JP4785670B2 - Air conditioner indoor unit - Google Patents

Air conditioner indoor unit Download PDF

Info

Publication number
JP4785670B2
JP4785670B2 JP2006213629A JP2006213629A JP4785670B2 JP 4785670 B2 JP4785670 B2 JP 4785670B2 JP 2006213629 A JP2006213629 A JP 2006213629A JP 2006213629 A JP2006213629 A JP 2006213629A JP 4785670 B2 JP4785670 B2 JP 4785670B2
Authority
JP
Japan
Prior art keywords
heat
heat exchange
diameter
row
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006213629A
Other languages
Japanese (ja)
Other versions
JP2008039278A5 (en
JP2008039278A (en
Inventor
竜太 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006213629A priority Critical patent/JP4785670B2/en
Publication of JP2008039278A publication Critical patent/JP2008039278A/en
Publication of JP2008039278A5 publication Critical patent/JP2008039278A5/ja
Application granted granted Critical
Publication of JP4785670B2 publication Critical patent/JP4785670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は空気調和機の室内機に関し、より特定的には、フィン付き熱交換器を備えている空気調和機の室内機に関する。 The present invention relates to an indoor unit of an air conditioner, and more particularly, to air conditioner indoor units that have a heat exchanger with fins.

近年、空気調和機の省エネルギー化の進行とともに、空気調和機を構成するフィン付き熱交換器の高効率化が要求されてきている。空気調和機の室内機は、その大きさや意匠性に影響を及ぼすため、熱交換器の小型化が図られている。   In recent years, with the progress of energy saving of air conditioners, there has been a demand for higher efficiency of heat exchangers with fins constituting the air conditioners. Since the indoor unit of an air conditioner affects the size and the design, the heat exchanger is downsized.

従来、たとえば冷凍サイクルの凝縮器および蒸発器のいずれに使用しても高性能を発揮することを目的として、特開2000−329486号公報(特許文献1)にフィン付き熱交換器が開示されている。特許文献1では、主熱交換器の気体流入側に補助熱交換器を設けて、暖房運転時の過冷却域を切り離すことにより、熱交換器全体での高効率化を図っている。   Conventionally, for example, Japanese Unexamined Patent Publication No. 2000-329486 (Patent Document 1) discloses a finned heat exchanger for the purpose of exhibiting high performance regardless of whether it is used in a condenser or an evaporator of a refrigeration cycle. Yes. In patent document 1, the auxiliary heat exchanger is provided in the gas inflow side of the main heat exchanger, and the supercooling area at the time of heating operation is cut off, thereby improving the efficiency of the entire heat exchanger.

また、熱交換器の伝熱管の管径と管配列に着目して高効率化を図ることを目的として、特開2001−174047号公報(特許文献2)に空気調和機の室内機が開示されている。特許文献2では、通風抵抗の最も高い前面部熱交換器を送風機の最も近い前面部に、次に通風抵抗が高い中央部熱交換器を前面部熱交換器の上位に位置する中央部に、最も通風抵抗の低い背面部熱交換器を中央部熱交換器の背面に配置している。前面部熱交換器、中央部熱交換器、および背面部熱交換器は、径の異なる複数の伝熱管を用いることより、通風抵抗の均一化による送風効率が改善されている。また、暖房運転時に冷媒を最太径伝熱管から順次、中間径伝熱管、最細径伝熱管へ流動させることにより、冷媒側の熱伝達率が向上されている。   Further, for the purpose of improving the efficiency by paying attention to the diameter and the tube arrangement of the heat transfer tubes of the heat exchanger, an indoor unit of an air conditioner is disclosed in Japanese Patent Application Laid-Open No. 2001-174047 (Patent Document 2). ing. In Patent Document 2, the front heat exchanger with the highest ventilation resistance is placed at the front part closest to the blower, and the central heat exchanger with the next highest ventilation resistance is placed at the center of the front part heat exchanger. The rear heat exchanger with the lowest ventilation resistance is arranged on the rear surface of the central heat exchanger. The front part heat exchanger, the center part heat exchanger, and the back part heat exchanger use a plurality of heat transfer tubes having different diameters, thereby improving the air blowing efficiency by uniformizing the ventilation resistance. Further, the heat transfer coefficient on the refrigerant side is improved by causing the refrigerant to flow sequentially from the thickest heat transfer tube to the intermediate diameter heat transfer tube and the thinnest heat transfer tube during the heating operation.

また、熱交換器の小型化を図ることを目的として、特開2001−41671号公報(特許文献3)に空調用熱交換器が開示されている。特許文献3では、伝熱管の径を6mm前後と小さくして、伝熱管と接続されるフィンの長手方向のピッチと、幅方向のピッチとを、熱伝達率が最良となるように定めることにより、小スペースで性能を良好としている。
特開2000−329486号公報 特開2001−174047号公報 特開2001−41671号公報
Further, for the purpose of reducing the size of the heat exchanger, Japanese Patent Application Laid-Open No. 2001-41671 (Patent Document 3) discloses a heat exchanger for air conditioning. In Patent Document 3, the diameter of the heat transfer tube is reduced to around 6 mm, and the pitch in the longitudinal direction and the pitch in the width direction of the fins connected to the heat transfer tube are determined so that the heat transfer coefficient is the best. It has good performance in a small space.
JP 2000-329486 A JP 2001-174047 A JP 2001-41671 A

しかしながら、上記特許文献1に開示のフィン付き熱交換器では、主熱交換器と補助熱交換器とは、フィンの構成や伝熱管の形状などが異なっている。そのため、該フィン付き熱交換器を製造する際には、主熱交換器と補助熱交換器とを別々に製造し、組み合わせる必要がある。よって、生産性が悪いという問題がある。   However, in the heat exchanger with fins disclosed in Patent Document 1, the main heat exchanger and the auxiliary heat exchanger are different in fin configuration, heat transfer tube shape, and the like. Therefore, when manufacturing this finned heat exchanger, it is necessary to manufacture and combine a main heat exchanger and an auxiliary heat exchanger separately. Therefore, there is a problem that productivity is poor.

また、上記特許文献2に開示の空気調和機の室内機では、伝熱管の径と管配列を工夫する必要があるので、前面部熱交換器および背面部熱交換器内における伝熱管の管径が異なっている。また、前面部熱交換器、中央部熱交換器、および背面部熱交換器における伝熱管の配列が異なっているため、特殊なフィンや特殊な伝熱管を製造する必要がある。よって、構成が複雑であるため、生産効率が低下するという問題がある。   Moreover, in the indoor unit of the air conditioner disclosed in Patent Document 2, since it is necessary to devise the diameter and the tube arrangement of the heat transfer tubes, the tube diameters of the heat transfer tubes in the front heat exchanger and the rear heat exchanger Is different. Moreover, since the arrangement | sequence of the heat exchanger tube in a front part heat exchanger, a center part heat exchanger, and a back part heat exchanger differs, it is necessary to manufacture a special fin and a special heat exchanger tube. Therefore, since the configuration is complicated, there is a problem that the production efficiency is lowered.

また、上記特許文献3に開示の空調用熱交換器では、伝熱管の径を細くしているので、凝縮器として作用させる場合において、冷媒の液相状態の部分での熱交換効率は向上できるが、蒸発器として作用させる場合において、冷媒の気相状態の部分での圧力損失が増大してしまう。そのため、蒸発器として作用させる場合の熱交換効率が低下してしまうという問題がある。   Further, in the heat exchanger for air conditioning disclosed in Patent Document 3, since the diameter of the heat transfer tube is reduced, the heat exchange efficiency in the liquid phase state of the refrigerant can be improved when acting as a condenser. However, when acting as an evaporator, the pressure loss in the gas phase state of the refrigerant increases. Therefore, there exists a problem that the heat exchange efficiency at the time of making it act as an evaporator will fall.

それゆえ本発明の目的は、生産性を向上するとともに、熱交換効率を向上できる空気調和機の室内機を提供することである。 It is therefore an object of the present invention is to increase productivity is to provide an indoor unit of air conditioner that can improve heat exchange efficiency.

本発明の空気調和機の室内機は、互いに間隔をへだてて配置されたフィンと、フィンに接続されてそれぞれが冷媒を通すための伝熱管とを有する一体物を分断または折り曲げて得られた第1の熱交換部および第2の熱交換部を含む熱交換器と、熱交換器に空気を送るための送風機とを備えている。第1の熱交換部および第2の熱交換部の各々の伝熱管は断面において2以上の列を成し、伝熱管の径は列ごとに同じであり、かつ一方側の列の径は他方側の列の径よりも太い。第1の熱交換部は、相対的に速い風速の空気が流入するように配置され、かつ空気の流入側に他方側の列の径が位置し、かつ空気の流出側に一方側の列の径が位置するように配置されている。第2の熱交換部は、相対的に遅い風速の空気が流入するように配置され、かつ空気の流入側に一方側の列の径が位置し、かつ空気の流出側に他方側の列の径が位置するように配置されている。第1の熱交換部および第2の熱交換部は、互いの伝熱管の列の数が同じとなるように、かつ互いの対応する列を構成する伝熱管の径が同じとなるように構成されている。第1の熱交換部は、送風機により室内へ空気を放出する側である前面部に配置されており、第2の熱交換部は、取り付けられる側である背面部に配置されている。 An indoor unit of an air conditioner according to the present invention is obtained by dividing or bending an integrated body having fins arranged at a distance from each other and heat transfer tubes connected to the fins and through which the refrigerant passes. A heat exchanger including one heat exchanger and a second heat exchanger, and a blower for sending air to the heat exchanger . Each of the heat transfer tubes of the first heat exchange section and the second heat exchange section forms two or more rows in cross section, the diameter of the heat transfer tubes is the same for each row, and the diameter of one row is the other. Thicker than the diameter of the side row. The first heat exchanging section is arranged so that air having a relatively high wind speed flows in, the diameter of the other row is located on the air inflow side, and the one row on the air outflow side. It arrange | positions so that a diameter may be located. The second heat exchanging part is arranged so that air of a relatively slow wind speed flows in, the diameter of one row is located on the air inflow side, and the other row is on the air outflow side. It arrange | positions so that a diameter may be located. The first heat exchange unit and the second heat exchange unit are configured such that the number of rows of the mutual heat transfer tubes is the same, and the diameters of the heat transfer tubes constituting the corresponding rows are the same. Has been. The 1st heat exchange part is arrange | positioned at the front part which is the side which discharge | releases air indoors with a fan, and the 2nd heat exchange part is arrange | positioned at the back part which is a side to which it is attached.

一体物を切断して得られた第1の熱交換部および第2の熱交換部を製造することにより、本発明の熱交換器を製造できる。そのため、フィンは1種類を、伝熱管は列の数以下の種類を製造することにより対応できる。よって、生産性を向上できる。また、凝縮器として作用させる場合には、第1および第2の熱交換部において、一方側の列の径から他方側の列の径に冷媒を流すことにより、空気と冷媒とを対向流により熱交換させることができる。このような熱交換を、空気と冷媒との温度差が大きい暖房運転時に行なうと、熱交換効率を向上できる。一方、熱交換器を蒸発器として作用させる場合には、第1の熱交換部において、気体状態となった冷媒を、太い方の径である一方側の列の径の伝熱管に流すことができる。そのため、冷媒の圧力損失を低減できるので、高い熱交換効率を維持できる。よって、冷房運転時および暖房運転時のいずれにおいても熱交換効率を向上できる。   The heat exchanger of the present invention can be manufactured by manufacturing the first heat exchange unit and the second heat exchange unit obtained by cutting the integral body. Therefore, one type of fin can be used, and the number of types of heat transfer tubes equal to or less than the number of rows can be manufactured. Therefore, productivity can be improved. Further, in the case of acting as a condenser, in the first and second heat exchanging units, the refrigerant is caused to flow from the diameter of one row to the diameter of the other row, whereby air and the refrigerant are caused to flow in opposite directions. Heat exchange can be performed. When such heat exchange is performed during heating operation in which the temperature difference between air and the refrigerant is large, the heat exchange efficiency can be improved. On the other hand, when the heat exchanger acts as an evaporator, in the first heat exchanging section, the refrigerant in a gaseous state is allowed to flow through the heat transfer tube having the diameter of the one side that is the larger diameter. it can. Therefore, since the pressure loss of the refrigerant can be reduced, high heat exchange efficiency can be maintained. Therefore, heat exchange efficiency can be improved both during the cooling operation and during the heating operation.

上記空気調和機の室内機において好ましくは、第1の熱交換部および第2の熱交換部は、断面において一方側の列から他方側の列に向けて、伝熱管の径が順次細くなるように構成されていることを特徴とする。 Preferably, in the indoor unit of the air conditioner , the first heat exchange unit and the second heat exchange unit are configured such that the diameters of the heat transfer tubes gradually decrease from one row to the other row in the cross section. It is comprised by these.

これにより、凝縮器として用いる場合には、冷媒と空気との対向流としての効率をさらに向上できる。また、蒸発器として用いる場合には、冷媒の圧力損失をさらに低減できる。よって、熱交換効率を向上できる。   Thereby, when using as a condenser, the efficiency as a counterflow of a refrigerant | coolant and air can further be improved. Moreover, when using as an evaporator, the pressure loss of a refrigerant | coolant can further be reduced. Therefore, heat exchange efficiency can be improved.

上記空気調和機の室内機において好ましくは、空気調和機の室内機は、冷房運転時には、第2の熱交換部における一方側の列の径の伝熱管を冷媒入口とし、第2の熱交換部における一方側の列の径の伝熱管から流出した冷媒を複数の流路に分配して、第2の熱交換部における他方側の列の径の伝熱管に流入させるように構成されていることを特徴とする。 In the indoor unit of the air conditioner, preferably, the indoor unit of the air conditioner has a heat transfer tube having a diameter in one row of the second heat exchange unit as a refrigerant inlet during the cooling operation, and the second heat exchange unit The refrigerant that has flowed out of the heat transfer tubes with the diameter of one side of the column is distributed to a plurality of flow paths, and flows into the heat transfer tubes with the diameter of the other side of the second heat exchange section. It is characterized by.

本発明の空気調和機の室内機によれば、生産性を向上するとともに、熱交換効率を向上できる熱交換器に送風機で空気を送ることにより、空気と冷媒とを熱交換させる。よって、空気調和機の室内機は、生産性を向上するとともに、熱交換効率を向上できる。   According to the indoor unit of an air conditioner of the present invention, air and refrigerant are heat-exchanged by sending air with a blower to a heat exchanger that can improve productivity and heat exchange efficiency. Therefore, the indoor unit of an air conditioner can improve productivity and heat exchange efficiency.

また冷房運転時には、第2の熱交換部における一方側の列の径の伝熱管を冷媒入口とし、第2の熱交換部における一方側の列の径の伝熱管から流出した冷媒を複数の流路に分配して、第2の熱交換部における他方側の列の径の伝熱管に流入させるように構成されているため、冷房運転時の冷媒入口を太い方の径である一方側の列の径の伝熱管にできるので、冷媒の圧力が低下することを防止できる。そのため、エンタルピーの低下を防止できるため、熱交換効率をより向上できる。 Further, during cooling operation, the heat transfer tube having the diameter of one row in the second heat exchange section is used as a refrigerant inlet, and the refrigerant flowing out from the heat transfer tube having the diameter of one row in the second heat exchange section is flown into a plurality of flows. Since the refrigerant is distributed to the passages and flows into the heat transfer tubes having the diameter of the other side of the second heat exchange section , the refrigerant inlet during the cooling operation is arranged on the one side having the larger diameter. Therefore, the refrigerant pressure can be prevented from decreasing. Therefore, since the enthalpy can be prevented from decreasing, the heat exchange efficiency can be further improved.

上記空気調和機の室内機において好ましくは、冷房運転時には、第2の熱交換部における他方側の列の径の伝熱管から流出した冷媒を、第1の熱交換部における他方側の列の径の伝熱管を介して、第1の熱交換部における一方側の列の径の伝熱管に流入させ、第1の熱交換部における一方側の列の径の伝熱管を冷媒出口とすることを特徴とする。   Preferably, in the indoor unit of the air conditioner, during cooling operation, the refrigerant that has flowed out of the heat transfer tube having the diameter of the other side of the second heat exchanging section is changed to the diameter of the other side of the first heat exchanging section. Through the heat transfer tube, the heat transfer tube having the diameter of one side of the first heat exchange unit is allowed to flow, and the heat transfer tube having the diameter of the one side of the first heat exchange unit is used as a refrigerant outlet. Features.

これにより、冷房運転時の冷媒出口を太い径の伝熱管にできるので、冷媒の圧力損失を低減できる。そのため、熱交換効率を向上できる。また、冷房運転時よりも冷媒と空気との温度差の大きい暖房運転時に、冷媒と空気とを対向流にできる。そのため、熱交換効率を向上できる。   Thereby, since the refrigerant | coolant exit at the time of air_conditionaing | cooling operation can be made into a heat exchanger tube with a large diameter, the pressure loss of a refrigerant | coolant can be reduced. Therefore, heat exchange efficiency can be improved. In addition, the refrigerant and the air can be counterflowed during the heating operation in which the temperature difference between the refrigerant and the air is larger than that during the cooling operation. Therefore, heat exchange efficiency can be improved.

本発明の空気調和機の室内機によれば、生産性を向上するとともに、熱交換器を凝縮器および蒸発器のいずれに用いる場合においても熱交換効率を向上できる。 According to the air conditioner indoor unit of the present invention, as well as improving the productivity can be improved heat exchange efficiency in the case of using the heat exchanger in any of the condenser and the evaporator.

以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器を示す概略断面図である。図1を参照して、本発明の実施の形態1における熱交換器を説明する。実施の形態1における熱交換器10は、互いに間隔をへだてて配置されたフィン11d,12dと、フィン11d,12dに接続されてそれぞれが冷媒を通すための伝熱管11a,11b,12a,12b,とを有する一体物を分断または折り曲げて得られた第1の熱交換部11および第2の熱交換部12を備えている。第1の熱交換部11および第2の熱交換部12の各々の伝熱管11a,11b,12a,12bは断面において2以上の列を成し、伝熱管11a,11b,12a,12bの径D11a,D11b,D12a,D12bは列ごとに同じであり、かつ一方側の列の径D11a,D12aは他方側の列の径D11b,D12bよりも太い。第1の熱交換部11は、相対的に速い風速の空気が流入するように配置され、かつ空気の流入側に他方側の列の径D11bが位置し、かつ空気の流出側に一方側の列の径D11aが位置するように配置されている。第2の熱交換部12は、相対的に遅い風速の空気が流入するように配置され、かつ空気の流入側に一方側の列の径D12aが位置し、かつ空気の流出側に他方側の列の径D12bが位置するように配置されている。一体物を分断または折り曲げることにより第1の熱交換部11および第2の熱交換部12とともに得られた第3の熱交換部13をさらに備えている。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a heat exchanger according to Embodiment 1 of the present invention. With reference to FIG. 1, the heat exchanger in Embodiment 1 of this invention is demonstrated. The heat exchanger 10 according to the first embodiment includes fins 11d and 12d that are spaced apart from each other, and heat transfer tubes 11a, 11b, 12a, 12b, which are connected to the fins 11d and 12d and each pass a refrigerant. The 1st heat exchange part 11 and the 2nd heat exchange part 12 which were obtained by dividing | segmenting or bending the integrated object which has these are provided. The heat transfer tubes 11a, 11b, 12a, 12b of each of the first heat exchange unit 11 and the second heat exchange unit 12 form two or more rows in cross section, and the diameter D11a of the heat transfer tubes 11a, 11b, 12a, 12b. , D11b, D12a, and D12b are the same for each row, and the diameters D11a and D12a of one row are thicker than the diameters D11b and D12b of the other row. The first heat exchanging portion 11 is arranged so that air with a relatively high wind speed flows in, the diameter D11b of the other row is located on the air inflow side, and the one side is on the air outflow side. It arrange | positions so that the diameter D11a of a row | line | column may be located. The second heat exchanging section 12 is arranged so that air with a relatively slow wind speed flows in, the diameter D12a of one row is located on the air inflow side, and the other side is on the air outflow side. It arrange | positions so that the diameter D12b of a row | line | column may be located. A third heat exchanging part 13 obtained together with the first heat exchanging part 11 and the second heat exchanging part 12 by further dividing or bending the integral object is further provided.

詳細には、熱交換器10は、同一の形状を有する3台の第1の熱交換部11と、第2の熱交換部12と、第3の熱交換部13とを備えている。第1、第2、および第3の熱交換部11〜13の各々は、以下のようにして得られる。まず、図2に示すように、列ごとに同じ径の伝熱管を接続するための孔を空けたフィンを準備する。そして、図3に示すように、伝熱管を挿入して、フィンと伝熱管とを接続する。これにより、図4に示すような一体物となる。そして、任意の部分で分断または折り曲げることにより、一体物を分断または折り曲げて得られた熱交換部を得ることができる。一体物を分断または折り曲げて得られた熱交換部は、各伝熱管において、列の数は同じで、かつ列を構成する伝熱管の径は同じとなる。実施の形態1では、第1、第2、および第3の熱交換部11〜13の伝熱管は、伝熱管の配置(各列は7段ずつ)、伝熱管の径の大きさ、および各々の熱交換部の大きさなどのすべての形態を同一としている。なお、各熱交換部の形状は同一であることに特に限定されず、たとえば図5に示すように、各熱交換部の段数のみ異なる形状としてもよい。図5に示すような熱交換器の場合には、第1、第2、および第3の熱交換部11〜13の伝熱管の列の数は、それぞれ5段、3段、4段としている。   Specifically, the heat exchanger 10 includes three first heat exchange units 11, a second heat exchange unit 12, and a third heat exchange unit 13 having the same shape. Each of the 1st, 2nd, and 3rd heat exchange parts 11-13 is obtained as follows. First, as shown in FIG. 2, fins having holes for connecting heat transfer tubes having the same diameter are prepared for each row. And as shown in FIG. 3, a heat exchanger tube is inserted and a fin and a heat exchanger tube are connected. Thereby, it becomes an integrated object as shown in FIG. And the heat exchange part obtained by parting or bend | folding an integrated object can be obtained by parting or bending in arbitrary parts. In the heat exchange section obtained by dividing or bending the integral object, the number of rows is the same in each heat transfer tube, and the diameter of the heat transfer tubes constituting the row is the same. In the first embodiment, the heat transfer tubes of the first, second, and third heat exchange units 11 to 13 are arranged of heat transfer tubes (each row has seven stages), the size of the heat transfer tube diameter, and each All forms, such as the size of the heat exchange part, are the same. In addition, it is not specifically limited that the shape of each heat exchange part is the same, For example, as shown in FIG. 5, it is good also as a shape from which only the number of steps of each heat exchange part differs. In the case of a heat exchanger as shown in FIG. 5, the number of rows of heat transfer tubes of the first, second, and third heat exchanging units 11 to 13 is five, three, and four, respectively. .

また、図2に示すように、切断する際に、フィンは切欠きCを有していることが好ましい。この場合には、分断または折り曲げて得られた各熱交換部は、切欠きCを有する(たとえば第3の熱交換部13は図1に示す左上と右下に切欠きCを有する)。なお、図2〜図4は、本発明の実施の形態1における第1、第2、および第3の熱交換部11〜13の製造工程を説明するための図である。   Further, as shown in FIG. 2, the fin preferably has a notch C when cutting. In this case, each heat exchange part obtained by dividing or bending has a notch C (for example, the third heat exchange part 13 has a notch C in the upper left and lower right shown in FIG. 1). 2-4 is a figure for demonstrating the manufacturing process of the 1st, 2nd, and 3rd heat exchange parts 11-13 in Embodiment 1 of this invention.

実施の形態1では、第1の熱交換部11および第2の熱交換部12は、一体物を分断して形成されている。また、第1の熱交換部11と第3の熱交換部13とは、一体物を分断もしくは折り曲げて形成できる。   In the first embodiment, the first heat exchange unit 11 and the second heat exchange unit 12 are formed by dividing an integral object. Moreover, the 1st heat exchange part 11 and the 3rd heat exchange part 13 can be formed by dividing or bending an integrated object.

実施の形態1では、第1の熱交換部11の伝熱管11aの径D11aと、第2の熱交換部12の伝熱管12aの径D12aと、第3の熱交換部13の伝熱管13aの径D13aとは同じである。第1の熱交換部11の伝熱管11bの径D11bと第2の熱交換部12の伝熱管12bの径D12bと、第3の熱交換部13の伝熱管13bの径D13bとは同じである。径D11a,D12a,D13aは、径D11b,D12b,D13bよりも大きい。   In Embodiment 1, the diameter D11a of the heat transfer tube 11a of the first heat exchange unit 11, the diameter D12a of the heat transfer tube 12a of the second heat exchange unit 12, and the heat transfer tube 13a of the third heat exchange unit 13 The diameter D13a is the same. The diameter D11b of the heat transfer tube 11b of the first heat exchange unit 11, the diameter D12b of the heat transfer tube 12b of the second heat exchange unit 12, and the diameter D13b of the heat transfer tube 13b of the third heat exchange unit 13 are the same. . The diameters D11a, D12a, and D13a are larger than the diameters D11b, D12b, and D13b.

実施の形態1では、第2の熱交換部12よりも第1の熱交換部11および第3の熱交換部13に風速の速い空気が流入している。風速の速い空気が流入する第1の熱交換部11および第3の熱交換部13は、風上側(空気の流入側)に細い方(他方側の列)の径D11b,D13bの伝熱管11b,13bが位置するように、風下側(空気の流出側)に太い方(一方側の列)の径D11a,D13aが位置するように配置されている。風速の遅い空気が流入する第2の熱交換部12は、風上側(空気の流入側)に太い方(一方側の列)の径D12aが位置するように、風下側(空気の流出側)に細い方(他方側の列)の径D12bが位置するように配置されている。   In the first embodiment, air having a higher wind speed flows into the first heat exchange unit 11 and the third heat exchange unit 13 than the second heat exchange unit 12. The first heat exchanging part 11 and the third heat exchanging part 13 into which air having a high wind speed flows are heat transfer tubes 11b having diameters D11b and D13b which are narrower on the windward side (air inflow side) (the other side row). , 13b are arranged so that the diameters D11a, D13a of the thicker side (one row) are located on the leeward side (air outflow side). The second heat exchanging part 12 into which the air having a low wind speed flows is arranged on the leeward side (air outflow side) so that the thicker (one side row) diameter D12a is located on the windward side (air inflow side). Are arranged so that the diameter D12b of the narrower side (row on the other side) is located.

第1の熱交換部11、第2の熱交換部12、および第3の熱交換部13は、図1に示すように、2列の伝熱管を有する構成としているが、特にこれに限定されない。第1の熱交換部11、第2の熱交換部12、および第3の熱交換部13は、2列以上4列以下とすることが好ましい。2列以上とすることによって、第1、第2、および第3の熱交換部11〜13の熱交換率を向上できる。4列以下とすることによって、第1、第2、および第3の熱交換部11〜13を小型化できるとともに通風抵抗を削減できる。   Although the 1st heat exchange part 11, the 2nd heat exchange part 12, and the 3rd heat exchange part 13 are taken as the structure which has a 2 rows heat exchanger tube, as shown in FIG. 1, it is not limited to this in particular . It is preferable that the 1st heat exchange part 11, the 2nd heat exchange part 12, and the 3rd heat exchange part 13 are 2 rows or more and 4 rows or less. By setting it as 2 or more rows, the heat exchange rate of the 1st, 2nd, and 3rd heat exchange parts 11-13 can be improved. By setting it to four or less rows, the first, second, and third heat exchange units 11 to 13 can be reduced in size and the ventilation resistance can be reduced.

第1、第2、および第3の熱交換部11〜13の伝熱管を3列以上とする場合には、第1、第2、および第3の熱交換部11〜13は、断面において一方側の列から他方側の列に向けて、伝熱管の径が順次細くなるように構成されていることが好ましい。たとえば第1の熱交換部11の伝熱管を3列とする場合には、図6に示すように、断面において一方側の列から他方側の列に向けて(矢印14aの方向に)、伝熱管11a,11c,11bの径D11a,D11c,D11bが順次細くなるように構成されていることが好ましい。すなわち、一方側の列から他方側の列に向けて(矢印14aの方向に)、D11a≧D11c≧D11bの関係を有しており、かつ、他方側の列から一方側の列に向けて(矢印14bの方向)、D11b≦D11c≦D11aの関係を有している。なお、図6は、本発明の実施の形態1における熱交換器を構成する別の第1の熱交換部を示す概略模式図である。   When the heat transfer tubes of the first, second, and third heat exchanging units 11 to 13 are arranged in three or more rows, the first, second, and third heat exchanging units 11 to 13 It is preferable that the diameter of the heat transfer tube is gradually reduced from the side row to the other side row. For example, when the heat transfer tubes of the first heat exchanging section 11 are arranged in three rows, as shown in FIG. 6, in the cross section, from one row to the other row (in the direction of the arrow 14a) It is preferable that the diameters D11a, D11c, and D11b of the heat pipes 11a, 11c, and 11b are configured to become thinner sequentially. That is, there is a relationship of D11a ≧ D11c ≧ D11b from one column to the other column (in the direction of arrow 14a), and from the other column to one column ( The direction of the arrow 14b), D11b ≦ D11c ≦ D11a. FIG. 6 is a schematic diagram showing another first heat exchanging part constituting the heat exchanger according to Embodiment 1 of the present invention.

なお、第1、第2、および第3の熱交換部11〜13の少なくとも1の熱交換部において、必要に応じて、空気の流入側に補助の熱交換部をさらに備えていてもよい。   In addition, in at least one of the first, second, and third heat exchanging units 11 to 13, an auxiliary heat exchanging unit may be further provided on the air inflow side as necessary.

次に、熱交換器10の動作について説明する。熱交換器10は、たとえば伝熱管11a,11b,12a,12b,13a,13bに冷媒を流して、熱交換器10に流入する空気と熱交換させる。   Next, the operation of the heat exchanger 10 will be described. For example, the heat exchanger 10 causes the refrigerant to flow through the heat transfer tubes 11 a, 11 b, 12 a, 12 b, 13 a, and 13 b to exchange heat with the air flowing into the heat exchanger 10.

まず、熱交換器10を蒸発器(冷房運転)として作用する場合について図7を参照して説明する。なお、図7は、本発明の実施の形態1における熱交換器の冷媒の流れを示す概略断面図である。   First, the case where the heat exchanger 10 acts as an evaporator (cooling operation) will be described with reference to FIG. FIG. 7 is a schematic cross-sectional view showing the refrigerant flow in the heat exchanger according to Embodiment 1 of the present invention.

冷房運転時の冷媒は、第2の熱交換部12における一方側の列の径D12aの伝熱管12aを冷房運転時冷媒入口15aとしている。実施の形態1では、第2の熱交換部12への冷媒流入経路は、冷房運転時冷媒入口15aの1本としている。冷房運転時冷媒入口15aから冷媒が流入され、太い方(一方側の列)の径D12aの伝熱管12aを流れる。そして、第2の熱交換部12における太い方(一方側の列)の径D12aの伝熱管12aから流出した冷媒を複数の流路(実施の形態1では2流路)に分配して、第2の熱交換部12における細い方(他方側の列)の径D12bの伝熱管12bに流入させる。   As for the refrigerant during the cooling operation, the heat transfer tube 12a having the diameter D12a in one row in the second heat exchange unit 12 is used as the refrigerant inlet 15a during the cooling operation. In Embodiment 1, the refrigerant | coolant inflow path to the 2nd heat exchange part 12 is made into one of the refrigerant | coolant inlets 15a at the time of air_conditionaing | cooling operation. During the cooling operation, the refrigerant is introduced from the refrigerant inlet 15a and flows through the heat transfer tube 12a having a diameter D12a of the thicker (one side row). Then, the refrigerant flowing out from the heat transfer tube 12a having the diameter D12a of the thicker (one side row) in the second heat exchange section 12 is distributed to a plurality of flow paths (two flow paths in the first embodiment), and The heat exchanger tube 12 is made to flow into the heat transfer tube 12b having a diameter D12b on the narrower side (the other row) in the second heat exchange section 12.

そして、第2の熱交換部12を流れる冷媒は、伝熱管12bを介して、それぞれ第1の熱交換部11および第3の熱交換部13における他方側の列の径D11b,D13bに流入する。そして、第1の熱交換部11における他方側の列の径D11bの伝熱管11bから流出した冷媒を、第1の熱交換部11における他方側の列の径D11bの伝熱管11bを介して、第1の熱交換部11における一方側の列の径D11aの伝熱管11aに流入させる。そして、第1の熱交換部11における一方側の列の径D11aの伝熱管11aを冷房運転時冷媒出口15bとする。   And the refrigerant | coolant which flows through the 2nd heat exchange part 12 flows in into diameter D11b, D13b of the row | line | column of the other side in the 1st heat exchange part 11 and the 3rd heat exchange part 13, respectively via the heat exchanger tube 12b. . Then, the refrigerant that has flowed out of the heat transfer tube 11b having the diameter D11b in the other row in the first heat exchange section 11 passes through the heat transfer tube 11b having the diameter D11b in the other row in the first heat exchange section 11. The first heat exchange section 11 is caused to flow into the heat transfer tube 11a having a diameter D11a in one row. And let the heat exchanger tube 11a of the diameter D11a of the row | line | column of the one side in the 1st heat exchange part 11 be the refrigerant | coolant outlet 15b at the time of air_conditionaing | cooling operation.

同様に、第3の熱交換部13における他方側の列の径D13bの伝熱管13bから流出した冷媒を、第3の熱交換部13における他方側の列の径D13bの伝熱管13bを介して、第3の熱交換部13における一方側の列の径D13aの伝熱管13aに流入させる。そして、第3の熱交換部13における一方側の列の径D13aの伝熱管13aを冷房運転時冷媒出口15bとする。   Similarly, the refrigerant that has flowed out of the heat transfer tube 13b having the diameter D13b in the other row in the third heat exchange section 13 passes through the heat transfer tube 13b having the diameter D13b in the other row in the third heat exchange section 13. The third heat exchange section 13 is caused to flow into the heat transfer tube 13a having a diameter D13a on one side of the row. And let the heat exchanger tube 13a of the diameter D13a of the row | line | column of the one side in the 3rd heat exchange part 13 be the refrigerant | coolant outlet 15b at the time of air_conditionaing | cooling operation.

冷房運転時の冷媒は、1本の冷房運転時冷媒入口15aから流入され、第2の熱交換部12、第1の熱交換部11、および第3の熱交換部13を流れ、2本の冷房運転時冷媒出口15bから排出される。この低温の冷媒と空気とは熱交換をして、空気は冷却されて、冷房の作用を及ぼす。   The refrigerant during the cooling operation flows in from one cooling operation refrigerant inlet 15a and flows through the second heat exchange unit 12, the first heat exchange unit 11, and the third heat exchange unit 13, and the two The refrigerant is discharged from the refrigerant outlet 15b during the cooling operation. The low-temperature refrigerant and air exchange heat, and the air is cooled to exert a cooling action.

冷房運転時冷媒入口15aでの冷媒の状態は、低温低圧の液比率の高い二相状態である。上記の冷媒流路を冷媒が流動すると、冷媒は空気と熱交換されて加熱されるため、冷房運転時冷媒出口15bでは低温低圧の気体状態の冷媒へと変化する。   The state of the refrigerant at the refrigerant inlet 15a during the cooling operation is a two-phase state in which the liquid ratio of low temperature and low pressure is high. When the refrigerant flows through the refrigerant flow path, since the refrigerant is heated by exchanging heat with air, the refrigerant outlet 15b is changed to a low-temperature and low-pressure gaseous refrigerant at the cooling operation time.

冷房運転時には、冷房運転時冷媒入口15aを第2の熱交換部12における太い方の径(一方側の列の径D12a)の伝熱管12aとしている。そのため、冷媒の圧力が伝熱管12aの径D12aにより低下しない。そのため、圧縮機に吸入される冷媒のエンタルピーの低下を防止できるので、熱交換効率の低下を防止できる。また、エンタルピーの低下が生じないので、エンタルピーの低下を防止するために圧縮機で冷媒の圧力を上げるなどの操作を行なう必要が生じない。そのため、省エネルギー化を図れる。   During the cooling operation, the refrigerant inlet 15a during the cooling operation is the heat transfer tube 12a having the larger diameter (the diameter D12a of the one side row) in the second heat exchange unit 12. Therefore, the pressure of the refrigerant does not decrease due to the diameter D12a of the heat transfer tube 12a. Therefore, since the enthalpy of the refrigerant sucked into the compressor can be prevented from being lowered, the heat exchange efficiency can be prevented from being lowered. Further, since the enthalpy does not decrease, there is no need to perform an operation such as increasing the refrigerant pressure with a compressor in order to prevent the enthalpy from decreasing. Therefore, energy saving can be achieved.

また、冷房運転時には、冷房運転時冷媒出口15bを、速い風速の空気が流入する第1の熱交換部11および第3の熱交換部13における太い方の径(一方側の列の径D11a,D13a)の伝熱管11a,13aとしている。冷媒は、冷房運転時冷媒出口15bに近づくにしたがって、乾き度が増して、二相状態の冷媒における気体状態の比率が上昇していく。そのため、冷房運転時冷媒出口15bに近づくにしたがって増大する気体状態の冷媒の圧力損失を抑制できるので、熱交換器10全体としての熱伝達率の低下を防止できる。   Further, during the cooling operation, the refrigerant outlet 15b at the time of the cooling operation is connected to the thicker diameter (the diameter D11a of one row) of the first heat exchange unit 11 and the third heat exchange unit 13 into which air at a high wind speed flows. D13a) heat transfer tubes 11a and 13a. As the refrigerant approaches the refrigerant outlet 15b during the cooling operation, the degree of dryness increases, and the ratio of the gas state in the two-phase refrigerant increases. Therefore, since the pressure loss of the refrigerant in the gaseous state that increases as it approaches the refrigerant outlet 15b during the cooling operation can be suppressed, it is possible to prevent a decrease in the heat transfer coefficient of the heat exchanger 10 as a whole.

次に、熱交換器10を凝縮器(暖房運転)として作用する場合について図7を参照して説明する。暖房運転時の冷媒の流路は、基本的には、冷房運転時と逆である。すなわち、第1の熱交換部11および第3の熱交換部13の太い方(一方側の列)の径D11a,D13aの伝熱管11a,13aの2本を暖房運転時冷媒入口16aとし、第2の熱交換部12の太い方(一方側の列)の径D12aの伝熱管12aの1本を暖房運転時冷媒出口16bとしている。   Next, the case where the heat exchanger 10 acts as a condenser (heating operation) will be described with reference to FIG. The refrigerant flow path during the heating operation is basically the reverse of that during the cooling operation. That is, the two heat transfer tubes 11a and 13a having the diameters D11a and D13a on the thicker side (one row) of the first heat exchange unit 11 and the third heat exchange unit 13 serve as the refrigerant inlet 16a during the heating operation. One of the heat transfer tubes 12a having a diameter D12a on the thicker side (one row) of the second heat exchange section 12 is used as the refrigerant outlet 16b during heating operation.

暖房運転時冷媒入口16aでの冷媒の状態は、高温高圧の状態である。上記の冷媒流路を冷媒が流動する際に、冷媒は空気と熱交換される。その結果、冷媒は空気により冷却されるため、上記冷媒流路の途中で気液二相状態となり、暖房運転時冷媒出口16bでは低温高圧の液体へと変化する。   The state of the refrigerant at the refrigerant inlet 16a during the heating operation is a high-temperature and high-pressure state. When the refrigerant flows through the refrigerant flow path, the refrigerant exchanges heat with air. As a result, since the refrigerant is cooled by air, it enters a gas-liquid two-phase state in the middle of the refrigerant flow path, and changes to a low-temperature high-pressure liquid at the refrigerant outlet 16b during heating operation.

暖房運転時には、第1、第2、および第3の熱交換部11〜13において、それぞれの熱交換部11〜13に流入する空気と、それぞれの熱交換部11〜13内を流れる冷媒とは、対向流を形成しながら流動する。暖房運転時は、冷房運転時と比較して、空気と冷媒との温度差が大きい。しかしながら、熱交換器10は、熱交換効率の向上をより必要とされる暖房運転時に、より高効率な対向流により熱交換を行なっている。よって、熱交換効率を向上できる。   During the heating operation, in the first, second, and third heat exchanging units 11 to 13, the air flowing into the respective heat exchanging units 11 to 13 and the refrigerant flowing through the respective heat exchanging units 11 to 13 And flow while forming a countercurrent flow. In the heating operation, the temperature difference between the air and the refrigerant is larger than that in the cooling operation. However, the heat exchanger 10 performs heat exchange with a higher-efficiency counterflow during heating operation that requires more improvement in heat exchange efficiency. Therefore, heat exchange efficiency can be improved.

また、暖房運転時には、風速の速い(風量の多い)空気が流入する第1および第3の熱交換部11,13における細い方(他方側)の径D11b,D13bの伝熱管11b,13bを、伝熱性能の良好な気液二相状態の冷媒が流れる。そのため、熱交換効率をさらに向上できる。   Further, during the heating operation, the heat transfer tubes 11b and 13b having the diameters D11b and D13b on the narrower side (the other side) in the first and third heat exchange units 11 and 13 into which air having a high wind speed (a large amount of air) flows, A gas-liquid two-phase refrigerant with good heat transfer performance flows. Therefore, the heat exchange efficiency can be further improved.

なお、冷房運転時冷媒入口15aと暖房運転時冷媒出口16bとは、冷媒の流入および排出を兼用する1の配管としても良いし、2の配管としても良い。同様に、冷房運転時冷媒出口15bと暖房運転時冷媒入口16aとは、冷媒の流入および排出を兼用する1の配管としても良いし、2の配管としても良い。   Note that the refrigerant inlet 15a during cooling operation and the refrigerant outlet 16b during heating operation may be one pipe that also serves as inflow and discharge of refrigerant, or two pipes. Similarly, the refrigerant outlet 15b during cooling operation and the refrigerant inlet 16a during heating operation may be one pipe that also serves as inflow and discharge of refrigerant, or two pipes.

また、冷房運転時冷媒入口15aおよび暖房運転時冷媒入口16aは、冷媒を伝熱管に流すために冷媒を投入するための部材をさらに備えていてもよい。同様に、冷房運転時冷媒出口15bおよび暖房運転時冷媒出口16bは、伝熱管を流れた冷媒を排出するための部材をさらに備えていてもよい。   Moreover, the refrigerant inlet 15a during the cooling operation and the refrigerant inlet 16a during the heating operation may further include a member for charging the refrigerant in order to flow the refrigerant to the heat transfer tube. Similarly, the refrigerant outlet 15b during cooling operation and the refrigerant outlet 16b during heating operation may further include a member for discharging the refrigerant flowing through the heat transfer tube.

以上説明したように、本発明の実施の形態1における熱交換器10は、互いに間隔をへだてて配置されたフィン11d,12d,13dと、フィン11d,12d,13dに接続されてそれぞれが冷媒を通すための伝熱管11a,11b,12a,12b,13a,13bとを有する一体物を分断または折り曲げて得られた第1の熱交換部11、第2の熱交換部12、および第3の熱交換部13を備え、第1の熱交換部11、第2の熱交換部12、および第3の熱交換部13の各々の伝熱管11a,11b,12a,12b,13a,13bは断面において2以上の列を成し、伝熱管11a,11b,12a,12b,13a,13bの径D11a,D11b,D12a,D12b,D13a,D13bは列ごとに同じであり、かつ一方側の列の径D11a,D12a,D13aは他方側の列の径D11b,D12b,D13bよりも太く、第1の熱交換部11および第3の熱交換部13は、相対的に速い風速の空気が流入するように配置され、かつ空気の流入側に他方側の列の径D11b,D13bが位置し、かつ空気の流出側に一方側の列の径D11a,D13aが位置するように配置され、第2の熱交換部12は、相対的に遅い風速の空気が流入するように配置され、かつ空気の流入側に一方側の列の径D12aが位置し、かつ空気の流出側に他方側の列の径D12bが位置するように配置されている。一体物を切断または折り曲げて得られる第1、第2、および第3の熱交換部11〜13を製造することにより、熱交換器10は製造される。そのため、熱交換器10のフィンは、1種類のフィンを連続プレス加工などにより製造することにより対応できる。また、第1、第2、および第3の熱交換部11〜13の伝熱管は列を構成する伝熱管の径の種類を製造することにより対応できる。そのため、従来の熱交換器は、熱交換器を構成する熱交換部ごとに形状を変えて製造することが必要であったが、本発明の熱交換器10では、熱交換部ごとに製造する必要がない。よって、熱交換器10は、生産性を向上できる。   As described above, the heat exchanger 10 according to Embodiment 1 of the present invention is connected to the fins 11d, 12d, and 13d that are spaced apart from each other and the fins 11d, 12d, and 13d, and each of them receives the refrigerant. 1st heat exchange part 11, 2nd heat exchange part 12, and 3rd heat obtained by dividing or bending the integrated object which has heat exchanger tube 11a, 11b, 12a, 12b, 13a, 13b for letting it pass The heat exchanger tube 11a, 11b, 12a, 12b, 13a, 13b of the 1st heat exchange part 11, the 2nd heat exchange part 12, and the 3rd heat exchange part 13 is provided in the cross section. The above rows are formed, and the diameters D11a, D11b, D12a, D12b, D13a, and D13b of the heat transfer tubes 11a, 11b, 12a, 12b, 13a, and 13b are the same for each row, and on one side The diameters D11a, D12a, and D13a are thicker than the diameters D11b, D12b, and D13b in the other row, and air having a relatively high wind speed flows into the first heat exchange unit 11 and the third heat exchange unit 13. And arranged such that the diameter D11b, D13b of the other row is located on the air inflow side and the diameter D11a, D13a of the one row is located on the air outflow side, The heat exchanging portion 12 is arranged so that air with a relatively slow wind speed flows in, the diameter D12a of one row is located on the air inflow side, and the diameter of the other row is on the air outflow side. It arrange | positions so that D12b may be located. The heat exchanger 10 is manufactured by manufacturing the first, second, and third heat exchanging units 11 to 13 obtained by cutting or bending an integral object. Therefore, the fins of the heat exchanger 10 can be dealt with by manufacturing one kind of fins by continuous pressing or the like. In addition, the heat transfer tubes of the first, second, and third heat exchanging units 11 to 13 can be accommodated by manufacturing the types of the diameters of the heat transfer tubes constituting the row. Therefore, the conventional heat exchanger needs to be manufactured by changing the shape for each heat exchanging part constituting the heat exchanger, but in the heat exchanger 10 of the present invention, it is manufactured for each heat exchanging part. There is no need. Therefore, the heat exchanger 10 can improve productivity.

なお、「一体物を切断または折り曲げて得られる熱交換部」は、たとえば各伝熱管において、列の数は同じで、かつ列を構成する伝熱管の径は同じとなることにより特定できる。また、たとえば熱交換部を構成するフィンが切欠きCを有していることにより特定できる。   The “heat exchanging part obtained by cutting or bending an integral object” can be specified by, for example, each heat transfer tube having the same number of rows and the same diameter of the heat transfer tubes constituting the row. For example, it can specify by the fin which comprises a heat exchange part having the notch C. FIG.

また、熱交換器10を凝縮器として作用させる場合には、第1、第2、および第3の熱交換部11〜13において、一方側の列の径D11a,D12a,D13aから他方側の列の径D11b,D12b,D13bに冷媒を流すことにより、空気と冷媒とを対向流により熱交換させることができる。このような熱交換を、空気と冷媒との温度差が大きい暖房運転として行なうことにより、熱交換効率を向上できる。また、冷媒流路の流出側において冷媒が流動可能な伝熱管の総容積を相対的に小さくすることにより、液化する冷媒の流動抵抗(圧力損失)を増加させることができる。そのため、伝熱効率が低下している液体状の冷媒の流速を向上させることができるので、熱交換器10の伝熱効率の向上を図ることができる。   Moreover, when making the heat exchanger 10 act as a condenser, in the 1st, 2nd, and 3rd heat exchange parts 11-13, from the diameter D11a, D12a, D13a of the row | line | column of one side, the row | line | column of the other side By flowing the refrigerant through the diameters D11b, D12b, and D13b, the air and the refrigerant can be heat-exchanged by the counterflow. By performing such heat exchange as a heating operation in which the temperature difference between air and the refrigerant is large, the heat exchange efficiency can be improved. Moreover, the flow resistance (pressure loss) of the liquefied refrigerant can be increased by relatively reducing the total volume of the heat transfer tubes through which the refrigerant can flow on the outflow side of the refrigerant flow path. Therefore, since the flow rate of the liquid refrigerant in which the heat transfer efficiency is reduced can be improved, the heat transfer efficiency of the heat exchanger 10 can be improved.

さらに、熱交換器10を蒸発器として作用させる場合には、第1および第3の熱交換部11,13において、気体状態となった冷媒を、太い方の径である一方側の列の径D11a,D13aの伝熱管11a,13aを流すことができる。そのため、冷媒の圧力損失を低減できるので、高い熱交換効率を維持できる。よって、冷房運転時および暖房運転時のいずれの場合においても、伝熱管11a,11b,12a,12b,13a,13bの最適配置により、熱交換率を向上できる。また、冷媒流路の流出側において冷媒が流動可能な伝熱管の総容積を相対的に大きくすることにより、気化していく冷媒の流動抵抗(圧力損失)を減少できる。そのため、圧縮機内に吸入される冷媒のエンタルピーの低下を抑制(吸入冷媒密度の低下を防止)でき、圧縮機の運転効率を向上できる。   Furthermore, in the case where the heat exchanger 10 acts as an evaporator, the first and third heat exchanging units 11 and 13 are arranged such that the refrigerant that has become a gas state has a diameter of one row that is a thicker diameter. Heat transfer tubes 11a and 13a of D11a and D13a can be flowed. Therefore, since the pressure loss of the refrigerant can be reduced, high heat exchange efficiency can be maintained. Therefore, in any case of the cooling operation and the heating operation, the heat exchange rate can be improved by the optimal arrangement of the heat transfer tubes 11a, 11b, 12a, 12b, 13a, and 13b. In addition, the flow resistance (pressure loss) of the vaporized refrigerant can be reduced by relatively increasing the total volume of the heat transfer tubes through which the refrigerant can flow on the outflow side of the refrigerant flow path. Therefore, a decrease in the enthalpy of the refrigerant sucked into the compressor can be suppressed (a decrease in the sucked refrigerant density can be prevented), and the operation efficiency of the compressor can be improved.

上記熱交換器10において好ましくは、断面において一方側の列から他方側の列に向けて(矢印14aの方向に)、伝熱管の径が順次細くなるように構成されていることを特徴としている。これにより、熱交換器10を凝縮器として作用させる場合には、冷媒は空気と対向流を形成しながら流動するため、熱交換効率をさらに向上できる。また、熱交換器10を蒸発器として作用させる場合には、気体状態に変化した冷媒の圧力損失を低減できる。よって、熱交換器10の熱交換効率をより向上できる。   The heat exchanger 10 is preferably characterized in that the diameter of the heat transfer tubes is gradually reduced from one row to the other row (in the direction of the arrow 14a) in the cross section. . Thereby, when making the heat exchanger 10 act as a condenser, since a refrigerant | coolant flows, forming air and an opposing flow, heat exchange efficiency can further be improved. Moreover, when making the heat exchanger 10 act as an evaporator, the pressure loss of the refrigerant | coolant which changed to the gaseous state can be reduced. Therefore, the heat exchange efficiency of the heat exchanger 10 can be further improved.

(実施の形態2)
図8を参照して、実施の形態2における熱交換器について説明する。なお、図8は、本発明の実施の形態2における熱交換器を示す概略断面図である。
(Embodiment 2)
With reference to FIG. 8, the heat exchanger in Embodiment 2 is demonstrated. FIG. 8 is a schematic cross-sectional view showing a heat exchanger according to Embodiment 2 of the present invention.

実施の形態2における熱交換器20は、基本的には実施の形態1と同様であるが、図8に示すように、第3の熱交換部13を備えていない点においてのみ、図1に示す実施の形態1における熱交換器10と異なる。   The heat exchanger 20 in the second embodiment is basically the same as that in the first embodiment. However, as shown in FIG. 8, only the point that the third heat exchanging unit 13 is not provided is shown in FIG. It differs from the heat exchanger 10 in Embodiment 1 shown.

なお、実施の形態1における熱交換器10は、第1、第2、および第3の熱交換部11〜13の3つを備えており、実施の形態2における熱交換器20は、第1および第2の熱交換部11,12の2つを備えているが、本発明の熱交換器は、2つまたは3つの熱交換部を備えているものに限定されず、4つ以上の熱交換部を備えていてもよい。ただし、熱交換器は、熱交換部を2つ以上4つ以下備えていることが好ましい。2つ以上の熱交換部を備えていることにより、熱交換効率を向上できる。4つ以下の熱交換部を備えていることにより、熱交換器の小型化を図ることができる。   In addition, the heat exchanger 10 in Embodiment 1 is provided with three, the 1st, 2nd, and 3rd heat exchange parts 11-13, and the heat exchanger 20 in Embodiment 2 is 1st. However, the heat exchanger of the present invention is not limited to the one having two or three heat exchange units, but has four or more heat exchange units. An exchange part may be provided. However, the heat exchanger preferably includes two or more and four or less heat exchange units. By providing two or more heat exchange parts, the heat exchange efficiency can be improved. By providing four or less heat exchange units, the heat exchanger can be downsized.

次に、熱交換器20の動作について説明する。熱交換器20を蒸発器(冷房運転)として作用させる場合には、冷媒の流路は、たとえば、第2の熱交換部12の一方側の径D12aの伝熱管12aを冷媒入口とする。そして、第2の熱交換部12の他方側の列の径D12bの伝熱管12bへ流入する。そして、伝熱管12bを介して、第1の熱交換部11の他方側の列の径D11bの伝熱管11bに流入する。そして、伝熱管11bを介して、一方側の径D11aの伝熱管11aに流入する。そして、第1の熱交換部の一方側の列の径D11aの伝熱管11aを冷媒出口とする。当該冷媒の流路は、1本としている。   Next, the operation of the heat exchanger 20 will be described. When the heat exchanger 20 acts as an evaporator (cooling operation), the refrigerant flow path uses, for example, a heat transfer tube 12a having a diameter D12a on one side of the second heat exchange unit 12 as a refrigerant inlet. And it flows in into the heat exchanger tube 12b of the diameter D12b of the row | line | column of the other side of the 2nd heat exchange part 12. FIG. And it flows in into the heat exchanger tube 11b of the diameter D11b of the row | line | column of the other side of the 1st heat exchange part 11 via the heat exchanger tube 12b. And it flows in into the heat exchanger tube 11a of the diameter D11a of one side via the heat exchanger tube 11b. And let the heat exchanger tube 11a of the diameter D11a of the row | line | column of the one side of a 1st heat exchange part be a refrigerant | coolant exit. The flow path of the refrigerant is one.

熱交換器20を凝縮器として作用させる場合には、冷媒の流路は、蒸発器として作用させる場合と逆となる。   When the heat exchanger 20 is operated as a condenser, the refrigerant flow path is the reverse of that when the heat exchanger 20 is operated as an evaporator.

以上説明したように、本発明の実施の形態2における熱交換器20は、互いに間隔をへだてて配置されたフィン11d,12dと、フィン11d,12dに接続されてそれぞれが冷媒を通すための伝熱管11a,11b,12a,12b,とを有する一体物を分断または折り曲げて得られた第1の熱交換部11および第2の熱交換部12を備え、第1の熱交換部11および第2の熱交換部12の各々の伝熱管11a,11b,12a,12bは断面において2以上の列を成し、伝熱管11a,11b,12a,12bの径D11a,D11b,D12a,D12bは列ごとに同じであり、かつ一方側の列の径D11a,D12aは他方側の列の径D11b,D12bよりも太く、第1の熱交換部11は、相対的に速い風速の空気が流入するように配置され、かつ空気の流入側に他方側の列の径D11b,D12bが位置し、かつ空気の流出側に一方側の列の径D11a,D12aが位置するように配置され、第2の熱交換部12は、相対的に遅い風速の空気が流入するように配置され、かつ空気の流入側に一方側の列の径D11a,D12aが位置し、かつ空気の流出側に他方側の列の径D11b,D12bが位置するように配置されている。一体物を分断または折り曲げて得られた第1および第2の熱交換部11,12を製造することにより、熱交換器20を製造できる。そのため、第1および第2の熱交換部11,12ごとに製造工程を変えて総工程数を増やすことなく、熱交換器20を製造することができる。よって、熱交換器20は、生産性を向上できる。   As described above, the heat exchanger 20 according to the second embodiment of the present invention is connected to the fins 11d and 12d spaced apart from each other, and the fins 11d and 12d connected to each other to transmit the refrigerant. The first heat exchanging unit 11 and the second heat exchanging unit 12 are obtained by dividing or bending an integrated body having the heat pipes 11a, 11b, 12a, 12b. The heat transfer tubes 11a, 11b, 12a and 12b of the heat exchange section 12 form two or more rows in cross section, and the diameters D11a, D11b, D12a and D12b of the heat transfer tubes 11a, 11b, 12a and 12b are in each row. The diameters D11a and D12a of the one row are the same as those of the other row and are larger than the diameters D11b and D12b of the other row, and air with a relatively high wind speed flows into the first heat exchange section 11. And the second row diameter D11b, D12b is located on the air inflow side and the one side row diameter D11a, D12a is located on the air outflow side, and the second heat The exchange unit 12 is arranged so that air with a relatively slow wind speed flows in, and the diameters D11a and D12a of one row are located on the air inflow side, and the other row is on the air outflow side. It arrange | positions so that the diameters D11b and D12b may be located. The heat exchanger 20 can be manufactured by manufacturing the first and second heat exchanging portions 11 and 12 obtained by dividing or bending the integrated object. Therefore, the heat exchanger 20 can be manufactured without changing the manufacturing process for each of the first and second heat exchange units 11 and 12 and increasing the total number of processes. Therefore, the heat exchanger 20 can improve productivity.

また、熱交換器20を凝縮器として作用させる場合には、第1および第2の熱交換部11,12において、一方側の列の径D11a,D12aから他方側の列の径D11b,D12bに冷媒を流すことにより、空気と冷媒とを対向流により熱交換させることができる。このような熱交換を、空気と冷媒との温度差が大きい暖房運転として行なうことにより、熱交換効率を向上できる。   When the heat exchanger 20 is operated as a condenser, in the first and second heat exchanging units 11 and 12, the diameters D11a and D12a of one row are changed to the diameters D11b and D12b of the other row. By flowing the refrigerant, it is possible to exchange heat between the air and the refrigerant by a counter flow. By performing such heat exchange as a heating operation in which the temperature difference between air and the refrigerant is large, the heat exchange efficiency can be improved.

また、熱交換器20を蒸発器として作用させる場合には、第1の熱交換部11において、気体状態となった冷媒を、太い方の径である一方側の列の径D11aの伝熱管11aに流すことができる。そのため、冷媒の圧力損失を低減できるので、高い熱交換効率を維持できる。   Further, when the heat exchanger 20 is operated as an evaporator, the refrigerant that has become a gas state in the first heat exchanging portion 11 is replaced with a heat transfer tube 11a having a diameter D11a on one side which is a thicker diameter. Can be shed. Therefore, since the pressure loss of the refrigerant can be reduced, high heat exchange efficiency can be maintained.

(実施の形態3)
図9を参照して、本発明の実施の形態3における空気調和機の室内機を説明する。実施の形態3における空気調和機の室内機40は、実施の形態1における熱交換器10と、熱交換器10に空気を送るための送風機41とを備えている。なお、図9は、本発明の実施の形態3における空気調和機の室内機を示す概略断面図である。
(Embodiment 3)
With reference to FIG. 9, the indoor unit of the air conditioner in Embodiment 3 of this invention is demonstrated. The indoor unit 40 of the air conditioner in the third embodiment includes the heat exchanger 10 in the first embodiment and a blower 41 for sending air to the heat exchanger 10. FIG. 9 is a schematic cross-sectional view showing an indoor unit of an air conditioner according to Embodiment 3 of the present invention.

詳細には、空気調和機の室内機40は、たとえば送風機41と、熱交換器10と、本体ケーシング42と、フロントパネル43と、エアフィルタ44と、ドレンパン45と、スタビライザー46とを備えている。   Specifically, the indoor unit 40 of the air conditioner includes, for example, a blower 41, a heat exchanger 10, a main body casing 42, a front panel 43, an air filter 44, a drain pan 45, and a stabilizer 46. .

本体ケーシング42は、内部に送風機41や熱交換器10を配置する筐体である。フロントパネル43は、本体ケーシング42の前面に取り付けられている。エアフィルタ44は、フロントパネル43の内面に沿って設置されている。送風機41は、エアフィルタ44の下部後方に配置されている。熱交換器10は、送風機41を囲むように配置されている。ドレンパン45は、熱交換器10の下部に配置されている。スタビライザー46は、送風機41より送られる風が渦を巻くようにする部材であり、第3の熱交換部13の下方に配置されている。   The main body casing 42 is a housing in which the blower 41 and the heat exchanger 10 are arranged. The front panel 43 is attached to the front surface of the main body casing 42. The air filter 44 is installed along the inner surface of the front panel 43. The blower 41 is disposed behind the lower portion of the air filter 44. The heat exchanger 10 is disposed so as to surround the blower 41. The drain pan 45 is disposed at the lower part of the heat exchanger 10. The stabilizer 46 is a member that causes the wind sent from the blower 41 to vortex, and is disposed below the third heat exchange unit 13.

空気調和機の室内機40は、熱交換器10を構成する第1および第3の熱交換部11,13を前面部に配置し、第2の熱交換部12を背面部に配置している。なお、前面部とは、空気調和機の室内機40において、空気を放出する側を意味する。前面部は開放されているので、空気の風速は速い。背面部とは、空気調和機の室内機40において、取り付けられる側を意味する。背面部は空気を導きにくいので、空気の風速は遅い。また、スタビライザー46により第1および第3の熱交換部11,13に風が多く送られる。すなわち、熱交換器10において、第1および第3の熱交換部11,13に吸入された空気の風速は、第2の熱交換部12に吸入された空気の風速よりも速く、通過する空気の量は多い。そのため、第1および第3の熱交換部11,13は、相対的に速い風速の空気が流入し、第2の熱交換部12は、相対的に遅い風速の空気が流入する。   In the indoor unit 40 of the air conditioner, the first and third heat exchanging units 11 and 13 constituting the heat exchanger 10 are arranged on the front side, and the second heat exchanging unit 12 is arranged on the back side. . In addition, the front part means the side from which air is released in the indoor unit 40 of the air conditioner. Since the front part is open, the wind speed of air is fast. A back part means the side attached in the indoor unit 40 of an air conditioner. Since the back part is hard to guide air, the wind speed of air is slow. Further, a large amount of wind is sent to the first and third heat exchanging units 11 and 13 by the stabilizer 46. That is, in the heat exchanger 10, the air velocity of the air sucked into the first and third heat exchanging units 11 and 13 is faster than the air velocity of the air sucked into the second heat exchanging portion 12 and passes through the air. The amount of is large. Therefore, air with a relatively high wind speed flows into the first and third heat exchange units 11 and 13, and air with a relatively slow wind speed flows into the second heat exchange unit 12.

なお、実施の形態3における空気調和機の室内機40は、実施の形態1における熱交換器10を備えているが、特にこれに限定されない。たとえば、空気調和機の室内機は、実施の形態2における熱交換器20を備えていてもよい。   In addition, although the indoor unit 40 of the air conditioner in Embodiment 3 is provided with the heat exchanger 10 in Embodiment 1, it is not limited to this in particular. For example, the indoor unit of the air conditioner may include the heat exchanger 20 in the second embodiment.

次に、空気調和機の室内機40の動作について説明する。空気調和機を運転する時には、図9に示すように、送風機41が(図9における太い矢印の方向に)回転し、熱交換器10に室外熱交換器(図示せず)から冷媒が循環される。送風機41により、室内の空気が(図5における細い矢印の方向に)フロントパネル43から空気調和機の室内機40の内部に吸入される。吸入された空気の一部は、送風機41とスタビライザー46とにより発生した気流で方向を変化される。また、吸入された空気の中に含まれている塵埃がエアフィルタ44で除去され、熱交換器10を通過する際に熱交換器10の内部の冷媒と熱交換して、実施の形態1と同様にして、加熱または冷却される。そして、吸入された空気は、送風機41に吸い込まれて付勢された後、フロントパネル43の下部の空気吹出口から室内に吹出される。   Next, operation | movement of the indoor unit 40 of an air conditioner is demonstrated. When operating the air conditioner, as shown in FIG. 9, the blower 41 rotates (in the direction of the thick arrow in FIG. 9), and the refrigerant is circulated from the outdoor heat exchanger (not shown) to the heat exchanger 10. The The blower 41 sucks indoor air from the front panel 43 into the air conditioner indoor unit 40 (in the direction of the thin arrow in FIG. 5). The direction of a part of the sucked air is changed by the airflow generated by the blower 41 and the stabilizer 46. In addition, the dust contained in the sucked air is removed by the air filter 44, and when passing through the heat exchanger 10, heat is exchanged with the refrigerant inside the heat exchanger 10, and Similarly, it is heated or cooled. The sucked air is sucked into the blower 41 and urged, and then blown out into the room from the air outlet at the lower part of the front panel 43.

なお、空気調和機の室内機40は、除湿運転を行なうことも可能である。除湿運転時には、冷媒の流路は冷房運転時と同様である。具体的には、送風機41で吸入する風量を抑え、湿度を優先的に取り除くサイクル、すなわち弱冷房運転とする。   The indoor unit 40 of the air conditioner can also perform a dehumidifying operation. During the dehumidifying operation, the refrigerant flow path is the same as that during the cooling operation. Specifically, the air flow sucked by the blower 41 is suppressed, and the cycle in which the humidity is preferentially removed, that is, a weak cooling operation is performed.

以上説明したように、本発明の実施の形態3における空気調和機の室内機40によれば、熱交換器10〜13と、熱交換器10〜13に空気を送るための送風機とを備えている。これにより、生産性を向上するとともに熱交換効率を向上できる熱交換器10〜13に、送風機41で空気を送って、空気と冷媒とを熱交換させる。よって、空気調和機の室内機40は、生産性を向上するとともに、熱交換効率を向上できる。   As described above, the air conditioner indoor unit 40 according to Embodiment 3 of the present invention includes the heat exchangers 10 to 13 and the blower for sending air to the heat exchangers 10 to 13. Yes. Thereby, air is sent with the air blower 41 to the heat exchangers 10-13 which can improve productivity and heat exchange efficiency, and heat exchange of air and a refrigerant | coolant is carried out. Therefore, the indoor unit 40 of an air conditioner can improve productivity and heat exchange efficiency.

上記空気調和機の室内機40において好ましくは、冷房運転時には、第2の熱交換部12における一方側の列の径D12aの伝熱管12aを冷房運転時冷媒入口とし、第2の熱交換部12における一方側の列の径D12aの伝熱管12aから流出した冷媒を複数の流路に分配して、第2の熱交換部12における他方側の列の径D12bの伝熱管12bに流入させるように構成されていることを特徴とする。これにより、冷房運転時の冷房運転時冷媒入口を太い径の伝熱管12aにできるので、冷房運転時冷媒入口における冷媒の圧力が低下することを防止できる。そのため、圧縮機に吸入される冷媒のエンタルピーの低下を防止できるため、高い熱交換効率を維持できる。また、冷媒の圧力を上げる必要がないため、省エネルギー化を図ることができる。   Preferably, in the indoor unit 40 of the air conditioner, during the cooling operation, the heat transfer pipe 12a having the diameter D12a of one row in the second heat exchange unit 12 is used as the refrigerant inlet during the cooling operation, and the second heat exchange unit 12 is used. The refrigerant flowing out from the heat transfer tube 12a having the diameter D12a on the one side of the column is distributed to a plurality of flow paths, and flows into the heat transfer tube 12b having the diameter D12b on the other side in the second heat exchange unit 12. It is configured. Thereby, since the refrigerant inlet at the time of the cooling operation at the time of the cooling operation can be made into the heat transfer pipe 12a having a large diameter, it is possible to prevent the refrigerant pressure from being lowered at the refrigerant inlet at the time of the cooling operation. Therefore, since the enthalpy of the refrigerant sucked into the compressor can be prevented from being lowered, high heat exchange efficiency can be maintained. Further, it is not necessary to increase the pressure of the refrigerant, so that energy saving can be achieved.

上記空気調和機の室内機40において好ましくは、冷房運転時には、第2の熱交換部12への冷媒流入経路が1本であることを特徴とする。これにより、太い方(一方側の列)の径D12aの伝熱管12aが入口となる。そのため、冷媒の流路を1本にしても冷媒の圧力低下の問題が生じないので、配管経路を簡素化できる。よって、生産性をより向上できる。   The indoor unit 40 of the air conditioner preferably has a single refrigerant inflow path to the second heat exchange unit 12 during cooling operation. Thereby, the heat transfer tube 12a having the diameter D12a of the thicker side (one side row) serves as an inlet. Therefore, even if there is only one refrigerant flow path, there is no problem of refrigerant pressure drop, so the piping path can be simplified. Therefore, productivity can be further improved.

上記空気調和機の室内機40において好ましくは、冷房運転時には、第2の熱交換部12における他方側の列の径D12bの伝熱管12bから流出した冷媒を、第1の熱交換部11における他方側の列の径D11bの伝熱管11bを介して、第1の熱交換部11における一方側の列の径D11aの伝熱管11aに流入させ、第1の熱交換部11における一方側の列の径D11aの伝熱管11aを冷房運転時冷媒出口とすることを特徴とする。これにより、冷房運転時の冷房運転時冷媒出口を太い方(一方側の列)の径D11aの伝熱管11aにできるので、冷媒の圧力損失を低減できる。そのため、熱交換効率を向上できる。また、冷房運転時よりも冷媒と空気との温度差の大きい暖房運転時に、冷媒と空気とを対向流にできる。そのため、熱交換効率を向上できる。   Preferably, in the air conditioner indoor unit 40, during the cooling operation, the refrigerant flowing out of the heat transfer tube 12b having the diameter D12b of the other row in the second heat exchange unit 12 is transferred to the other in the first heat exchange unit 11. The heat transfer tube 11b having the diameter D11b on the side row is caused to flow into the heat transfer tube 11a having the diameter D11a on the one side row in the first heat exchanging portion 11, and The heat transfer tube 11a having a diameter D11a is used as a refrigerant outlet during cooling operation. Thereby, since the refrigerant outlet at the time of the cooling operation at the time of the cooling operation can be made into the heat transfer tube 11a having the diameter D11a of the thicker (one side row), the pressure loss of the refrigerant can be reduced. Therefore, heat exchange efficiency can be improved. In addition, the refrigerant and the air can be counterflowed during the heating operation in which the temperature difference between the refrigerant and the air is larger than that during the cooling operation. Therefore, heat exchange efficiency can be improved.

(実施の形態4)
図10を参照して、本発明の実施の形態4における空気調和機の室内機を説明する。実施の形態4における空気調和機の室内機50は、基本的には図10に示す空気調和機の室内機40と同様の構成を備えているが、第1の熱交換部11と第2の熱交換部12とを接続する冷媒の流路に絞り手段51をさらに備えている点においてのみ異なる。なお、図10は、本発明の実施の形態5における空気調和機の室内機を示す概略断面図である。図10中、熱交換器10、送風機41、および絞り手段51以外の構成は省略している。
(Embodiment 4)
With reference to FIG. 10, the indoor unit of the air conditioner in Embodiment 4 of this invention is demonstrated. Although the indoor unit 50 of the air conditioner in Embodiment 4 is basically provided with the same configuration as the indoor unit 40 of the air conditioner shown in FIG. 10, the first heat exchange unit 11 and the second unit The only difference is that a throttle means 51 is further provided in the refrigerant flow path connecting the heat exchange unit 12. FIG. 10 is a schematic cross-sectional view showing an indoor unit of an air conditioner according to Embodiment 5 of the present invention. In FIG. 10, configurations other than the heat exchanger 10, the blower 41, and the throttle means 51 are omitted.

詳細には、絞り手段51は、第2の熱交換部12の他方側の列の径D12bと、第1および第3の熱交換部11,13の他方側の列の径D11b,D13bとを接続する冷媒の流路に設けられている。   Specifically, the throttle means 51 has a diameter D12b of the other side row of the second heat exchanging portion 12 and a diameter D11b, D13b of the other side row of the first and third heat exchanging portions 11, 13. It is provided in the flow path of the refrigerant to be connected.

絞り手段51は、再熱除湿運転時に第2の熱交換部12から第1および第3の熱交換部11,13へ流れる冷媒を減圧する部材を意味する。絞り手段51は、たとえば、電磁弁、キャピラリチューブ等で構成されている。   The throttle means 51 is a member that depressurizes the refrigerant flowing from the second heat exchange unit 12 to the first and third heat exchange units 11 and 13 during the reheat dehumidification operation. The throttle means 51 is constituted by, for example, an electromagnetic valve, a capillary tube or the like.

次に、空気調和機の室内機50の動作について説明する。暖房運転時および冷房運転時は、実施の形態1と同様であるのでその説明は繰り返さない。なお、暖房運転時および冷房運転時には、絞り手段51は作用させない。以下、空気調和機の室内機50の再熱除湿運転時について説明する。   Next, operation | movement of the indoor unit 50 of an air conditioner is demonstrated. Since the heating operation and the cooling operation are the same as in the first embodiment, description thereof will not be repeated. It should be noted that the throttle means 51 is not operated during heating operation and cooling operation. Hereinafter, the reheat dehumidifying operation of the indoor unit 50 of the air conditioner will be described.

再熱除湿運転時には、送風機41を運転して、熱交換器10に空気を送り込む。冷媒は、第2の熱交換部12の一方側の列の径D12aの伝熱管12aから流入され、伝熱管12aを介して、流路を2つに分配して伝熱管12bを流れる。そして、絞り手段51を通過して、第1および第3の熱交換部11,13の他方側の列の径D11b,D13bの伝熱管11b,13bを流れる。そして、伝熱管11b,13bを介して、第1および第3の熱交換部11,13における一方側の列の径D11a,D13aの伝熱管11a,13aを流れ、冷房運転時冷媒出口15bから排出される。そして、第1、第2、および第3の熱交換部11〜13を流れる冷媒と、吸入された空気との間で熱交換が行なわれる。   During the reheat dehumidifying operation, the blower 41 is operated to send air into the heat exchanger 10. The refrigerant flows in from the heat transfer tube 12a having a diameter D12a on one side of the second heat exchange section 12, and flows through the heat transfer tube 12b with the flow path divided into two through the heat transfer tube 12a. Then, it passes through the throttle means 51 and flows through the heat transfer tubes 11b and 13b having the diameters D11b and D13b on the other side of the first and third heat exchange portions 11 and 13. Then, the heat flows through the heat transfer tubes 11b and 13b, flows through the heat transfer tubes 11a and 13a having the diameters D11a and D13a on one side of the first and third heat exchange units 11 and 13, and is discharged from the refrigerant outlet 15b during the cooling operation. Is done. And heat exchange is performed between the refrigerant | coolant which flows through the 1st, 2nd and 3rd heat exchange parts 11-13, and the inhaled air.

次に、再熱除湿運転時における冷媒の状態について説明する。再熱除湿運転時には、冷媒は、圧縮機、室外熱交換器などを経て高温高圧とされる。そして、高温高圧とされた冷媒は冷房運転時冷媒入口15aより流入し、絞り手段51を通過する際に、絞り手段51により冷媒は減圧され低温低圧の状態になる。そして、低温低圧とされた冷媒は、第1および第3の熱交換部11,13へ冷媒は流入し、冷房運転時冷媒出口15bより流出する。すなわち、再熱除湿運転時には、第2の熱交換部12では冷媒は高温であるため、第2の熱交換部が凝縮部として作用し、第1および第3の熱交換部11,13内では冷媒は低温であるため、第1および第3の熱交換部11,13が蒸発部として作用するように冷媒を流動させる。   Next, the state of the refrigerant during the reheat dehumidifying operation will be described. During the reheat dehumidifying operation, the refrigerant is brought to a high temperature and pressure through a compressor, an outdoor heat exchanger, and the like. The high-temperature and high-pressure refrigerant flows from the refrigerant inlet 15a during the cooling operation, and when passing through the throttle means 51, the refrigerant is depressurized by the throttle means 51 to be in a low-temperature and low-pressure state. The low-temperature and low-pressure refrigerant flows into the first and third heat exchange units 11 and 13, and flows out from the refrigerant outlet 15b during the cooling operation. That is, during the reheat dehumidifying operation, since the refrigerant is high in temperature in the second heat exchange unit 12, the second heat exchange unit acts as a condensing unit, and in the first and third heat exchange units 11 and 13. Since the refrigerant is at a low temperature, the refrigerant is caused to flow so that the first and third heat exchange units 11 and 13 function as an evaporation unit.

熱交換器10に送り込まれた空気は、第1および第3の熱交換部11,13では、冷媒が低温低圧であるので除湿される。一方、第2の熱交換部12では、冷媒が高温高圧であるので、空気は加熱される。よって、第1および第3の熱交換部11,13で冷却、除湿された空気は、第2の熱交換部12により温められた空気と混合され、空気全体として温度を低下させることなく除湿が行なわれる。   The air sent to the heat exchanger 10 is dehumidified in the first and third heat exchange units 11 and 13 because the refrigerant is at low temperature and low pressure. On the other hand, in the second heat exchanging unit 12, the refrigerant is high temperature and high pressure, so the air is heated. Therefore, the air cooled and dehumidified by the first and third heat exchanging units 11 and 13 is mixed with the air warmed by the second heat exchanging unit 12, and dehumidification is performed without reducing the temperature of the entire air. Done.

以上説明したように、実施の形態4における空気調和機の室内機50によれば、第1の熱交換部11と第2の熱交換部12とを接続する冷媒の流路に絞り手段51をさらに備えている。これにより、冷媒を第2の熱交換部12では高温高圧とし、第1および第3の熱交換部では低温低圧とすることができる。そのため、第2の熱交換部12が凝縮部で、第1および第3の熱交換部11,13が蒸発部として作用するように冷媒を流動させることができる。よって、空気調和機の室内機50は、絞り手段51を作用させることにより、冷房運転時および暖房運転時の熱交換効率を向上するとともに再熱除湿運転が可能となる。   As described above, according to the indoor unit 50 of the air conditioner in Embodiment 4, the throttle means 51 is provided in the refrigerant flow path connecting the first heat exchange unit 11 and the second heat exchange unit 12. It has more. As a result, the refrigerant can be set at a high temperature and a high pressure in the second heat exchange unit 12 and at a low temperature and a low pressure in the first and third heat exchange units. Therefore, it is possible to cause the refrigerant to flow such that the second heat exchange unit 12 functions as a condensing unit and the first and third heat exchange units 11 and 13 function as an evaporating unit. Therefore, the indoor unit 50 of the air conditioner improves the heat exchange efficiency during the cooling operation and the heating operation and allows the reheat dehumidifying operation by operating the throttle means 51.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の範囲によって示され、特許請求の範囲と均等な意味および範囲内でのすべての変更点が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

本発明の実施の形態1における熱交換器を示す概略断面図である。It is a schematic sectional drawing which shows the heat exchanger in Embodiment 1 of this invention. 本発明の実施の形態1における第1、第2、および第3の熱交換部11〜13の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the 1st, 2nd, and 3rd heat exchange parts 11-13 in Embodiment 1 of this invention. 本発明の実施の形態1における第1、第2、および第3の熱交換部11〜13の製造工程を説明するための別の図である。It is another figure for demonstrating the manufacturing process of the 1st, 2nd, and 3rd heat exchange parts 11-13 in Embodiment 1 of this invention. 本発明の実施の形態1における第1、第2、および第3の熱交換部11〜13の製造工程を説明するためのさらに別の図である。It is another figure for demonstrating the manufacturing process of the 1st, 2nd, and 3rd heat exchange parts 11-13 in Embodiment 1 of this invention. 本発明の実施の形態1の熱交換器と別の熱交換器を示す概略断面図である。It is a schematic sectional drawing which shows another heat exchanger from the heat exchanger of Embodiment 1 of this invention. 本発明の実施の形態1における熱交換器を構成する別の第1の熱交換部を示す概略模式図である。It is a schematic diagram which shows another 1st heat exchange part which comprises the heat exchanger in Embodiment 1 of this invention. 本発明の実施の形態1における熱交換器の冷媒の流れを示す概略断面図である。It is a schematic sectional drawing which shows the flow of the refrigerant | coolant of the heat exchanger in Embodiment 1 of this invention. 本発明の実施の形態2における熱交換器を示す概略断面図である。It is a schematic sectional drawing which shows the heat exchanger in Embodiment 2 of this invention. 本発明の実施の形態3における空気調和機の室内機を示す概略断面図である。It is a schematic sectional drawing which shows the indoor unit of the air conditioner in Embodiment 3 of this invention. 本発明の実施の形態4における空気調和機の室内機を示す概略断面図である。It is a schematic sectional drawing which shows the indoor unit of the air conditioner in Embodiment 4 of this invention.

符号の説明Explanation of symbols

10,20,30 熱交換器、11a,11b,11c,12a,12b,13a,13b 伝熱管、11d,12d,13d フィン、11 第1の熱交換部、12 第2の熱交換部、13 第3の熱交換部、14a,14b 矢印、15a 冷房運転時冷媒入口、15b 冷房運転時冷媒出口、16a 暖房運転時冷媒入口、16b 暖房運転時冷媒出口、40,50 空気調和機の室内機、41 送風機、42 本体ケーシング、43 フロントパネル、44 エアフィルタ、45 ドレンパン、46 スタビライザー、51 絞り手段、D11a,D11b,D11c,D12a,D12b,D13a,D13b 径。   10, 20, 30 heat exchanger, 11a, 11b, 11c, 12a, 12b, 13a, 13b heat transfer tube, 11d, 12d, 13d fin, 11 first heat exchange section, 12 second heat exchange section, 13th 3 heat exchanger, 14a, 14b arrows, 15a refrigerant inlet during cooling operation, 15b refrigerant outlet during cooling operation, 16a refrigerant inlet during heating operation, 16b refrigerant outlet during heating operation, 40, 50 indoor unit of air conditioner, 41 Blower, 42 Body casing, 43 Front panel, 44 Air filter, 45 Drain pan, 46 Stabilizer, 51 Diaphragm means, D11a, D11b, D11c, D12a, D12b, D13a, D13b Diameter.

Claims (4)

互いに間隔をへだてて配置されたフィンと、前記フィンに接続されてそれぞれが冷媒を通すための伝熱管とを有する一体物を分断または折り曲げて得られた第1の熱交換部および第2の熱交換部を含む熱交換器と、
前記熱交換器に空気を送るための送風機とを備え、
前記第1の熱交換部および前記第2の熱交換部の各々の前記伝熱管は断面において2以上の列を成し、前記伝熱管の径は前記列ごとに同じであり、かつ一方側の列の径は他方側の列の径よりも太く、
前記第1の熱交換部は、相対的に速い風速の空気が流入するように配置され、かつ空気の流入側に前記他方側の列の径が位置し、かつ空気の流出側に前記一方側の列の径が位置するように配置され、
前記第2の熱交換部は、相対的に遅い風速の空気が流入するように配置され、かつ空気の流入側に前記一方側の列の径が位置し、かつ空気の流出側に前記他方側の列の径が位置するように配置されており、
前記第1の熱交換部および前記第2の熱交換部は、互いの伝熱管の列の数が同じとなるように、かつ互いの対応する列を構成する伝熱管の径が同じとなるように構成されており、
前記第1の熱交換部は、前記送風機により室内へ空気を放出する側である前面部に配置されており、前記第2の熱交換部は、取り付けられる側である背面部に配置されている空気調和機の室内機
A first heat exchanging portion and a second heat obtained by dividing or bending an integrated member having fins arranged at a distance from each other and heat transfer tubes connected to the fins and through which the refrigerant passes. A heat exchanger including an exchange part ;
A blower for sending air to the heat exchanger ,
The heat transfer tubes of each of the first heat exchange part and the second heat exchange part form two or more rows in cross section, and the diameters of the heat transfer tubes are the same for each row, and on one side The diameter of the row is larger than the diameter of the other row,
The first heat exchanging section is arranged so that air with a relatively high wind speed flows in, the diameter of the other row is located on the air inflow side, and the one side on the air outflow side Are arranged so that the diameter of the row of
The second heat exchanging section is arranged so that air with a relatively slow wind speed flows in, the diameter of the one side row is located on the air inflow side, and the other side on the air outflow side Are arranged so that the diameter of the row of
The first heat exchange unit and the second heat exchange unit have the same number of rows of heat transfer tubes, and the diameters of the heat transfer tubes constituting the rows corresponding to each other. is configured to,
The first heat exchanging part is arranged on a front part which is a side from which air is discharged into the room by the blower, and the second heat exchanging part is arranged on a rear part which is an attached side. Air conditioner indoor unit .
前記第1の熱交換部および前記第2の熱交換部は、断面において前記一方側の列から前記他方側の列に向けて、前記伝熱管の径が順次細くなるように構成されていることを特徴とする、請求項1に記載の空気調和機の室内機The first heat exchange section and the second heat exchange section are configured such that the diameter of the heat transfer tube gradually decreases from the one side row to the other side row in a cross section. The indoor unit of the air conditioner according to claim 1, wherein 房運転時には、
前記第2の熱交換部における前記一方側の列の径の前記伝熱管を冷媒入口とし、
前記第2の熱交換部における前記一方側の列の径の前記伝熱管から流出した冷媒を複数の流路に分配して、前記第2の熱交換部における前記他方側の列の径の前記伝熱管に流入させるように構成されていることを特徴とする、請求項1または2に記載の空気調和機の室内機。
At the time of cold bunch operation,
The heat transfer tube having the diameter of the one side row in the second heat exchange section is a refrigerant inlet,
The refrigerant that has flowed out of the heat transfer tubes having the diameter of the one side row in the second heat exchange section is distributed to a plurality of flow paths, and the diameter of the other side row in the second heat exchange section is It is comprised so that it may flow in into a heat exchanger tube, The indoor unit of the air conditioner of Claim 1 or 2 characterized by the above-mentioned .
冷房運転時には、
前記第2の熱交換部における前記他方側の列の径の前記伝熱管から流出した冷媒を、前記第1の熱交換部における前記他方側の列の径の前記伝熱管を介して、前記第1の熱交換部における前記一方側の列の径の前記伝熱管に流入させ、
前記第1の熱交換部における前記一方側の列の径の前記伝熱管を冷媒出口とすることを特徴とする、請求項3に記載の空気調和機の室内機。
During cooling operation,
The refrigerant that has flowed out of the heat transfer tube having the diameter of the other row in the second heat exchange section passes through the heat transfer tube having the diameter of the other row in the first heat exchange section. Flow into the heat transfer tube of the diameter of the row on the one side in the heat exchange section of 1;
The indoor unit of an air conditioner according to claim 3, wherein the heat transfer tube having a diameter of the one side row in the first heat exchange section is used as a refrigerant outlet.
JP2006213629A 2006-08-04 2006-08-04 Air conditioner indoor unit Active JP4785670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213629A JP4785670B2 (en) 2006-08-04 2006-08-04 Air conditioner indoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213629A JP4785670B2 (en) 2006-08-04 2006-08-04 Air conditioner indoor unit

Publications (3)

Publication Number Publication Date
JP2008039278A JP2008039278A (en) 2008-02-21
JP2008039278A5 JP2008039278A5 (en) 2008-10-16
JP4785670B2 true JP4785670B2 (en) 2011-10-05

Family

ID=39174495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213629A Active JP4785670B2 (en) 2006-08-04 2006-08-04 Air conditioner indoor unit

Country Status (1)

Country Link
JP (1) JP4785670B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715971B2 (en) * 2009-11-04 2011-07-06 ダイキン工業株式会社 Heat exchanger and indoor unit equipped with the same
CN105659039B (en) * 2013-10-25 2017-09-12 三菱电机株式会社 Heat exchanger and the refrigerating circulatory device using the heat exchanger
JP6415721B2 (en) * 2015-07-07 2018-10-31 三菱電機株式会社 Heat exchanger, refrigeration cycle apparatus and heat exchanger manufacturing method
WO2020165973A1 (en) * 2019-02-13 2020-08-20 三菱電機株式会社 Indoor unit of air conditioning device, and air conditioning device
CN215260159U (en) 2021-07-28 2021-12-21 广东美的制冷设备有限公司 Heat exchanger assembly and air conditioner indoor unit with same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296483A (en) * 1992-04-17 1993-11-09 Toshiba Corp Air conditioning apparatus
JP2001174047A (en) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd Indoor unit of air conditioner
JP2004019999A (en) * 2002-06-14 2004-01-22 Matsushita Electric Ind Co Ltd Heat exchanger with fin, and manufacturing method therefor
JP2006097953A (en) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd Heat exchanger with fin
JP3898205B2 (en) * 2004-11-02 2007-03-28 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2008039278A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
EP2498039B1 (en) Heat exchanger and indoor unit including the same
AU2007303268B2 (en) Indoor unit for air conditioner
US20130306285A1 (en) Heat exchanger and air conditioner
JP4178472B2 (en) Heat exchanger and air conditioner
JP2008196811A (en) Air conditioner
JP6644173B2 (en) Dehumidifier
JP4785670B2 (en) Air conditioner indoor unit
EP1757869A2 (en) Heat exchanger for air conditioner having different circuit pattern depending on distance from fan
JP2016200338A (en) Air conditioner
JP2006336935A (en) Outdoor unit for refrigeration air conditioner
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP2014137177A (en) Heat exchanger and refrigerator
JPH11337104A (en) Air conditioner
JP2003232553A (en) Air conditioner
JP2007192442A (en) Heat exchanger
JP2007147221A (en) Heat exchanger with fin
JP2008121996A (en) Air conditioner
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JP3177302U (en) Air conditioning unit
JP4624146B2 (en) Air conditioner indoor unit
JP7414845B2 (en) Refrigeration cycle equipment
WO2014125997A1 (en) Heat exchange device and refrigeration cycle device equipped with same
JP6678413B2 (en) Air conditioner
JPH10196984A (en) Air conditioner
WO2022264375A1 (en) Dehumidifying device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4785670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3