JP3453032B2 - Method for applying a homogeneous layer on a heterogeneous substrate surface - Google Patents

Method for applying a homogeneous layer on a heterogeneous substrate surface

Info

Publication number
JP3453032B2
JP3453032B2 JP25522596A JP25522596A JP3453032B2 JP 3453032 B2 JP3453032 B2 JP 3453032B2 JP 25522596 A JP25522596 A JP 25522596A JP 25522596 A JP25522596 A JP 25522596A JP 3453032 B2 JP3453032 B2 JP 3453032B2
Authority
JP
Japan
Prior art keywords
metal
substrate
coating
applying
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25522596A
Other languages
Japanese (ja)
Other versions
JPH09164366A (en
Inventor
アラン ゴッツチョー リチャード
アラン グレガス ジェフレイ
ルー ポー−エン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Corp filed Critical AT&T Corp
Publication of JPH09164366A publication Critical patent/JPH09164366A/en
Application granted granted Critical
Publication of JP3453032B2 publication Critical patent/JP3453032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3605Coatings of the type glass/metal/inorganic compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Weting (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属の層を塗布するた
めの方法、より詳細には、材料の均質な層を異種成分基
板の表面に塗布するための方法に関する。
FIELD OF THE INVENTION This invention relates to a method for applying a layer of metal, and more particularly to a method for applying a homogeneous layer of material to the surface of a heterogeneous substrate.

【0002】[0002]

【従来の技術】材料の薄い膜の塗布は、様々な商業プロ
セスにおいて有益である。例えば、窒化ケイ素の薄い層
の塗布が、集積回路の製造において、高品質誘電体の薄
い従順な層を提供するために使用される。このような用
途においては、窒化物が、典型的には、異種成分基板
(heterogeneous substrates)、例えば、シリコン上に
パターン化された金属上に塗布される。このような用途
における最も大きな金属要素は、典型的には、数十平方
ミクロンを超えないエリアを持つ。
BACKGROUND OF THE INVENTION The application of thin films of material is beneficial in a variety of commercial processes. For example, the application of a thin layer of silicon nitride is used in integrated circuit fabrication to provide a thin, compliant layer of high quality dielectric. In such applications, nitrides are typically coated on heterogeneous substrates, such as metal patterned on silicon. The largest metal elements in such applications typically have areas that do not exceed tens of square microns.

【0003】より最近では、平坦なパネルディスプレイ
の製造において、窒化ケイ素の層が大きなエリアの異種
成分基板、例えば、ガラス上にパターン化されたクロム
上に塗布される。この用途においては、平方ミリメート
ルあるいはそれ以上のエリアを持つパターン化された金
属要素が要望されるが、ただし、これら異種成分の表面
上に堆積される窒化ケイ素の膜は、多くの点で均質でな
い。例えば、堆積された窒化ケイ素のエッチング速度
は、位置によって大幅に変動し、ディスプレイの設計お
よび製造を、困難で、かつ、高価なものにする。他の薄
膜、例えば、シリコン酸化物(SiOx )およびアモル
ファスシリコン(a−Si)の塗布においても、それら
が低圧環境内で加熱された異種成分基板上に堆積された
場合、類似の不均質性が観察される。
More recently, in the manufacture of flat panel displays, a layer of silicon nitride is applied on a large area heterogeneous substrate, for example, chromium patterned on glass. In this application, patterned metal elements with areas of square millimeters or greater are desired, provided that the silicon nitride films deposited on these dissimilar surfaces are not homogeneous in many respects. . For example, the etch rate of deposited silicon nitride varies widely with position, making display design and manufacturing difficult and expensive. Other thin films, such as silicon oxide (SiO x ) and amorphous silicon (a-Si), also have similar inhomogeneities when deposited on heterogeneous substrates heated in a low pressure environment. Is observed.

【0004】[0004]

【発明が解決しようとする課題】従って、異種成分基板
上に均質な層を塗布するための改善された方法に対する
需要が存在する。
Therefore, there is a need for an improved method for coating a homogeneous layer on a heterogeneous substrate.

【0005】[0005]

【課題を解決するための手段】本発明は、出願人の、加
熱された異種成分基板上に堆積される膜の不均質性は、
大きなエリアの金属構造をパターン化することによって
大幅に低減できるという発見に基づく。より詳細には、
約2mm 以上のエリアを持つ金属構造がその金属が金
属のパターンの端から1mm以内に来るようにパターン
化される。こうして、例えば、ガラス基板上の通常はパ
ターンを持たないクロム結合パッドが、1mmのクロム
ラインから成るパターン化された開かれた格子として適
当に製造される。このようなパターンを持つ場合、その
後堆積される窒化ケイ素の層は、エッチング速度の一様
性が改善されるのを含めて、大きなエリアを通じて、均
質性が改善される。
SUMMARY OF THE INVENTION The present invention provides that Applicants have found that the inhomogeneity of a film deposited on a heated heterogeneous substrate is:
It is based on the discovery that patterning large area metal structures can be significantly reduced. More specifically,
A metal structure having an area of about 2 mm 2 or more is patterned such that the metal is within 1 mm of the edge of the metal pattern. Thus, for example, a normally unpatterned chrome bond pad on a glass substrate is suitably manufactured as a patterned open grid of 1 mm chrome lines. With such a pattern, subsequently deposited layers of silicon nitride have improved homogeneity over large areas, including improved etch rate uniformity.

【0006】[0006]

【実施例】図面の説明に入るが、図1は、塗布される層
の均質性を向上させるための好ましいプロセスのステッ
プを示す流れ図である。図1のブロックAに示されるよ
うに、第一のステップは、基板を提供することから成
る。さまざまな広範囲の絶縁および半導体基板を使用す
ることができるが、平坦なパネルディスプレイを製造す
るためのこの一例の用途においては、好ましい基板とし
ては、Corning 7059などのガラスが使用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Turning now to the drawings, FIG. 1 is a flow chart showing the steps of a preferred process for improving the homogeneity of the applied layer. As shown in block A of Figure 1, the first step consists of providing a substrate. A wide variety of insulating and semiconductor substrates can be used, but in this example application for manufacturing flat panel displays, a preferred substrate is glass such as Corning 7059.

【0007】ブロックB内に示される次のステップは、
金属の層を基板の作業表面に塗布するステップから成
る。真空蒸着やスパッタリングなどを含む金属を塗布す
るのに適当なさまざまな広い範囲の技術が存在する。デ
ィスプレイの製造のためには、好ましい金属としては、
クロムが使用され、好ましい塗布プロセスとしては、ス
パッタリングが使用される。
The next step shown in block B is
It consists of applying a layer of metal to the working surface of the substrate. There are a wide variety of suitable techniques for applying metals, including vacuum evaporation, sputtering and the like. For the manufacture of displays, the preferred metals are:
Chromium is used, and sputtering is the preferred coating process.

【0008】ブロックCは、第三のステップを示すが、
これは、メタルをパターン化することにより、小さなエ
リアのパターンから成る一つあるいはそれ以上の大きな
エリアのユニットを作製することから成る。より詳細に
は、こうしてパターン化された金属エリアの中には、表
面上に、約2mm を超える総エリアを持つ一つあるい
は複数のユニットが存在することが要求される。これら
大きなエリアのユニットは、その金属の大部分(>90
%)が金属パターンの端から1mm以内に配置されている
ようにパターン化されるべきである。
Block C shows the third step,
This consists of patterning the metal to create one or more large area units consisting of a small area pattern. More specifically, in such patterned metal areas, it is required that there be one or more units on the surface with a total area of greater than about 2 mm 2 . Units in these large areas are the majority of the metal (> 90
%) Should be patterned such that it is located within 1 mm of the edge of the metal pattern.

【0009】このステップは、図2を参照することによ
ってより良く理解できるが、図2には、基板20が示さ
れる。基板20は、平坦な主表面を持ち、この主表面
は、複数の大きなエリアの金属ユニット(2mm 以上
のエリア)、例えば、結合パッドコンタクト23および
フレーム24を含む。これら大きなエリアのユニット
は、おのおの、その金属の大部分がパターンの端から1
mm以内に配置されているような内部パターンを持つ。
This step can be better understood by referring to FIG. 2, where a substrate 20 is shown. The substrate 20 has a flat major surface that includes a plurality of large area metal units (areas of 2 mm 2 or greater), such as bond pad contacts 23 and a frame 24. Each of these large area units has most of its metal 1 from the edge of the pattern.
Has an internal pattern that is arranged within mm.

【0010】図3および図4の拡大図内に示されるよう
に、大きなエリアの金属ユニット23、24は、その金
属の大部分が金属パターンの端から1mm以内に配置され
ているように、約1mmの幅の相互接続され交差されたス
トリップ25に構成される。このパターン化は、従来の
ホトリソグラフィー、シルクスクリーニングなどを含む
様々なパターン化プロセスの任意の一つによって達成す
ることができる。
As shown in the enlarged views of FIGS. 3 and 4, the large area metal units 23, 24 have a size of about 1 mm such that most of the metal is located within 1 mm of the edge of the metal pattern. It is constructed into interconnected and crossed strips 25 of 1 mm width. This patterning can be accomplished by any one of a variety of patterning processes including conventional photolithography, silk screening and the like.

【0011】ブロックD内に示される次のステップは、
誘電材料の層、例えば、窒化ケイ素を、パターン化され
た大きなエリアの金属ユニットを通じて、作業表面上に
塗布するステップから成る。誘電材料は、低圧環境内で
基板を加熱するステップを含む様々な周知のプロセスの
任意の一つによって塗布することができる。ディスプレ
イ用途に対しては、誘電材料は、好ましくは、窒化ケイ
素とされ、これは、好ましくは、プラズマ強化化学蒸着
(PECVD)によって塗布される。典型的な厚さは、
2000−5000nmの範囲とされる。
The next steps shown in block D are:
It consists of applying a layer of dielectric material, for example silicon nitride, through a patterned large area metal unit onto the work surface. The dielectric material can be applied by any one of a variety of well known processes including heating the substrate in a low pressure environment. For display applications, the dielectric material is preferably silicon nitride, which is preferably applied by plasma enhanced chemical vapor deposition (PECVD). Typical thickness is
The range is 2000 to 5000 nm.

【0012】第五のステップは、塗布された誘電材料の
層をパターン化することから成る。これは、典型的に
は、誘電層をホトレジストにてマスクし、マスクされて
ない部分をエッチングにて除去することから成る。窒化
ケイ素に対しては、フッ化水素酸(BHF)が好ましい
エッチング剤として用いられる。図1の長所が明らかに
なるのはこのステップにおいてである。従来の金属パタ
ーン化の場合は、エッチング速度が、ガラスが露出する
基板表面の領域と、大きなパターン化を持たないエリア
から成る金属ユニットの内側領域との間で幅広く変動
し、このために、エッチングプロセスの設計および制御
が困難となる。これとは対照的に、図3および図4のパ
ターン化においては、エッチング速度は、表面を横断し
て実質的に一様であり、設計および制御が簡単になる。
図2の特定の実施例においては、結合パッドコンタクト
23上の窒化物が除去され、フレーム24上の窒化物は
残される。
The fifth step consists of patterning the layer of applied dielectric material. This typically consists of masking the dielectric layer with photoresist and etching away the unmasked portions. For silicon nitride, hydrofluoric acid (BHF) is used as the preferred etchant. It is at this step that the advantages of FIG. 1 become apparent. In the case of conventional metal patterning, the etching rate varies widely between the area of the substrate surface where the glass is exposed and the inner area of the metal unit, which consists of areas without large patterning, which results in etching. Difficult to design and control the process. In contrast, in the patterning of Figures 3 and 4, the etch rate is substantially uniform across the surface, simplifying design and control.
In the particular embodiment of FIG. 2, the nitride on bond pad contact 23 is removed, leaving the nitride on frame 24.

【0013】エッチングの不均一性の問題、および均一
性の向上の程度は、以下の特定の例を考察することによ
ってより良く理解できるものである。 例1 パターン化を持たない大きなエリアの金属ユニッ
ト クロム金属(100nm)が、Corning 7059ガラス基板
(320×400×1.1mm)上に、Leybold ZV6000イ
ンラインツールを使用して、スパッター堆積された。T
ELアメリカンクラスタツールを使用して、300nm
のSiN:Hが、0.75torrのSiH4 (200scc
m)、NH3 (2400sccm)、およびN2 (2400s
ccm)を通じて700Wのプラズマをランすることによ
って堆積された。基板がその上に固定される電極の温度
は、330℃に維持された。
The problem of etch non-uniformity, and the degree of uniformity improvement, can be better understood by considering the following specific examples. Example 1 A large area metal unit without patterning chromium metal (100 nm) was sputter deposited onto a Corning 7059 glass substrate (320 x 400 x 1.1 mm) using a Leybold ZV6000 in-line tool. T
300nm using EL American Cluster Tool
SiN: H is 0.75 torr SiH 4 (200scc
m), NH 3 (2400sccm), and N 2 (2400s)
It was deposited by running a 700 W plasma through the ccm). The temperature of the electrode on which the substrate was fixed was maintained at 330 ° C.

【0014】堆積の後に、ホトレジストが塗布され、ス
タイラスプロフィロメータ(DektakFPD 450)を使用し
てエッチング深さが測定できるように、ラインと空間の
格子が窒化物内にパターン化された。プレートをBHF
のタブ内に約5分間浸けることによってエッチングが遂
行された。エッチングは攪拌には左右されず、エッチン
グは表面速度によってのみ制限され、輸送によっては制
限されないことが示された。図5は、ガラスの水平(x
−軸)方向に沿っての関数として測定されたエッチング
速度を示す。より詳細には、図5は、それぞれ、パター
ン化されてないガラスから成る下側基板、半分のアース
されたクロムとハーフガラスから成る基板、および半分
のフローティングクロムと半分のガラスから成る基板上
にプラズマ強化化学蒸着されたa−SiN:Hに対する
BHFエッチング速度を示す。パターン化されてないガ
ラス表面の場合は、ガラスの両端に向ってのBHFエッ
チング速度の系統的な増加が見られる。この大きなスケ
ールの不均一性は、ガラス両端上に使用されたアースさ
れた非加熱の固定具によって生成されるプラズマの不均
一性に起因する。
After deposition, photoresist was applied and line and space grids were patterned in the nitride so that the etch depth could be measured using a stylus profilometer (Dektak FPD 450). Plate to BHF
The etching was performed by immersing in a tub for about 5 minutes. It was shown that the etching was independent of agitation and that the etching was limited only by the surface velocity and not by transport. Figure 5 shows the horizontal (x
The etching rate measured as a function along the (-axis) direction is shown. More specifically, FIG. 5 shows a lower substrate made of unpatterned glass, a substrate made of half grounded chrome and half glass, and a substrate made of half floating chrome and half glass, respectively. 3 shows the BHF etch rate for plasma enhanced chemical vapor deposited a-SiN: H. For unpatterned glass surfaces, a systematic increase in BHF etch rate towards both edges of the glass is seen. This large scale non-uniformity is due to the non-uniformity of the plasma produced by the grounded, unheated fixtures used on both ends of the glass.

【0015】例2 パターン化された大きなエリアの金
属ユニット 同じように製造された基板のセット内に、大きなエリア
のクロム領域が2から10mmの範囲のライン/空間寸法
にてパターン化され、窒化物のエッチング速度が測定さ
れた。図6は位置(従って、ライン/空間の寸法)の関
数としてのエッチング速度をグラフにプロットしたもの
である。図からわかるように、BHFエッチング速度
は、ガラス上に堆積された膜に対して、およびガラスに
隣接するクロムに対して、一貫して、高い。ライン/空
間の寸法が2mmに縮められると、BHFエッチング速度
は、下側のパターンと関係がなくなる。
EXAMPLE 2 Patterned Large Area Metal Units Within a set of similarly manufactured substrates, large area chromium regions were patterned with line / space dimensions ranging from 2 to 10 mm and nitrided. The etching rate was measured. FIG. 6 is a graphical plot of etch rate as a function of position (and thus line / space dimension). As can be seen, the BHF etch rate is consistently high for films deposited on glass and for chromium adjacent to the glass. When the line / space dimension is reduced to 2 mm, the BHF etch rate becomes independent of the underlying pattern.

【0016】本発明に対しては必要ではないが、出願人
は、パターン化されてない大きなエリアのクロムユニッ
ト上の窒化物膜を横断しての不均質性は、クロムとガラ
スとの間の温度差に起因するものと信じる。これら温度
差は、今度は、窒化膜内の不均質性の原因となる。これ
ら温度の効果は熱消散性の差に起因するために、窒化ケ
イ素以外の他の誘電体およびクロム以外の他の金属が使
用された場合も類似する効果が現われると考えられる。
Although not required for the present invention, Applicants have found that inhomogeneities across the nitride film on the unpatterned large area chromium unit are between the chromium and glass. We believe that it is due to the temperature difference. These temperature differences, in turn, cause inhomogeneities within the nitride film. Since these temperature effects are caused by the difference in heat dissipation, it is considered that similar effects will appear when other dielectrics other than silicon nitride and other metals than chromium are used.

【0017】堆積された膜特性の、下側パターンへのこ
のような依存性は、平坦なパネルディスプレイに対する
a−SiN:H膜のエッチングの際に、大きなエリアの
金属パッド上のコンタクトウインドウをきれいにするた
めにオーバーエッチングが必要となるために問題とな
る。隣接する金属ライン間の距離が、1−2mm以下で
ある場合は、生じる温度差は小さく、均一な窒化物コー
ティングを塗布することが可能である。
This dependence of the deposited film properties on the underlying pattern cleans the contact window on large area metal pads during etching of a-SiN: H films for flat panel displays. Therefore, over-etching is required, which is a problem. When the distance between the adjacent metal lines is 1-2 mm or less, the temperature difference that occurs is small and it is possible to apply a uniform nitride coating.

【0018】本発明の好ましい実施例は、窒化ケイ素膜
の塗布に関するが、本発明の方法は、SiOx およびa
−Siなどのような他の誘電材料の塗布に対しても同様
に適用するものである。本発明は、放射熱損失のメカニ
ズムの下で機能する堆積システム、つまり、異種成分基
板が低圧容器内で周囲の容器よりも高い温度に加熱さ
れ、容器内の圧力が数Torrよりも(約5torr)よりも低
くされるようなシステムにおいて使用するのに適する。
この背景下においては、異種成分基板は、その上にパタ
ーン化された材料の層(ここで、このパターンは、約2
mm2 以上の大きなエリアを持つ)を含む任意の異種成分
基板(ここで、この材料は、下側の均質な基板の材料と
異なる熱放射性を持つ)であり得る。
Although the preferred embodiment of the present invention relates to the application of silicon nitride films, the method of the present invention is directed to SiO x and a.
The same applies to the application of other dielectric materials such as -Si. The present invention is a deposition system that operates under the mechanism of radiative heat loss, that is, a heterogeneous substrate is heated in a low pressure vessel to a higher temperature than the surrounding vessel and the pressure in the vessel is more than a few Torr (about 5 torr). ) Is suitable for use in such systems.
Under this background, a heterogeneous substrate has a layer of material patterned thereon, where the pattern is about 2
(with a large area of mm 2 or more), where the material has a different thermal emissivity than the material of the underlying homogeneous substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】塗布される窒化ケイ素の層の均質性を向上させ
るためのプロセスの流れを示す図である。
FIG. 1 shows a process flow for improving the homogeneity of a layer of applied silicon nitride.

【図2】図1のプロセスを使用して製造された平坦なパ
ネルディスプレイ用のパネルワークピースを示す図であ
る。
2 illustrates a panel workpiece for a flat panel display manufactured using the process of FIG.

【図3】図2のパネルワークピースの部分の拡大図であ
る。
FIG. 3 is an enlarged view of a portion of the panel workpiece of FIG.

【図4】図2のパネルワークピースの部分の拡大図であ
る。
FIG. 4 is an enlarged view of a portion of the panel workpiece of FIG.

【図5】パターン化された大きなエリアの構造を持たな
い基板上に塗布された窒化ケイ素薄膜のエッチング速度
の変動を示すグラフである。
FIG. 5 is a graph showing variation in etching rate of a silicon nitride thin film coated on a substrate having no patterned large area structure.

【図6】金属ライン幅の減少と共に窒化ケイ素膜のエッ
チング速度の一様性が改善されることを示すグラフであ
る。
FIG. 6 is a graph showing that the uniformity of the etching rate of a silicon nitride film is improved as the metal line width is reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C23C 16/50 H01L 21/31 C H01L 21/31 21/90 Q (72)発明者 ジェフレイ アラン グレガス アメリカ合衆国 18017 ペンシルヴァ ニア,ベスレヘム,フィフティーンス ストリート 2424 (72)発明者 ポー−エン ルー アメリカ合衆国 07945 ニュージャー シィ,メンダム,カライス ロード 33 (56)参考文献 特開 昭61−190815(JP,A) (58)調査した分野(Int.Cl.7,DB名) B05D 5/12 H01L 21/203 H01L 21/768 H05K 3/28 C23C 14/34 C23C 16/50 H01L 21/31 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification FI C23C 16/50 H01L 21/31 C H01L 21/31 21/90 Q (72) Inventor Jeffrey Alan Gregas United States 18017 Bethlehem, Pennsylvania Fifteenth Street 2424 (72) Inventor Po-Enru United States 07945 New Jersey, Mendam, Karais Road 33 (56) Reference JP-A-61-190815 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B05D 5/12 H01L 21/203 H01L 21/768 H05K 3/28 C23C 14/34 C23C 16/50 H01L 21/31

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電材料の層をパターン化された金属構
造を持つ基板上にコーティングするための方法であっ
て、この方法が: 平坦な主表面を持つ基板を提供するステップ; 前記の表面に金属のコーティングを塗布するステップ;
および前記の金属のコーティングを、2mm を超える
エリアを持つ一つあるいは複数の金属構造が形成される
ようにパターン化するステップを含み、このパターン
は、前記の金属の大部分バルクがその金属のパターンの
端から1mm以内に配置されるように構成され;この方法
がさらに前記のパターン化された金属の上に誘電材料の
コーティングを塗布するステップを含むことを特徴とす
る方法。
1. A method for coating a layer of dielectric material onto a substrate having a patterned metal structure, the method comprising: providing a substrate having a planar major surface; Applying a metal coating;
And patterning the coating of said metal such that one or more metal structures having an area of more than 2 mm 2 are formed, wherein the pattern is such that the bulk of said metal is A method configured to be located within 1 mm of an edge of a pattern; the method further comprising applying a coating of a dielectric material on the patterned metal.
【請求項2】 前記の誘電層が約5Torr以下の圧力を持
つ低圧容器内で塗布され、前記の基板が前記の容器以上
の温度に加熱されることを特徴とする請求項1の方法。
2. The method of claim 1, wherein the dielectric layer is applied in a low pressure vessel having a pressure of about 5 Torr or less, and the substrate is heated to a temperature above the vessel.
【請求項3】 前記のパターンが一連の交差する金属ス
トリップに構成されることを特徴とする請求項1の方
法。
3. The method of claim 1, wherein the pattern is arranged in a series of intersecting metal strips.
【請求項4】 前記の誘電材料のコーティングがプラズ
マ強化化学蒸着(PECVD) によって塗布されることを特
徴とする請求項1の方法。
4. The method of claim 1, wherein the coating of dielectric material is applied by plasma enhanced chemical vapor deposition (PECVD).
【請求項5】 前記の基板がガラスであり、前記の誘電
材料が窒化ケイ素であり、前記の窒化ケイ素がPECV
Dによって塗布されることを特徴とする請求項1の方
法。
5. The substrate is glass, the dielectric material is silicon nitride, and the silicon nitride is PECV.
The method of claim 1, wherein the method is applied by D.
【請求項6】 前記の金属がクロムであることを特徴と
する請求項3の方法。
6. The method of claim 3, wherein the metal is chromium.
【請求項7】 前記の基板が絶縁材料から成ることを特
徴とする請求項1の方法。
7. The method of claim 1, wherein the substrate comprises an insulating material.
【請求項8】 前記の金属がスパッタリングによって塗
布されることを特徴とする請求項1の方法。
8. The method of claim 1, wherein the metal is applied by sputtering.
JP25522596A 1995-09-29 1996-09-27 Method for applying a homogeneous layer on a heterogeneous substrate surface Expired - Fee Related JP3453032B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53719895A 1995-09-29 1995-09-29
US08/537198 1995-09-29

Publications (2)

Publication Number Publication Date
JPH09164366A JPH09164366A (en) 1997-06-24
JP3453032B2 true JP3453032B2 (en) 2003-10-06

Family

ID=24141635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25522596A Expired - Fee Related JP3453032B2 (en) 1995-09-29 1996-09-27 Method for applying a homogeneous layer on a heterogeneous substrate surface

Country Status (3)

Country Link
US (1) US5976637A (en)
EP (1) EP0766304A2 (en)
JP (1) JP3453032B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585704B2 (en) * 2005-04-01 2009-09-08 International Business Machines Corporation Method of producing highly strained PECVD silicon nitride thin films at low temperature
TWI496916B (en) * 2010-12-27 2015-08-21 Hon Hai Prec Ind Co Ltd Articles and method for making the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346601A (en) * 1993-05-11 1994-09-13 Andrew Barada Sputter coating collimator with integral reactive gas distribution
TW272310B (en) * 1994-11-09 1996-03-11 At & T Corp Process for producing multi-level metallization in an integrated circuit

Also Published As

Publication number Publication date
JPH09164366A (en) 1997-06-24
EP0766304A2 (en) 1997-04-02
EP0766304A3 (en) 1997-04-09
US5976637A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US5139974A (en) Semiconductor manufacturing process for decreasing the optical refelctivity of a metal layer
US5487811A (en) Process for preparation of semiconductor device
US5291536A (en) X-ray mask, method for fabricating the same, and pattern formation method
JP2003051449A (en) System and method for fabricating silicon target
JP3453032B2 (en) Method for applying a homogeneous layer on a heterogeneous substrate surface
CN102044432B (en) Method for preventing uneven surface of wafer and preventing defocus in exposure
JPH0831752A (en) Cleaning and coating of reaction chamber of cvd system
JPS6377122A (en) Manufacture of semiconductor device
JPS6042868A (en) Manufacture of amorphous silicon thin film fet
JP3471082B2 (en) Coating method for reaction chamber of CVD apparatus
JP3406681B2 (en) Method for manufacturing thin film transistor
JPS6111749A (en) Photomask blank
JP3216173B2 (en) Method of manufacturing thin film transistor circuit
JP2716156B2 (en) Method for manufacturing semiconductor device
JP2606315B2 (en) Method for manufacturing semiconductor device
JP3353832B2 (en) Method and apparatus for manufacturing thin film transistor
JPS59149060A (en) Manufacture of thin-film transistor
JP2003068755A (en) Thin film transistor and manufacturing method thereof
Kal et al. Slope etching of silicon dioxide
JPH03104127A (en) Formation of fine pattern
KR0144232B1 (en) Formation method of fine pattern in semiconductor device
JPH02196470A (en) Thin film transistor and manufacture thereof
JPS6347947A (en) Manufacture of semiconductor device
JPH05107553A (en) Manufacture of metallic wiring of active matrix lcd
JPH04199633A (en) Manufacture of diode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees