JP3438582B2 - Portable personal computer - Google Patents

Portable personal computer

Info

Publication number
JP3438582B2
JP3438582B2 JP11817898A JP11817898A JP3438582B2 JP 3438582 B2 JP3438582 B2 JP 3438582B2 JP 11817898 A JP11817898 A JP 11817898A JP 11817898 A JP11817898 A JP 11817898A JP 3438582 B2 JP3438582 B2 JP 3438582B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
housing
temperature
keyboard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11817898A
Other languages
Japanese (ja)
Other versions
JPH11312883A (en
Inventor
繁男 大橋
義広 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11817898A priority Critical patent/JP3438582B2/en
Publication of JPH11312883A publication Critical patent/JPH11312883A/en
Application granted granted Critical
Publication of JP3438582B2 publication Critical patent/JP3438582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、筐体内に発熱素子
を搭載した配線基板,キーボード,記憶装置などの発熱
部品を収容した電子装置の冷却構造に係り、発熱素子な
らびに発熱部品を所定の温度に保つようにした冷却装置
に関する。 【0002】 【従来の技術】従来の技術は、特開平8−286783 号公報
に見られ、発熱素子を搭載した第1の筐体内底部に放熱
板を設置し、発熱素子から筐体底部の放熱板及びキーボ
ード底面に熱伝導して筐体表面で熱を広げて放熱してい
る。特願平7−11288号出願(参照)では、筐体内にファ
ンを収容し、発熱素子を冷却する例が開示されている。
さらに、特開平6−214067 号公報には、潜熱蓄熱材を発
熱素子に接触させた例が開示されている。 【0003】 【発明が解決しようとする課題】携帯型パーソナルコン
ピュータなどに代表される電子装置では、性能の向上に
よる素子の高発熱化とともに、筐体サイズの薄型化,軽
量化の傾向がある。また、これらの電子装置ではバッテ
リー駆動されることが多く、装置全体の低消費電力化も
必要になっている。 【0004】上記特開平8−286783 号公報の例では、筐
体表面が放熱面であるため、放熱面積が筐体サイズに限
定されてしまう。すなわち、ファンを用いない自然冷却
を行うとき、放熱量の上限が一意的に決まってしまい、
放熱量の限界以上で素子を動作させることが不可能とな
る。従って、素子の高性能化に伴い、発熱素子の冷却が
困難となり(筐体表面温度が上昇し操作者に不快感を与
えてしまうため)、電子装置の高性能化が妨げられる。 【0005】一方、特願平7−11288号出願の例では、筐
体サイズの薄型化のためファンを横置きに収容してい
る。しかし、ファンの厚さ及びファン前後に必要となる
空間以下に筐体サイズを薄型化することはできない。素
子の高性能化に伴い、発熱量が大きくなる場合、ファン
の大型化,消費電力の増大が必要になるとともに、ファ
ン前後に必要となる空間も大きくなる。従って、特に、
バッテリー駆動を前提とした携帯型電子装置の場合、バ
ッテリーの寿命時間、筐体サイズの薄型化の点で利便性
が損なわれるという問題があった。 【0006】特開平6−214067 号公報では、発熱素子の
全発熱を蓄熱材で吸収するようにしているため、高発熱
の素子に対して蓄熱材料の量が増大(筐体サイズの大型
化,重量の増加)もしくは蓄熱材料の重量で決まる最大
蓄熱量に達するたびにシステム稼働中であっても、蓄熱
材料を取り替えなければならないなどの問題があった。 【0007】また、上記従来例では、素子の冷却に際し
て筐体表面の温度上昇抑制(操作時に不快感を与えない
ため)に対しては特に考慮されていない。 【0008】本発明の目的は、電子装置の処理性能向上
に伴う装置の発熱量増大に対して、筐体表面積及び筐体
表面温度で決まる放熱量以上の放熱性能を有し、発熱素
子,発熱部品の温度を所定の温度に冷却するとともに筐
体表面の温度上昇を抑える薄型軽量筐体でかつ冷却に係
る消費電力を抑えるのに適した構造を備えた電子装置を
提供することである。 【0009】 【課題を解決するための手段】上記目的は、筐体の内部
に収納された基板に搭載された発熱素子と、前記筐体の
表面にキーボードを備えた携帯型パーソナルコンピュー
タにおいて、前記筐体の底面部で、かつこの筐体の底面
とほぼ同じ面積の放熱板と、前記発熱素子に第1の柔軟
熱伝導部材を介して取り付けられた拡大金属板と、この
拡大金属板に接続された第1の放熱部材とを備え、前記
基板の背面には第2の柔軟熱伝導部材を介して設置され
た第2の放熱部材と、前記キーボードのベース板には扁
平状の蓄熱部材を介して前記第2の放熱部材が熱的に接
続されてなり、前記第2の放熱部材は熱伝導性材料で形
成されたボスを介して前記第1の放熱部材と前記放熱板
とに熱的に接続され、前記拡大金属板と前記放熱板及び
前記第1と第2の放熱部材は前記発熱素子からの熱を面
方向に拡散して放熱することをことにより達成される。 【0010】また、蓄熱材料を金属製の偏平コンテナ内
に密封して蓄熱部材を構成し、筐体の壁面ならびにキー
ボード背面に設置するとともに、放熱部材を介して発熱
部材に熱的に接続した。また、さらに、蓄熱部材を偏平
状に構成し、電子装置を着脱可能にした。 【0011】即ち、電子装置筐体内の発熱部材で発生し
た熱は、発熱部材に接続された放熱部材を介して筐体壁
面ならびにキーボード背面に設置された放熱板に伝熱さ
れ、放熱板で放熱板の面方向に拡散された後、外気に放
熱される。この時、放熱板に接続された蓄熱部材が発熱
部材で発生した熱の一部を吸収する。蓄熱部材が吸収す
る熱量は、含まれる蓄熱材料の量に応じて決まり、潜熱
蓄熱材料を用いると、その吸収熱量までは蓄熱部材の温
度がほぼ蓄熱材料の融解温度に保たれる。 【0012】発熱部材が電気的な動作を開始して発熱が
始まると、蓄熱部材が温度上昇し、やがて蓄熱材料の融
解温度に達する。この後、蓄熱部材の温度は、発熱が続
いても蓄熱材料の吸収熱量に達するまでほぼ一定に保た
れる。一方、蓄熱部材と接続された放熱板からは、蓄熱
部材の融解温度で決まる熱量が放熱される。従って、適
当な融解温度を有する蓄熱材料を適量選択することによ
って、従来構造の筐体ならびにキーボード表面から放熱
される熱量(それらの表面積及び表面温度で決まる)に
加え、蓄熱部材で吸収される熱量まで発熱部材の冷却
が、筐体ならびにキーボード表面の温度を上昇させるこ
となく可能となる。 【0013】蓄熱部材で吸収した熱量は、システムの休
止中(たとえば、電源 off時)、もしくは、発熱部材の
発熱が減少(動作,機能の待機中等)し、蓄熱部材の温
度が融解温度以下に下がったときに本蓄熱部材に接続さ
れた放熱板から放熱される。この時、放熱板を介した放
熱ができるので、蓄熱部材は、効率よく放熱され、速や
かに元の状態に戻る。従って、蓄熱部材の取り替えは不
要となる。 【0014】また、蓄熱材料を金属製の偏平コンテナ内
に密封して蓄熱部材を構成し、筐体の壁面ならびにキー
ボード背面に設置することによって、蓄熱部材が、前記
説明にある放熱板の機能を兼用して作用する。 【0015】 【発明の実施の形態】本発明の実施例を図1に示す。図
1は、携帯型パーソナルコンピュータなどに代表される
薄型電子装置の内部断面図である。本実施例の電子装置
は、CPU(中央演算処理ユニット)等の特に発熱量の
大きい素子1(以下、CPUと記載)を搭載したサブ配線
基板6,サブ配線基板6及び複数の素子を搭載している
メイン基板12,キーボード14などを収容した筐体1
00からなる。 【0016】筐体100の底面部には、放熱板11が敷
設されている。放熱板11は、必要に応じて筐体底面と
ほぼ同面積で設置され、さらに筐体背面まで設置されて
もよい。また、筐体100自体をMg合金などの高熱伝
導性材料で成形することによって、放熱板11を筐体1
00と兼用してもよい。CPU1は、サブ配線基板6上
に実装され、柔軟熱伝導部材(たとえばSiゴムに酸化
アルミなどのフィラーを混入したもの)2を介して拡大
金属板8が取り付けられている。サブ配線基板2はコネ
クタを介してメイン基板12に取り付けられる。 【0017】この時、拡大金属板8は、放熱部材10と
接触している。CPU1の実装されたサブ基板6背面に
は、放熱部材7が柔軟熱伝導部材3を介してキーボード
14の直下に設置される。放熱部材7とキーボードのベ
ース板5(熱伝導率の高い金属製であることが望まし
い)とは、蓄熱部材40を用いて熱的に接続されてい
る。放熱部材7及びサブ基板6は、熱伝導性材料(銅,
真鋳,アルミなど)で成形されたボス9を介して放熱部
材10の端部、メイン基板12及び放熱板11と共締め
され、かつ、熱的にも接続される。 【0018】さらに、蓄熱部材41が、放熱板11とメ
イン基板12に搭載された素子15,16との間に、一
方の面を放熱板11に接触して設置される。なお、蓄熱
部材40,41の詳細な構造については、後述する(図
2)。本実施例では、CPUからキーボードのベース板
5,放熱板11までが、柔軟熱伝導部材3,2、放熱部
材7,10等を介して熱的に接続された場合の例である
が、ヒートパイプなどの熱輸送部材で接続されていても
よい。 【0019】拡大金属板8,放熱板11,放熱部材7
は、いずれも、面方向に熱を拡散して放熱効果を向上さ
せる。CPU1で発生した熱の一部は、柔軟熱伝導部材
2,拡大金属板8,放熱部材10,放熱板11を介して
筐体100の底面から外気に放熱される。さらにCPU
1で発生した熱の一部は、サブ基板6,柔軟熱伝導部材
3,放熱部材7を介し、キーボード14の表面から放熱
される熱とボス9,放熱板11を介して筐体100の底
面から外気に放熱される熱とに分配される。 【0020】本実施例では、CPU1から、キーボード
14の表面側、及び、放熱板11を介して筐体100の
底面側に分配された熱の一部を、それぞれ蓄熱部材4
0,41によって吸収する。蓄熱部材は、潜熱蓄熱材料
を用いて構成すると、蓄熱材料の重量と融解潜熱で決ま
る吸収熱量までは蓄熱部材の温度がほぼ蓄熱材料の融解
温度に保たれる。従って、キーボード表面及び筐体底面
の温度は、蓄熱部材40,41の温度に応じた一定温度
に保たれる。 【0021】蓄熱材料として、たとえば、NaCH3
OO・3H2Oを用いると、融解温度58℃で1g当り
251Jの熱量が吸収できる。すなわち、100g用い
れば1Wの熱を約7時間にわたり吸熱できることにな
る。蓄熱部材40,41で吸収した熱は、システムの休
止中(たとえば、電源 off時)、もしくは、発熱部材の
発熱が減少(動作,機能の待機中等)し、蓄熱部材の温
度が融解温度以下に下がったときに放熱される。この
時、蓄熱部材40,41が吸収した熱は、蓄熱部材4
0,41に接続されたキーボードのベース板5,放熱板
11を介して放熱されるため、効率よく放熱され、短時
間で元の状態に戻る。 【0022】本実施例では、キーボード14の表面側、
及び、筐体100の底面側の筐体両面に分配された熱
を、それぞれ、蓄熱部材40,41によって吸収するよ
うにした。キーボード側の蓄熱部材40は、キーボード
表面温度の上昇抑制に、筐体底面側の蓄熱部材41は、
筐体底面温度の上昇抑制にそれぞれ有効である。すなわ
ち、操作者が直接触れる部位の温度が低減できるので不
快感を与えることがない。蓄熱部材は、発熱量,温度上
昇を抑制したい部位に応じて片面だけ、あるいは、一方
の面に複数箇所設置してもよい。また、図1に示した蓄
熱部材41のように、メイン基板12に搭載された発熱
素子15,16にも接続し、CPUの発熱と同時に他の
発熱部材からの熱も同時に吸収させるようにしてもよ
い。 【0023】図2(a),(b)に蓄熱部材の構造を示
す。図2(a)は、蓄熱材料21を銅等の金属製の偏平
コンテナ20内に密封して蓄熱部材40,41を構成し
た例である。図2(b)は、不透湿性のシート22を偏
平の袋状に成形し蓄熱材料21を密封して蓄熱部材4
0,41を構成した例である。不透湿性のシート22
は、蓄熱部材から水成分が漏れ出さないように保護する
目的で用いられ、たとえば、アルミ箔を基材として樹脂
層を形成したラミネートシート等である。 【0024】蓄熱材料21として塩の水和物を用いる場
合、水が相分離するのを防ぐためにゲル化剤を混入して
もよい。図2(a)の構造の場合蓄熱材料を封入するコ
ンテナ自体を金属板としているので、蓄熱部材の面方向
の熱の拡散効果が得られる。従って、蓄熱材料が効率よ
く熱を吸収するだけでなく、蓄熱部材を放熱板(図1で
示した5,11)と兼用することができる。 【0025】一般に、発熱素子の冷却温度は、80〜9
5℃,キーボード背面温度や筐体底面温度は50〜60
℃であるので、蓄熱材料としては、発熱素子,冷却部材
の冷却温度に応じた融解温度を持つ潜熱型の材料を適宜
選択する。たとえば、NaCH3COO・3H2Oの融解
温度は58℃で、これを用いて構成した蓄熱部材は、キ
ーボード背面や筐体底面に敷設される放熱板に設置され
るのが適当である。また、Ba(OH)2・8H2Oの融解
温度は78℃であるので、これを用いた蓄熱部材は、発
熱素子に直接接続される放熱部材など、冷却温度がさら
に高い部位に用いることができる。蓄熱部材と放熱板も
しくは放熱部材との熱的接続は、両者の接触面に高熱伝
導性のグリースや柔軟シートなどを介して接触させるの
が有効であるが、単に接触だけ、あるいは接着剤などに
よる貼り合わせでもよい。この場合、放熱部材の冷却設
計温度と蓄熱材料の融解温度との関係及び吸収熱量に応
じて両者間の熱抵抗を整合させる。 【0026】次に、図3を用いて本実施例の動作につい
て説明する。図3は、時間t=0で発熱が開始した後
の、放熱板の温度と経過時間との関係を、本発明を用い
た場合と用いない場合とで比較したものである。図3で
は、それぞれの場合を実線と破線で模式的に示した。実
線は、放熱板に蓄熱部材が接続された場合である。本発
明を用いない場合(破線)、時間とともに温度が上昇
し、温度Toで定常状態に保たれる。従って、発熱部材
は、Toが、あらかじめ定められた許容温度以下になる
発熱量までしか冷却できない。 【0027】一方、本発明(実線)によると、放熱板の
温度が上昇し蓄熱材料が融解温度Tmに達すると、蓄熱
材料の融解が始まり、熱を吸収する。蓄熱材料がすべて
融解するまで、すなわち、吸熱量が蓄熱材料の重量と融
解潜熱で決まる吸収可能熱量に達するまで温度がTmに
一定に保たれる。この時、放熱板からは、Tm近傍の放
熱板温度で決まる熱が放熱される。そこで、吸収可能熱
量に達する前にシステムが停止(時間toff)、もしく
は、発熱部材の発熱量が減少すれば、放熱板温度がTm
以上に上昇することはない。温度Tmを許容温度以下に
選べば、温度Tmの放熱板が放熱する熱量より大きな発
熱量を有する発熱部材が冷却できることになる。 【0028】蓄熱部材で吸収された熱は、toff後に放出
される。この時、吸収した熱がすべて放熱されるまで、
温度は、Tmに保たれる。すなわち、図3のハッチング
領域Aの面積が吸収熱量に対応し、それと等しい面積の
ハッチング領域Bがtoff後の放熱量に対応している。し
かし、蓄熱材料の量が不十分で、吸収可能熱量が小さい
と、細線で示した温度変化を示し、温度が再び上昇を始
める。この場合、温度を常時モニターし、許容温度以上
に上昇したら待機状態に移行(発熱量の減少)する等の
動作制御を行ってもよい。 【0029】一般に、特に携帯型などの電子装置では、
1日24時間連続運転されることはない。従って、1回
に運転される時間(0〜toff)及び吸熱量に応じて、蓄
熱材料の重量を決定する。たとえば、1回で8時間稼動
する場合を考える。蓄熱材料としてNaCH3COO・
3H2O(融解潜熱251J/g)を用いると、230
gあれば2W吸熱できる。代表的な高性能CPUの発熱
量が8〜10Wであるので、十分有効な放熱効果が得ら
れる。 【0030】図4に他の実施例を示す。本実施例は、蓄
熱部材42を図1に示した実施例と類似の構造の電子装
置内に収容されるハードディスクドライブ装置24に適
用した例である。ハードディスクドライブ装置24は、
常時発熱しているわけではなく、データの授受時及びそ
れに伴うデータの書き込み,読み出しの際に発熱する。
また、発熱量もCPU1に比べ十分小さい。従って、適
当な融解温度(ハードディスクドライブ装置の許容温度
以下)を有する適当量の蓄熱材量21で構成される蓄熱
部材42を用いれば、ハードディスクドライブ装置24
の発熱時に蓄熱部材で吸熱し、非発熱時に蓄熱部材から
放熱するようにでき、電子装置のシステム全体が連続的
に作動していても、蓄熱材料の融解温度で決まる温度以
上にハードディスクドライブ装置の温度が上昇すること
がない。 【0031】図5,図6に他の実施例を示す。本実施例
は、蓄熱部材もしくは蓄熱部材を備えた付属電子装置を
電子装置と着脱可能のオプション部品として提供できる
ようにしたものである。図5は、本実施例の電子装置の
斜視図で、電子装置101の側面からカード状の蓄熱部
材43もしくは蓄熱部材を備えた付属電子装置43′を
装着できる構造となっている。図6に装着時の断面図を
示す。電子装置は、図1に示した実施例と類似の構造
で、発熱素子1とキーボード14背面のベース板5とが
放熱部材(7,3)を介して熱的に接続されている。 【0032】蓄熱部材43は、電子装置への装着時に、
キーボード14背面のベース板5に接触する。蓄熱部材
43の装着によって、蓄熱部材43は、ベース板5から
吸熱し、キーボード14表面温度を低減する。キーボー
ド表面は、オペレータが直接触れる部位であるが、人に
よって不快と感ずる温度が異なる。従って、蓄熱部材を
キーボード表面温度の低減を目的としたオプション部品
として準備することは有効である。 【0033】また、電子装置内に蓄熱部材43が装着さ
れたことを検知する手段(図示せず)を備えておき、蓄熱
部材43が装着された時これを検知して、電子装置自体
が処理能力を増大するようにしてもよい。この場合、処
理能力向上に伴い発熱素子1の発熱量が増大するが、蓄
熱部材43によって吸熱することによって温度上昇を抑
えることができる。また、上記蓄熱部材を電子装置に装
着する付属電子装置と一体構造とすることによって、付
属電子装置が電子装置に装着され、作動,発熱した時の
付属電子装置自体の冷却ができる。 【0034】 【発明の効果】本発明によれば、冷却に係る消費電力の
増加を伴わないで、筐体表面の温度上昇を抑えながら電
子装置の筐体表面積及び許容表面温度で決まる放熱量以
上の発熱量を有する発熱部材の冷却が可能になる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a cooling structure for an electronic device in which a heating element such as a wiring board, a keyboard, and a storage device is mounted in a housing. The present invention relates to a cooling device that maintains a heating element and a heating component at a predetermined temperature. 2. Description of the Related Art A conventional technique is disclosed in Japanese Patent Laid-Open Publication No. Hei 8-286783, in which a heat radiating plate is provided at the bottom of a first housing in which a heating element is mounted, and heat is radiated from the heating element to the bottom of the housing. It conducts heat to the board and the bottom of the keyboard, spreads heat on the surface of the housing, and radiates heat. Japanese Patent Application No. 7-11288 (reference) discloses an example in which a fan is housed in a housing to cool a heating element.
Further, Japanese Patent Application Laid-Open No. 6-214067 discloses an example in which a latent heat storage material is brought into contact with a heating element. [0003] In an electronic device represented by a portable personal computer or the like, there is a tendency that the heat generation of the element due to the improvement of the performance and the case size and thickness of the housing are reduced. In addition, these electronic devices are often driven by a battery, and it is necessary to reduce the power consumption of the entire device. In the example of Japanese Patent Application Laid-Open No. 8-286783, since the surface of the housing is a heat radiating surface, the heat radiating area is limited to the size of the housing. In other words, when performing natural cooling without using a fan, the upper limit of the amount of heat radiation is uniquely determined,
It becomes impossible to operate the element above the limit of the amount of heat radiation. Therefore, as the performance of the element increases, it becomes difficult to cool the heat generating element (since the surface temperature of the housing increases and the operator feels uncomfortable), thereby hindering the performance of the electronic device. On the other hand, in the example of Japanese Patent Application No. 7-11288, a fan is housed horizontally to reduce the size of the housing. However, it is not possible to reduce the size of the housing below the thickness of the fan and the space required before and after the fan. When the amount of heat generation increases with the performance of the element, the size of the fan and the power consumption need to be increased, and the space required before and after the fan also increases. Therefore, in particular,
In the case of a portable electronic device that is driven by a battery, there is a problem that convenience is impaired in terms of the life time of the battery and the reduction in the size of the housing. In Japanese Patent Application Laid-Open No. Hei 6-214067, since the entire heat generated by the heating element is absorbed by the heat storage material, the amount of the heat storage material is increased with respect to the element generating high heat (enlargement of the casing size, There is a problem that the heat storage material must be replaced even when the system is in operation every time the heat storage material reaches the maximum heat storage amount determined by the weight of the heat storage material. Further, in the above-mentioned conventional example, no special consideration is given to suppression of temperature rise on the surface of the housing during cooling of the element (in order to avoid discomfort during operation). SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat-generating element, a heat-generating element and a heat-generating element, which have a heat-radiating performance that is greater than the heat-radiating power determined by the surface area of the housing and the surface temperature of the housing. An object of the present invention is to provide an electronic device that is a thin and lightweight housing that cools the temperature of components to a predetermined temperature and suppresses a rise in the temperature of the housing surface, and that has a structure suitable for suppressing power consumption related to cooling. [0009] SUMMARY OF THE INVENTION The above object is achieved by a heat generating element mounted on the substrate housed inside the casing, in a portable personal computer with a keyboard on the surface of the housing, wherein On the bottom of the housing and on the bottom of this housing
A heat sink having substantially the same area as
An enlarged metal plate attached via a heat conducting member,
A first heat dissipation member connected to the enlarged metal plate,
It is installed on the back of the substrate via a second flexible heat conducting member.
The second heat dissipating member and the base plate of the keyboard are flat.
The second heat dissipating member is in thermal contact with the second heat dissipating member via a flat heat accumulating member.
And the second heat dissipating member is formed of a heat conductive material.
The first heat radiating member and the heat radiating plate via the formed boss
And is thermally connected to the enlarged metal plate and the heat sink and
The first and second heat radiating members cover heat from the heat generating element.
This is achieved by diffusing heat in the direction . The heat storage material is sealed in a metal flat container to form a heat storage member, which is installed on the wall surface of the housing and the back of the keyboard, and is thermally connected to the heat generating member via a heat radiating member. Further, the heat storage member is formed in a flat shape, and the electronic device is detachable. That is, the heat generated by the heat generating member in the housing of the electronic device is transmitted to the heat radiating plate installed on the housing wall surface and the back of the keyboard via the heat radiating member connected to the heat generating member, and radiated by the heat radiating plate. After being diffused in the plane direction of the plate, the heat is radiated to the outside air. At this time, the heat storage member connected to the heat sink absorbs part of the heat generated by the heat generating member. The amount of heat absorbed by the heat storage member is determined according to the amount of the heat storage material contained therein. When a latent heat storage material is used, the temperature of the heat storage member is maintained at substantially the melting temperature of the heat storage material up to the amount of heat absorbed. When the heat generating member starts electric operation and generates heat, the temperature of the heat storage member rises and eventually reaches the melting temperature of the heat storage material. Thereafter, the temperature of the heat storage member is kept substantially constant until the heat storage material reaches the amount of heat absorbed even if heat generation continues. On the other hand, a heat amount determined by the melting temperature of the heat storage member is radiated from the heat dissipation plate connected to the heat storage member. Therefore, by selecting an appropriate amount of heat storage material having an appropriate melting temperature, in addition to the amount of heat radiated from the housing and keyboard surface of the conventional structure (determined by their surface area and surface temperature), the amount of heat absorbed by the heat storage member The heating member can be cooled without increasing the temperatures of the housing and the keyboard surface. The amount of heat absorbed by the heat storage member is reduced when the system is stopped (for example, when the power is turned off) or when the heat generation of the heat generation member is reduced (during operation, standby of a function, etc.), and the temperature of the heat storage member becomes lower than the melting temperature. When it falls, heat is radiated from the radiator plate connected to the heat storage member. At this time, heat can be dissipated through the heat radiating plate, so that the heat storage member is efficiently dissipated, and quickly returns to the original state. Therefore, it is not necessary to replace the heat storage member. Further, the heat storage material is sealed in a metal flat container to form a heat storage member, and the heat storage member is installed on the wall surface of the housing and on the back of the keyboard. It acts as a double-purpose. FIG. 1 shows an embodiment of the present invention. FIG. 1 is an internal sectional view of a thin electronic device represented by a portable personal computer or the like. The electronic device according to the present embodiment includes a sub-wiring board 6, a sub-wiring board 6, and a plurality of elements, each of which includes an element 1 (hereinafter, referred to as a CPU) having a particularly large calorific value, such as a CPU (central processing unit). 1 housing main board 12, keyboard 14, etc.
It consists of 00. A heat radiating plate 11 is laid on the bottom of the housing 100. The heat radiating plate 11 may be installed to have substantially the same area as the bottom surface of the housing as needed, and may be further installed to the back surface of the housing. Further, the casing 100 itself is formed of a high thermal conductive material such as an Mg alloy, so that the heat radiating plate 11 is
00 may also be used. The CPU 1 is mounted on a sub-wiring board 6 and has an enlarged metal plate 8 attached thereto via a flexible heat conductive member (for example, a mixture of Si rubber and a filler such as aluminum oxide). The sub-wiring board 2 is attached to the main board 12 via a connector. At this time, the enlarged metal plate 8 is in contact with the heat radiation member 10. On the back surface of the sub-board 6 on which the CPU 1 is mounted, a heat radiating member 7 is installed directly below the keyboard 14 via the flexible heat conducting member 3. The heat radiating member 7 is thermally connected to the keyboard base plate 5 (preferably made of a metal having high thermal conductivity) by using a heat storage member 40. The heat radiating member 7 and the sub-board 6 are made of a heat conductive material (copper,
Through a boss 9 formed of brass, aluminum, or the like), it is fastened together with the end of the heat radiating member 10, the main board 12 and the heat radiating plate 11, and is also thermally connected. Further, a heat storage member 41 is provided between the heat radiating plate 11 and the elements 15 and 16 mounted on the main board 12 with one surface thereof in contact with the heat radiating plate 11. The detailed structure of the heat storage members 40 and 41 will be described later (FIG. 2). This embodiment is an example in which the CPU to the keyboard base plate 5 and the heat radiating plate 11 are thermally connected via the flexible heat conductive members 3 and 2 and the heat radiating members 7 and 10. It may be connected by a heat transport member such as a pipe. Enlarged metal plate 8, heat radiating plate 11, heat radiating member 7
