JP3421130B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3421130B2
JP3421130B2 JP12486794A JP12486794A JP3421130B2 JP 3421130 B2 JP3421130 B2 JP 3421130B2 JP 12486794 A JP12486794 A JP 12486794A JP 12486794 A JP12486794 A JP 12486794A JP 3421130 B2 JP3421130 B2 JP 3421130B2
Authority
JP
Japan
Prior art keywords
heat exchange
groove
heat exchanger
exchange pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12486794A
Other languages
Japanese (ja)
Other versions
JPH07332805A (en
Inventor
健児 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP12486794A priority Critical patent/JP3421130B2/en
Publication of JPH07332805A publication Critical patent/JPH07332805A/en
Application granted granted Critical
Publication of JP3421130B2 publication Critical patent/JP3421130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷暖房運転が可能な空
気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner capable of cooling and heating operation.

【0002】[0002]

【従来の技術】周知の通り、空気調和機の性能(能力、
消費電力、騒音等)は、その約50%が室内側、室外側
熱交換器の性能により左右されるため、熱交換器の性能
向上が種々検討されてきている。特に熱交換パイプの外
面に多数の放熱フィンを設けた放熱フィン付きパイプの
熱交換器においては、パイプ内面の冷媒の蒸発、凝縮伝
熱性能が重要であり、細いパイプでは冷媒の流動圧損と
伝熱面積不足が性能向上を阻害し、太いパイプでは冷媒
流速が落ちることによる伝熱特性の低下が性能向上を阻
害している。
As is well known, the performance (capacity,
About 50% of power consumption, noise, etc.) depends on the performance of the indoor-side and outdoor-side heat exchangers, and various improvements in the performance of the heat exchanger have been studied. Especially in a heat exchanger with a heat-dissipating fin-equipped pipe in which a large number of heat-dissipating fins are provided on the outer surface of the heat-exchanger pipe, the evaporation and condensation heat transfer performance of the refrigerant on the inner surface of the pipe is important. Insufficient heat area hinders performance improvement, and in thick pipes, the decrease in heat transfer characteristics due to a decrease in refrigerant flow velocity hinders performance improvement.

【0003】一方、冷房専用空気調和機の場合、室内側
熱交換器が蒸発器、室外側熱交換器が凝縮器として作用
するが、冷暖房兼用空気調和機の場合は、それぞれの熱
交換器が蒸発器及び凝縮器として機能するよう作用する
ことになる。
On the other hand, in the case of a cooling air conditioner, the indoor heat exchanger acts as an evaporator and the outdoor heat exchanger acts as a condenser. It will act to function as an evaporator and condenser.

【0004】そして、一般に凝縮器では、冷媒は入口
(圧縮機側)が完全ガス状態で、出口(減圧機構側)が
完全液状態であり、出口での冷媒流速は入口に比較しパ
イプ内径が同じ場合には約1/10となり、さらに出口
での伝熱性能は入口に比較し1/4以下に低下してしま
う。
In general, in a condenser, the refrigerant has a perfect gas state at the inlet (compressor side) and a perfect liquid state at the outlet (pressure reducing mechanism side), and the refrigerant flow velocity at the outlet is smaller than that at the inlet by the pipe inner diameter. In the same case, it becomes about 1/10, and the heat transfer performance at the outlet is further reduced to 1/4 or less as compared with that at the inlet.

【0005】また蒸発器では、冷媒は入口(減圧機構
側)が約30%重量ガスの液ガス混合状態で、出口(圧
縮機側)が完全ガス状態であり、出口での冷媒流速は入
口に比較し3〜4倍になる。したがって入口は出口に比
較し伝熱性能が1/2程度に低くなっている。
Further, in the evaporator, the refrigerant is in a liquid gas mixed state of about 30% weight gas at the inlet (pressure reducing mechanism side) and the outlet (compressor side) is in a completely gas state, and the refrigerant flow velocity at the outlet is at the inlet. It becomes 3 to 4 times as compared. Therefore, the heat transfer performance of the inlet is about half that of the outlet.

【0006】このため、冷媒の流動損失を抑えると共に
伝熱性能を向上させるために、熱交換パイプとして内面
に螺旋状に形成された条溝を形成したもの(一般にリッ
プルフィンチューブと呼ばれる)を用いるようにしてい
る。
Therefore, in order to suppress the flow loss of the refrigerant and improve the heat transfer performance, a heat exchange pipe having a spiral groove formed on the inner surface (generally called a ripple fin tube) is used. I am trying.

【0007】これは、熱交換パイプの内面に溝を形成す
ることによって、パイプの内面の表面積を増大させると
共に、ガス冷媒と液冷媒の混合状態の冷媒の流れを乱し
て伝熱性能を向上させるものである。
By forming a groove on the inner surface of the heat exchange pipe, the surface area of the inner surface of the pipe is increased and the flow of the refrigerant in the mixed state of the gas refrigerant and the liquid refrigerant is disturbed to improve the heat transfer performance. It is what makes me.

【0008】しかしながら、上記のような従来の熱交換
器では、熱交換パイプの場所(入口〜出口)によって流
通する冷媒の状態が異なり冷媒流速が異なっているのに
対し、画一的な形状の溝しか形成されてなく、伝熱特性
を熱交換器全体に亘って向上させるものではなく、良好
な空気調和性能を得られるものとはなっていなかった。
However, in the conventional heat exchanger as described above, the state of the refrigerant flowing is different depending on the location (inlet to outlet) of the heat exchange pipe, and the refrigerant flow velocity is different. Only the grooves were formed, the heat transfer characteristics were not improved over the entire heat exchanger, and good air conditioning performance was not obtained.

【0009】[0009]

【発明が解決しようとする課題】上記のような状況に鑑
みて本発明はなされたもので、その目的とするところは
冷媒の状態に対応して、熱交換器全体に亘って伝熱特性
を向上させ、良好な空気調和性能が得られるようにした
空気調和機を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and its purpose is to provide heat transfer characteristics over the entire heat exchanger according to the state of the refrigerant. An object of the present invention is to provide an air conditioner that is improved and can obtain good air conditioning performance.

【0010】[0010]

【課題を解決するための手段】本発明の空気調和機は、
圧縮機、四方弁、室内側熱交換器、減圧機構、室外側熱
交換器を冷暖房運転が可能な冷凍サイクルを形成するよ
う順次接続した空気調和機において、室内側熱交換器及
び室外側熱交換器の少なくとも一方の熱交換パイプが、
パイプ内面に複数の溝を設けていると共に該溝の深さが
減圧機構側から圧縮機側に向けて順に浅くなっている
とを特徴とするものであり、さらに、熱交換器に設けら
れた熱交換パイプが、溝を設けたパイプと溝を設けてい
ないパイプとによって構成され、溝を設けていないパイ
プが圧縮機側に設けられていることを特徴とするもので
ある。
The air conditioner of the present invention comprises:
In an air conditioner in which a compressor, a four-way valve, an indoor heat exchanger, a decompression mechanism, and an outdoor heat exchanger are sequentially connected to form a refrigeration cycle capable of cooling and heating operation, the indoor heat exchanger and
And at least one heat exchange pipe of the outdoor heat exchanger,
The inner surface of the pipe is provided with a plurality of grooves and the depth of the grooves is
It is characterized in that it becomes shallower in order from the pressure reducing mechanism side to the compressor side , and further, the heat exchange pipe provided in the heat exchanger includes a grooved pipe and a grooved pipe. A pie without a groove and a pipe without a groove
Is provided on the compressor side .

【0011】[0011]

【0012】[0012]

【作用】上記のように構成された空気調和機は、熱交換
器の熱交換パイプの内面に深さが冷媒の流通方向に順次
変化するよう形成された複数の溝を設けているので、ま
た溝の深さが減圧機構側から圧縮機側に向けて順に浅く
なるようにしているので、これにより熱交換器の熱交換
パイプが、その部分を流通する冷媒の状態や流速に合っ
た適正な深さの溝を有することになる。その結果、熱交
換パイプの各部での伝熱特性が向上したものとなり、熱
交換器全体に亘っての伝熱特性も向上し、良好な空気調
和性能が得られる。
In the air conditioner configured as described above, the heat exchange pipe of the heat exchanger has a plurality of grooves formed on the inner surface thereof so that the depth of the heat exchange pipe sequentially changes in the direction of flow of the refrigerant. Since the depth of the groove is gradually reduced from the pressure reducing mechanism side to the compressor side, this makes it possible to ensure that the heat exchange pipe of the heat exchanger has an appropriate value that matches the state and flow velocity of the refrigerant flowing through that portion. Will have a groove of depth. As a result, the heat transfer characteristics in each part of the heat exchange pipe are improved, the heat transfer characteristics throughout the heat exchanger are also improved, and good air conditioning performance is obtained.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1乃至図5を
照して説明する。図1は冷凍サイクル図であり、図2は
熱交換器の概略構成図で、図2(a)は室内側熱交換器
の概略構成図、図2(b)は室外側熱交換器の概略構成
図であり、図3は熱交換パイプの断面図で、図3(a)
は浅溝熱交換パイプの断面図、図3(b)は中溝熱交換
パイプの断面図、図3(c)は深溝熱交換パイプの断面
図であり、図4はスペーサ入り熱交換パイプの断面図で
あり、図5はスペーサの斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a refrigeration cycle diagram, FIG. 2 is a schematic configuration diagram of a heat exchanger, FIG. 2 (a) is a schematic configuration diagram of an indoor heat exchanger, and FIG. 2 (b) is an outdoor heat exchanger. It is a block diagram, FIG. 3 is sectional drawing of a heat exchange pipe, FIG.
Is a sectional view of the shallow groove heat exchange pipe, FIG. 3 (b) is a sectional view of the middle groove heat exchange pipe, FIG. 3 (c) is a sectional view of the deep groove heat exchange pipe, and FIG. 4 is a sectional view of the spacer-containing heat exchange pipe. In the figure
Yes, FIG. 5 is a perspective view of the spacer.

【0014】図1乃至図3において、空気調和機1は室
外ユニット2と室内ユニット3を冷媒配管4によって接
続することで構成され、室外ユニット2は圧縮機5と、
四方弁6と、室外側熱交換器7と、減圧機構としての膨
脹弁8とを備え、室内ユニット3は室内側熱交換器9を
備えている。そして室外側熱交換器7にはプロペラファ
ン10が熱交換を促進するように併設されており、室内
側熱交換器9には多翼横流ファン11が同じく熱交換を
促進し、空調室内に調和された空気を送り出すために併
設されている。
1 to 3, the air conditioner 1 is constituted by connecting an outdoor unit 2 and an indoor unit 3 by a refrigerant pipe 4, and the outdoor unit 2 is connected to a compressor 5.
The four-way valve 6, an outdoor heat exchanger 7, and an expansion valve 8 as a pressure reducing mechanism are provided, and the indoor unit 3 is provided with an indoor heat exchanger 9. A propeller fan 10 is installed in the outdoor heat exchanger 7 so as to promote heat exchange, and a multi-blade cross-flow fan 11 also promotes heat exchange in the indoor heat exchanger 9, which is harmonized in the air-conditioned room. It is installed to send out the air that has been discharged.

【0015】また、圧縮機5の吐出口及びアキュムレー
タが接続された吸込口に、四方弁6を介して室外側熱交
換器7と室内側熱交換器9の夫々の片側接続口が連通す
るように接続され、室外側熱交換器7と室内側熱交換器
9の夫々の他側接続口の間に膨脹弁8が設けられるよう
に接続されることによって冷凍サイクル12が構成され
る。
Further, one side connection ports of the outdoor heat exchanger 7 and the indoor heat exchanger 9 are connected to the suction port, to which the discharge port of the compressor 5 and the accumulator are connected, via the four-way valve 6. The refrigeration cycle 12 is formed by connecting the outdoor side heat exchanger 7 and the indoor side heat exchanger 9 so that the expansion valve 8 is provided between the respective other side connection ports.

【0016】室外側熱交換器7は、複数本の熱交換パイ
プ13がプロペラファン10の送風方向Aに交差するよ
う1列に配列され、さらにこれらが接続パイプ14によ
って蛇行するように接続され冷媒流路を形成してなるも
ので、熱交換パイプ13の外面には多数の放熱フィン1
5が設けられている。また1列に配列された熱交換パイ
プ13は、浅溝熱交換パイプ13a、中溝熱交換パイプ
13b、深溝熱交換パイプ13cでなり、圧縮機5側、
すなわち四方弁6に接続する側に浅溝熱交換パイプ13
aが設けられ、中間部分に中溝熱交換パイプ13bが設
けられ、さらに減圧機構の膨脹弁8に接続する側に深溝
熱交換パイプ13cが設けられるようにして冷媒の流通
する方向に順に接続さる。
In the outdoor heat exchanger 7, a plurality of heat exchange pipes 13 are arranged in a row so as to intersect in the air blowing direction A of the propeller fan 10, and further connected by a connecting pipe 14 so as to meander. A plurality of radiating fins 1 are formed on the outer surface of the heat exchange pipe 13 by forming a flow path.
5 are provided. Further, the heat exchange pipes 13 arranged in one row are a shallow groove heat exchange pipe 13a, a middle groove heat exchange pipe 13b, and a deep groove heat exchange pipe 13c.
That is, the shallow groove heat exchange pipe 13 is provided on the side connected to the four-way valve 6.
a is provided, a middle groove heat exchange pipe 13b is provided at an intermediate portion, and a deep groove heat exchange pipe 13c is provided on a side of the pressure reducing mechanism that is connected to the expansion valve 8, so that the refrigerant is sequentially connected in the flowing direction.

【0017】室内側熱交換器9は、同じく複数本の熱交
換パイプ13が多翼横流ファン11の送風方向Bに交差
するよう2列に配列され、さらにこれらが接続パイプ1
4によって蛇行するように接続され冷媒流路を形成して
なるもので、熱交換パイプ13の外面には多数の放熱フ
ィン16が設けられている。また2列に配列された熱交
換パイプ13は、浅溝熱交換パイプ13a、中溝熱交換
パイプ13b、深溝熱交換パイプ13cでなり、室外側
熱交換器7でと同様に圧縮機5側、すなわち四方弁6に
接続する側に浅溝熱交換パイプ13aが設けられ、中間
部分に中溝熱交換パイプ13bが設けられ、さらに減圧
機構の電子制御弁8に接続する側に深溝熱交換パイプ1
3cが設けられるようにして冷媒の流通する方向に順に
接続さる。
The indoor heat exchanger 9 is also arranged in two rows so that a plurality of heat exchange pipes 13 intersect in the air blowing direction B of the multi-blade crossflow fan 11, and these are further connected to each other.
A plurality of radiating fins 16 are provided on the outer surface of the heat exchange pipe 13, which are connected in a meandering manner by 4 to form a refrigerant flow path. The heat exchange pipes 13 arranged in two rows are a shallow groove heat exchange pipe 13a, an intermediate groove heat exchange pipe 13b, and a deep groove heat exchange pipe 13c, and like the outdoor heat exchanger 7, the compressor 5 side, that is, A shallow groove heat exchange pipe 13a is provided on the side connected to the four-way valve 6, an intermediate groove heat exchange pipe 13b is provided on the intermediate portion, and a deep groove heat exchange pipe 1 is provided on the side connected to the electronic control valve 8 of the pressure reducing mechanism.
3c are provided so that they are sequentially connected in the direction in which the refrigerant flows.

【0018】また、熱交換パイプ13は次のように内面
が形成されている。すなわち、浅溝熱交換パイプ13a
では、その内面に軸方向に延びる深さの浅い溝17aが
複数条刻設されており、これに対し中溝熱交換パイプ1
3bでは、その内面に浅溝熱交換パイプ13aの溝17
aよりも深さの深い中程度の深さの溝17bが軸方向に
延びるように複数条刻設されており、さらに深溝熱交換
パイプ13cでは、その内面に中溝熱交換パイプ13b
の溝17bよりも深さの深い溝17cが複数条刻設され
ている。
The inner surface of the heat exchange pipe 13 is formed as follows. That is, the shallow groove heat exchange pipe 13a
In addition, a plurality of grooves 17a having a shallow depth extending in the axial direction are engraved on the inner surface thereof, while the middle groove heat exchange pipe 1
3b, the groove 17 of the shallow groove heat exchange pipe 13a is formed on the inner surface thereof.
A plurality of grooves 17b having a middle depth deeper than a is formed so as to extend in the axial direction. Further, in the deep groove heat exchange pipe 13c, the inner groove heat exchange pipe 13b is formed on the inner surface thereof.
A plurality of grooves 17c that are deeper than the groove 17b are engraved.

【0019】従って、これら浅溝熱交換パイプ13a、
中溝熱交換パイプ13b、深溝熱交換パイプ13cが順
次接続されることによって、熱交換パイプ13内の溝の
深さが段階的に深くなることになる。
Therefore, these shallow groove heat exchange pipes 13a,
By sequentially connecting the middle groove heat exchange pipe 13b and the deep groove heat exchange pipe 13c, the depth of the groove in the heat exchange pipe 13 gradually increases.

【0020】そして、四方弁6を切り替えて実線のよう
に流路を形成し、冷凍サイクル12に実線矢印方向に冷
媒を流すことで冷房運転が行われ、また四方弁6を切り
替えて点線のように流路を形成し、冷凍サイクル12に
点線矢印方向に冷媒を流すことで暖房運転が行われる。
Then, the four-way valve 6 is switched to form a flow path as shown by the solid line, and the cooling operation is performed by flowing the refrigerant in the refrigeration cycle 12 in the direction of the solid line arrow. A heating operation is performed by forming a flow path in the refrigerant and flowing a refrigerant in the refrigeration cycle 12 in the direction of the dotted arrow.

【0021】このように構成されているので、冷房運転
が行われる時には圧縮機5から吐出された高温/高圧の
冷媒が、四方弁6を介し先ず室外側熱交換器7に送り込
まれる。そして室外側熱交換器7の入口から流入する冷
媒は完全ガス状態で比体積が大きく、流速が速いものと
なっている。このため冷媒は、室外側熱交換器7の入口
側の冷媒流路を形成する内面に溝17aが設けられ圧損
の小さい浅溝熱交換パイプ13a内を、流速が大幅に減
じてしまうようなことなく流れ、流速の速い分だけ優れ
た伝熱特性が得られる。
With such a configuration, the high temperature / high pressure refrigerant discharged from the compressor 5 is first sent to the outdoor heat exchanger 7 via the four-way valve 6 when the cooling operation is performed. The refrigerant flowing from the inlet of the outdoor heat exchanger 7 has a large specific volume and a high flow velocity in a perfect gas state. Therefore, the flow velocity of the refrigerant is significantly reduced in the shallow groove heat exchange pipe 13a having a small pressure loss because the groove 17a is provided on the inner surface forming the refrigerant flow path on the inlet side of the outdoor heat exchanger 7. Flows without heat, and excellent heat transfer characteristics can be obtained because the flow velocity is high.

【0022】また冷媒は、室外側熱交換器7の中間部分
で、この中間部分の冷媒流路を形成する内面に中程度の
深さの溝17bが設けられた中溝熱交換パイプ13b内
を流れる間に凝縮され流速が低下して徐々に液の比率が
高い状態になる。そして、中間部分を流れる間において
も、この部分での低下した流速及び冷媒の相状態に則し
て設定された深さの溝17bにより優れた伝熱特性が維
持される。
Further, the refrigerant flows in the middle portion of the outdoor heat exchanger 7 in the middle groove heat exchange pipe 13b in which the groove 17b of medium depth is provided on the inner surface forming the refrigerant passage of the middle portion. In the meantime, it is condensed and the flow velocity decreases, and the ratio of the liquid gradually increases. Even while flowing through the intermediate portion, excellent heat transfer characteristics are maintained by the groove 17b having a depth set according to the reduced flow velocity and the phase state of the refrigerant in this portion.

【0023】さらに冷媒は、室外側熱交換器7の出口側
の冷媒流路を形成する内面に溝17cが設けられ圧損の
大きい深溝熱交換パイプ13c内を流れ、流れる間に流
速が遅くなり、また深さの深い溝17cによりパイプの
中心部分を流れる冷媒も残らず液化する。そして冷媒は
ほとんど液化し、完全液状態となるようにして膨脹弁8
に流出する。こうして出口側の冷媒流路を流れる間にお
いても、この部分での遅くなった流速及び冷媒の相状態
に則して設定された深さの溝17cにより優れた伝熱特
性が得られ、室外側熱交換器7全体としても伝熱特性が
約10%程度向上して効率的な熱交換が行われる。
Further, the refrigerant flows in the deep groove heat exchange pipe 13c in which the groove 17c is provided on the inner surface forming the refrigerant flow path on the outlet side of the outdoor heat exchanger 7 and the pressure loss is large, and the flow velocity becomes slow while flowing. Further, the deep groove 17c also liquefies all the refrigerant flowing through the central portion of the pipe. Then, the refrigerant is almost liquefied and the expansion valve 8
Spill to. Thus, even while flowing through the refrigerant channel on the outlet side, excellent heat transfer characteristics can be obtained due to the slow flow velocity in this portion and the groove 17c having a depth set according to the phase state of the refrigerant. The heat transfer characteristics of the heat exchanger 7 as a whole are improved by about 10%, and efficient heat exchange is performed.

【0024】この後、液化された冷媒は膨脹弁8を通過
することによって膨脹し、約30%がガス化して低圧/
低温の液ガス混合状態になる。そして液ガス混合状態の
冷媒が室内側熱交換器9の入口側の冷媒流路を形成する
内面に溝17cが設けられ圧損の大きい深溝熱交換パイ
プ13c内を流れて蒸発し、流れる間に徐々にガスの比
率が多い状態になる。この入口側の冷媒流路部分では液
が多く流速が遅いので、流速の遅い分と冷媒の相状態に
則して設定された深さの深い溝17cにより優れた伝熱
特性が得られる。
After this, the liquefied refrigerant expands by passing through the expansion valve 8 and about 30% is gasified to a low pressure /
A low-temperature liquid-gas mixture state is reached. Then, the refrigerant in the liquid-gas mixed state flows in the deep groove heat exchange pipe 13c having a large pressure loss and has a groove 17c formed on the inner surface forming the refrigerant flow path on the inlet side of the indoor heat exchanger 9, and evaporates. There is a large proportion of gas. Since the amount of liquid is large and the flow velocity is slow in the inlet side refrigerant flow path portion, excellent heat transfer characteristics can be obtained due to the slow flow velocity and the deep groove 17c set in accordance with the phase state of the refrigerant.

【0025】また冷媒は、室内側熱交換器9の中間部分
で、この中間部分の冷媒流路を形成する内面に中程度の
深さの溝17bが設けられた中溝熱交換パイプ13b内
を流れる間に蒸発しガスの比率がより高い状態になり、
流速が増加する。そして、この中間部分を流れる間にお
いても、この部分での増加した流速及び冷媒の相状態に
則して設定された深さの溝17bにより優れた伝熱特性
が維持される。
Further, the refrigerant flows in the middle groove of the indoor side heat exchanger 9 in the middle groove heat exchange pipe 13b having the groove 17b of medium depth provided on the inner surface forming the refrigerant passage of the middle portion. In the meantime, it will evaporate in the interim and the proportion of gas will be higher,
The flow velocity increases. Further, even while flowing through this intermediate portion, excellent heat transfer characteristics are maintained by the groove 17b having a depth set according to the increased flow velocity and the phase state of the refrigerant in this portion.

【0026】さらに冷媒は、室内側熱交換器9の出口側
の冷媒流路を形成する内面に溝17aが設けられ圧損の
小さい浅溝熱交換パイプ13a内をガス化して流速が速
くなった状態で流れることになり、流速の速い分だけ優
れた伝熱特性が得られ、室内側熱交換器9全体としても
伝熱特性が約10%程度向上して効率的な熱交換が行わ
れる。そして、完全ガス状態となった冷媒は吸込口から
圧縮機5に吸い込まれる。
Further, the refrigerant is gasified in the shallow groove heat exchange pipe 13a having a small pressure loss by providing the groove 17a on the inner surface forming the refrigerant flow path on the outlet side of the indoor heat exchanger 9, and the flow velocity is increased. Therefore, excellent heat transfer characteristics are obtained as the flow velocity is high, and the heat transfer characteristics of the indoor heat exchanger 9 as a whole are improved by about 10%, and efficient heat exchange is performed. Then, the refrigerant in the complete gas state is sucked into the compressor 5 through the suction port.

【0027】また、暖房運転が行われる時には圧縮機5
から吐出された高温/高圧の冷媒が、四方弁6を介し先
ず室内側熱交換器9に送り込まれ、冷房運転時とは逆方
向に冷媒が流れることになり、室外側熱交換器7及び室
内側熱交換器9では上記と逆の動作をすることになっ
て、この場合にも略同様の作用がなされ、同様の効果が
得られる。
When the heating operation is performed, the compressor 5
The high-temperature / high-pressure refrigerant discharged from the inside is first sent to the indoor heat exchanger 9 via the four-way valve 6, and the refrigerant flows in the opposite direction to that during the cooling operation, so that the outdoor heat exchanger 7 and the outdoor heat exchanger 7 The inner heat exchanger 9 operates in the opposite manner to the above, and also in this case, substantially the same operation is performed and the same effect is obtained.

【0028】このように室外側熱交換器7及び室内側熱
交換器9の熱交換パイプ13を配設部位ごとに適正な深
さの溝17a,17b,17cを有する3種類のパイプ
としているが、さらに溝深さの種類を多数としたり、冷
媒の流通する方向に連続して溝深さが変化するようにし
たり、あるいは軸方向に交差するように溝を形成するよ
うにしてもよい。しかし、熱交換パイプ13の製造性や
パイプの標準化等を加味すると実用的な溝深さの種類は
上記実施例のように3種類か、もしくは2種類でよく、
3種類以上としてもそれによる性能向上は僅かなものと
なってしまう。
As described above, the heat exchange pipes 13 of the outdoor heat exchanger 7 and the indoor heat exchanger 9 are three types of pipes having grooves 17a, 17b, 17c of appropriate depths at the respective installation sites. Further, the number of types of groove depth may be increased, the groove depth may be continuously changed in the direction in which the refrigerant flows, or the grooves may be formed so as to intersect in the axial direction. However, in consideration of the manufacturability of the heat exchange pipe 13 and standardization of the pipe, the number of practical groove depths may be three or two as in the above embodiment,
Even if there are three or more types, the performance improvement due to them will be slight.

【0029】[0029]

【0030】[0030]

【0031】[0031]

【0032】なお、上記の実施例においては室外側熱交
換器7及び室内側熱交換器9の熱交換パイプ13の全て
を溝17a,17b,17cを有するもので構成した
が、例えば四方弁6に接続する側に内面に溝が刻設され
ていない溝無し熱交換パイプを一部設けるようにして構
成してもよい。
In the above embodiment, all of the heat exchange pipes 13 of the outdoor heat exchanger 7 and the indoor heat exchanger 9 are configured to have the grooves 17a, 17b, 17c. For example, the four-way valve 6 A grooveless heat exchange pipe having no groove formed on the inner surface may be partially provided on the side connected to.

【0033】また、深溝熱交換パイプ13cに替えて
4に示すようなスペーサ入り熱交換パイプ13sを用い
てもよい。すなわち、スペーサ入り熱交換パイプ13s
は、中溝熱交換パイプ13b内に図5に示すスペーサ1
8を軸方向に挿入して構成される。このスペーサ18
は、中溝熱交換パイプ13b内の中心部に所定容積を占
める中心軸部19と、その外面から径方向四方に突出す
る支持片20でなり、この支持片20は中溝熱交換パイ
プ13bの溝17bの溝壁頂部に当接する高さを有する
もので、軸方向に所定間隔をもって配列されている。
Also, the deep groove heat exchange pipe 13c is replaced by a diagram
It may be used a spacer containing heat exchange pipe 13s as shown in 4. That is, the spacer-containing heat exchange pipe 13s
Is the spacer 1 shown in FIG. 5 in the middle groove heat exchange pipe 13b .
8 is inserted in the axial direction. This spacer 18
Is a central shaft portion 19 occupying a predetermined volume in the central portion of the middle groove heat exchange pipe 13b, and a support piece 20 projecting radially outward from the outer surface thereof. The support piece 20 is a groove 17b of the middle groove heat exchange pipe 13b. Has a height that abuts against the top of the groove wall and is arranged at a predetermined interval in the axial direction.

【0034】このため、スペーサ入り熱交換パイプ13
s内を流れる液ガス混合状態の冷媒のうちのガス冷媒
は、スペーサ18によってパイプの中心部分から溝17
bの設けられている内面に近付くようにして流れ、液化
し易くなり、深溝熱交換パイプ13cと同様の作用をす
ることになる。
Therefore, the heat exchange pipe 13 including the spacer
The gas refrigerant of the liquid-gas mixed refrigerant flowing in s is moved from the central portion of the pipe to the groove 17 by the spacer 18.
It flows so as to approach the inner surface where b is provided, and is easily liquefied, and the same operation as the deep groove heat exchange pipe 13c is performed.

【0035】さらには、スペーサ18によって溝深さの
異なる熱交換パイプ13の種類が削減できるので、製造
時のパイプ選択のミスが低減でき、製造性及び信頼性が
向上する。
Furthermore, since the types of the heat exchange pipes 13 having different groove depths can be reduced by the spacers 18, mistakes in selection of pipes at the time of manufacturing can be reduced, and manufacturability and reliability are improved.

【0036】[0036]

【発明の効果】以上の説明から明らかなように、本発明
は熱交換器の熱交換パイプの内面に深さが冷媒の流通方
向に順次変化するよう形成された複数の溝を設ける構成
としたことにより、また溝の深さが減圧機構側から圧縮
機側に向けて順に浅くなる構成としたことにより、熱交
換器全体に亘って伝熱特性を向上させ、良好な空気調和
性能が得られる等の効果を奏する。
As is apparent from the above description, the present invention has a structure in which a plurality of grooves are formed on the inner surface of the heat exchange pipe of the heat exchanger so that the depth of the heat exchange pipe sequentially changes in the refrigerant flow direction. By adopting a configuration in which the depth of the groove gradually decreases from the pressure reducing mechanism side to the compressor side, heat transfer characteristics are improved over the entire heat exchanger, and good air conditioning performance is obtained. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の冷凍サイクル図である。FIG. 1 is a refrigeration cycle diagram of an embodiment of the present invention.

【図2】本発明の一実施例に係る熱交換器の概略構成図
で、図2(a)は室内側熱交換器の概略構成図、図2
(b)は室外側熱交換器の概略構成図である。
2 is a schematic configuration diagram of a heat exchanger according to an embodiment of the present invention, FIG. 2 (a) is a schematic configuration diagram of an indoor heat exchanger, FIG.
(B) is a schematic block diagram of an outdoor heat exchanger.

【図3】本発明の一実施例に係る熱交換パイプの断面図
で、図3(a)は浅溝熱交換パイプの断面図、図3
(b)は中溝熱交換パイプの断面図、図3(c)は深溝
熱交換パイプの断面図である。
3 is a cross-sectional view of a heat exchange pipe according to an embodiment of the present invention, FIG. 3A is a cross-sectional view of a shallow groove heat exchange pipe, FIG.
FIG. 3B is a sectional view of the middle groove heat exchange pipe, and FIG. 3C is a sectional view of the deep groove heat exchange pipe.

【図4】本発明の一実施例に係る熱交換パイプの変形例
であるスペーサ入り熱交換パイプの断面図である。
FIG. 4 is a modification of the heat exchange pipe according to the embodiment of the present invention .
FIG. 6 is a cross-sectional view of a heat exchange pipe with a spacer.

【図5】図4のスペーサ入り熱交換パイプのスペーサの
斜視図である。
5 is a view of the spacer of the heat exchange pipe with the spacer of FIG .
It is a perspective view.

【符号の説明】[Explanation of symbols]

5…圧縮機 6…四方弁 7…室外側熱交換器 8…膨脹弁 9…室内側熱交換器 12…冷凍サイクル 13…熱交換パイプ 13a…浅溝熱交換パイプ 13b…中溝熱交換パイプ 13c…深溝熱交換パイプ 17a,17b,17c…溝 5 ... Compressor 6-way valve 7 ... Outdoor heat exchanger 8 ... Expansion valve 9 ... Indoor heat exchanger 12 ... Refrigeration cycle 13 ... Heat exchange pipe 13a ... Shallow groove heat exchange pipe 13b ... Middle groove heat exchange pipe 13c ... Deep groove heat exchange pipe 17a, 17b, 17c ... Groove

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−93296(JP,A) 特開 平2−143094(JP,A) 特開 平5−141701(JP,A) 特開 昭60−235989(JP,A) 特開 昭61−110891(JP,A) 特開 昭61−280392(JP,A) 実開 昭56−66689(JP,U) 実開 昭56−149867(JP,U) 実開 昭61−81573(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 39/00 F28F 1/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-2-93296 (JP, A) JP-A-2-143094 (JP, A) JP-A-5-141701 (JP, A) JP-A-60- 235989 (JP, A) JP 61-110891 (JP, A) JP 61-280392 (JP, A) Actually opened 56-66689 (JP, U) Actually opened 56-149867 (JP, U) Actual Development Sho 61-81573 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 39/00 F28F 1/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、四方弁、室内側熱交換器、減圧
機構、室外側熱交換器を冷暖房運転が可能な冷凍サイク
ルを形成するよう順次接続した空気調和機において、
記室内側熱交換器及び室外側熱交換器の少なくとも一方
の熱交換パイプが、パイプ内面に複数の溝を設けている
と共に該溝の深さが減圧機構側から圧縮機側に向けて順
に浅くなっていることを特徴とする空気調和機。
1. A compressor, a four-way valve, an indoor heat exchanger, a pressure reducing mechanism, the outdoor heat exchanger in a sequential connection air conditioner to form a refrigeration cycle capable of cooling and heating operations, before
At least one of the indoor heat exchanger and the outdoor heat exchanger
Heat exchange pipe has multiple grooves on the inner surface of the pipe
In addition, the depth of the groove increases from the pressure reducing mechanism side to the compressor side.
An air conditioner characterized by shallow depth .
【請求項2】 熱交換器に設けられた熱交換パイプが、
溝を設けたパイプと溝を設けていないパイプとによって
構成され、溝を設けていないパイプが圧縮機側に設けら
ていることを特徴とする請求項1に記載された空気調
和機。
2. The heat exchange pipe provided in the heat exchanger,
It is composed of a pipe with a groove and a pipe without a groove, and a pipe without a groove is provided on the compressor side.
The air conditioner according to claim 1, wherein the air conditioner is provided.
JP12486794A 1994-06-07 1994-06-07 Air conditioner Expired - Fee Related JP3421130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12486794A JP3421130B2 (en) 1994-06-07 1994-06-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12486794A JP3421130B2 (en) 1994-06-07 1994-06-07 Air conditioner

Publications (2)

Publication Number Publication Date
JPH07332805A JPH07332805A (en) 1995-12-22
JP3421130B2 true JP3421130B2 (en) 2003-06-30

Family

ID=14896065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12486794A Expired - Fee Related JP3421130B2 (en) 1994-06-07 1994-06-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP3421130B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010261A (en) * 2005-07-01 2007-01-18 Noritz Corp Tubular heat exchanger, and its manufacturing method
US9506700B2 (en) 2011-12-19 2016-11-29 Mitsubishi Electric Corporation Air-conditioning apparatus

Also Published As

Publication number Publication date
JPH07332805A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
US7757753B2 (en) Multichannel heat exchanger with dissimilar multichannel tubes
JPH09145187A (en) Air conditioner
JP4130636B2 (en) Refrigerator built-in showcase
JP2001304783A (en) Outdoor heat exchanger, indoor heat exchanger and air conditioner
JPH11337104A (en) Air conditioner
JP5627635B2 (en) Air conditioner
JP4785670B2 (en) Air conditioner indoor unit
JP3421130B2 (en) Air conditioner
JP3851403B2 (en) Indoor unit for air conditioner
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JPH0798162A (en) Air-conditioner
JP3724011B2 (en) Air conditioner
JP3677887B2 (en) Air conditioner
JP3885063B2 (en) Air conditioner
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JPH10196984A (en) Air conditioner
JP7357137B1 (en) air conditioner
JP2001330309A (en) Air conditioner
JPH08145490A (en) Heat exchanger for heat pump air conditioner
JP2004332958A (en) Heat exchanger of air conditioner
KR200314025Y1 (en) Fin tube type heat exchanger and airconditioner and refrigerator using the heat exchanger
JP3068008B2 (en) Wall-mounted air conditioner
JPH0612362Y2 (en) Heat exchanger
JPH02143094A (en) Heat exchanger equipped with heat transfer tube

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees