JP3322321B2 - Cylindrical non-aqueous electrolyte secondary battery - Google Patents

Cylindrical non-aqueous electrolyte secondary battery

Info

Publication number
JP3322321B2
JP3322321B2 JP14272493A JP14272493A JP3322321B2 JP 3322321 B2 JP3322321 B2 JP 3322321B2 JP 14272493 A JP14272493 A JP 14272493A JP 14272493 A JP14272493 A JP 14272493A JP 3322321 B2 JP3322321 B2 JP 3322321B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
battery
electrolyte secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14272493A
Other languages
Japanese (ja)
Other versions
JPH06333599A (en
Inventor
重治 大角
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP14272493A priority Critical patent/JP3322321B2/en
Publication of JPH06333599A publication Critical patent/JPH06333599A/en
Application granted granted Critical
Publication of JP3322321B2 publication Critical patent/JP3322321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池の改
良に関するもので、大電流での充・放電が可能な高容量
円筒形非水電解液二次電池を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a non-aqueous electrolyte secondary battery, and provides a high capacity cylindrical non-aqueous electrolyte secondary battery which can be charged and discharged with a large current. .

【0002】[0002]

【従来の技術】近年の各種電子機器の小型化やポータブ
ル化により、小型軽量の高エネルギー密度二次電池の開
発が要望され、また、大気汚染や二酸化炭素等の環境問
題により、電気自動車の早期実用化が望まれており、高
出力、高効率、高エネルギー密度等の特徴を有する新規
な二次電池の開発が要望されている。特に非水電解液を
使用した二次電池は、従来の水溶液電解液を使用した電
池の数倍のエネルギー密度を有することから、その実用
化が待たれている。
2. Description of the Related Art With the recent miniaturization and portableness of various electronic devices, there has been a demand for the development of small and lightweight high-energy density secondary batteries. Practical application is desired, and development of a new secondary battery having features such as high output, high efficiency, and high energy density is demanded. In particular, a secondary battery using a non-aqueous electrolytic solution has several times the energy density of a battery using a conventional aqueous electrolytic solution, and therefore its practical application is expected.

【0003】非水電解液二次電池の正極活物質には、二
硫化チタンをはじめとして、リチウムコバルト複合酸化
物、リチウムマンガン酸化物、五酸化バナジウム、二硫
化モリブデン等、種々のものが検討されている。
Various positive electrode active materials for nonaqueous electrolyte secondary batteries, such as titanium disulfide, lithium cobalt composite oxide, lithium manganese oxide, vanadium pentoxide, and molybdenum disulfide, have been studied. ing.

【0004】非水電解液は、非プロトン性の有機溶媒に
電解質となる金属塩を溶解させたものが用いられてい
る。例えば、リチウム塩に関しては、LiCl O4 、LiP
F6 、LiBF4 、LiAs F6 、LiCF3 SO3 等をプロピレンカ
ーボネート、エチレンカーボネート、1,2-ジメトキシエ
タン、γ- ブチロラクトン、ジオキソラン、2-メチルテ
トラヒドロフラン、ジエチルカーボネート、ジメチルカ
ーボネート、スルホラン等の単独溶媒あるいは混合溶媒
に溶解させたものが使用されている。これらの非水電解
液は、電池容器に注入されて使用されるが、多孔質のセ
パレータに含浸したり、高分子量の樹脂を添加して高粘
性にしたり、ゲル化させて流動性をなくした状態で使用
されることもある。
As the non-aqueous electrolyte, a solution in which a metal salt serving as an electrolyte is dissolved in an aprotic organic solvent is used. For example, for lithium salts, LiCl O 4 , LiP
F 6 , LiBF 4 , LiAs F 6 , LiCF 3 SO 3 and the like alone such as propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, dioxolan, 2-methyltetrahydrofuran, diethyl carbonate, dimethyl carbonate, sulfolane, etc. What is dissolved in a solvent or a mixed solvent is used. These non-aqueous electrolytes are used by being injected into a battery container, but are impregnated in a porous separator, or made to have high viscosity by adding a high molecular weight resin, or gelled to lose fluidity. Sometimes used in state.

【0005】非水電解液電池の負極活物質として、従来
より様々な物質が検討されてきたが、高エネルギー密度
が期待されるものとして、リチウム系の負極が注目を浴
びている。特に非水電解液二次電池の負極として、リチ
ウム金属、リチウム合金、リチウムイオンを保持させた
炭素等が検討されている。
[0005] As the negative electrode active material of the non-aqueous electrolyte battery, various materials have been conventionally studied, but a lithium-based negative electrode has attracted attention as a material expected to have a high energy density. In particular, as a negative electrode of the nonaqueous electrolyte secondary battery, lithium metal, lithium alloy, carbon holding lithium ions, and the like are being studied.

【0006】リチウム金属は高い起電力を有し、高エネ
ルギー密度が期待できるが、その高い反応性のために電
池の安全性に問題があり、充電反応において微粒子状の
金属リチウムが発生しやすく、内部短絡や充放電効率の
低下等が起こるという大きな問題を抱えている。
[0006] Lithium metal has a high electromotive force and can be expected to have a high energy density. However, due to its high reactivity, there is a problem in battery safety. There is a major problem that an internal short circuit or a decrease in charge / discharge efficiency occurs.

【0007】リチウム合金は、このような放電反応に関
与しない金属リチウムの発生を防止することができる
が、特性上合金の電位がリチウム電位に対して貴方向に
シフトし、放電電圧が低下するという欠点があった。ま
た成分に金属リチウムを含有しているために、安全性に
は問題を残していた。
[0007] The lithium alloy can prevent the generation of lithium metal which does not participate in such a discharge reaction. However, the potential of the alloy shifts in a noble direction with respect to the lithium potential due to the characteristic, and the discharge voltage is reduced. There were drawbacks. In addition, since metal lithium is contained as a component, there remains a problem in safety.

【0008】安全性の問題を改善するために、リチウム
イオンを保持するホスト物質として、炭素負極が検討さ
れている。充電された炭素負極は、結晶格子の層間にリ
チウムイオンを保持しており、放電反応により容易にリ
チウムイオンを放出する。炭素負極は、金属リチウムを
使用しないので安全性が高く、充放電による劣化も少な
く、長寿命の非水電解液二次電池が可能となった。
In order to improve the safety problem, a carbon negative electrode has been studied as a host material holding lithium ions. The charged carbon negative electrode holds lithium ions between layers of the crystal lattice, and easily releases lithium ions by a discharge reaction. Since the carbon negative electrode does not use lithium metal, the safety is high, the deterioration due to charge and discharge is small, and a long-life non-aqueous electrolyte secondary battery has become possible.

【0009】ホスト物質として炭素を使用することによ
り、リチウム以外のアルカリ金属のイオンも使用するこ
とが可能となった。カリウムやナトリウムはリチウムよ
り安価であり、イオン状態で使用するかぎり安定であ
り、危険性はない。
The use of carbon as the host material has made it possible to use ions of alkali metals other than lithium. Potassium and sodium are less expensive than lithium, are stable and use no danger as long as they are used in the ionic state.

【0010】負極に用いる炭素については、各種熱分解
炭素や天然および合成のグラファイトがよく知られてい
る。ポリアクリロニトリル系やピッチ系、あるいはレー
ヨン系等の炭素繊維や、ベンゼンやプロパン等を原料と
する気相成長炭素、フェノール樹脂のような高分子化合
物の熱分解による炭素、ピッチやタールを原料とする炭
素等、種々の炭素が使用可能である。
As the carbon used for the negative electrode, various pyrolytic carbons and natural and synthetic graphites are well known. Polyacrylonitrile-based, pitch-based, or rayon-based carbon fiber, vapor-grown carbon from benzene or propane, or carbon, pitch, or tar from pyrolysis of a polymer compound such as phenolic resin Various carbons, such as carbon, can be used.

【0011】炭素はそれ自体で電導性があり、充放電に
ともなう電導性の変化が少ないために、電極からの集電
方法に関してはあまり考慮されなかった。また、電導性
の低い非水電解液中での使用が前提であったため、炭素
を使用した負極は、一般に低電流用、小容量の電極に限
られており、大容量や大型の電極は作成されなかった。
[0011] Since carbon itself has conductivity and changes in conductivity due to charging and discharging are small, little consideration has been given to a method of collecting current from electrodes. In addition, since it was assumed that the electrode was used in a non-aqueous electrolyte with low conductivity, negative electrodes using carbon were generally limited to low-current, small-capacity electrodes. Was not done.

【0012】しかしながら、地球の環境保全やエネルギ
ーの有効利用の観点から、夜間電力の貯蔵や電気自動車
用として、高容量、高出力の電池の要望が高まり、安全
性の高い炭素負極を使用した高容量の非水電解液二次電
池の開発が望まれるようになった。
However, from the viewpoint of environmental protection of the earth and effective use of energy, demand for high-capacity, high-output batteries for nighttime power storage and electric vehicles has been increasing, and high-capacity batteries using highly safe carbon anodes have been demanded. The development of a non-aqueous electrolyte secondary battery having a large capacity has been desired.

【0013】また、従来、非水電解液二次電池は、極板
が薄いため円筒形に構成することもあったが、高容量に
するためには極板面積を増やす必要から何回も極板を巻
くが、巻く回数が多ければ多いほど、中心部の放熱が困
難になり、せっかく高容量にしても、大電流での充・放
電ができなかった。これは、非水電解液二次電池、とく
にリチウム電池やリチウムイオン電池では、高温を避け
る必要から大電流での充・放電ができなかったためであ
る。
Conventionally, a non-aqueous electrolyte secondary battery is sometimes formed in a cylindrical shape because of a thin electrode plate. Although the plate was wound, the more the number of windings, the more difficult it was to radiate heat at the center, and even with a high capacity, charging and discharging with a large current could not be performed. This is because non-aqueous electrolyte secondary batteries, particularly lithium batteries and lithium ion batteries, could not be charged and discharged with a large current because high temperatures had to be avoided.

【0014】[0014]

【発明が解決しようとする課題】従来、円筒形非水電解
液二次電池の外観は図2,3に示すように、容器蓋に孔
があいていることは少なく、せっかく極板面積を増やし
高容量にしても、大電流での充・放電ができなかった。
Conventionally, as shown in FIGS. 2 and 3, the appearance of a cylindrical non-aqueous electrolyte secondary battery is rarely punctured in a container lid, and the area of an electrode plate is increased. Even with a high capacity, charging and discharging with a large current could not be performed.

【0015】[0015]

【課題を解決するための手段】本発明は、大電流での充
・放電ができる高容量の円筒形非水電解液二次電池を提
供するもので、充電可能な正極と、アルカリ金属イオン
を含む非水電解液を含浸せしめたセパレータと、負極と
を具備する非水電解液二次電池において、電池外部と連
通しかつフィンを備えた中空部を設けたことを特徴とす
るものである。
SUMMARY OF THE INVENTION The present invention provides a high-capacity cylindrical non-aqueous electrolyte secondary battery capable of charging and discharging at a large current, comprising a chargeable positive electrode and an alkali metal ion. A non-aqueous electrolyte secondary battery including a separator impregnated with a non-aqueous electrolyte solution and a negative electrode, characterized in that a hollow portion provided with a fin is provided in communication with the outside of the battery.

【0016】[0016]

【作用】セルに中空部を設け、この中空部を外部と連続
せしめるとともに、中空部にフィンを設けることによっ
て、電池の充・放電時に発生する熱を速やかに放散せし
め、これによって大電流での充・放電時にも電池の温度
上昇を防ぐことができ、大電流での充・放電が可能な高
容量非水電解液二次電池を提供することが可能になる。
なお、フィンに風があたるように送風すればさらに効果
的である。
A hollow portion is provided in the cell, the hollow portion is connected to the outside, and fins are provided in the hollow portion to quickly dissipate heat generated during charging and discharging of the battery. The battery temperature can be prevented from rising even during charging and discharging, and a high-capacity nonaqueous electrolyte secondary battery that can be charged and discharged with a large current can be provided.
In addition, it is more effective if the air is blown so that the wind hits the fins.

【0017】[0017]

【実施例】図1は本発明の一実施例である円筒形電池の
外観の模式図である。
FIG. 1 is a schematic view of the appearance of a cylindrical battery according to one embodiment of the present invention.

【0018】1はステンレス鋼製の円筒形容器であり、
その内部に帯状負極と、帯状セパレータ、帯状正極を円
筒状に巻いて収納している。発泡ニッケルに球状の炭素
粉末を保持させた負極と、LiCoO2を含む正極と
が、非水電解液を含浸したポリプロピレン製の多孔質セ
パレータを介して巻回されて、円筒形容器内に挿入され
ている。2は容器蓋であり、容器1の開口部に周縁部で
溶接されている。容器蓋2の一部には安全弁3が設けら
れている。4、5はそれぞれ正極端子および負極端子で
ある。6は中空部に設けられたフィンである。
1 is a cylindrical container made of stainless steel,
A strip-shaped negative electrode, a strip-shaped separator, and a strip-shaped positive electrode are housed in the inside thereof in a cylindrical shape. A negative electrode holding spherical carbon powder in foamed nickel and a positive electrode containing LiCoO 2 are wound through a polypropylene porous separator impregnated with a non-aqueous electrolyte and inserted into a cylindrical container. ing. Reference numeral 2 denotes a container lid, which is welded to the opening of the container 1 at the periphery. A safety valve 3 is provided on a part of the container lid 2. Reference numerals 4 and 5 are a positive terminal and a negative terminal, respectively. Reference numeral 6 denotes a fin provided in the hollow portion.

【0019】本発明実施例電池に使用した負極は次のよ
うにして作製した。重量比で、平均粒径30μmの球状
炭素98部と、結着剤のポリフッ化ビニリデン2部と溶
剤のN−メチル−2−ピロリドン30部とを混練してペ
ースト状にした。このペーストを、負極板支持体である
厚さ1.0mm、平均セル開口径300μm、多孔度9
8%のニッケル発泡体に塗布した後、乾燥、圧延し、電
極基板を作製した。電極基板の大きさは、高さ107m
m(内、活物質が塗布されている部分の高さは100m
m)、長さ3mで、厚さは0.48mmであった。負極
1枚当りの活物質炭素合剤の重量は190gであった。
ここで用いた球状炭素は、球状のフェノール樹脂を熱分
解して得たものである。X線回折法により求めた物性値
は、結晶層間距離(d002)が3.36オングストロー
ム、結晶子の長さ(Lc)が39オングストロームであ
る。
The negative electrode used in the battery of the present invention was prepared as follows. In a weight ratio, 98 parts of spherical carbon having an average particle diameter of 30 μm, 2 parts of polyvinylidene fluoride as a binder, and 30 parts of N-methyl-2-pyrrolidone as a solvent were kneaded to form a paste. This paste was applied to a negative electrode plate support having a thickness of 1.0 mm, an average cell opening diameter of 300 μm, and a porosity of 9 μm.
After coating on an 8% nickel foam, it was dried and rolled to produce an electrode substrate. The size of the electrode substrate is 107m in height
m (the height of the part where the active material is applied is 100 m
m), the length was 3 m, and the thickness was 0.48 mm. The weight of the active material carbon mixture per negative electrode was 190 g.
The spherical carbon used here was obtained by thermally decomposing a spherical phenol resin. The physical properties determined by the X-ray diffraction method are as follows: the distance between crystal layers (d 002 ) is 3.36 Å, and the length of crystallite (L c ) is 39 Å.

【0020】正極は次のようにして作製した。正極活物
質であるLiCo O2 を85部と、導電剤のアセチレンブラッ
ク8部と結着剤のPTFEディスパージョン水溶液(ポリ四
フッ化エチレン樹脂15%含有)34部を混練し、これを一
対のロール間に通してシート状にした後、正極板支持体
4’であるアルミニウム製のエキスパンドメタルの芯材
の両面に圧着して、厚さ0.62mmの正極基板を作製した。
電極基板の大きさは高さ107mm(内、活物質が塗布されて
いる部分の高さは100mm)、長さ3m であった。正極1枚
中の活物質の重量は580g で、45Ahの放電容量に設
計されている。
The positive electrode was manufactured as follows. 85 parts of LiCo O 2 as a positive electrode active material, 8 parts of acetylene black as a conductive agent, and 34 parts of a PTFE dispersion aqueous solution (containing 15% of polytetrafluoroethylene resin) as a binder are kneaded, and this is mixed with a pair. After passing between the rolls to form a sheet, the sheet was pressed against both sides of an aluminum expanded metal core material serving as the positive electrode plate support 4 'to produce a 0.62 mm thick positive electrode substrate.
The size of the electrode substrate was 107 mm in height (of which the height of the portion where the active material was applied was 100 mm) and 3 m in length. The weight of the active material in one positive electrode was 580 g, and the discharge capacity was designed to be 45 Ah.

【0021】セパレータ3として、厚さ0.18mm、目付け
50 g/m2 のポリプロピレン不織布を用いた。
The separator 3 has a thickness of 0.18 mm and a basis weight.
A 50 g / m 2 polypropylene nonwoven fabric was used.

【0022】上記のポリプロピレン不織布からなるセパ
レータを正極板と負極板との間にはさみ、内部にフィン
を有するステンレス鋼製中空芯の周りにこれらの正極と
負極とセパレータを巻いた後、極板群の周囲をポリプロ
ピレンフィルムで覆うとともに固定した。
The above-mentioned separator made of polypropylene non-woven fabric is sandwiched between the positive electrode plate and the negative electrode plate, and the positive electrode, the negative electrode and the separator are wound around a stainless steel hollow core having fins therein. Was covered with a polypropylene film and fixed.

【0023】次に正および負極からリードを取り出し、
容器に挿入した後、蓋を載せ、蓋と容器との間および蓋
とフィンを有する中空芯との間をレーザ溶接した。
Next, the leads are taken out from the positive and negative electrodes,
After being inserted into the container, the lid was placed, and laser welding was performed between the lid and the container and between the lid and the hollow core having the fin.

【0024】電解質には、エチレンカーボネートとジエ
チルカーボネートの1:1混合溶媒にLiPF6 を1モル/
リットルの割合で溶解したものを非水電解質として使用
し、蓋に設けておいた電解質注入口から所定量を注入し
た。注入口はその後レーザ溶接で完全に密閉した。
As the electrolyte, 1 mol / liter of LiPF 6 was added to a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate.
A solution dissolved at a rate of 1 liter was used as a non-aqueous electrolyte, and a predetermined amount was injected from an electrolyte injection port provided in a lid. The inlet was then completely sealed by laser welding.

【0025】実施例電池を、7.5Aの電流で端子電圧
が4.1Vを示すまで充電した後、同じく7.5Aの電流で
放電した。端子電圧が2.8Vに低下するまで4 時間の放電
が可能であり、この電池の放電容量は30Ahであった。
The battery of Example was charged with a current of 7.5 A until the terminal voltage showed 4.1 V, and then discharged with a current of 7.5 A. Discharge for 4 hours was possible until the terminal voltage dropped to 2.8 V, and the discharge capacity of this battery was 30 Ah.

【0026】次にこの電池を充放電サイクル試験に供
し、電池温度の推移を調べた。
Next, this battery was subjected to a charge / discharge cycle test, and the transition of the battery temperature was examined.

【0027】放電 45Aで30分 充電 4.1Vで3時間(最大電流:15A) 試験温度 約30℃(気相中) また、比較のため同じ容量ではあるが、図2に示すよう
に蓋になんら孔のあいていない円筒形電池の温度推移も
同時に調べた。
Discharge 45 A for 30 minutes Charge 4.1 V for 3 hours (maximum current: 15 A) Test temperature about 30 ° C. (in gas phase) For comparison, the capacity is the same, but as shown in FIG. The temperature change of the cylindrical battery without any holes was also examined.

【0028】結果は表1のとおりであった。なお、温度
は容器内のほぼ中央の極板の上部で測定した。
The results are as shown in Table 1. In addition, the temperature was measured at the upper part of the electrode plate almost at the center in the container.

【0029】[0029]

【表1】 [Table 1]

【0030】この表から明らかなように、従来の円筒形
電池では5サイクル目の放電終期には75℃にも達し、
その後の充電ではさらに80℃まで上昇して、危険な状
態になった。一方、本発明の電池は従来の電池に比べ温
度の上昇速度が非常に遅く、45A(1.5CA)もの
電流で放電しているにもかかわらず、5サイクル目の放
電終期で50℃であった。これは電池に中空部を設け、
この中空部が外部と連続しているとともに、フィンを有
していることによって放熱特性が良好になったためと考
えられる。
As is clear from this table, the conventional cylindrical battery reached 75 ° C. at the end of discharge in the fifth cycle,
In the subsequent charging, the temperature further rose to 80 ° C., and became dangerous. On the other hand, the temperature of the battery of the present invention is much slower than that of the conventional battery. Even though the battery is discharged at a current of 45 A (1.5 CA), the temperature of the battery at the end of the fifth cycle is 50 ° C. Was. This provides a hollow part in the battery,
It is considered that this hollow portion is continuous with the outside and has fins, so that heat radiation characteristics have been improved.

【0031】なお、上記実施例では容器の側面は平滑で
あったが、この側面にもフィンを設ければ熱の放散効果
がより一層良好となり、より大きな電流での充放電が可
能になる。
In the above embodiment, the side surface of the container is smooth. However, if fins are provided on this side surface, the effect of dissipating heat is further improved, and charging and discharging with a larger current becomes possible.

【0032】[0032]

【発明の効果】本発明によれば、充電可能な正極と、ア
ルカリ金属イオンを含む非水電解液を含浸せしめたセパ
レータと、負極とを具備する非水電解液二次電池におい
て、電池に中空部を設け、この中空部を外部と連続せし
めるとともに、フィンを設けることによって、電池の充
・放電時に発生する熱を速やかに放散せしめ、これによ
って大電流での充・放電時にも電池の温度上昇を防ぐこ
とができ、大電流での充・放電が可能な高容量非水電解
液二次電池を提供することが可能となり、工業的価値極
めて大である。
According to the present invention, there is provided a non-aqueous electrolyte secondary battery comprising a rechargeable positive electrode, a separator impregnated with a non-aqueous electrolyte containing alkali metal ions, and a negative electrode. The hollow part is connected to the outside and the fins are provided to quickly dissipate the heat generated during charging and discharging of the battery, thereby increasing the temperature of the battery even during charging and discharging with a large current. This makes it possible to provide a high-capacity non-aqueous electrolyte secondary battery capable of charging and discharging with a large current, which is extremely large in industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における円筒形電池の外観の
模式図
FIG. 1 is a schematic view of the appearance of a cylindrical battery according to one embodiment of the present invention.

【図2】従来の円筒形電池の外観の模式図FIG. 2 is a schematic view of the appearance of a conventional cylindrical battery.

【図3】従来の円筒形電池の他の例の外観の模式図FIG. 3 is a schematic view of the appearance of another example of a conventional cylindrical battery.

【符号の説明】 1 容器 2 容器蓋 3 安全弁 4 正極端子 5 負極端子 6 フィン 7 中空部[Description of Signs] 1 container 2 container lid 3 safety valve 4 positive electrode terminal 5 negative electrode terminal 6 fin 7 hollow part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充電可能な正極と、アルカリ金属イオン
を含む非水電解液を含浸せしめたセパレータと、負極と
を具備する非水電解液二次電池において、電池外部と連
通しかつフィンを備えた中空部を設けたことを特徴とす
る円筒形非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery including a rechargeable positive electrode, a separator impregnated with a non-aqueous electrolyte containing alkali metal ions, and a negative electrode, wherein the non-aqueous electrolyte secondary battery includes a fin. A cylindrical non-aqueous electrolyte secondary battery characterized by having a hollow portion.
JP14272493A 1993-05-21 1993-05-21 Cylindrical non-aqueous electrolyte secondary battery Expired - Lifetime JP3322321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14272493A JP3322321B2 (en) 1993-05-21 1993-05-21 Cylindrical non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14272493A JP3322321B2 (en) 1993-05-21 1993-05-21 Cylindrical non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06333599A JPH06333599A (en) 1994-12-02
JP3322321B2 true JP3322321B2 (en) 2002-09-09

Family

ID=15322113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14272493A Expired - Lifetime JP3322321B2 (en) 1993-05-21 1993-05-21 Cylindrical non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3322321B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387561B1 (en) * 1998-10-13 2002-05-14 Ngk Insulators, Ltd. Electrolyte-solution filling method and battery structure of lithium secondary battery
CN101577344B (en) * 2009-06-11 2011-04-20 珠海银通交通能源投资有限公司 Power battery
JP5380321B2 (en) * 2010-02-10 2014-01-08 株式会社日立製作所 Lithium ion secondary battery
US8652676B2 (en) 2010-02-17 2014-02-18 Hitachi, Ltd. Assembled battery system with cooling member between adjacent cells

Also Published As

Publication number Publication date
JPH06333599A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
US8859147B2 (en) Non-aqueous secondary battery
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
US20130108914A1 (en) Lithium ion secondary battery and method for manufacturing the same
WO2018193628A1 (en) Polymer electrolyte composition, and polymer secondary battery
WO2013038939A1 (en) Lithium secondary-battery pack, electronic device using same, charging system, and charging method
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
JPH08306367A (en) Nonaqueous polymer battery
JP2003217667A (en) Nonaqueous electrolyte secondary battery
JP2013131427A (en) Laminated battery
JP4513385B2 (en) Negative electrode for secondary battery and secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP3322321B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JP2002216768A (en) Nonaqueous secondary battery
JP2008016316A (en) Nonaqueous electrolyte secondary battery
JP2002083601A (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2009176598A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH06333553A (en) Nonaqueous secondary battery
JP2952381B2 (en) Non-aqueous electrolyte secondary battery
JP2000208167A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

EXPY Cancellation because of completion of term