All of them diffuse heat in the surface direction to improve the heat radiation effect. Part of the heat generated by the CPU 1 is radiated to the outside air from the bottom surface of the housing 100 via the flexible heat conductive member 2, the enlarged metal plate 8, the heat radiating member 10, and the heat radiating plate 11. Further CPU
A part of the heat generated in 1 is transmitted through the sub-substrate 6, the flexible heat conductive member 3, and the heat radiating member 7, and the heat radiated from the surface of the keyboard 14 through the boss 9 and the heat radiating plate 11. From the heat radiated to the outside air. In this embodiment, a part of the heat distributed from the CPU 1 to the front side of the keyboard 14 and to the bottom side of the housing 100 via the radiator plate 11 is transferred to the heat storage member 4.
Absorb by 0,41. When the heat storage member is configured using a latent heat storage material, the temperature of the heat storage member is maintained substantially at the melting temperature of the heat storage material up to the amount of absorbed heat determined by the weight of the heat storage material and the latent heat of fusion. Therefore, the temperature of the keyboard surface and the bottom surface of the housing are maintained at a constant temperature corresponding to the temperature of the heat storage members 40 and 41. As a heat storage material, for example, NaCH 3 C
With OO · 3H 2 O, heat of 1g per 251J can be absorbed by the melting temperature 58 ° C.. That is, if 100 g is used, 1 W of heat can be absorbed over about 7 hours. The heat absorbed by the heat storage members 40 and 41 is reduced during the suspension of the system (for example, when the power is turned off) or the heat generation of the heat generation member is reduced (during operation, standby of a function, etc.), and the temperature of the heat storage member becomes lower than the melting temperature. Heat is dissipated when it drops. At this time, the heat absorbed by the heat storage members 40 and 41 is transferred to the heat storage member 4.
Since the heat is radiated through the base plate 5 and the heat radiating plate 11 of the keyboard connected to 0 and 41, the heat is efficiently radiated and returns to the original state in a short time. In this embodiment, the front side of the keyboard 14
In addition, heat distributed to both surfaces of the housing on the bottom surface side of the housing 100 is absorbed by the heat storage members 40 and 41, respectively. The heat storage member 40 on the keyboard side has a heat storage member 41 on the bottom surface side of the housing for suppressing a rise in keyboard surface temperature.
This is effective for suppressing a rise in the temperature of the bottom surface of the housing. That is, since the temperature of the part directly touched by the operator can be reduced, no discomfort is given. The heat storage member may be provided on only one side or a plurality of places on one side according to a portion where the amount of heat generation and temperature rise are to be suppressed. Also, as in the heat storage member 41 shown in FIG. 1, the heat storage elements 41 and 16 mounted on the main board 12 are also connected to absorb heat from other heat generation members simultaneously with heat generation of the CPU. Is also good. FIGS. 2A and 2B show the structure of the heat storage member. FIG. 2A shows an example in which the heat storage material 21 is sealed in a flat container 20 made of metal such as copper to form the heat storage members 40 and 41. FIG. 2B shows a heat storage member 4 in which a moisture-impermeable sheet 22 is formed into a flat bag shape and the heat storage material 21 is sealed.
0, 41 are examples. Impermeable sheet 22
Is used for the purpose of protecting the water component from leaking out of the heat storage member, and is, for example, a laminate sheet or the like in which a resin layer is formed using an aluminum foil as a base material. When a hydrate of a salt is used as the heat storage material 21, a gelling agent may be mixed in to prevent phase separation of water. In the case of the structure shown in FIG. 2A, since the container itself for enclosing the heat storage material is a metal plate, an effect of diffusing heat in the surface direction of the heat storage member can be obtained. Therefore, not only the heat storage material efficiently absorbs heat but also the heat storage member can be used as a heat radiating plate (5, 11 shown in FIG. 1). Generally, the cooling temperature of the heating element is 80 to 9
5 ℃, keyboard back temperature and case bottom temperature 50-60
° C, a latent heat type material having a melting temperature corresponding to the cooling temperature of the heating element and the cooling member is appropriately selected as the heat storage material. For example, the melting temperature of NaCH 3 COO.3H 2 O is 58 ° C., and the heat storage member formed using this is suitably installed on a heat radiating plate laid on the back of the keyboard or the bottom of the housing. Further, since the melting temperature of Ba (OH) 2 · 8H 2 O is at 78 ° C., the heat storage member for the use of this heat dissipation member connected directly to the heating elements, be used to site the cooling temperature is higher it can. The thermal connection between the heat storage member and the heat radiating plate or the heat radiating member is effective to contact the contact surface of both with a highly thermally conductive grease or a flexible sheet. Lamination may be used. In this case, the thermal resistance between the two is matched according to the relationship between the cooling design temperature of the heat radiating member and the melting temperature of the heat storage material and the amount of heat absorbed. Next, the operation of this embodiment will be described with reference to FIG. FIG. 3 compares the relationship between the temperature of the heat sink and the elapsed time after the start of heat generation at time t = 0, in a case where the present invention is used and in a case where it is not used. In FIG. 3, each case is schematically illustrated by a solid line and a broken line. The solid line shows the case where the heat storage member is connected to the heat sink. When the present invention is not used (broken line), the temperature rises with time and is kept in a steady state at the temperature To. Therefore, the heat-generating member can only cool down to a heat value at which To becomes equal to or lower than a predetermined allowable temperature. On the other hand, according to the present invention (solid line), when the temperature of the heat radiating plate rises and the heat storage material reaches the melting temperature Tm, the heat storage material starts melting and absorbs heat. The temperature is kept constant at Tm until all of the heat storage material is melted, that is, until the amount of heat absorbed reaches an absorbable heat amount determined by the weight of the heat storage material and the latent heat of fusion. At this time, heat determined by the temperature of the heat sink near Tm is radiated from the heat sink. Therefore, if the system is stopped (time toff) before the amount of heat that can be absorbed is reached, or if the amount of heat generated by the heat generating member decreases, the temperature of the radiator plate becomes Tm
It will not rise above that. If the temperature Tm is selected to be equal to or lower than the allowable temperature, it is possible to cool the heat-generating member having a larger heat value than the heat radiated by the radiator plate at the temperature Tm. The heat absorbed by the heat storage member is released after toff. At this time, until all the absorbed heat is dissipated,
The temperature is kept at Tm. That is, the area of the hatched area A in FIG. 3 corresponds to the amount of absorbed heat, and the hatched area B having the same area corresponds to the amount of heat released after toff. However, if the amount of the heat storage material is insufficient and the amount of heat that can be absorbed is small, the temperature changes indicated by the thin line are shown, and the temperature starts to rise again. In this case, the temperature may be constantly monitored, and if the temperature rises above the allowable temperature, operation control may be performed such as shifting to a standby state (decreasing the heat generation amount). In general, especially in an electronic device such as a portable type,
There is no continuous operation 24 hours a day. Therefore, the weight of the heat storage material is determined according to the time (0 to toff) operated at one time and the amount of heat absorbed. For example, consider a case where the operation is performed for eight hours at one time. NaCH 3 COO.
With 3H 2 O (latent heat of fusion 251 J / g), 230
If it is g, it can absorb 2 W of heat. Since the heat generation amount of a typical high-performance CPU is 8 to 10 W, a sufficiently effective heat radiation effect can be obtained. FIG. 4 shows another embodiment. The present embodiment is an example in which the heat storage member 42 is applied to the hard disk drive 24 housed in an electronic device having a structure similar to that of the embodiment shown in FIG. The hard disk drive 24 is
It does not always generate heat, but generates heat at the time of data transfer and accompanying data writing and reading.
Further, the heat generation amount is sufficiently smaller than that of the CPU 1. Therefore, if a heat storage member 42 composed of an appropriate amount of heat storage material 21 having an appropriate melting temperature (below the allowable temperature of the hard disk drive) is used, the hard disk drive 24
Heat is absorbed by the heat storage member when heat is generated, and heat is released from the heat storage member when heat is not generated. The temperature does not rise. FIGS. 5 and 6 show another embodiment. In this embodiment, a heat storage member or an attached electronic device provided with the heat storage member can be provided as an optional component detachable from the electronic device. FIG. 5 is a perspective view of the electronic device of the present embodiment. The electronic device 101 has a structure in which a card-shaped heat storage member 43 or an attached electronic device 43 ′ having a heat storage member can be mounted from the side of the electronic device 101. FIG. 6 shows a sectional view at the time of mounting. The electronic device has a structure similar to that of the embodiment shown in FIG. 1, in which the heating element 1 and the base plate 5 on the back of the keyboard 14 are thermally connected via heat radiation members (7, 3). When the heat storage member 43 is mounted on the electronic device,
It contacts the base plate 5 on the back of the keyboard 14. By mounting the heat storage member 43, the heat storage member 43 absorbs heat from the base plate 5 and reduces the surface temperature of the keyboard 14. The keyboard surface is a part that the operator directly touches, but the temperature at which the user feels uncomfortable varies. Therefore, it is effective to prepare the heat storage member as an optional component for the purpose of reducing the keyboard surface temperature. Further, a means (not shown) for detecting that the heat storage member 43 is mounted in the electronic device is provided, and when the heat storage member 43 is mounted, this is detected and the electronic device itself performs processing. The capacity may be increased. In this case, the amount of heat generated by the heat generating element 1 increases with an increase in the processing capacity. However, the temperature rise can be suppressed by absorbing heat by the heat storage member 43. In addition, since the heat storage member has an integral structure with the attached electronic device attached to the electronic device, the attached electronic device is attached to the electronic device, and the attached electronic device itself can be cooled when operating and generating heat. According to the present invention, the amount of heat radiation determined by the surface area of the housing and the allowable surface temperature of the electronic device can be suppressed without increasing the temperature of the housing surface without increasing the power consumption for cooling. The cooling of the heat-generating member having the above-mentioned heat generation amount becomes possible.

【図面の簡単な説明】 【図1】本発明の第1実施例である薄型電子装置の断面
図。 【図2】(a)及び(b)は図1に用いる蓄熱部材の断
面図。 【図3】図1の動作を説明する特性図。 【図4】本発明の第2実施例である電子装置の断面図。 【図5】本発明の第3実施例である電子装置の斜視図。 【図6】本発明の第3実施例である電子装置の断面図。 【符号の説明】 1…CPU、5…キーボード背面ベース板、6,12…
配線基板、7,10…放熱部材、11…放熱板、21…
蓄熱材料、40,41…蓄熱部材、100…筐体。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a thin electronic device according to a first embodiment of the present invention. FIGS. 2A and 2B are cross-sectional views of the heat storage member used in FIG. FIG. 3 is a characteristic diagram illustrating the operation of FIG. FIG. 4 is a sectional view of an electronic device according to a second embodiment of the present invention. FIG. 5 is a perspective view of an electronic device according to a third embodiment of the present invention. FIG. 6 is a sectional view of an electronic device according to a third embodiment of the invention. [Description of Signs] 1 ... CPU, 5 ... Keyboard back base plate, 6,12 ...
Wiring board, 7, 10: heat dissipation member, 11: heat dissipation plate, 21 ...
Heat storage materials, 40, 41 ... heat storage members, 100 ... housing.

フロントページの続き (56)参考文献 特開 平7−142886(JP,A) 特開 平6−214067(JP,A) 特開 平8−8567(JP,A) 特開 平3−36794(JP,A) 特開 平3−102856(JP,A) 特開 平4−259292(JP,A) 特開 平4−83395(JP,A) 特開 平8−286783(JP,A) 特開 平9−114552(JP,A) 特開 平4−354010(JP,A) 特開 平5−298961(JP,A) 実開 昭60−88596(JP,U) 実開 昭59−140492(JP,U) 実開 平2−15786(JP,U) 実開 平4−44194(JP,U) (58)調査した分野(Int.Cl.7,DB名) H05K 7/20 G06F 1/20 H01L 23/34 - 23/473 Continuation of front page (56) References JP-A-7-142886 (JP, A) JP-A-6-214067 (JP, A) JP-A-8-8567 (JP, A) JP-A-3-36794 (JP) JP-A-3-102856 (JP, A) JP-A-4-259292 (JP, A) JP-A-4-83395 (JP, A) JP-A-8-286783 (JP, A) JP-A-4-354010 (JP, A) JP-A-5-298961 (JP, A) JP-A-60-88596 (JP, U) JP-A-59-140492 (JP, A) U) Hikaru Hei 2-15786 (JP, U) Hikaru Hei 4-44194 (JP, U) (58) Fields studied (Int. Cl. 7 , DB name) H05K 7/20 G06F 1/20 H01L 23 / 34-23/473

Claims (1)

(57)【特許請求の範囲】 【請求項1】筐体の内部に収納された基板に搭載された
発熱素子と、前記筐体の表面にキーボードを備えた携帯
型パーソナルコンピュータにおいて、前記筐体の底面部
で、かつこの筐体の底面とほぼ同じ面積の放熱板と、前
記発熱素子に第1の柔軟熱伝導部材を介して取り付けら
れた拡大金属板と、この拡大金属板に接続された第1の
放熱部材とを備え、前記基板の背面には第2の柔軟熱伝
導部材を介して設置された第2の放熱部材と、前記キー
ボードのベース板には扁平状の蓄熱部材を介して前記第
2の放熱部材が熱的に接続されてなり、前記第2の放熱
部材は熱伝導性材料で形成されたボスを介して前記第1
の放熱部材と前記放熱板とに熱的に接続され、前記拡大
金属板と前記放熱板及び前記第1と第2の放熱部材は前
記発熱素子からの熱を面方向に拡散して放熱することを
特徴とする携帯型パーソナルコンピュータ。
(57) The present invention relates to a portable personal computer having a heating element mounted on a substrate housed in a housing and a keyboard on the surface of the housing. A heat sink having a bottom surface portion and an area substantially equal to the bottom surface of the housing, an enlarged metal plate attached to the heating element via a first flexible heat conductive member, and connected to the enlarged metal plate. A first heat dissipating member, a second heat dissipating member provided on a back surface of the substrate via a second flexible heat conducting member, and a flat heat accumulating member on a base plate of the keyboard. The second heat radiating member is thermally connected to the first heat radiating member via a boss formed of a heat conductive material.
The heat dissipating member and the heat dissipating plate are thermally connected to each other, and the enlarged metal plate, the heat dissipating plate, and the first and second heat dissipating members diffuse heat from the heat generating element in a plane direction and dissipate the heat. A portable personal computer characterized by the following.
JP11817898A 1998-04-28 1998-04-28 Portable personal computer Expired - Fee Related JP3438582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11817898A JP3438582B2 (en) 1998-04-28 1998-04-28 Portable personal computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11817898A JP3438582B2 (en) 1998-04-28 1998-04-28 Portable personal computer

Publications (2)

Publication Number Publication Date
JPH11312883A JPH11312883A (en) 1999-11-09
JP3438582B2 true JP3438582B2 (en) 2003-08-18

Family

ID=14730078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11817898A Expired - Fee Related JP3438582B2 (en) 1998-04-28 1998-04-28 Portable personal computer

Country Status (1)

Country Link
JP (1) JP3438582B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056346A1 (en) 2000-01-25 2001-08-02 Fujitsu Limited Retention module, heat sink and electronic device
JP3695376B2 (en) * 2001-09-28 2005-09-14 日本電気株式会社 Circuit board warpage prevention structure and warpage prevention method
JP4556174B2 (en) 2004-12-15 2010-10-06 日本電気株式会社 Portable terminal device and heat dissipation method
JP4768312B2 (en) * 2005-05-12 2011-09-07 株式会社リコー Image forming apparatus
WO2008126444A1 (en) * 2007-03-30 2008-10-23 Nec Corporation Heat radiation structure and portable equipment
US9386725B2 (en) * 2011-09-01 2016-07-05 Hewlett-Packard Development Company, L.P. Heat sinking
JP6024297B2 (en) * 2012-08-30 2016-11-16 株式会社村田製作所 Electronic device, method for manufacturing electronic device

Also Published As

Publication number Publication date
JPH11312883A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
JP4126046B2 (en) Electronic equipment cooling structure
JP3518242B2 (en) Electronic equipment
US20100142154A1 (en) Thermally Dissipative Enclosure Having Shock Absorbing Properties
JP2001267771A (en) Electronic apparatus
JP2000106495A (en) Inner structure of electric/electronic apparatus
JP2009271643A (en) Housing for electronic apparatus and electronic apparatus
CN114489243A (en) Information equipment
JP3438582B2 (en) Portable personal computer
JP2866632B2 (en) Heat dissipation material
JP2001142574A (en) Electronic instrument
JP2004152895A (en) Cooling device and electronic apparatus including the same
JP2009193350A (en) Electronic device
JP2006339223A (en) Heat dissipation structure of cpu
JPH1195871A (en) Heat radiation structure of electronic equipment
JP2000082888A (en) Electronic equipment equipped with heat dissipating device
JPH10303582A (en) Cooing device of circuit module and portable information equipment mounting circuit module
JP2005136212A (en) Heat exchanger
JP2002319652A (en) Internal structure for electrical/electronic appliance
CN113099707B (en) Heat dissipation device and equipment
JPH09293985A (en) Electronic apparatus
JP2004200586A (en) Cooling device and electronic apparatus with cooling device
JP7440289B2 (en) Electronics
JPH11112174A (en) Circuit module having heat dissipating means of circuit component and portable type information apparatus mounting the same
JPH09114552A (en) Electronic device
JP2000349482A (en) Electronic apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees