JPH09145187A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH09145187A
JPH09145187A JP30546495A JP30546495A JPH09145187A JP H09145187 A JPH09145187 A JP H09145187A JP 30546495 A JP30546495 A JP 30546495A JP 30546495 A JP30546495 A JP 30546495A JP H09145187 A JPH09145187 A JP H09145187A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor
refrigerant
heat transfer
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30546495A
Other languages
Japanese (ja)
Inventor
Masayuki Nonaka
正之 野中
Hiroaki Matsushima
弘章 松嶋
Kazuhiro Endo
和広 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30546495A priority Critical patent/JPH09145187A/en
Publication of JPH09145187A publication Critical patent/JPH09145187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate deviation in the air speed distribution of the in-flow air of an outdoor heat exchanger. SOLUTION: The number of heat transfer tubes of the path in which the in-flow air speed is lower than the mean in-flow air speed into an outdoor heat exchanger 7 is higher than the number of heat transfer tubes 5 of the path in which the in-flow air speed is higher than the mean in-flow air speed into the outdoor heat exchanger 7. Alternatively, a refrigerant inlet in heating the pass with the air speed distribution is connected to the heat transfer tubes 5 other than those of a part with lowest air speed in the path. Or, a second decompression device 11 is provided between an indoor heat exchanger 3 and a decompression device 4 so that the refrigerant between the decompression device 4 and the second decompression device flows in the heat transfer tube at the lowest stage of the outdoor heat exchanger 7. Or, an auxiliary heat exchanger is provided on a part in which the in-flow air speed into the outdoor heat exchanger 7 is higher than the mean value. Or, the heat transfer ratio of the first half path of an evaporator is larger than that of the second half path.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非共沸混合冷媒を用
いた空気調和装置に関する。
TECHNICAL FIELD The present invention relates to an air conditioner using a non-azeotropic mixed refrigerant.

【0002】[0002]

【従来の技術】従来、圧縮機,四方弁,室内熱交換器,
減圧装置,室外熱交換器を接続し、室外熱交換器に送風
する室外ファンを設けた空気調和装置は、例えば、特開
平5−133564号公報に示されるように、圧縮機を室外ユ
ニットの底面に横向きに設置し、電装品箱を室外ユニッ
トの天井面に設置するような構造となっていた。さらに
熱交換器の伝熱管が複数パスにより構成されている場合
は、各パスの流量が等しくなるように、各パスの段数を
同一とし流路抵抗を等しくしていた。そして分配不適正
が生じる場合は、特開平5−118682 号公報に示されるよ
うに、各パスの流路入口に冷媒流量の制御手段を備える
ものであった。
2. Description of the Related Art Conventionally, compressors, four-way valves, indoor heat exchangers,
An air conditioner provided with an outdoor fan that connects a decompression device and an outdoor heat exchanger and blows air to the outdoor heat exchanger is, for example, as shown in JP-A-5-133564, a compressor is installed on the bottom surface of the outdoor unit. It was installed sideways and the electrical equipment box was installed on the ceiling surface of the outdoor unit. Further, when the heat transfer tube of the heat exchanger is constituted by a plurality of passes, the number of stages in each pass is made the same and the flow path resistance is made equal so that the flow rate of each pass becomes equal. When an improper distribution occurs, as shown in Japanese Patent Laid-Open No. 5-118682, a means for controlling the flow rate of the refrigerant is provided at the flow path inlet of each path.

【0003】[0003]

【発明が解決しようとする課題】しかし上記従来例で
は、ユニット内に設けられた仕切板や電装品収納箱が通
風抵抗となり、複数パスの室外熱交換器を通過する空気
は、風速分布に偏りが生じてしまっていた。そのため空
気調和装置の性能や信頼性が低下し、さらに冷媒に非共
沸混合冷媒を用いるとさらに性能が低下してしまうこと
が問題であった。
However, in the above-mentioned conventional example, the partition plate and the electrical equipment storage box provided in the unit serve as ventilation resistance, and the air passing through the outdoor heat exchangers of a plurality of paths has a biased wind speed distribution. Had happened. Therefore, there is a problem that the performance and reliability of the air conditioner are deteriorated, and the performance is further deteriorated when a non-azeotropic mixed refrigerant is used as the refrigerant.

【0004】すなわち、例えば、図2の左に示すよう
に、下側パスの風速が上側パスの風速より低い場合、そ
れに伴い交換熱量も小さくなるので下側パスの出口部分
の温度は、図2の右に示すように、上側パスの出口温度
と大きく異なるので、乾き度も異なり、熱交換器の性能
が低下し、圧縮機へ液冷媒が戻ってしまい圧縮機が破壊
する場合があった。さらに図3の左に示すように、出口
部分の乾き度をあわせるために一方のパスの冷媒入口部
分に、絞り弁やキャピラリなどの抵抗を設けて、冷媒分
配量を適正化しても、非共沸混合冷媒の場合には性能が
低下した。これは非共沸混合冷媒は、凝縮あるいは蒸発
過程の二相域では、一定圧力下で露点温度と沸点温度が
異なるため、乾き度が小さいほど温度が低い、つまり蒸
発器入口温度が最も低くなるためで、たとえば冷媒流量
の大きすぎるパスの入口部分に抵抗を設けると、図3の
右に示すようにその流路抵抗によりさらに入口温度は低
下し、着霜や凍結がさらに起こりやすくなるためであ
る。
That is, for example, as shown on the left side of FIG. 2, when the wind speed of the lower path is lower than the wind speed of the upper path, the amount of heat exchanged also decreases accordingly, so the temperature at the outlet of the lower path is as shown in FIG. As shown on the right side of the figure, since the temperature is significantly different from the outlet temperature of the upper path, the degree of dryness is also different, the performance of the heat exchanger is deteriorated, and the liquid refrigerant returns to the compressor, which may destroy the compressor. Further, as shown on the left side of FIG. 3, even if a refrigerant distribution amount is optimized by providing a resistance such as a throttle valve or a capillary at the refrigerant inlet portion of one path in order to adjust the dryness of the outlet portion, In the case of the boiling mixed refrigerant, the performance deteriorated. This is because the non-azeotropic mixed refrigerant has a different dew point temperature and boiling point temperature under constant pressure in the two-phase region of the condensation or evaporation process, so the lower the dryness, the lower the temperature, that is, the evaporator inlet temperature becomes the lowest. Therefore, for example, if a resistance is provided at the entrance of a path where the flow rate of the refrigerant is too large, the entrance temperature further decreases due to the flow path resistance as shown in the right side of FIG. 3, and frost and freezing are more likely to occur. is there.

【0005】また非共沸混合冷媒では風速分布があるパ
スでは、暖房時の冷媒入口が風速の小さい部分にあると
着霜量が多くなってしまった。これは図4に示すよう
に、非共沸混合冷媒は乾き度が小さいほど温度は低いの
で、入口付近の風速が小さいと交換熱量が小さいので相
変化も小さく、冷媒温度が上昇せず、伝熱管の着霜範囲
が長くなってしまうためである。
In the non-azeotropic mixed refrigerant, the amount of frost is increased when the refrigerant inlet at the time of heating is located in a portion where the wind speed is low in the path having the wind speed distribution. As shown in FIG. 4, the non-azeotropic mixed refrigerant has a lower temperature as the dryness is smaller.Therefore, if the wind velocity near the inlet is small, the amount of heat exchanged is small, so the phase change is small and the refrigerant temperature does not rise. This is because the frosting range of the heat tube becomes longer.

【0006】また風速分布が均一であっても、蒸発器入
口温度が低くなる非共沸混合冷媒はパスの前半では着霜
が生じやすかった。
Even if the wind velocity distribution is uniform, the non-azeotropic mixed refrigerant in which the temperature at the inlet of the evaporator is low is likely to form frost in the first half of the pass.

【0007】また図5に示すように、蒸発器で凝縮した
ドレン水は、重力の影響により落下し、最下段付近にシ
ャーベット状に溜まってしまうので、この部分から上方
のフィンに付着しているドレン水が下方に流れず霜や氷
が成長してしまい、性能低下の要因となっていた。
Further, as shown in FIG. 5, the drain water condensed in the evaporator falls under the influence of gravity and accumulates in a sherbet shape in the vicinity of the lowermost stage, so that it is attached to the upper fins from this portion. Drain water did not flow downward, and frost and ice grew, which was a factor of performance degradation.

【0008】本発明の目的は、冷媒に非共沸混合冷媒を
用いる空気調和装置の性能向上にある。
An object of the present invention is to improve the performance of an air conditioner that uses a non-azeotropic mixed refrigerant as the refrigerant.

【0009】[0009]

【課題を解決するための手段】上記の目的は、室外熱交
換器への流入風速が平均より低いパスの伝熱管の本数
を、室外熱交換器への流入風速が平均より高いパスの伝
熱管の本数より多くすることにより達成される。
[Means for Solving the Problems] The above-mentioned object is to determine the number of heat transfer tubes in a path in which the inflow air velocity into the outdoor heat exchanger is lower than the average, and It is achieved by making the number of lines larger than.

【0010】また上記の目的は、室外熱交換器の風速分
布があるパスの暖房時の冷媒入口を、そのパス内で最も
風速の低い部分の伝熱管以外の伝熱管に接続することで
達成される。
Further, the above object is achieved by connecting the refrigerant inlet at the time of heating of the path having the wind speed distribution of the outdoor heat exchanger to the heat transfer tubes other than the heat transfer tube at the lowest wind speed in the path. It

【0011】また上記の目的は、第2の減圧装置を室内
熱交換器と減圧装置との間に設け、減圧装置と第2の減
圧装置間の冷媒が、室外熱交換器の最下段の伝熱管に流
れるようにすることで達成される。
Another object of the present invention is to provide a second decompression device between the indoor heat exchanger and the decompression device so that the refrigerant between the decompression device and the second decompression device is transferred to the lowest stage of the outdoor heat exchanger. This is achieved by allowing it to flow into the heat tube.

【0012】また上記の目的は、室外熱交換器への流入
風速が平均より高い部分に、補助熱交換器を設けること
で達成される。
Further, the above object can be achieved by providing the auxiliary heat exchanger at a portion where the wind velocity flowing into the outdoor heat exchanger is higher than average.

【0013】また上記の目的は、室外熱交換器の底面の
設置高さを、圧縮機の設置高さより高くすることで達成
される。
The above object is also achieved by making the installation height of the bottom surface of the outdoor heat exchanger higher than the installation height of the compressor.

【0014】また上記の目的は、室外熱交換器あるいは
室内熱交換器を蒸発器として用いたときの前半パスの熱
伝達率を後半パスの熱伝達率より大きくすることで達成
される。
Further, the above object can be achieved by making the heat transfer coefficient of the first half path larger than that of the second half path when the outdoor heat exchanger or the indoor heat exchanger is used as an evaporator.

【0015】[0015]

【発明の実施の形態】本発明の第1の実施例を図1を用
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG.

【0016】図1で、1は圧縮機、2は四方弁、3は室
内熱交換器、4は膨張弁、7はパス数が三つの室外熱交
換器で伝熱管5,フィン6から構成されていて、各パス
の伝熱管の本数は上側から6本,8本,10本の計24
本である。これらは順に配管接続され、さらに8の室内
送風ファン、9の室外送風ファンとともに空気調和装置
が構成されている。ここで圧縮機1は室外ユニット10
の底部に仕切板12とともに設置され、この影響により
図1左側に示すような風速分布となっている。冷媒には
たとえばHFC−32/125/134aやHFC−3
2/134a非共沸混合冷媒が封入されている。
In FIG. 1, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is an expansion valve, 7 is an outdoor heat exchanger having three passes, and is composed of a heat transfer tube 5 and fins 6. However, the number of heat transfer tubes in each path is 6, 8 and 10 from the top, totaling 24.
It is a book. These are sequentially connected by pipes, and an air conditioner is configured with 8 indoor ventilation fans and 9 outdoor ventilation fans. Here, the compressor 1 is the outdoor unit 10
It is installed together with the partition plate 12 at the bottom of the, and due to this effect, the wind velocity distribution is as shown on the left side of FIG. Examples of the refrigerant include HFC-32 / 125 / 134a and HFC-3.
A 2 / 134a non-azeotropic mixed refrigerant is enclosed.

【0017】このように構成された空気調和装置の動作
について、暖房を例に取り説明する。
The operation of the thus-configured air conditioner will be described by taking heating as an example.

【0018】圧縮機1で圧縮された高温高圧の冷媒ガス
は、四方弁2を通り、室内熱交換器3で室内送風ファン
8により送風される空気に放熱して凝縮し、膨張弁4で
減圧され、3パスに分かれて室外熱交換器7に、全パス
ともパス内でもっとも風速の大きい伝熱管(上側パスか
は1段目、中側パスは7段目、下側パスは15段目)か
ら入る。ここで冷媒は室外送風ファン9により送風され
る空気から吸熱して蒸発するが、ここでの各パスの伝熱
管の本数は、下側パスの方が多いので、下側パスの方が
伝熱面積は大きい。しかし下側パスほど空気風速は小さ
いため、各パスでの交換熱量の差は小さくなり、各パス
部での出口付近での過熱度の差は小さくなる。すなわち
各パスの空気の風速に適した伝熱面積となっている。そ
して冷媒は四方弁2を通り、再び圧縮機1へ戻る。
The high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, radiates heat to the air blown by the indoor blower fan 8 in the indoor heat exchanger 3 and condenses, and decompresses by the expansion valve 4. The heat transfer tube with the highest wind speed in all the paths is divided into 3 passes and the outdoor heat exchanger 7 (the upper pass is the first stage, the middle pass is the 7th stage, the lower pass is the 15th stage). ). Here, the refrigerant absorbs heat from the air blown by the outdoor blower fan 9 and evaporates, but since the number of heat transfer tubes in each path is larger in the lower path, the lower path transfers heat. The area is large. However, since the air velocity is lower in the lower path, the difference in the amount of heat exchanged in each path is small, and the difference in the degree of superheat near the outlet in each path is small. That is, the heat transfer area is suitable for the wind velocity of the air in each pass. Then, the refrigerant passes through the four-way valve 2 and returns to the compressor 1 again.

【0019】ここで伝熱管の本数について図6を用いて
説明する。図6右は本実施例における各パスの交換熱量
である。交換熱量は熱交換器の伝熱面積と熱伝達率に比
例する。そのため各パスの伝熱管の本数の最適値はその
熱交換器の風速分布により異なり、伝熱管の本数はこの
点を考慮して決定している。
Here, the number of heat transfer tubes will be described with reference to FIG. The right side of FIG. 6 shows the amount of heat exchanged in each pass in this embodiment. The amount of heat exchanged is proportional to the heat transfer area and heat transfer coefficient of the heat exchanger. Therefore, the optimum value of the number of heat transfer tubes in each pass depends on the wind speed distribution of the heat exchanger, and the number of heat transfer tubes is determined in consideration of this point.

【0020】そのため図6左に示すような各パスの伝熱
管の本数が同じ場合より熱交換効率は向上する。また従
来用いていた冷媒分配適正化のために暖房時のパスの冷
媒入口部分に設ける絞り弁やキャピラリなどの抵抗を、
不要かあるいは小さくできるので流路抵抗を少なくで
き、その圧力低下に伴う温度低下がなくなり、蒸発器入
口部温度が上昇し着霜や凍結を少なくできる。
Therefore, the heat exchange efficiency is improved as compared with the case where the number of heat transfer tubes in each path is the same as shown in the left side of FIG. In addition, in order to optimize the distribution of the refrigerant that has been used conventionally, the resistance of the throttle valve and capillaries, etc., provided at the refrigerant inlet part of the path during heating,
Since it is unnecessary or can be made small, the flow path resistance can be reduced, the temperature drop due to the pressure drop is eliminated, the evaporator inlet temperature rises, and frosting and freezing can be reduced.

【0021】さらに上下パスとも、暖房時の冷媒入口
を、最も風速の低い伝熱管以外の伝熱管に接続している
ので、伝熱管の低温部の長さを短くでき、着霜を少なく
でき、空気調和装置の性能を向上することができる。
Further, in both the upper and lower paths, the refrigerant inlet at the time of heating is connected to the heat transfer tubes other than the heat transfer tube having the lowest wind speed, so that the length of the low temperature portion of the heat transfer tube can be shortened and frost formation can be reduced. The performance of the air conditioner can be improved.

【0022】また冷房の場合は、圧縮機で圧縮された高
温高圧の冷媒ガスは、四方弁2を通り、3パスに分かれ
て室外熱交換器7に入る。ここで冷媒は室外送風ファン
9により送風される空気に放熱して凝縮する。暖房時と
同様に、ここでの各パスの伝熱管の本数は、上側から6
本,8本,10本と、下側パスほど伝熱面積は大きい。
しかし下側ほど空気風速は小さいため、各パスの交換熱
量の差は小さくなり、各パス部での出口付近での過冷却
度の差は小さくなり、熱交換器効率が良い。そして冷媒
は膨張弁4で減圧され、室内熱交換器3で送風ファン8
により送風される空気から吸熱して蒸発し、四方弁2を
通り、再び圧縮機1へ戻る。
Further, in the case of cooling, the high-temperature and high-pressure refrigerant gas compressed by the compressor passes through the four-way valve 2 and is divided into three paths to enter the outdoor heat exchanger 7. Here, the refrigerant radiates heat to the air blown by the outdoor blower fan 9 to be condensed. As with heating, the number of heat transfer tubes in each pass is 6 from the top.
The heat transfer area is larger for lower paths, such as eight, ten, and ten.
However, since the air wind speed is lower toward the lower side, the difference in the amount of heat exchanged between the passes is small, the difference in the degree of subcooling near the outlet in each pass is small, and the heat exchanger efficiency is good. Then, the refrigerant is decompressed by the expansion valve 4 and blown by the blower fan 8 by the indoor heat exchanger 3.
Heat is absorbed from the air blown by and is evaporated, passes through the four-way valve 2, and returns to the compressor 1 again.

【0023】以上のように暖房時と同様にパスごとに熱
交換を行う空気の風速が異なっても、各パスの段数を増
減したことで風速に適した伝熱面積となっているので、
各パスの段数が同じ場合より熱交換効率は向上する。さ
らに従来用いていた冷媒分配適正化のために設ける絞り
弁やキャピラリなどの抵抗を不要かあるいは小さくでき
る。
As described above, even if the wind speed of the air for heat exchange is different for each pass as in the case of heating, the heat transfer area suitable for the wind speed can be obtained by increasing or decreasing the number of stages in each pass.
The heat exchange efficiency is improved compared to the case where the number of stages in each pass is the same. Further, the resistance of the throttle valve, the capillary, etc., which is conventionally used for optimizing the distribution of the refrigerant, can be eliminated or reduced.

【0024】本発明の第2の実施例を図7を用いて説明
する。
A second embodiment of the present invention will be described with reference to FIG.

【0025】図7で11は第2の減圧装置としての膨張
弁、7はパス数が四つの室外熱交換器で伝熱管5,フィ
ン6から構成されていて、各パスの伝熱管の本数は上側
から6本,8本,8本,2本の計24本である。これら
は図7に示されるように配管接続され、さらに8の室内
送風ファン,9の室外送風ファン,12の仕切板ととも
に空気調和装置が構成されている。ここで圧縮機1は室
外ユニット10の底部に仕切板12とともに設置され、
この影響により図7左側に示すような風速分布となって
いる。冷媒にはたとえばHFC−32/125/134
aやHFC−32/134a非共沸混合冷媒が封入され
ている。
In FIG. 7, 11 is an expansion valve as a second pressure reducing device, 7 is an outdoor heat exchanger having four passes and is composed of heat transfer tubes 5 and fins 6. The number of heat transfer tubes in each pass is There are a total of 24, which are 6, 8, 8 and 2 from the upper side. These are connected by pipes as shown in FIG. 7, and an air conditioner is configured with an indoor ventilation fan 8 and an outdoor ventilation fan 9 and a partition plate 12. Here, the compressor 1 is installed on the bottom of the outdoor unit 10 together with the partition plate 12,
Due to this effect, the wind velocity distribution is as shown on the left side of FIG. 7. As the refrigerant, for example, HFC-32 / 125/134
a and HFC-32 / 134a non-azeotropic mixed refrigerant are enclosed.

【0026】このように構成された空気調和装置の動作
について暖房を例に取り説明する。圧縮機1で圧縮され
た高温高圧の冷媒ガスは、四方弁2を通り、室内熱交換
器3で室内送風ファン8により送風される空気に放熱し
て凝縮し、キャピラリチューブ4で減圧され、室外熱交
換器7の最下段に入り、室外送風ファン9により送風さ
れる空気に放熱して凝縮し、最下段から2段目から膨張
弁11に入りさらに減圧される。ここでキャピラリチュ
ーブ4の長さと膨張弁11の開度は最下段パスの冷媒の
温度が0℃以上になるように調節されている。そして冷
媒は3パスに分かれ、各パス内で最も風速の大きい伝熱
管(上側パスは上から1段目、中側パスは上から7段
目、下側パスは上から15段目)から入り、室外送風フ
ァン9により送風される空気から吸熱して蒸発するが、
ここでの各パスの伝熱管の本数は、下のパスほど多いの
で、下のパスの方が伝熱面積は大きい。しかし下ほど通
過する空気風速は小さいため、各パス間の交換熱量差は
小さくなり、各パス部での出口付近での過熱度の差は小
さくなる。すなわち各パスの空気の風速に適した伝熱面
積となっている。そして冷媒は四方弁2を通り、再び圧
縮機1へ戻る。また、室外熱交換器で凝縮したドレン水
は重力の影響によりドレン水が降下するが、最下段パス
の温度は0℃以上であるので着霜や凍結はしない。よっ
てドレン水はそのまま底板に流れていくので、それより
上方のフィンに付着しているドレン水も下方に流れやす
くなり、着霜や凍結がしにくくなる。
The operation of the thus-configured air conditioner will be described taking heating as an example. The high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, radiates heat to the air blown by the indoor blower fan 8 in the indoor heat exchanger 3 to be condensed, and is decompressed by the capillary tube 4 to be exposed outdoors. It enters the lowermost stage of the heat exchanger 7, radiates heat to the air blown by the outdoor blower fan 9 and condenses, and enters the expansion valve 11 from the second stage from the lowermost stage to further reduce the pressure. Here, the length of the capillary tube 4 and the opening degree of the expansion valve 11 are adjusted so that the temperature of the refrigerant in the lowermost path is 0 ° C. or higher. The refrigerant is divided into three passes, and enters from the heat transfer tube with the highest wind speed in each pass (upper pass is the first stage from the top, middle pass is the seventh stage from the top, lower pass is the fifteenth stage from the top). , Which absorbs heat from the air blown by the outdoor blower fan 9 and evaporates,
Since the number of heat transfer tubes in each pass is larger in the lower pass, the lower pass has a larger heat transfer area. However, since the velocity of the passing air is lower toward the bottom, the difference in the amount of heat exchanged between the passes is small, and the difference in the degree of superheat near the outlets of the passes is small. That is, the heat transfer area is suitable for the wind velocity of the air in each pass. Then, the refrigerant passes through the four-way valve 2 and returns to the compressor 1 again. Further, the drain water condensed in the outdoor heat exchanger drops due to the influence of gravity, but since the temperature of the lowermost path is 0 ° C or higher, frosting or freezing does not occur. Therefore, since the drain water flows to the bottom plate as it is, the drain water attached to the fins above it also easily flows downward, and frosting and freezing are less likely to occur.

【0027】さらに上下パスとも、暖房時の冷媒入口
を、最も風速の低い伝熱管以外の伝熱管に接続している
ので、伝熱管の低温部の長さを短くでき、着霜を少なく
でき、空気調和装置の性能を向上することができる。
Further, in both the upper and lower paths, the refrigerant inlet at the time of heating is connected to the heat transfer tubes other than the heat transfer tube having the lowest wind speed, so that the length of the low temperature portion of the heat transfer tube can be shortened and frost formation can be reduced. The performance of the air conditioner can be improved.

【0028】冷房時は、膨張弁11を全開にする。すな
わち、圧縮機1で圧縮された高温高圧の冷媒ガスは、四
方弁2を通り、3パスに分かれて室外熱交換器7に入
る。ここで冷媒は室外送風ファン9により送風される空
気に放熱して凝縮する。暖房時と同様に、ここでの各パ
スの伝熱管の本数は、上側から6本,8本,8本で下側
ほど伝熱面積は大きい。しかし下側ほど空気風速は小さ
いため、各パス間での交換熱量差は小さく、各パス部で
の出口付近での過冷却度の差は小さくなり、熱交換器効
率が良い。そして冷媒は1パスに合流して膨張弁11に
入るが、膨張弁11は全開であるので減圧されないま
ま、下パスの最上段(下から2段目)に入り、室外送風
ファン9により送風される空気に放熱してさらに凝縮か
過冷却し、最下段から出て、キャピラリチューブ4に入
る。キャピラリチューブ4で冷媒は減圧され、室内熱交
換器3に入り、室内送風ファン8により送風される空気
から吸熱して蒸発し、四方弁2を通り、再び圧縮機1へ
戻る。
During cooling, the expansion valve 11 is fully opened. That is, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2 and is divided into three paths to enter the outdoor heat exchanger 7. Here, the refrigerant radiates heat to the air blown by the outdoor blower fan 9 to be condensed. Similar to heating, the number of heat transfer tubes in each path is 6, 8, and 8 from the upper side, and the heat transfer area is larger toward the lower side. However, since the air velocity is lower toward the lower side, the difference in the amount of heat exchanged between the passes is small, the difference in the degree of supercooling near the outlet in each pass is small, and the heat exchanger efficiency is good. Then, the refrigerant merges into one path and enters the expansion valve 11, but since the expansion valve 11 is fully opened, it enters the uppermost stage (second stage from the bottom) of the lower path without being decompressed, and is blown by the outdoor blower fan 9. It radiates heat to the air and further condenses or supercools, exits from the bottom and enters the capillary tube 4. The refrigerant is decompressed in the capillary tube 4, enters the indoor heat exchanger 3, absorbs heat from the air blown by the indoor blower fan 8 to evaporate, passes through the four-way valve 2, and returns to the compressor 1 again.

【0029】以上のように膨張弁11で減圧は行わない
ので、暖房時に最下段パスの耐着霜・凍結制御を行って
も、冷房時に性能が低下することはなく、熱交換器の能
力を最大限利用できる。
As described above, since the expansion valve 11 does not perform decompression, even if the frost-proof / freezing control of the lowermost path is performed during heating, the performance does not decrease during cooling, and the capacity of the heat exchanger is improved. Maximum available.

【0030】本発明の第3の実施例を図8を用いて説明
する。
A third embodiment of the present invention will be described with reference to FIG.

【0031】図8で、7は室外熱交換器で伝熱管5,フ
ィン6から構成されている。また13は補助熱交換器と
してのサブクーラで、室外熱交換器7の上方に取り付け
られている。これらは図8に示されるように配管接続さ
れ、さらに8の室内送風ファン,9の室外送風ファン,
12の仕切板とともに空気調和装置が構成されている。
ここで圧縮機1は室外ユニット10の底部に仕切板12
とともに設置されている。冷媒にはたとえばHFC−3
2/125/134aやHFC−32/134a非共沸混合
冷媒が封入されている。
In FIG. 8, an outdoor heat exchanger 7 is composed of heat transfer tubes 5 and fins 6. Further, 13 is a subcooler as an auxiliary heat exchanger, which is attached above the outdoor heat exchanger 7. These are connected by pipes as shown in FIG. 8, and further, an indoor ventilation fan 8 and an outdoor ventilation fan 9 are provided.
An air conditioner is configured with 12 partition plates.
Here, the compressor 1 has a partition plate 12 at the bottom of the outdoor unit 10.
It is installed together with. For the refrigerant, for example, HFC-3
2/125 / 134a or HFC-32 / 134a non-azeotropic mixed refrigerant is enclosed.

【0032】このように構成された空気調和装置の室外
熱交換器の風速分布について説明する。
The wind velocity distribution of the outdoor heat exchanger of the air conditioner thus configured will be described.

【0033】図10は本実施例の風速分布である。室外
熱交換器7の下側は仕切版12が通風抵抗となっている
が、上側もサブクーラ13が通風抵抗となっているた
め、図9に示すサブクーラ13がない場合より風速分布
は小さくなっている。
FIG. 10 shows the wind velocity distribution of this embodiment. The partition plate 12 has ventilation resistance on the lower side of the outdoor heat exchanger 7, but the subcooler 13 also has ventilation resistance on the upper side, so the wind speed distribution becomes smaller than that without the subcooler 13 shown in FIG. There is.

【0034】次に動作について暖房を例にとり説明す
る。
Next, the operation will be described taking heating as an example.

【0035】圧縮機1で圧縮された高温高圧の冷媒ガス
は、四方弁2を通り、室内熱交換器3で室内送風ファン
8により送風される空気に放熱して凝縮し、膨張弁4で
減圧され、サブクーラ13を通り、3パスに分かれて室
外熱交換器7に入る。サブクーラ13と室外熱交換器7
で冷媒は室外送風ファン9により送風される空気から吸
熱して蒸発し、四方弁2を通り、再び圧縮機1に戻る。
The high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, radiates heat to the air blown by the indoor blower fan 8 in the indoor heat exchanger 3 and condenses, and decompresses by the expansion valve 4. Then, it passes through the subcooler 13 and enters the outdoor heat exchanger 7 in three passes. Subcooler 13 and outdoor heat exchanger 7
Then, the refrigerant absorbs heat from the air blown by the outdoor blower fan 9 and evaporates, passes through the four-way valve 2 and returns to the compressor 1 again.

【0036】ここで室外熱交換器7の風速分布の偏りは
図10に示すように小さいので、各パスの交換熱量はほ
ぼ同等となり、またサブクーラの分の伝熱面積が増える
ので、熱交換効率は向上する。また従来用いていた冷媒
分配適正化のための暖房時のパスの冷媒入口部分に設け
る絞り弁やキャピラリなどの抵抗を、不要かあるいは小
さくできるので流通抵抗を少なくでき、その圧力低下に
伴う温度降下がなくなり、蒸発器入口部温度が上昇し着
霜や凍結を少なくできる。
Here, since the deviation of the wind speed distribution of the outdoor heat exchanger 7 is small as shown in FIG. 10, the heat exchange amount of each path is almost the same, and the heat transfer area for the subcooler increases, so that the heat exchange efficiency is increased. Will improve. In addition, the resistance of the throttle valve and capillaries, etc. provided at the refrigerant inlet part of the path during heating for proper refrigerant distribution, which is conventionally used, is either unnecessary or can be made small so that the flow resistance can be reduced and the temperature drop due to the pressure drop. The temperature at the inlet of the evaporator rises and frost and freezing can be reduced.

【0037】また冷房の場合は圧縮機1で圧縮された高
温高圧の冷媒ガスは、四方弁2を通り、3パスに分かれ
て室外熱交換器7に入り、室外ファン9により送風され
る空気に放熱して凝縮する。ここで暖房時と同様に室外
熱交換器7の風速分布の偏りは図10に示すように小さ
くなっている。そして冷媒は1パスになり、サブクーラ
13で過冷却され、膨張弁4で減圧され、室内熱交換器
3で室内送風ファン8により送風される空気から吸熱し
て蒸発し、四方弁2を通り再び圧縮機1に戻る。
In the case of cooling, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2 and is divided into three passes into the outdoor heat exchanger 7 to be the air blown by the outdoor fan 9. It dissipates heat and condenses. Here, as in the case of heating, the deviation of the wind speed distribution of the outdoor heat exchanger 7 is small as shown in FIG. Then, the refrigerant becomes one pass, is supercooled by the subcooler 13, is decompressed by the expansion valve 4, absorbs heat from the air blown by the indoor blower fan 8 in the indoor heat exchanger 3, evaporates, and passes through the four-way valve 2 again. Return to compressor 1.

【0038】以上のように暖房時同様、室外熱交換器7
の風速分布の偏りは図9に示すように小さいので、各パ
スの交換熱量はほぼ同等となり、熱交換効率は向上す
る、またサブクーラにより冷媒の過冷却域が増え、機器
の効率は向上する。また従来用いていた冷媒分配適正化
のための暖房時のパスの冷媒入口部分に設ける絞り弁や
キャピラリなどの抵抗を、不要かあるいは小さくできる
ので流通抵抗を少なくできる。
As described above, the outdoor heat exchanger 7 is used as in heating.
Since the deviation of the wind speed distribution is small as shown in FIG. 9, the heat exchange amount of each path is almost the same, the heat exchange efficiency is improved, and the subcooler increases the supercooling region of the refrigerant to improve the device efficiency. Further, the resistance of the throttle valve, the capillary, etc. provided at the refrigerant inlet portion of the path at the time of heating for proper refrigerant distribution, which is conventionally used, is unnecessary or can be reduced, so that the flow resistance can be reduced.

【0039】本発明の第4の実施例を図11を用いて説
明する。
A fourth embodiment of the present invention will be described with reference to FIG.

【0040】図11で、14は電装品収納箱で、これら
から室外ユニット10が構成されている。室外熱交換器
7の底面の設置高さは、圧縮機1の設置高さよりh(h
>圧縮機直径)だけ上方にあり、通風路内に圧縮機や電
装品箱等はない。
In FIG. 11, 14 is an electrical equipment storage box, from which the outdoor unit 10 is constructed. The installation height of the bottom surface of the outdoor heat exchanger 7 is more than the installation height of the compressor 1 by h (h
There is no compressor or electrical equipment box in the ventilation passage.

【0041】そのため室外熱交換器の風速分布の偏りは
小さく、室外ユニット10を用いる空気調和装置は、本
発明の第3の実施例同様に各パスの交換熱量はほぼ同等
となり、熱交換効率は向上する。また従来用いていた冷
媒分配適正化のための暖房時のパスの冷媒入口部分に設
ける絞り弁やキャピラリなどの抵抗を、不要かあるいは
小さくできるので流通抵抗を少なくできる。さらに通風
路に圧縮機や電装品収納箱がないので、室外ファンの径
を大きくできるので、同一風量を得るためのファンの回
転数は小さくなり、ファンを駆動するモータの消費電力
を小さくでき、ファン騒音も小さくできる。
Therefore, the deviation of the wind velocity distribution of the outdoor heat exchanger is small, and in the air conditioner using the outdoor unit 10, the heat exchange amount of each path is almost the same as in the third embodiment of the present invention, and the heat exchange efficiency is high. improves. Further, the resistance of the throttle valve, the capillary, etc. provided at the refrigerant inlet portion of the path at the time of heating for proper refrigerant distribution, which is conventionally used, is unnecessary or can be reduced, so that the flow resistance can be reduced. Furthermore, since there is no compressor or electrical component storage box in the ventilation passage, the diameter of the outdoor fan can be increased, so the number of rotations of the fan for obtaining the same air volume is reduced, and the power consumption of the motor that drives the fan can be reduced. Fan noise can also be reduced.

【0042】[0042]

【発明の効果】本発明によれば、圧縮機,四方弁,室内
熱交換器,減圧装置,複数パスの室外熱交換器を接続
し、冷媒に非共沸混合冷媒を封入し、室外熱交換器に送
風する室外ファンを設けた空気調和装置で、室外熱交換
器の風速分布に偏りがあっても、風速が低いパスの伝熱
管の本数を多くすることで、各パスの風速に適した伝熱
面積にでき、性能を向上することができる。
According to the present invention, the compressor, the four-way valve, the indoor heat exchanger, the pressure reducing device, and the plural-pass outdoor heat exchangers are connected to each other, the non-azeotropic mixed refrigerant is sealed in the refrigerant, and the outdoor heat exchange is performed. This is an air conditioner equipped with an outdoor fan that blows air into the air conditioner, and even if the wind speed distribution of the outdoor heat exchanger is uneven, by increasing the number of heat transfer tubes in the low wind speed path, it is suitable for the wind speed of each path. The heat transfer area can be set and the performance can be improved.

【0043】あるいはパス内で最も温度の低くなる冷媒
入口が、風速の低い部分にないので、伝熱管の温度の低
い部分を短くでき、着霜を少なくすることができる。
Alternatively, since the refrigerant inlet having the lowest temperature in the path does not exist in the low wind speed portion, the low temperature portion of the heat transfer tube can be shortened and frost formation can be reduced.

【0044】あるいは室外熱交換器で最もドレン水の溜
まりやすい熱交換器の最下段部付近が冷媒により加熱さ
れるので、着霜や凍結が起こらず、室外熱交換器全体の
水切り性能も向上し、空気調和器の性能が向上する。
Alternatively, since the vicinity of the lowermost part of the heat exchanger in which the drain water is most likely to be collected in the outdoor heat exchanger is heated by the refrigerant, frosting and freezing do not occur and the drainage performance of the entire outdoor heat exchanger is improved. , The performance of the air conditioner is improved.

【0045】あるいは室外熱交換器への流入風速の風速
分布が均一あるいは偏りが小さくなり、熱交換器の効率
が向上する。
Alternatively, the wind velocity distribution of the wind velocity flowing into the outdoor heat exchanger becomes uniform or has a small deviation, and the efficiency of the heat exchanger is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す説明図。FIG. 1 is an explanatory view showing a first embodiment of the present invention.

【図2】風速分布に偏りがある熱交換器冷媒温度分布
図。
FIG. 2 is a heat exchanger refrigerant temperature distribution diagram in which the wind speed distribution is biased.

【図3】冷媒分配を変更するために抵抗を設けた熱交換
器冷媒温度分布図。
FIG. 3 is a heat exchanger refrigerant temperature distribution diagram in which a resistance is provided to change the refrigerant distribution.

【図4】熱交換器の着霜範囲を示す説明図。FIG. 4 is an explanatory view showing a frosting range of the heat exchanger.

【図5】熱交換器ドレン水付着状態の説明図。FIG. 5 is an explanatory diagram of a heat exchanger drain water adhesion state.

【図6】熱交換器の交換熱量の説明図。FIG. 6 is an explanatory diagram of the amount of heat exchanged by the heat exchanger.

【図7】本発明の第2の実施例を示す説明図。FIG. 7 is an explanatory view showing a second embodiment of the present invention.

【図8】本発明の第3の実施例を示す説明図。FIG. 8 is an explanatory diagram showing a third embodiment of the present invention.

【図9】従来の室外熱交換器風速分布図。FIG. 9 is a wind velocity distribution map of a conventional outdoor heat exchanger.

【図10】本発明の第3の実施例での室外熱交換器風速
分布図。
FIG. 10 is an outdoor heat exchanger wind velocity distribution diagram in the third embodiment of the present invention.

【図11】本発明の第4の実施例を示す説明図。FIG. 11 is an explanatory diagram showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…室内熱交換器、4…減圧
装置、5…伝熱管、6…フィン、7…室外熱交換器、8
…室内送風ファン、9…室外送風ファン、10…室外ユ
ニット、11…第2の減圧装置、12…仕切板、13…
サブクーラ、14…電装品収納箱。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Indoor heat exchanger, 4 ... Decompression device, 5 ... Heat transfer tube, 6 ... Fin, 7 ... Outdoor heat exchanger, 8
... indoor blower fan, 9 ... outdoor blower fan, 10 ... outdoor unit, 11 ... second pressure reducing device, 12 ... partition plate, 13 ...
Subcooler, 14 ... Electrical equipment storage box.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,四方弁,複数パスの伝熱管からな
る室内熱交換器,減圧装置、前記複数パスの伝熱管から
なる室外熱交換器を接続し、冷媒に非共沸混合冷媒を用
い、前記室外熱交換器に送風する室外ファンと、前記室
内熱交換器に送風する室内ファンを設けた空気調和装置
において、前記室外熱交換器あるいは前記室内熱交換器
の流入風速が平均より低いパスの伝熱管の本数を、流入
風速が平均より高いパスの伝熱管の本数より多くするこ
とを特徴とする空気調和装置。
1. A non-azeotropic mixed refrigerant is connected to a refrigerant by connecting a compressor, a four-way valve, an indoor heat exchanger including a plurality of heat transfer tubes, a pressure reducing device, and an outdoor heat exchanger including a plurality of heat transfer tubes. In an air conditioner provided with an outdoor fan that blows air to the outdoor heat exchanger and an indoor fan that blows air to the indoor heat exchanger, the inflow speed of the outdoor heat exchanger or the indoor heat exchanger is lower than average. An air conditioner characterized in that the number of heat transfer tubes in a path is set to be greater than the number of heat transfer tubes in a path having an inflow wind speed higher than average.
【請求項2】圧縮機,四方弁,複数パスの伝熱管からな
る室内熱交換器,減圧装置、前記複数パスの伝熱管から
なる室外熱交換器を接続し、冷媒に非共沸混合冷媒を用
い、前記室外熱交換器に送風する室外ファンと、前記室
内熱交換器に送風する室内ファンを設けた空気調和装置
において、前記室外熱交換器あるいは前記室内熱交換器
の風速分布があるパスの、蒸発器として用いたときの冷
媒入口を、そのパス内で最も風速の低い部分の伝熱管以
外の伝熱管に接続することを特徴とする空気調和装置。
2. A non-azeotropic mixed refrigerant is connected to a refrigerant by connecting a compressor, a four-way valve, an indoor heat exchanger including a plurality of heat transfer tubes, a pressure reducing device, and an outdoor heat exchanger including a plurality of heat transfer tubes. Use, in an air conditioner provided with an outdoor fan that blows air to the outdoor heat exchanger and an indoor fan that blows air to the indoor heat exchanger, a path having a wind speed distribution of the outdoor heat exchanger or the indoor heat exchanger. An air conditioner characterized in that the refrigerant inlet when used as an evaporator is connected to a heat transfer tube other than the heat transfer tube in the lowest wind speed portion in the path.
【請求項3】圧縮機,四方弁,室内熱交換器,減圧装
置,複数パスの伝熱管からなる室外熱交換器を接続し、
冷媒に非共沸混合冷媒を用い、前記室外熱交換器に送風
する室外ファンと前記室内熱交換器に送風する室内ファ
ンを設けた空気調和装置において、第2の減圧装置を前
記室内熱交換器と前記減圧装置との間に設け、前記減圧
装置と前記第2の減圧装置間の冷媒が、前記室外熱交換
器の最下段の伝熱管に流れるように配管したことを特徴
とする空気調和装置。
3. A compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger consisting of a plurality of heat transfer tubes are connected,
A non-azeotropic mixed refrigerant is used as a refrigerant, and in an air conditioner provided with an outdoor fan that blows air to the outdoor heat exchanger and an indoor fan that blows air to the indoor heat exchanger, a second decompression device is provided for the indoor heat exchanger. Between the pressure reducing device and the second pressure reducing device, and the refrigerant between the pressure reducing device and the second pressure reducing device is arranged so as to flow to the lowermost heat transfer pipe of the outdoor heat exchanger. .
【請求項4】圧縮機,四方弁,室内熱交換器,減圧装
置,室外熱交換器を接続し、冷媒に非共沸混合冷媒を用
い、前記室外熱交換器に送風する室外ファンと、前記室
外熱交換器に送風する室外ファンを設けた空気調和装置
において、前記室外熱交換器あるいは前記室内熱交換器
への流入風速が平均より高い部分の凝縮器として用いた
ときの冷媒出口に、補助熱交換器を設けることを特徴と
する空気調和装置。
4. An outdoor fan, which is connected to a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger, uses a non-azeotropic mixed refrigerant as a refrigerant, and blows to the outdoor heat exchanger, In an air conditioner provided with an outdoor fan that blows air to the outdoor heat exchanger, a refrigerant outlet when used as a condenser in a portion where the wind velocity flowing into the outdoor heat exchanger or the indoor heat exchanger is higher than the average, an auxiliary An air conditioner comprising a heat exchanger.
【請求項5】圧縮機,四方弁,室内熱交換器,減圧装
置,室外熱交換器を接続し、冷媒に非共沸混合冷媒を用
い、前記室外熱交換器に送風する室外ファンを設けた空
気調和装置において、前記室外熱交換器の底面の設置高
さを、前記圧縮機の設置高さより高くしたことを特徴と
する空気調和装置。
5. A compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger are connected, a non-azeotropic mixed refrigerant is used as a refrigerant, and an outdoor fan for blowing air to the outdoor heat exchanger is provided. In the air conditioner, an installation height of a bottom surface of the outdoor heat exchanger is set higher than an installation height of the compressor.
JP30546495A 1995-11-24 1995-11-24 Air conditioner Pending JPH09145187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30546495A JPH09145187A (en) 1995-11-24 1995-11-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30546495A JPH09145187A (en) 1995-11-24 1995-11-24 Air conditioner

Publications (1)

Publication Number Publication Date
JPH09145187A true JPH09145187A (en) 1997-06-06

Family

ID=17945468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30546495A Pending JPH09145187A (en) 1995-11-24 1995-11-24 Air conditioner

Country Status (1)

Country Link
JP (1) JPH09145187A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608682B1 (en) * 2004-08-20 2006-08-08 엘지전자 주식회사 Indoor unit for air conditioner
JP2008256311A (en) * 2007-04-06 2008-10-23 Daikin Ind Ltd Air conditioning device
JP2010032105A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Air conditioner
JP2010032104A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Air conditioner
JP2010127570A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Heat pump water heater and refrigerating apparatus
JP2011257133A (en) * 2007-05-25 2011-12-22 Mitsubishi Electric Corp Refrigeration cycle device
WO2013160952A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Coolant distributor, and heat exchanger equipped with coolant distributor
JP2013253726A (en) * 2012-06-06 2013-12-19 Mitsubishi Heavy Ind Ltd Heat exchange system
CN103574952A (en) * 2012-08-03 2014-02-12 日立空调·家用电器株式会社 Refrigeration cycle apparatus and refrigeration unit and air-conditioning system equipped with the refrigeration cycle apparatus
WO2014054533A1 (en) * 2012-10-05 2014-04-10 三菱電機株式会社 Outdoor unit and refrigeration cycle device
CN104334997A (en) * 2012-04-26 2015-02-04 三菱电机株式会社 Heat exchanger, and refrigerating cycle device equipped with heat exchanger
JP2015034669A (en) * 2013-08-09 2015-02-19 日立アプライアンス株式会社 Heat exchanger and heat pump water heater using the same
JP2015087074A (en) * 2013-10-31 2015-05-07 ダイキン工業株式会社 Outdoor unit of air conditioning device
JP2015163829A (en) * 2014-02-03 2015-09-10 東プレ株式会社 Heat exchanger for refrigeration device, and refrigeration device
JP2015200497A (en) * 2012-04-26 2015-11-12 三菱電機株式会社 Heat exchanger, and refrigeration cycle device and air conditioner including heat exchanger
WO2016208042A1 (en) * 2015-06-25 2016-12-29 三菱電機株式会社 Air-conditioning device
WO2019059316A1 (en) * 2017-09-25 2019-03-28 ダイキン工業株式会社 Heat exchanger and air conditioning device provided with same
JP2019060596A (en) * 2018-12-17 2019-04-18 ダイキン工業株式会社 Heat exchanger and air conditioner including the same
WO2019142296A1 (en) * 2018-01-18 2019-07-25 三菱電機株式会社 Heat exchanger, outdoor unit, and refrigeration cycle device
JP2020003209A (en) * 2019-10-09 2020-01-09 ダイキン工業株式会社 Heat exchanger and air conditioner including the same
CN112683564A (en) * 2020-12-25 2021-04-20 江苏中科君达物联网股份有限公司 Method for calculating rated refrigerating capacity deviation of air conditioner at different wind speeds
WO2021161439A1 (en) * 2020-02-13 2021-08-19 日立ジョンソンコントロールズ空調株式会社 Air conditioning device
CN114608126A (en) * 2020-12-08 2022-06-10 广东美的暖通设备有限公司 Indoor humidity detection method and device, multi-split air conditioning system and storage medium

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608682B1 (en) * 2004-08-20 2006-08-08 엘지전자 주식회사 Indoor unit for air conditioner
JP2008256311A (en) * 2007-04-06 2008-10-23 Daikin Ind Ltd Air conditioning device
JP2011257133A (en) * 2007-05-25 2011-12-22 Mitsubishi Electric Corp Refrigeration cycle device
JP2010032104A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Air conditioner
JP2010032105A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Air conditioner
JP2010127570A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Heat pump water heater and refrigerating apparatus
US20150101363A1 (en) * 2012-04-26 2015-04-16 Mitsubishi Electric Corporation Refrigerant distributing device and heat exchanger including the same
WO2013160952A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Coolant distributor, and heat exchanger equipped with coolant distributor
CN108489153A (en) * 2012-04-26 2018-09-04 三菱电机株式会社 Heat exchanger, the freezing cycle device and air conditioner for having the heat exchanger
US9689619B2 (en) 2012-04-26 2017-06-27 Mitsubishi Electric Corporation Heat exchanger, refrigeration cycle apparatus including heat exchanger and air-conditioning apparatus
CN104272040B (en) * 2012-04-26 2016-06-15 三菱电机株式会社 Refrigerant distributor, possess the heat exchanger of this refrigerant distributor, freezing cycle device and air conditioner
CN104272040A (en) * 2012-04-26 2015-01-07 三菱电机株式会社 Coolant distributor, and heat exchanger equipped with coolant distributor
CN104334997A (en) * 2012-04-26 2015-02-04 三菱电机株式会社 Heat exchanger, and refrigerating cycle device equipped with heat exchanger
JP2015200497A (en) * 2012-04-26 2015-11-12 三菱電機株式会社 Heat exchanger, and refrigeration cycle device and air conditioner including heat exchanger
JP2013253726A (en) * 2012-06-06 2013-12-19 Mitsubishi Heavy Ind Ltd Heat exchange system
JP2014031944A (en) * 2012-08-03 2014-02-20 Hitachi Appliances Inc Refrigeration cycle device, and refrigerator and air conditioner including the same
CN103574952B (en) * 2012-08-03 2016-10-05 江森自控日立空调技术(香港)有限公司 Refrigerating circulatory device and refrigerating plant and the air-conditioning device with this refrigerating circulatory device
CN103574952A (en) * 2012-08-03 2014-02-12 日立空调·家用电器株式会社 Refrigeration cycle apparatus and refrigeration unit and air-conditioning system equipped with the refrigeration cycle apparatus
JP2014074563A (en) * 2012-10-05 2014-04-24 Mitsubishi Electric Corp Outdoor unit and refrigeration cycle device
US9587886B2 (en) 2012-10-05 2017-03-07 Mitsubishi Electric Corporation Outdoor unit and refrigeration cycle device
WO2014054533A1 (en) * 2012-10-05 2014-04-10 三菱電機株式会社 Outdoor unit and refrigeration cycle device
JP2015034669A (en) * 2013-08-09 2015-02-19 日立アプライアンス株式会社 Heat exchanger and heat pump water heater using the same
JP2015087074A (en) * 2013-10-31 2015-05-07 ダイキン工業株式会社 Outdoor unit of air conditioning device
JP2015163829A (en) * 2014-02-03 2015-09-10 東プレ株式会社 Heat exchanger for refrigeration device, and refrigeration device
WO2016208042A1 (en) * 2015-06-25 2016-12-29 三菱電機株式会社 Air-conditioning device
JPWO2016208042A1 (en) * 2015-06-25 2017-12-21 三菱電機株式会社 Air conditioner
WO2019059316A1 (en) * 2017-09-25 2019-03-28 ダイキン工業株式会社 Heat exchanger and air conditioning device provided with same
JP2019060512A (en) * 2017-09-25 2019-04-18 ダイキン工業株式会社 Air conditioner
CN111065867A (en) * 2017-09-25 2020-04-24 大金工业株式会社 Heat exchanger and air conditioner provided with same
US11692748B2 (en) 2017-09-25 2023-07-04 Daikin Industries, Ltd. Heat exchanger and air conditioning apparatus including the same
WO2019142296A1 (en) * 2018-01-18 2019-07-25 三菱電機株式会社 Heat exchanger, outdoor unit, and refrigeration cycle device
CN111587350A (en) * 2018-01-18 2020-08-25 三菱电机株式会社 Heat exchanger, outdoor unit, and refrigeration cycle device
JP2019060596A (en) * 2018-12-17 2019-04-18 ダイキン工業株式会社 Heat exchanger and air conditioner including the same
JP2020003209A (en) * 2019-10-09 2020-01-09 ダイキン工業株式会社 Heat exchanger and air conditioner including the same
WO2021161439A1 (en) * 2020-02-13 2021-08-19 日立ジョンソンコントロールズ空調株式会社 Air conditioning device
CN114608126A (en) * 2020-12-08 2022-06-10 广东美的暖通设备有限公司 Indoor humidity detection method and device, multi-split air conditioning system and storage medium
CN114608126B (en) * 2020-12-08 2024-04-02 广东美的暖通设备有限公司 Indoor humidity detection method and device, multi-split air conditioning system and storage medium
CN112683564A (en) * 2020-12-25 2021-04-20 江苏中科君达物联网股份有限公司 Method for calculating rated refrigerating capacity deviation of air conditioner at different wind speeds
CN112683564B (en) * 2020-12-25 2022-01-28 江苏中科君达物联网股份有限公司 Method for calculating rated refrigerating capacity deviation of air conditioner at different wind speeds

Similar Documents

Publication Publication Date Title
JPH09145187A (en) Air conditioner
US7757753B2 (en) Multichannel heat exchanger with dissimilar multichannel tubes
US7832231B2 (en) Multichannel evaporator with flow separating manifold
US7559207B2 (en) Method for refrigerant pressure control in refrigeration systems
WO2018047330A1 (en) Air conditioner
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
JP4922669B2 (en) Air conditioner and heat exchanger for air conditioner
US20100006276A1 (en) Multichannel Heat Exchanger
EP1031801A2 (en) Heat exchanger
WO2020029582A1 (en) Fan-free indoor heat exchanger for air source heat pump air conditioner and having built-in heat storage medium
JP2020073854A (en) Refrigeration cycle device
JP3888000B2 (en) Air conditioner
JPH074794A (en) Air-conditioning equipment
JPH10246506A (en) Indoor unit for air conditioner
JPH0798162A (en) Air-conditioner
JP3677887B2 (en) Air conditioner
WO2021131038A1 (en) Heat exchanger and refrigeration cycle device
JP2002195675A (en) Air conditioner
JP3885063B2 (en) Air conditioner
JPH10196984A (en) Air conditioner
CN1959238B (en) Air conditioner
CN217274541U (en) Air conditioning system
WO2021255780A1 (en) Outdoor unit for air conditioning device
JP7080395B2 (en) Heat exchanger unit and refrigeration cycle device
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same