst gradually decrease during use in the hydrotreating reaction due to adhesion of impurities and deterioration due to heat during the reaction, etc. It is preferable that the catalyst of (1) has a specific surface area and a pore volume of approximately 70% of those of the new catalyst before use. Considering this as the physical properties of the regenerated catalyst, the specific surface area is 60 to 200 m 2 / g, preferably 100 to 20.
It is desirable that the pore size is 0 m 2 / g and the pore volume is 0.3 to 1.0 cc / g. Note that these measuring methods are nitrogen adsorption methods.

【0023】この再生触媒は重質油の水素化脱硫に使用
する触媒であるので、もともと水素化脱硫能力のある触
媒である必要がある。そのための基本的な触媒構成とし
て酸化物担体、たとえばアルミナやアルミナ/りん、ア
ルミナ/ほう素担体、アルミナ/けい素担体などに、モ
リブデン、タングステン、コバルトまたはニッケルの酸
化物を担持したものが好適に使用される。この中でも、
アルミナ担体/ニッケル、モリブデン担持触媒、アルミ
ナ、りん担体/ニッケル、モリブデン担持触媒やアルミ
ナ、ほう素担体/コバルト、モリブデン担持触媒、アル
ミナ、けい素担体/ニッケル、モリブデン担持触媒がと
くに好ましい。さらに、重質油処理であるので担持金属
であるコバルトまたはニッケルを0.1〜10%、モリ
ブデンを0.2〜25%含有することが好ましい。りん
の含有量については、0.1〜15%(金属含有量と同
じ基準)が好ましい。
Since the regenerated catalyst is a catalyst used for hydrodesulfurization of heavy oil, it must originally have a hydrodesulfurization ability. As a basic catalyst structure therefor, an oxide carrier, for example, alumina, alumina / phosphorus, alumina / boron carrier, alumina / silicon carrier, etc., on which an oxide of molybdenum, tungsten, cobalt or nickel is supported is preferable. used. Among these,
Alumina carrier / nickel, molybdenum supported catalyst, alumina, phosphorus carrier / nickel, molybdenum supported catalyst and alumina, boron carrier / cobalt, molybdenum supported catalyst, alumina, silicon carrier / nickel, molybdenum supported catalyst are particularly preferable. Further, since it is a heavy oil treatment, it is preferable to contain 0.1 to 10% of cobalt or nickel as a supporting metal and 0.2 to 25% of molybdenum. The phosphorus content is preferably 0.1 to 15% (the same standard as the metal content).

【0024】つぎに、本発明の触媒配置による重質油水
素化脱硫を具体的に説明する。上記の触媒配置方法をと
れば、反応条件はとくに制限されるものではないが一般
的な条件で説明する。重質油として前記で説明したよう
なものでよいが、常圧残油が好適に使用される。この場
合の反応温度は300〜450℃好ましくは350〜4
20℃、水素分圧7.0〜25.0Pa好ましくは1
0.0〜15.0Pa、液空間速度0.01〜10h-1
好ましくは0.1〜5h-1、水素/原料油比500〜2
500Nm3/kl好ましくは500〜2000Nm3/klの範囲
の条件が好適である。
Next, the heavy oil hydrodesulfurization by the catalyst arrangement of the present invention will be specifically described. The reaction conditions are not particularly limited as long as the above-mentioned catalyst arrangement method is adopted, but general conditions will be described. As the heavy oil, those described above may be used, but atmospheric residual oil is preferably used. The reaction temperature in this case is 300 to 450 ° C., preferably 350 to 4
20 ° C., hydrogen partial pressure 7.0 to 25.0 Pa, preferably 1
0.0-15.0 Pa, liquid space velocity 0.01-10 h -1
Preferably 0.1 to 5 h -1 , hydrogen / feed oil ratio 500 to 2
500 nm 3 / kl preferably in the range of 500-2000 nm 3 / kl conditions are preferred.

【0025】生成油の硫黄含有量、金属分含有量(ニッ
ケル、バナジウム)の調整は上記の反応条件のうちから
必要な条件たとえば反応温度を適宜選択して調整すれば
よい。以上のようにして本発明の重質油水素化脱硫方法
を用いれば、従来使用できないと考えられていた使用済
み触媒を有効に活用し、残油等の脱硫が可能となる。
The sulfur content and the metal content (nickel, vanadium) of the produced oil may be adjusted by appropriately selecting the necessary conditions such as the reaction temperature from the above reaction conditions. As described above, by using the heavy oil hydrodesulfurization method of the present invention, it is possible to effectively utilize the used catalyst, which has been thought to be unusable in the past, and desulfurize residual oil and the like.

【0026】[0026]

【実施例】次に、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例によりなんら制限される
ものではない。 〔実施例1〕市販のアルミナ担体ニッケル、モリブデン
担持触媒(新触媒1と言う)を用いた残油水素化脱硫装
置に8000時間中東系の常圧残油を通油した。生成油
中の主成分(343℃以上の沸点留分)の硫黄分を一定
になるよう反応温度を調整しながら水素化脱硫処理を続
け、使用済み触媒を得た。通油した代表的な常圧残油の
性状を表1に、脱硫装置での反応条件を表2に示す。
EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. [Example 1] Middle-east type atmospheric residual oil was passed through a residual oil hydrodesulfurization apparatus using a commercially available alumina-supported nickel-molybdenum catalyst (referred to as new catalyst 1) for 8000 hours. The hydrodesulfurization treatment was continued while adjusting the reaction temperature so that the sulfur content of the main component (boiling point fraction at 343 ° C. or higher) in the produced oil was kept constant to obtain a used catalyst. Table 1 shows the properties of a typical atmospheric residual oil that has been passed, and Table 2 shows the reaction conditions in a desulfurizer.

【0027】この使用済み触媒を反応器から取り出し、
トルエンで十分洗浄した後乾燥させた。(洗浄触媒1と
言う)この洗浄触媒を500℃で3時間空気気流中で酸
化処理した。(再生触媒1と言う)それぞれの触媒の組
成、物性を表3に示す。小型高圧固定床反応器(容量2
00cc)の前段側に新触媒1を50cc、後段側に再
生触媒1を50cc充填した。これを、硫化剤であるD
MDSを添加し硫黄濃度を2.5%に調整した軽質軽油
を、135kg/cm3水素気流中、250℃で、24時間通
油し予備硫化処理をした。その後、前記常圧残油を用い
て脱硫反応を行った。脱硫処理条件を表6に、生成油の
性状を表7に示す。
Taking out this spent catalyst from the reactor,
It was thoroughly washed with toluene and dried. This cleaning catalyst (referred to as cleaning catalyst 1) was oxidized at 500 ° C. for 3 hours in an air stream. Table 3 shows the composition and physical properties of each catalyst (referred to as regenerated catalyst 1). Small high pressure fixed bed reactor (capacity 2
00 cc) was filled with 50 cc of new catalyst 1 on the front side and 50 cc of regenerated catalyst 1 on the rear side. This is the sulfurizing agent D
A light gas oil, to which MDS was added and the sulfur concentration was adjusted to 2.5%, was oiled in a hydrogen gas stream of 135 kg / cm 3 at 250 ° C. for 24 hours for pre-sulfurization treatment. Then, a desulfurization reaction was performed using the atmospheric residual oil. Table 6 shows the desulfurization conditions, and Table 7 shows the properties of the produced oil.

【0028】〔実施例2〕小型高圧固定床反応器(容量
200cc)の前段側に新触媒1を75cc、後段側に
再生触媒1を25cc充填した以外は〔実施例1〕と同
様の操作を行った。得られた生成油の性状を表7に示
す。
[Example 2] The same operation as in Example 1 was carried out except that 75 cc of the new catalyst 1 was charged in the front side of the small high pressure fixed bed reactor (volume: 200 cc) and 25 cc of the regenerated catalyst 1 in the rear side. went. Table 7 shows the properties of the produced oil thus obtained.

【0029】〔実施例3〕市販のアルミナ/りん担体ニ
ッケル、モリブデン担持触媒(新触媒2と言う)を用い
て、〔実施例1〕と同様の操作により洗浄触媒2、再生
触媒2を得た。それぞれの触媒の組成、物性を表4に示
す。小型高圧固定床反応器(容量200cc)の前段側
に新触媒2を50cc、後段側に再生触媒2を50cc
充填した以外は〔実施例1〕と同様の操作を行った。得
られた生成油の性状を表7に示す。
[Example 3] A washing catalyst 2 and a regenerated catalyst 2 were obtained by the same procedure as in [Example 1] using a commercially available alumina / phosphorus-supported nickel / molybdenum catalyst (referred to as new catalyst 2). . Table 4 shows the composition and physical properties of each catalyst. 50cc of the new catalyst 2 on the front side of the small high pressure fixed bed reactor (capacity of 200cc) and 50cc of the regenerated catalyst 2 on the rear side.
The same operation as in [Example 1] was performed except for filling. Table 7 shows the properties of the produced oil thus obtained.

【0030】〔実施例4〕〔実施例1〕において、新触
媒1を減圧軽油水素化脱硫装置にて8000時間中東系
減圧軽油を通油した。生成油中の主成分(360℃以上
の沸点留分)の硫黄分を一定になるよう反応温度を調整
しながら水素化脱硫処理を続け、使用済み触媒を得た。
減圧軽油の性状を表1に、脱硫装置での反応条件を表2
に示す。この使用済み触媒より、〔実施例1〕と同様の
操作により洗浄触媒3、再生触媒3を得た。それぞれの
触媒の組成、物性を表5に示す。小型高圧固定床反応器
(容量200cc)の前段側に新触媒1を50cc、後
段側に再生触媒3を50cc充填した以外は〔実施例
1〕と同様の操作を行った。得られた生成油の性状を表
7に示す。
[Embodiment 4] In [Embodiment 1], the new catalyst 1 was passed through a vacuum gas oil hydrodesulfurization apparatus for 8000 hours in the Middle East vacuum gas oil. The hydrodesulfurization treatment was continued while adjusting the reaction temperature so that the sulfur content of the main component (boiling point of 360 ° C. or higher) in the produced oil was kept constant to obtain a used catalyst.
Table 1 shows the properties of vacuum gas oil, and Table 2 shows the reaction conditions in the desulfurizer.
Shown in. From this used catalyst, the washing catalyst 3 and the regenerated catalyst 3 were obtained by the same operation as in [Example 1]. Table 5 shows the composition and physical properties of each catalyst. The same operation as in [Example 1] was performed, except that 50 cc of the new catalyst 1 was charged in the front side of the small high-pressure fixed bed reactor (capacity: 200 cc) and 50 cc of the regenerated catalyst 3 in the rear side. Table 7 shows the properties of the produced oil thus obtained.

【0031】〔比較例1〕小型高圧固定床反応器(容量
200cc)の前段側に再生触媒1を50cc、後段側
に新触媒1を50cc充填した以外は〔実施例1〕と同
様の操作を行った。得られた生成油の性状を表7に示
す。 〔比較例2〕小型高圧固定床反応器(容量200cc)
の前段側に再生触媒1を25cc、後段側に新触媒1を
75cc充填した以外は〔実施例2〕と同様の操作を行
った。得られた生成油の性状を表7に示す。 〔比較例3〕小型高圧固定床反応器(容量200cc)
の前段側に再生触媒2を50cc、後段側に新触媒2を
50cc充填した以外は〔実施例3〕と同様の操作を行
った。得られた生成油の性状を表7に示す。 〔比較例4〕小型高圧固定床反応器(容量200cc)
の前段側に再生触媒3を50cc、後段側に新触媒1を
50cc充填した以外は〔実施例4〕と同様の操作を行
った。得られた生成油の性状を表7に示す。
[Comparative Example 1] The same operation as in Example 1 was carried out except that 50 cc of the regenerated catalyst 1 was charged in the front side of the small high pressure fixed bed reactor (capacity: 200 cc) and 50 cc of the new catalyst 1 in the rear side. went. Table 7 shows the properties of the produced oil thus obtained. [Comparative Example 2] Small high-pressure fixed bed reactor (capacity 200 cc)
The same operation as in [Example 2] was performed except that 25 cc of the regenerated catalyst 1 was charged in the front side and 75 cc of the new catalyst 1 was charged in the rear side. Table 7 shows the properties of the produced oil thus obtained. [Comparative Example 3] Small high pressure fixed bed reactor (capacity: 200 cc)
The same operation as in [Example 3] was performed except that 50 cc of the regenerated catalyst 2 and 50 cc of the new catalyst 2 were charged in the upstream side and the downstream side, respectively. Table 7 shows the properties of the produced oil thus obtained. [Comparative Example 4] Small high-pressure fixed bed reactor (capacity: 200 cc)
The same operation as in [Example 4] was performed except that 50 cc of the regenerated catalyst 3 was charged in the front side and 50 cc of the new catalyst 1 in the rear side. Table 7 shows the properties of the produced oil thus obtained.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】[0038]

【表7】 [Table 7]

【0039】[0039]

【発明の効果】本発明の触媒の配置方法による重質油水
素化脱硫方法においては、残油等を通常の新触媒を使用
した脱硫と同じような条件で良好な脱硫反応を行うこと
ができ、使用済み触媒の有効利用方法として優れた効果
を表している。
INDUSTRIAL APPLICABILITY In the heavy oil hydrodesulfurization method according to the method of arranging the catalyst of the present invention, a good desulfurization reaction can be performed on residual oil under the same conditions as desulfurization using an ordinary new catalyst. , Shows an excellent effect as an effective utilization method of the used catalyst.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C10G 45/00 - 45/72 C10G 65/00 - 65/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C10G 45/00-45/72 C10G 65/00-65/18

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】触媒を充填した反応ゾーンで重質油を水素
化脱硫するにあたり、脱メタルゾーン、脱スケールゾー
ン以外の脱硫反応ゾーンの前段側に新触媒を、後段側に
再生触媒を配置することを特徴とする重質油の水素化脱
硫方法。
1. When hydrodesulfurizing heavy oil in a reaction zone filled with a catalyst, a demetalization zone and a descaling zone are used.
A method for hydrodesulfurization of heavy oil, characterized in that a new catalyst is placed in the upstream side of the desulfurization reaction zone other than the catalyst and a regenerated catalyst is placed in the downstream side.
【請求項2】前記の脱硫反応ゾーンにおける再生触媒の
充填量が5〜80体積%、新触媒の充填量が20〜95
体積%である請求項1記載の水素化脱硫方法。
2. The desulfurization reaction zone has a regenerated catalyst filling amount of 5 to 80% by volume and a new catalyst filling amount of 20 to 95.
The hydrodesulfurization method according to claim 1, which is a volume%.
【請求項3】再生触媒のバナジウム含有量が再生触媒基
準で酸化物として35重量%以下である請求項1または
2記載の水素化脱硫方法。
3. The hydrodesulfurization method according to claim 1, wherein the vanadium content of the regenerated catalyst is 35% by weight or less as an oxide based on the regenerated catalyst.
【請求項4】再生触媒の炭素含有量が再生触媒基準で1
5重量%以下である請求項1〜3のいずれかに記載の水
素化脱硫方法。
4. The carbon content of the regenerated catalyst is 1 on the basis of the regenerated catalyst.
The hydrodesulfurization method according to claim 1, which is 5% by weight or less.
【請求項5】再生触媒の比表面積が60〜200m2
gである請求項1〜4のいずれかに記載の水素化脱硫方
法。
5. The specific surface area of the regenerated catalyst is 60 to 200 m 2 /
It is g. The hydrodesulfurization method according to any one of claims 1 to 4.
【請求項6】再生触媒の細孔容積が0.3〜1.0cc
/gである請求項1〜5のいずれかに記載の水素化脱硫
方法。
6. The pore volume of the regenerated catalyst is 0.3 to 1.0 cc.
/ G The hydrodesulfurization method according to any one of claims 1 to 5.
【請求項7】再生触媒が、酸化物担体にモリブデン、タ
ングステン、コバルトまたは、ニッケルのうち少なくと
も一種類の金属種を担持した触媒を水素化処理プロセス
で使用した後、再生処理したものである請求項1〜6の
いずれかに記載の水素化脱硫方法。
7. The regenerated catalyst is a catalyst obtained by carrying out a regeneration treatment after using a catalyst in which at least one metal species of molybdenum, tungsten, cobalt or nickel is supported on an oxide carrier in a hydrotreatment process. Item 7. The hydrodesulfurization method according to any one of Items 1 to 6.
【請求項8】酸化物担体がアルミナで担持金属種がニッ
ケルおよびモリブデンである請求項7記載の水素化脱硫
方法。
8. The hydrodesulfurization method according to claim 7, wherein the oxide carrier is alumina and the supported metal species are nickel and molybdenum.
【請求項9】酸化物担体が、リン、ほう素、けい素の酸
化物のうち少なくとも一種類を含むアルミナで、担持金
属種がニッケルまたはコバルト、およびモリブデンであ
る請求項7記載の水素化脱硫方法。
9. The hydrodesulfurization according to claim 7, wherein the oxide carrier is alumina containing at least one kind of oxides of phosphorus, boron and silicon, and the supported metal species are nickel or cobalt and molybdenum. Method.
【請求項10】担持金属種であるニッケルまたはコバル
トの含有量が再生触媒基準で酸化物として0.1〜10
重量%、およびモリブデンの含有量が再生触媒基準で酸
化物として0.1〜25重量%の範囲内にある、請求項
7〜9のいずれかに記載の水素化脱硫方法。
10. The content of nickel or cobalt as a supported metal species is 0.1 to 10 as an oxide on the basis of a regenerated catalyst.
The hydrodesulfurization method according to any one of claims 7 to 9, wherein the weight% and the content of molybdenum are in the range of 0.1 to 25% by weight as an oxide on the basis of the regenerated catalyst.
JP14366098A 1998-05-26 1998-05-26 Hydrodesulfurization method for heavy oil Expired - Fee Related JP3527635B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14366098A JP3527635B2 (en) 1998-05-26 1998-05-26 Hydrodesulfurization method for heavy oil
KR1020007000823A KR100600189B1 (en) 1998-05-26 1999-05-25 Method of hydrogenating heavy oil
TW088108550A TW483931B (en) 1998-05-26 1999-05-25 Method of hydrogenating heavy oil
EP99921262A EP1010744A1 (en) 1998-05-26 1999-05-25 Hydrotreating process for residual oil
US09/463,387 US6406615B1 (en) 1998-05-26 1999-05-25 Hydrotreating process for residual oil
PCT/JP1999/002743 WO1999061557A1 (en) 1998-05-26 1999-05-25 Hydrotreating process for residual oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14366098A JP3527635B2 (en) 1998-05-26 1998-05-26 Hydrodesulfurization method for heavy oil

Publications (2)

Publication Number Publication Date
JPH11335677A JPH11335677A (en) 1999-12-07
JP3527635B2 true JP3527635B2 (en) 2004-05-17

Family

ID=15343972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14366098A Expired - Fee Related JP3527635B2 (en) 1998-05-26 1998-05-26 Hydrodesulfurization method for heavy oil

Country Status (1)

Country Link
JP (1) JP3527635B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138043A (en) * 2014-03-27 2016-12-02 이데미쓰 고산 가부시키가이샤 Method for regenerating and utilizing heavy-oil desulfurization catalyst
KR20160138413A (en) * 2014-03-27 2016-12-05 이데미쓰 고산 가부시키가이샤 Method for regenerating and utilizing heavy-oil desulfurization catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043936A2 (en) * 2009-10-05 2011-04-14 Exxonmobil Research And Engineering Company Stacking of low activity or regenerated catalyst above higher activity catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138043A (en) * 2014-03-27 2016-12-02 이데미쓰 고산 가부시키가이샤 Method for regenerating and utilizing heavy-oil desulfurization catalyst
KR20160138413A (en) * 2014-03-27 2016-12-05 이데미쓰 고산 가부시키가이샤 Method for regenerating and utilizing heavy-oil desulfurization catalyst
KR102297022B1 (en) 2014-03-27 2021-09-02 이데미쓰 고산 가부시키가이샤 Method for regenerating and utilizing heavy-oil desulfurization catalyst
KR102366902B1 (en) 2014-03-27 2022-02-23 이데미쓰 고산 가부시키가이샤 Method for regenerating and utilizing heavy-oil desulfurization catalyst

Also Published As

Publication number Publication date
JPH11335677A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JP6106354B2 (en) Process for hydrocracking feedstock containing 200 wtppm to 2 wt% asphaltenes, including a switchable reactor
KR100625373B1 (en) Hydrogenation catalyst and method of hydrogenating heavy oil
JP2004518012A (en) Slurry-hydrotreatment using supported slurry catalyst to upgrade heavy oil
KR100600189B1 (en) Method of hydrogenating heavy oil
JP3291164B2 (en) Desulfurization method of catalytic cracking gasoline
TWI652339B (en) Recycling method for heavy oil desulfurization catalyst
JP3715893B2 (en) Method for regenerating hydrotreating catalyst
JP3527635B2 (en) Hydrodesulfurization method for heavy oil
JP6420961B2 (en) Recycling method of heavy oil desulfurization catalyst
JP3516383B2 (en) Hydroprocessing of heavy oil
US6589418B2 (en) Method for selective cat naphtha hydrodesulfurization
JP3708381B2 (en) Regeneration method of heavy oil hydrotreating catalyst and regenerated hydrotreating catalyst
JP2000005609A (en) Method for regeneration of hydrotreating catalyst
JP2001316679A (en) Method for hydro-refining heavy hydrocarbon oil
JP3464047B2 (en) Hydroprocessing of heavy oil
US5015611A (en) Water regeneration of deactivated catalyst
JP2000178566A (en) Method for hydrotreatment of hydrocarbon oil
JPH11335676A (en) Hydrogenation and denitrification of heavy oil
JPS63258985A (en) Hydrogenation treatment of heavy oil
JPH05263084A (en) Hydrotreatment of heavy residual oil
JP3443482B2 (en) Desulfurization method of catalytic cracking gasoline
JP2000109852A (en) Hydrogen treating process for heavy oil
JPS5935955B2 (en) Hydrogenation method for deasphalting residue
JP2000248283A (en) Hydrogenation treatment of heavy oil
KR20010032428A (en) Regenerated hydrogenation catalyst and methods of hydrogenating heavy oil

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees