JP3272075B2 - Air-hydride batteries - Google Patents

Air-hydride batteries

Info

Publication number
JP3272075B2
JP3272075B2 JP01021393A JP1021393A JP3272075B2 JP 3272075 B2 JP3272075 B2 JP 3272075B2 JP 01021393 A JP01021393 A JP 01021393A JP 1021393 A JP1021393 A JP 1021393A JP 3272075 B2 JP3272075 B2 JP 3272075B2
Authority
JP
Japan
Prior art keywords
electrode
battery
air
gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01021393A
Other languages
Japanese (ja)
Other versions
JPH06223887A (en
Inventor
幹朗 田所
衛 木本
晃治 西尾
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP01021393A priority Critical patent/JP3272075B2/en
Publication of JPH06223887A publication Critical patent/JPH06223887A/en
Application granted granted Critical
Publication of JP3272075B2 publication Critical patent/JP3272075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気極から成る正極と
水素吸蔵合金を備えた負極とから成る空気−水素化物電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-hydride battery comprising a positive electrode comprising an air electrode and a negative electrode comprising a hydrogen storage alloy.

【0002】[0002]

【従来の技術】近年、各種の電池が提案されており、そ
の一つとして空気−亜鉛電池がある。この空気−亜鉛電
池は、表面にパラジウムが析出された炭素とフッ素とを
焼結させて作成した空気極(正極)と、亜鉛極(負極)
とを有する構造である。ところで、上記空気−亜鉛電池
を電気的に充電すると、上記空気極から酸素を発生する
ため、上記炭素が酸化されて二酸化炭素になると共に上
記パラジウムも酸化される。この結果、触媒性能が低下
して、放電特性が低下するため、二次電池として用いる
ことができないという課題を有していた。
2. Description of the Related Art In recent years, various batteries have been proposed, and one of them is an air-zinc battery. This air-zinc battery has an air electrode (positive electrode) made by sintering carbon and fluorine having palladium deposited on the surface, and a zinc electrode (negative electrode)
And a structure having: By the way, when the air-zinc battery is electrically charged, oxygen is generated from the air electrode, so that the carbon is oxidized to carbon dioxide and the palladium is also oxidized. As a result, the catalyst performance is reduced, and the discharge characteristics are deteriorated, so that there is a problem that the battery cannot be used as a secondary battery.

【0003】このようなことを考慮して、放電毎に亜鉛
を取り替えるような充電方法も考えられるが、この場合
には取り替え作業が面倒となる。加えて、亜鉛の再利用
を図るべく酸化亜鉛を還元することも考えられるが、還
元コストが高いため再利用がなされていないのが現状で
ある。この結果、資源の無駄を生じるといった課題を有
している。
In consideration of the above, a charging method in which zinc is replaced for each discharge is conceivable, but in such a case, the replacement operation is troublesome. In addition, it is conceivable to reduce zinc oxide in order to reuse zinc. However, at present, the zinc oxide is not reused due to high reduction cost. As a result, there is a problem that resources are wasted.

【0004】そこで、近年、省資源を図りつつ充放電可
能で、且つ高い放電容量を有する空気−金属水素化物二
次電池が提案されている。そして、このような空気−金
属水素化物二次電池としては、以下のようなものが提案
されている。 図6に示すように、正極(空気極)30と負極(金属
水素化物極)31とから成り、充電は正負極30・31
間で電気的に行うという電池。 図7に示すように、正極30と負極31との他に第3
電極32を備え、充電は第3電極32と負極31との間
で電気的に行うという電池。 図8に示すように、正極30と負極31とから成り、
充電は負極31に水素を供給することによって行うとい
う電池。
Therefore, in recent years, an air-metal hydride secondary battery which can be charged and discharged while saving resources and has a high discharge capacity has been proposed. The following has been proposed as such an air-metal hydride secondary battery. As shown in FIG. 6, a positive electrode (air electrode) 30 and a negative electrode (metal hydride electrode) 31 are charged, and the positive and negative electrodes 30 and 31 are charged.
A battery that is electrically operated between. As shown in FIG. 7, in addition to the positive electrode 30 and the negative electrode 31, a third
A battery comprising an electrode 32, wherein charging is performed electrically between a third electrode 32 and a negative electrode 31. As shown in FIG. 8, it is composed of a positive electrode 30 and a negative electrode 31,
A battery in which charging is performed by supplying hydrogen to the negative electrode 31.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の空気−金属水素化物二次電池では、以下に示すよう
な課題を有していた。 の提案の課題 この場合、正負極では、充電時に下記化1(正極)及び
化2(負極)に示す反応が生じる。
However, the conventional air-metal hydride secondary battery has the following problems. In this case, the positive and negative electrodes undergo the reactions shown in Chemical Formula 1 (positive electrode) and Chemical Formula 2 (negative electrode) during charging.

【0006】[0006]

【化1】 Embedded image

【0007】[0007]

【化2】 Embedded image

【0008】上記化1から明らかなように、充電時には
正極で酸素ガスが発生する。このため、正極の触媒が酸
化されて、触媒性能が低下するという課題を有してい
た。 の提案の課題 この場合、第3電極及び負極では、充電時に下記化3
(第3電極)及び化4(負極)に示す反応が生じる。
As apparent from the above formula 1, oxygen gas is generated at the positive electrode during charging. For this reason, there has been a problem that the catalyst of the positive electrode is oxidized and the catalytic performance is reduced. In this case, in the third electrode and the negative electrode, during charging,
(Third electrode) and the reaction shown in Chemical formula 4 (negative electrode) occur.

【0009】[0009]

【化3】 Embedded image

【0010】[0010]

【化4】 Embedded image

【0011】上記化3及び化4から明らかなように、充
電時には正極で酸素ガス発生反応は生じないので、正極
の触媒が酸化されるようなことはない。しかしながら、
第3電極が必要となるので、電池の大型化を生じるとい
う課題を有していた。 の提案の課題 この場合、負極では、充電時に下記化5に示す反応が生
じる。
As is apparent from the above chemical formulas (3) and (4), no oxygen gas generating reaction occurs at the positive electrode during charging, so that the catalyst of the positive electrode is not oxidized. However,
Since the third electrode is required, there is a problem that the size of the battery is increased. In this case, in the negative electrode, a reaction shown in Chemical Formula 5 occurs at the time of charging.

【0012】[0012]

【化5】 Embedded image

【0013】この場合には、正極の触媒が酸化された
り、電池の大型化を生じるようなことはないが、上記化
5に示す反応は気−固反応であり、水素を多量に供給す
る必要があるため、充電効率が悪くなるという課題を有
していた。本発明は係る現状を考慮してなされたもので
あって、上記諸欠点を解決できる空気−水素化物電池の
提供を目的としている。
In this case, the catalyst of the positive electrode is not oxidized or the size of the battery is not increased. However, the reaction shown in Chemical formula 5 is a gas-solid reaction, and it is necessary to supply a large amount of hydrogen. Therefore, there is a problem that charging efficiency is deteriorated. The present invention has been made in view of the above situation, and has as its object to provide an air-hydride battery that can solve the above-described drawbacks.

【0014】[0014]

【課題を解決するための手段】本発明は上記目的を達成
するために、以下の手段を用いることを特徴としてい
る。 水素を可逆的に吸蔵,放出しうる水素吸蔵合金を備え
た水素化物極と、酸素を吸着すると共に多孔質材料から
成る空気極と、充電時には上記空気極に水素ガスを供給
する一方、放電時には上記空気極に酸素ガスを供給する
ガス供給通路とを有することを特徴とする空気−金属水
素化物二次電池。 水素を可逆的に吸蔵放出しうる水素吸蔵合金を備えた
水素化物極と、酸素を吸着する空気極と、多孔質材料か
ら成る第3電極と、充電時に上記第3電極に水素ガスを
供給する第1ガス供給通路と、放電時に上記空気極に酸
素ガスを供給する第2ガス供給通路とを有することを特
徴とする。
The present invention is characterized by using the following means to achieve the above object. A hydride electrode having a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, an air electrode made of a porous material that adsorbs oxygen, and supplies hydrogen gas to the air electrode at the time of charging, while supplies hydrogen gas to the air electrode at the time of discharging An air-metal hydride secondary battery having a gas supply passage for supplying oxygen gas to the air electrode. A hydride electrode provided with a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, an air electrode for adsorbing oxygen, a third electrode made of a porous material, and supplying hydrogen gas to the third electrode during charging. It has a first gas supply passage and a second gas supply passage for supplying oxygen gas to the air electrode during discharge.

【0015】[0015]

【作用】上記の構成であれば、空気極と金属水素化物
極とにおいて、充電時に下記化6(空気極)及び化7
(金属水素化物極)に示す反応が生じる。
According to the above construction, at the time of charging between the air electrode and the metal hydride electrode, the following formulas (air electrode) and (7)
The reaction shown in (metal hydride electrode) occurs.

【0016】[0016]

【化6】 Embedded image

【0017】[0017]

【化7】 Embedded image

【0018】ここで、上記化6から明らかなように、空
気極における反応は水素が水に戻る反応であって酸素を
発生させるような反応ではない。したがって、空気極の
触媒が酸化されるのを防止でき、触媒能力が低下するの
を抑制することが可能となる。また、上記の如く第3の
電極が不要なので、電池の大型化を招来するようなこと
もなく、しかも気−固反応ではなく電気化学的反応であ
るので、充電効率を向上させることができる。
Here, as is apparent from the above chemical formula 6, the reaction at the air electrode is a reaction that returns hydrogen to water and is not a reaction that generates oxygen. Therefore, it is possible to prevent the catalyst of the air electrode from being oxidized, and it is possible to suppress a decrease in the catalytic ability. In addition, since the third electrode is unnecessary as described above, the battery is not increased in size, and since the reaction is an electrochemical reaction instead of a gas-solid reaction, the charging efficiency can be improved.

【0019】更に、充電時における正負極間に印加する
電圧は0.2V程度で良いので、充電電圧を低減するこ
とも可能となる。尚、上記の構成であれば、第3電極
が不要となるといった利点はないが、従来の第3電極を
設けた電池に比べると、電解液が少なくて済むという利
点がある。具体的には、従来の第3電極を設けた電池で
は、充電時にガスが発生してバブリングを生じるため、
電解液が飛散する。このため、電解液を多量に充填して
おく必要がある。これに対して、上記の構成の電池で
は、充電時にガスが発生しないので、電解液が飛散せ
ず、必要量だけ電解液を充填しておけば良いという理由
による。また、本発明を大型電池に用いる場合には、第
3電極を設けることによる欠点は少ない。更に、専用の
充放電用の触媒を空気極と第3電極とに充填しておくだ
けで良いという利点もある。
Furthermore, since the voltage applied between the positive and negative electrodes during charging may be about 0.2 V, the charging voltage can be reduced. Note that the above configuration does not have the advantage that the third electrode is not required, but has the advantage that the amount of the electrolyte solution is smaller than that of a conventional battery provided with the third electrode. Specifically, in a conventional battery provided with a third electrode, gas is generated during charging and bubbling occurs.
Electrolyte splashes. Therefore, it is necessary to fill a large amount of the electrolytic solution. On the other hand, in the battery having the above configuration, gas is not generated at the time of charging, so that the electrolyte does not scatter and it is sufficient to fill the electrolyte with a required amount. Further, when the present invention is used for a large battery, there are few disadvantages due to the provision of the third electrode. Further, there is an advantage that it is only necessary to fill the air electrode and the third electrode with a dedicated charge / discharge catalyst.

【0020】[0020]

【実施例】【Example】

(第1実施例) 〔実施例1〕本発明の実施例1を、図1〜図3に基づい
て、以下に説明する。図1は本発明の第1実施例に係る
空気−金属水素化物二次電池の斜視図であり、図2は図
1のX−X線矢視断面図、図3は充放電状態を示す説明
図である。
(First Embodiment) [First Embodiment] A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view of an air-metal hydride secondary battery according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line XX of FIG. 1, and FIG. FIG.

【0021】図1に示すように、ポリプロピレンから成
る電槽1(150mm×150mm×30mmの大きさであっ
て、内容積169cc)の一側面には、電解液注入通路2
と電解液取出通路3とが接続されている。また、上記電
槽1の正面には、ステンレスから成り内部が空洞となっ
ているガス室4(120mm×120mm×10mm)が設け
られており、このガス室4にはガス導入通路5が接続さ
れている。このガス導入通路5の端部には上記ガス室4
内に導入するガスを切り換えるバルブ6が設けられてお
り、このバルブ6には空気導入通路7と水素ガス導入通
路8とが接続されている。
As shown in FIG. 1, an electrolyte injection passage 2 is provided on one side of a battery case 1 (having a size of 150 mm.times.150 mm.times.30 mm and an internal volume of 169 cc) made of polypropylene.
And the electrolyte extraction passage 3 are connected. A gas chamber 4 (120 mm × 120 mm × 10 mm) made of stainless steel and having a hollow inside is provided on the front of the battery case 1, and a gas introduction passage 5 is connected to the gas chamber 4. ing. At the end of the gas introduction passage 5, the gas chamber 4
A valve 6 for switching a gas to be introduced into the inside is provided, and an air introduction passage 7 and a hydrogen gas introduction passage 8 are connected to the valve 6.

【0022】また、図2に示すように、前記電槽1のガ
ス室4に対応する位置には、多孔質ニッケル層と触媒層
と多孔質PTFE(ポリテトラフルオロエチレン)層と
から成る正極10(90mm×90mm×10mm)が設けら
れている。更に、電槽1の内部における正極10に対向
する位置には、ポリプロピレンから成るセパレータ11
を介して、水素吸蔵合金(MmNi3.2 CoMn0.6
0.2 )を含む負極12(100mm×100mm×5mm)
が設けられている。尚、本実施例1においては、上記正
極10の触媒層の触媒を添加していない(即ち、触媒層
は、ニッケル単体から構成されている)。また、電解液
としては過剰の30%KOH溶液を用いた。更に、図中
13は蓋である。
As shown in FIG. 2, a positive electrode 10 composed of a porous nickel layer, a catalyst layer, and a porous PTFE (polytetrafluoroethylene) layer is provided at a position corresponding to the gas chamber 4 of the battery case 1. (90 mm × 90 mm × 10 mm). Furthermore, a separator 11 made of polypropylene is provided inside the battery case 1 at a position facing the positive electrode 10.
Through a hydrogen storage alloy (MmNi 3.2 CoMn 0.6 A
negative electrode 12 (100 mm x 100 mm x 5 mm) containing l 0.2 )
Is provided. In the first embodiment, the catalyst of the catalyst layer of the positive electrode 10 was not added (that is, the catalyst layer was composed of nickel alone). In addition, an excessive 30% KOH solution was used as an electrolyte. Further, reference numeral 13 in the figure is a lid.

【0023】ここで、上記構造の空気−金属水素化物二
次電池の充電は、以下のようにして行う。図3に示すよ
うに、バルブ6を水素ガス導入通路8側に切り換えて、
水素ガス導入通路8からガス室4(即ち、正極10)に
水素を供給すると共に、正負極10・12間に若干の電
圧(約0.2V)を加える。
Here, charging of the air-metal hydride secondary battery having the above structure is performed as follows. As shown in FIG. 3, the valve 6 is switched to the hydrogen gas introduction passage 8 side,
Hydrogen is supplied from the hydrogen gas introduction passage 8 to the gas chamber 4 (that is, the positive electrode 10), and a slight voltage (about 0.2 V) is applied between the positive and negative electrodes 10 and 12.

【0024】そうすると、正極10では、下記化8に示
すように、水素が水に戻るという反応を生じる。
Then, in the positive electrode 10, a reaction occurs in which hydrogen returns to water, as shown in the following chemical formula 8.

【0025】[0025]

【化8】 Embedded image

【0026】また、負極12では、下記化9に示すよう
に、水素吸蔵合金中に水素が吸蔵されるような反応を生
じる。
In the negative electrode 12, as shown in the following chemical formula 9, a reaction occurs such that hydrogen is stored in the hydrogen storage alloy.

【0027】[0027]

【化9】 Embedded image

【0028】ここで、電極が酸素発生電位にまで達する
と電極は酸化されるが、上記反応式に示す反応は水素の
酸化電位であり、水素吸蔵合金は電位的に酸化されない
電位である。したがって、上記構成の電池の充電時に
は、正極10が酸化されるのを防止することが可能とな
る。尚、上記電池を放電する際には、バルブ6を空気導
入通路7側に切り換えて、空気導入通路7からガス室4
(即ち、正極10)に空気を供給することにより行う。
Here, when the electrode reaches the oxygen generation potential, the electrode is oxidized.
This is the oxidation potential, which is the potential at which the hydrogen storage alloy is not potentially oxidized. Therefore, it is possible to prevent the positive electrode 10 from being oxidized when charging the battery having the above configuration. When discharging the battery, the valve 6 is switched to the air introduction passage 7 so that the gas chamber 4
(I.e., by supplying air to the positive electrode 10).

【0029】このような電池を、以下(A1 )電池と称
する。 〔実施例2〜7〕触媒層(ニッケル)に、Pd、Pt、
Ru、Os、Ir、Rhを担持させる他は、上記実施例
1と同様の構成である。このような電池を、以下それぞ
れ(A2 )電池〜(A7 )電池と称する。 〔比較例1〜3〕比較例1〜3としては、各々、前記従
来の技術で示す図6、図7、図8の電池を用いた。
Such a battery is hereinafter referred to as (A 1 ) battery. [Examples 2 to 7] Pd, Pt,
The configuration is the same as that of the first embodiment except that Ru, Os, Ir, and Rh are supported. Such batteries, hereinafter respectively referred to as (A 2) batteries ~ (A 7) cells. Comparative Examples 1 to 3 As Comparative Examples 1 to 3, the batteries shown in FIGS.

【0030】このような電池を、以下それぞれ(X1
電池〜(X3 )電池と称する。 〔実験〕上記本発明の(A1 )電池〜(A7 )電池及び
比較例の(X1 )電池〜(X3)電池とにおいて、充電
効率と、エネルギー効率と、サイクル寿命とについて調
べたので、それらの結果を表1に示す。尚、実験条件
は、以下の通りである。 充電 (1)本発明の(A1 )電池〜(A7 )電池 7.5cc/分(0.1C相当)で水素を導入すると共
に、0.1Cの電流で充電する (2)比較例の(X1 )電池,(X2 )電池 0.1Cの電流で充電 (3)比較例の(X3 )電池 7.5cc/分(0.1C相当)で水素を導入 放電 全ての電池を1Aの電流で電池電圧が0.5Vになるま
で放電
Such a battery is referred to below as (X 1 )
It referred to as the battery ~ (X 3) battery. Experiment] In the (A 1) cell ~ (A 7) of the battery and Comparative Example (X 1) cell ~ (X 3) cell of the present invention, the charging efficiency, and energy efficiency were studied and cycle life Table 1 shows the results. The experimental conditions are as follows. Charging (1) Battery (A 1 ) to (A 7 ) battery of the present invention Hydrogen is introduced at 7.5 cc / min (corresponding to 0.1 C), and charged at a current of 0.1 C. (2) Comparative example (X 1 ) battery, (X 2 ) battery Charged with 0.1 C current (3) Comparative example (X 3 ) battery 7.5 cc / min (corresponding to 0.1 C) Introduce hydrogen Discharge All batteries at 1 A Discharge until battery voltage reaches 0.5V

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように、本発明の
(A1 )電池〜(A7 )電池では充電効率、エネルギー
効率、サイクル寿命の全ての点で優れている。これに対
して、比較例の(X1 )電池,(X2 )電池では、充電
効率、エネルギー効率の点で優れるもののサイクル寿命
が短く、特に(X2 )電池では極めて短くなっているこ
とが認められる。また、比較例の(X3 )電池では、充
電効率、エネルギー効率、サイクル寿命の全ての点で劣
っていることが認められる。
As is clear from Table 1, the batteries (A 1 ) to (A 7 ) of the present invention are excellent in all aspects of charging efficiency, energy efficiency and cycle life. On the other hand, the (X 1 ) battery and the (X 2 ) battery of the comparative examples are excellent in charging efficiency and energy efficiency, but the cycle life is short, and particularly, the (X 2 ) battery is extremely short. Is recognized. In addition, it is recognized that the (X 3 ) battery of the comparative example is inferior in all aspects of charging efficiency, energy efficiency, and cycle life.

【0033】(第2実施例) 〔実施例1〕図4に示すように、正負極10・12の他
に第3電極20を設け、この第3電極20の背面にガス
室21を設けると共に、前記ガス室4には酸素ガスのみ
を供給する一方、上記ガス室21には水素ガスのみを供
給するような構造とする他は、前記第1実施例の実施例
1と同様の構造である。
Second Embodiment As shown in FIG. 4, a third electrode 20 is provided in addition to the positive and negative electrodes 10 and 12, and a gas chamber 21 is provided on the back of the third electrode 20. The structure of the first embodiment is the same as that of the first embodiment except that only the oxygen gas is supplied to the gas chamber 4 and only the hydrogen gas is supplied to the gas chamber 21. .

【0034】上記構造の電池を充電する場合には、図5
に示すように、第3電極20に水素ガスを供給しつつ、
負極12と第3電極20との間に電圧をかけることによ
り行う。このような電池を、以下(B1 )電池と称す
る。 〔実施例2〜7〕触媒層に、Pd、Pt、Ru、Os、
Ir、Rhを担持させる他は、上記実施例1と同様の構
成である。
When charging the battery having the above structure, FIG.
As shown in the figure, while supplying hydrogen gas to the third electrode 20,
This is performed by applying a voltage between the negative electrode 12 and the third electrode 20. Such a battery is hereinafter referred to as a (B 1 ) battery. [Examples 2 to 7] Pd, Pt, Ru, Os,
The configuration is the same as that of the first embodiment except that Ir and Rh are supported.

【0035】このような電池を、以下それぞれ(B2
電池〜(B7 )電池と称する。 〔実験〕上記本発明の(B1 )電池〜(B7 )電池にお
いて、充電効率と、エネルギー効率と、サイクル寿命と
について調べたので、それらの結果を表2に示す。尚、
実験条件は、前記第1実施例の実験と同様の条件であ
る。
Such a battery is referred to below as (B 2 )
Referred to as the battery ~ (B 7) battery. In Experiment] The above invention (B 1) cell ~ (B 7) battery, a charging efficiency, and energy efficiency, were studied for the cycle life, the results of which are shown in Table 2. still,
The experimental conditions are the same as those in the experiment of the first embodiment.

【0036】[0036]

【表2】 [Table 2]

【0037】表2から明らかなように、本発明の
(B1 )電池〜(B7 )電池では充電効率、エネルギー
効率、サイクル寿命の全ての点で前記(A1 )電池〜
(A7 )電池と同等であり、比較例の(X1 )電池〜
(X3 )電池に比べて優れていることが認められる。 〔その他の事項〕上記2つの実施例においては、水素吸
蔵合金としてMmNi3.2 CoMn0.6Al0.2 を用い
たが、その他の水素吸蔵合金を用いても上記と同様の効
果を有することは勿論である。
As is clear from Table 2, the batteries (B 1 ) to (B 7 ) of the present invention have the above-mentioned (A 1 ) batteries in all respects of charging efficiency, energy efficiency and cycle life.
(A 7 ) Battery equivalent to (X 1 ) battery of comparative example
(X 3 ) It is recognized that it is superior to the battery. [Other Matters] In the above two embodiments, MmNi 3.2 CoMn 0.6 Al 0.2 was used as the hydrogen storage alloy. However, it goes without saying that the same effect as described above can be obtained by using other hydrogen storage alloys.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、空
気極の触媒が酸化されるのを防止できるので、触媒能力
が低下するのを抑制することが可能となると共に、第3
の電極が不要なので、電池の大型化を招来するようなこ
ともない。また、気−固反応ではなく電気化学的反応で
あるので、充電効率を向上させることができ、且つ充電
時における正負極間に印加する電圧は0.2V程度で良
いので、充電電圧を低減することも可能となる。
As described above, according to the present invention, it is possible to prevent oxidation of the catalyst of the air electrode, so that it is possible to suppress a decrease in the catalytic performance and to improve the third aspect.
Since these electrodes are not required, the size of the battery is not increased. In addition, since the reaction is not a gas-solid reaction but an electrochemical reaction, the charging efficiency can be improved, and the voltage applied between the positive and negative electrodes during charging may be about 0.2 V, so that the charging voltage is reduced. It is also possible.

【0039】これらのことから、ランニングコストの低
下を図りつつ、電池性能を飛躍的に向上することができ
るといった効果を奏する。加えて、請求項2に示すよう
に、第3電極を設けた場合には電解液が飛散しないの
で、従来の第3電極を設けた電池に比べると電解液が少
なくて済むという効果がある。
From the above, there is an effect that the battery performance can be dramatically improved while the running cost is reduced. In addition, as described in claim 2, when the third electrode is provided, the electrolytic solution does not scatter, so that there is an effect that the amount of the electrolytic solution can be reduced as compared with a battery provided with the conventional third electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る空気−金属水素化物
二次電池の斜視図である。
FIG. 1 is a perspective view of an air-metal hydride secondary battery according to a first embodiment of the present invention.

【図2】図1のX−X線矢視断面図である。FIG. 2 is a sectional view taken along line XX of FIG.

【図3】図1の二次電池の充放電状態を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a charge / discharge state of the secondary battery of FIG. 1;

【図4】本発明の第2実施例に係る空気−金属水素化物
二次電池の斜視図である。
FIG. 4 is a perspective view of an air-metal hydride secondary battery according to a second embodiment of the present invention.

【図5】図4の二次電池の充放電状態を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing a charge / discharge state of the secondary battery of FIG.

【図6】従来例に係る空気−金属水素化物二次電池の充
放電状態を示す説明図である。
FIG. 6 is an explanatory view showing a charge / discharge state of an air-metal hydride secondary battery according to a conventional example.

【図7】他の従来例に係る空気−金属水素化物二次電池
の充放電状態を示す説明図である。
FIG. 7 is an explanatory diagram showing a charge / discharge state of an air-metal hydride secondary battery according to another conventional example.

【図8】更に他の従来例に係る空気−金属水素化物二次
電池の充放電状態を示す説明図である。
FIG. 8 is an explanatory diagram showing a charge / discharge state of an air-metal hydride secondary battery according to still another conventional example.

【符号の説明】[Explanation of symbols]

1 電槽 5 ガス導入通路 6 バルブ 7 空気導入通路 8 水素ガス導入通路 10 正極 12 負極 20 第3電極 DESCRIPTION OF SYMBOLS 1 Battery case 5 Gas introduction passage 6 Valve 7 Air introduction passage 8 Hydrogen gas introduction passage 10 Positive electrode 12 Negative electrode 20 Third electrode

フロントページの続き (72)発明者 齋藤 俊彦 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (56)参考文献 特開 平5−290873(JP,A) 特開 平5−275108(JP,A) 特開 平5−242906(JP,A) 特開 平2−98067(JP,A) 特開 平2−94258(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 12/08 Continuation of the front page (72) Inventor Toshihiko Saito 2--18 Keihanhondori, Moriguchi-shi Sanyo Electric Co., Ltd. (56) References JP-A-5-290873 (JP, A) JP-A 5-275108 (JP, A) JP-A-5-242906 (JP, A) JP-A-2-98067 (JP, A) JP-A-2-94258 (JP, A) (58) Fields studied (Int. Cl. 7 , DB name) ) H01M 12/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素を可逆的に吸蔵,放出しうる水素吸
蔵合金を備えた水素化物極と、 酸素を吸着すると共に多孔質材料から成る空気極と、 充電時には上記空気極に水素ガスを供給する一方、放電
時には上記空気極に酸素ガスを供給するガス供給通路
と、 を有することを特徴とする空気−金属水素化物電池。
1. A hydride electrode provided with a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, an air electrode made of a porous material that adsorbs oxygen, and a hydrogen gas supplied to the air electrode during charging. On the other hand, an air-metal hydride battery comprising: a gas supply passage for supplying oxygen gas to the air electrode during discharging.
【請求項2】 水素を可逆的に吸蔵放出しうる水素吸蔵
合金を備えた水素化物極と、 酸素を吸着する空気極と、 多孔質材料から成る第3電極と、 充電時に上記第3電極に水素ガスを供給する第1ガス供
給通路と、 放電時に上記空気極に酸素ガスを供給する第2ガス供給
通路と、 を有することを特徴とする空気−金属水素化物電池。
2. A hydride electrode provided with a hydrogen storage alloy capable of reversibly storing and releasing hydrogen; an air electrode for adsorbing oxygen; a third electrode made of a porous material; An air-metal hydride battery, comprising: a first gas supply passage for supplying hydrogen gas; and a second gas supply passage for supplying oxygen gas to the air electrode during discharge.
JP01021393A 1993-01-25 1993-01-25 Air-hydride batteries Expired - Fee Related JP3272075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01021393A JP3272075B2 (en) 1993-01-25 1993-01-25 Air-hydride batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01021393A JP3272075B2 (en) 1993-01-25 1993-01-25 Air-hydride batteries

Publications (2)

Publication Number Publication Date
JPH06223887A JPH06223887A (en) 1994-08-12
JP3272075B2 true JP3272075B2 (en) 2002-04-08

Family

ID=11743993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01021393A Expired - Fee Related JP3272075B2 (en) 1993-01-25 1993-01-25 Air-hydride batteries

Country Status (1)

Country Link
JP (1) JP3272075B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2621193B2 (en) * 1987-07-21 1997-06-18 スズキ株式会社 Motorcycle
JP2673336B2 (en) * 1994-03-31 1997-11-05 工業技術院長 Air-metal hydride secondary battery
JP2655810B2 (en) * 1994-04-08 1997-09-24 工業技術院長 Manufacturing method of alkaline secondary battery and catalytic electrode body
JP2673337B2 (en) * 1994-04-12 1997-11-05 工業技術院長 Air-metal hydride secondary battery
JP3805744B2 (en) * 2000-08-22 2006-08-09 日立マクセル株式会社 Air-hydrogen battery
US7282294B2 (en) 2004-07-02 2007-10-16 General Electric Company Hydrogen storage-based rechargeable fuel cell system and method

Also Published As

Publication number Publication date
JPH06223887A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
WO2005094410A2 (en) Integrated hybrid electrochemical device
US20070141432A1 (en) Third electrode frame structure and method related thereto
US7435492B2 (en) Hybrid fuel cell
JP3014425B2 (en) Gas sealed metal oxide / hydrogen-button battery
JP2012508438A (en) Rechargeable zinc-air battery
JP2653415B2 (en) Battery provided with gas diffusion electrode and method for charging and discharging the same
JP3272075B2 (en) Air-hydride batteries
JP2655810B2 (en) Manufacturing method of alkaline secondary battery and catalytic electrode body
JP4507483B2 (en) Control valve type lead acid battery
JPH05242906A (en) Air-metal hydride secondary battery
JP7115679B2 (en) Fuel cell system and electric vehicle
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JPH05159798A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JP3182193B2 (en) Sealed metal-hydrogen alkaline storage battery
JPH0568828B2 (en)
US6444349B1 (en) Sealed nickel-metal hydride storage cell
JPH06176776A (en) Improved metal air battery
JP2680628B2 (en) Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode
JP2975626B2 (en) Hydrogen storage electrode
JPH0837022A (en) Alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP2562651B2 (en) Non-aqueous electrolyte secondary battery
JPS61269867A (en) Redox flow cell
JP2001015143A (en) Electrolytic solution storing tank
JP2020025426A (en) Electric vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees