JPH05159798A - Hydrogen storage alloy electrode and alkaline secondary cell using it - Google Patents

Hydrogen storage alloy electrode and alkaline secondary cell using it

Info

Publication number
JPH05159798A
JPH05159798A JP3348243A JP34824391A JPH05159798A JP H05159798 A JPH05159798 A JP H05159798A JP 3348243 A JP3348243 A JP 3348243A JP 34824391 A JP34824391 A JP 34824391A JP H05159798 A JPH05159798 A JP H05159798A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
battery
alloy electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3348243A
Other languages
Japanese (ja)
Other versions
JP3183414B2 (en
Inventor
Keiichiro Uenae
苗 圭 一 郎 植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP34824391A priority Critical patent/JP3183414B2/en
Publication of JPH05159798A publication Critical patent/JPH05159798A/en
Application granted granted Critical
Publication of JP3183414B2 publication Critical patent/JP3183414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the conductivity and the mechanical strength of a hydrogen storage alloy electrode used as the negative electrode of an alkaline secondary cell. CONSTITUTION:A hydrogen storage alloy electrode is manufactured by the use of a hydrogen storage alloy 1 to which metallic plating 2, where water repellent resin 3 such as polytetrafluoroethylene is dispersed in a particle surface, is applied, or the metallic plating 2, where the water repellent resin 3 is dispersed, is applied to the surface of the hydrogen storage alloy electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金電極およ
びそれを用いたアルカリ二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode and an alkaline secondary battery using the same.

【0002】[0002]

【従来の技術】ニッケル−水素電池や二酸化マンガン−
水素電池などのアルカリ二次電池の負極としては、水素
吸蔵合金を活物質とする水素吸蔵合金電極が用いられる
が、この水素吸蔵合金電極は充放電の繰り返し、すなわ
ち水素の吸脱蔵の繰り返しによって水素吸蔵合金が微粉
化するという性質がある。
2. Description of the Related Art Nickel-hydrogen batteries and manganese dioxide-
As a negative electrode of an alkaline secondary battery such as a hydrogen battery, a hydrogen storage alloy electrode having a hydrogen storage alloy as an active material is used, and this hydrogen storage alloy electrode is repeatedly charged and discharged, that is, by repeating storage and desorption of hydrogen. There is a property that the hydrogen storage alloy is pulverized.

【0003】そのため、水素吸蔵合金間の電気的接触が
不充分になり、抵抗が増加して放電容量が減少し、サイ
クル特性が低下する。
Therefore, electrical contact between hydrogen storage alloys becomes insufficient, resistance increases, discharge capacity decreases, and cycle characteristics deteriorate.

【0004】そこで、水素吸蔵合金の表面にニッケルメ
ッキまたはニッケル合金メッキを施すことによって、導
電性や機械的強度を向上させることが提案されている
(たとえば、特開昭63−22370号公報)。
Therefore, it has been proposed to apply nickel plating or nickel alloy plating to the surface of the hydrogen storage alloy to improve conductivity and mechanical strength (for example, Japanese Patent Laid-Open No. 63-22370).

【0005】また、水素吸蔵合金電極を作製する際、水
素吸蔵合金粉末をポリテトラフルオロエチレン粉末と混
合することにより水素吸蔵合金を空間的に固定化して、
水素吸蔵合金の微粉化による電気的接触の低下を防ぐこ
とも考えられている。
Further, when the hydrogen storage alloy electrode is manufactured, the hydrogen storage alloy is spatially fixed by mixing the hydrogen storage alloy powder with polytetrafluoroethylene powder,
It is also considered to prevent reduction of electrical contact due to pulverization of the hydrogen storage alloy.

【0006】しかし、前者のメッキによる場合、導電性
の低下防止には効果が認められるものの、機械的強度の
向上が充分といえず、後者のポリテトラフルオロエチレ
ンにより固定化する場合は水素吸蔵合金の隙間にポリテ
トラフルオロエチレンが入り込むため、導電性が低下す
る。また、両者を組み合わせても、充分な導電性が得ら
れない。
[0006] However, although the former plating is effective in preventing reduction in conductivity, the improvement in mechanical strength cannot be said to be sufficient, and in the latter case of fixing with polytetrafluoroethylene, a hydrogen storage alloy is used. Since polytetrafluoroethylene enters into the gap between, the conductivity decreases. Moreover, even if both are combined, sufficient conductivity cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
に従来の水素吸蔵合金電極の改善方法では、水素吸蔵合
金電極の導電性および機械的強度の両者を充分に向上さ
せることができなかったという問題点を解決し、水素吸
蔵合金電極の導電性および機械的強度の両者を向上さ
せ、それによって電池の放電特性やサイクル特性を向上
させ、かつ電池の内圧上昇を抑制することを目的とす
る。
As described above, the present invention cannot sufficiently improve both conductivity and mechanical strength of the hydrogen storage alloy electrode by the conventional method for improving the hydrogen storage alloy electrode. The purpose is to solve the above problems, improve both the electrical conductivity and mechanical strength of the hydrogen storage alloy electrode, thereby improving the discharge characteristics and cycle characteristics of the battery and suppressing the increase in the internal pressure of the battery. To do.

【0008】[0008]

【課題を解決するための手段】本発明は、粒子表面にポ
リテトラフルオロエチレンなどの撥水性を有する樹脂を
分散させた金属メッキを施した水素吸蔵合金を用いて水
素吸蔵合金電極を作製するか、または水素吸蔵合金電極
の表面に上記撥水性を有する樹脂を分散させた金属メッ
キを施すことによって、上記目的を達成したものであ
る。
According to the present invention, is a hydrogen storage alloy electrode manufactured by using a metal storage plated hydrogen storage alloy in which a resin having water repellency such as polytetrafluoroethylene is dispersed on the surface of particles? Alternatively, the above object can be achieved by performing metal plating on the surface of the hydrogen storage alloy electrode in which the resin having water repellency is dispersed.

【0009】すなわち、水素吸蔵合金の粒子表面にポリ
テトラフルオロエチレンなどの撥水性を有する樹脂を分
散させた金属メッキを施すと、図1に示すような粒子が
得られる。
That is, when metal plating in which a resin having water repellency such as polytetrafluoroethylene is dispersed is applied to the surface of particles of the hydrogen storage alloy, particles as shown in FIG. 1 are obtained.

【0010】この粒子では、水素吸蔵合金1の粒子表面
を金属メッキ2が被覆しており、その金属メッキ2中に
撥水性を有する樹脂3が分散していて、金属メッキ2の
マトリックスを構成する金属によって導電性が向上し、
金属メッキ2の表面に露出した撥水性を有する樹脂3が
他の粒子の表面に露出した撥水性を有する樹脂と結着す
ることによって、水素吸蔵合金電極の機械的強度が向上
する。
In this particle, the surface of the particle of the hydrogen storage alloy 1 is coated with the metal plating 2, and the resin 3 having water repellency is dispersed in the metal plating 2 to form a matrix of the metal plating 2. Metal improves conductivity,
By binding the water-repellent resin 3 exposed on the surface of the metal plating 2 to the water-repellent resin exposed on the surface of other particles, the mechanical strength of the hydrogen storage alloy electrode is improved.

【0011】また、水素吸蔵合金電極の表面にポリテト
ラフルオロエチレンなどの撥水性を有する樹脂を分散さ
せた金属メッキを施した場合は、金属メッキのマトリッ
クスを構成する金属によって水素吸蔵合金電極の導電性
が向上し、金属メッキ中に分散した撥水性を有する樹脂
によって水素吸蔵合金電極の機械的強度が向上する。
When the surface of the hydrogen storage alloy electrode is subjected to metal plating in which a resin having water repellency such as polytetrafluoroethylene is dispersed, the conductivity of the hydrogen storage alloy electrode is increased by the metal constituting the metal plating matrix. Property is improved, and the resin having water repellency dispersed in the metal plating improves the mechanical strength of the hydrogen storage alloy electrode.

【0012】本発明において、金属メッキ中に分散させ
る撥水性を有する樹脂としては、上記例示のポリテトラ
フルオロエチレン以外にも、たとえばポリクロロトリフ
ルオロエチレン、テトラフルオロエチレン・ヘキサフル
オロプロピレン共重合体、ポリビニリデンフルオライ
ド、テトラフルオロエチレン・エチレン共重合体、クロ
ロトリフルオロエチレン・エチレン共重合体、テトラフ
ルオロエチレン・パーフルオロアルキルビニルエーテル
共重合体、ポリビニルフルオライドなどのフッ素系樹
脂、さらには、ポリエチレン、ポリプロピレン、ポリ塩
化ビニル、ポリスチレンなどのポリオレフィン系樹脂な
どの相対的に金属よりも高い撥水性を有する樹脂を用い
ることができる。特にフッ素系樹脂は撥水性が高く、本
発明において好適に用いられる。
In the present invention, as the water-repellent resin dispersed in metal plating, in addition to polytetrafluoroethylene exemplified above, for example, polychlorotrifluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer, Fluorine resin such as polyvinylidene fluoride, tetrafluoroethylene / ethylene copolymer, chlorotrifluoroethylene / ethylene copolymer, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, and further polyethylene, A resin having relatively higher water repellency than a metal such as a polyolefin resin such as polypropylene, polyvinyl chloride or polystyrene can be used. Particularly, the fluorine-based resin has high water repellency and is preferably used in the present invention.

【0013】金属メッキに使用される金属としては、た
とえば銅、ニッケル、マンガン、コバルト、鉄、モリブ
デンなどがあげられ、これらの金属は、メッキに際し
て、それぞれ単独でまたは2種以上の合金として使用さ
れる。これら例示の金属は電気伝導度が高いので、水素
吸蔵合金電極の導電性を向上させるにあたって特に適し
ている。
Examples of the metal used for metal plating include copper, nickel, manganese, cobalt, iron, molybdenum, etc. These metals are used alone or as alloys of two or more kinds at the time of plating. It These exemplified metals have high electric conductivity, and are particularly suitable for improving the conductivity of the hydrogen storage alloy electrode.

【0014】また、本発明の水素吸蔵合金電極によれ
ば、ニッケル−水素電池や二酸化マンガン−水素電池な
どのアルカリ二次電池において必要とされる水素吸蔵合
金電極の撥水処理を不要にすることができる。
Further, according to the hydrogen storage alloy electrode of the present invention, the water repellency treatment of the hydrogen storage alloy electrode, which is required in an alkaline secondary battery such as a nickel-hydrogen battery or a manganese dioxide-hydrogen battery, becomes unnecessary. You can

【0015】すなわち、水素吸蔵合金を負極に用い、ニ
ッケル酸化物を活物質とするニッケル電極を正極に用い
たニッケル−水素電池や、二酸化マンガンを活物質とす
る二酸化マンガン電極を正極に用いた二酸化マンガン−
水素電池などのアルカリ二次電池においては、その充放
電における電気化学的反応により、下記の反応式に示す
ように過充電時に正極で酸素ガスが発生し、それが負極
に到達する。 OH- →1/2H2 O+1/4O2 +e-
That is, a nickel-hydrogen battery using a hydrogen storage alloy for the negative electrode and a nickel electrode using nickel oxide as the active material for the positive electrode, and a dioxide using the manganese dioxide electrode using manganese dioxide as the active material for the positive electrode. Manganese
In an alkaline secondary battery such as a hydrogen battery, due to an electrochemical reaction during charge / discharge, oxygen gas is generated in the positive electrode during overcharge as shown in the following reaction formula, and reaches the negative electrode. OH - → 1 / 2H 2 O + 1 / 4O 2 + e -

【0016】この時、負極では、下記の式(式中のMは
水素吸蔵合金を示す)で示す反応 O2 +4MH→4M+2H2 O が生じるため、本来は、正極で発生した酸素は負極で消
費されるはずであるが、負極表面が親水性であると、負
極の表面が電解液で密接に覆われるため、酸素が負極の
水素吸蔵合金電極の表面に到達できず、その結果、消費
されなかった酸素が電池内圧を上昇させたり、電解液を
電池上部に移動させ、電解液が電池外部に漏出する原因
になる。
At this time, in the negative electrode, the reaction O 2 + 4MH → 4M + 2H 2 O represented by the following formula (M in the formula represents a hydrogen storage alloy) occurs, so that oxygen originally generated in the positive electrode is consumed in the negative electrode. However, if the surface of the negative electrode is hydrophilic, the surface of the negative electrode is closely covered with the electrolyte, so that oxygen cannot reach the surface of the hydrogen storage alloy electrode of the negative electrode, and as a result, it is not consumed. Oxygen increases the internal pressure of the battery or moves the electrolytic solution to the upper part of the battery, which may cause the electrolytic solution to leak to the outside of the battery.

【0017】そのため、水素吸蔵合金電極の表面をビニ
ル系ポリマーやポリテトラフルオロエチレンなどで撥水
処理することによって親水性の水素吸蔵合金電極の表面
を疎水性に変え、酸素が負極の水素吸蔵合金電極の表面
に到達できるようにしているが、本発明の水素吸蔵合金
電極によれば、金属メッキ中に分散しているポリテトラ
フルオロエチレンなどの撥水性を有する樹脂によって撥
水性が付与されるので、上記のような撥水処理が不要に
なる。
Therefore, by hydrophobizing the surface of the hydrogen storage alloy electrode with a vinyl polymer or polytetrafluoroethylene, the surface of the hydrophilic hydrogen storage alloy electrode is made hydrophobic, and oxygen is used as the negative electrode hydrogen storage alloy. Although it is possible to reach the surface of the electrode, according to the hydrogen storage alloy electrode of the present invention, water repellency is imparted by the water repellent resin such as polytetrafluoroethylene dispersed in the metal plating. The water repellent treatment as described above becomes unnecessary.

【0018】金属メッキは通常の無電解メッキによれば
よく、撥水性を有する樹脂は金属メッキ中に2〜30容
量%程度分散させることが好ましい。
The metal plating may be performed by ordinary electroless plating, and the water-repellent resin is preferably dispersed in the metal plating in an amount of about 2 to 30% by volume.

【0019】上記金属メッキは、その厚みなどに関して
特に限定されるものではないが、通常、水素吸蔵合金の
重量に対して2〜20重量%程度にされる。
The thickness of the metal plating is not particularly limited, but it is usually about 2 to 20% by weight based on the weight of the hydrogen storage alloy.

【0020】そして、上記のような表面または水素吸蔵
合金の粒子表面にポリテトラフルオロエチレンなどの撥
水性を有する樹脂を分散させた金属メッキを施した水素
吸蔵合金電極は、ニッケル−水素電池や二酸化マンガン
−水素電池などのアルカリ二次電池の負極として使用さ
れる。
Then, the hydrogen storage alloy electrode, which is metal-plated with a resin having water repellency such as polytetrafluoroethylene dispersed on the surface or the particle surface of the hydrogen storage alloy as described above, is used for nickel-hydrogen battery or dioxide. Used as a negative electrode for alkaline secondary batteries such as manganese-hydrogen batteries.

【0021】[0021]

【実施例】つぎに実施例をあげて本発明をより具体的に
説明する。
EXAMPLES Next, the present invention will be described more specifically with reference to examples.

【0022】実施例1 水素吸蔵合金としてMmNi3.85Co0.65Mn0.3 Al
0.2 を用い、これに水素の吸脱蔵を1回行って微粉化さ
せ、100μm以下の微粉末にした。上記水素吸蔵合金
の組成を示すMmNi3.85Co0.65Mn0.3 Al0.2
おいて、Mmはミッシュメタルであり、その組成はLa
23Ce46Pr19Nd11Sm1 である。
Example 1 As a hydrogen storage alloy, MmNi 3.85 Co 0.65 Mn 0.3 Al
0.2 was used, and hydrogen was adsorbed and desorbed once to finely pulverize it into fine powder of 100 μm or less. In MmNi 3.85 Co 0.65 Mn 0.3 Al 0.2 showing the composition of the above hydrogen storage alloy, Mm is misch metal and its composition is La.
23 Ce 46 Pr 19 Nd 11 Sm 1 .

【0023】メッキ液としては、塩化ニッケル30g/
l、次亜リン酸ナトリウム24g/l、酢酸ナトリウム
16g/lおよびポリテトラフルオロエチレン5g/l
を含むニッケルメッキ液を用意した。
The plating solution is nickel chloride 30 g /
1, sodium hypophosphite 24 g / l, sodium acetate 16 g / l and polytetrafluoroethylene 5 g / l
A nickel plating solution containing was prepared.

【0024】このメッキ液を90℃に加温し、その中に
前記水素吸蔵合金を投入し、20分間攪拌を続けて、水
素吸蔵合金の粒子表面にポリテトラフルオロエチレンを
分散させたニッケルメッキを施した。メッキ重量は水素
吸蔵合金の重量に対して5重量%であった。
The plating solution is heated to 90 ° C., the hydrogen storage alloy is charged therein, and stirring is continued for 20 minutes to perform nickel plating in which polytetrafluoroethylene is dispersed on the particle surface of the hydrogen storage alloy. gave. The plating weight was 5% by weight based on the weight of the hydrogen storage alloy.

【0025】上記メッキ後の水素吸蔵合金を集電体であ
るニッケル網と共にプレスし、Ar−H2 混合ガス雰囲
気で300℃で熱処理して水素吸蔵合金電極を作製し
た。
The above-mentioned plated hydrogen storage alloy was pressed together with a nickel net as a collector and heat-treated at 300 ° C. in an Ar—H 2 mixed gas atmosphere to prepare a hydrogen storage alloy electrode.

【0026】この水素吸蔵合金電極を負極として用い、
ニッケル酸化物を活物質とする公知の焼結式ニッケル電
極を正極として用い、電解液には30重量%水酸化カリ
ウム水溶液(ただし、水酸化リチウムを17g/l溶解
させている)を用いて、単3形のニッケル−水素電池を
製造した。
Using this hydrogen storage alloy electrode as a negative electrode,
A known sintered nickel electrode having nickel oxide as an active material is used as a positive electrode, and a 30 wt% potassium hydroxide aqueous solution (however, lithium hydroxide is dissolved in 17 g / l) is used as an electrolytic solution. AA nickel-hydrogen batteries were manufactured.

【0027】比較例1 実施例1において使用したメッキ液にポリテトラフルオ
ロエチレンを含ませなかったほかは、実施例1と同様に
水素吸蔵合金電極を作製し、単3形のニッケル−水素電
池を製造した。
Comparative Example 1 A hydrogen storage alloy electrode was prepared in the same manner as in Example 1 except that the plating solution used in Example 1 did not contain polytetrafluoroethylene, and an AA nickel-hydrogen battery was prepared. Manufactured.

【0028】上記実施例1の電池および比較例1の電池
を充電条件0.1C、130%充電で、放電条件0.2
Cで充放電させ、サイクル特性を調べた。その結果を図
2に示す。なお、図2の縦軸の放電容量(%)は、初期
容量を100%としたときの比率で示している。
The battery of Example 1 and the battery of Comparative Example 1 were charged under conditions of 0.1 C, 130% charge and 0.2 discharge conditions.
The battery was charged and discharged at C and the cycle characteristics were examined. The result is shown in FIG. The discharge capacity (%) on the vertical axis in FIG. 2 is shown as a ratio when the initial capacity is 100%.

【0029】図2に示すように、実施例1の電池は比較
例1の電池に比べてサイクル寿命が長く、ポリテトラフ
ルオロエチレンを分散させたニッケルメッキを施した効
果が明らかにされていた。
As shown in FIG. 2, the battery of Example 1 had a longer cycle life than the battery of Comparative Example 1, and the effect of nickel plating in which polytetrafluoroethylene was dispersed was clarified.

【0030】また、上記実施例1の電池および比較例1
の電池に対して充電電流を変化させて充電したときの飽
和後(100%充電後)の電池の内圧を測定した。その
結果を図3に示す。
The battery of Example 1 and Comparative Example 1
The internal pressure of the battery after saturation (after 100% charge) was measured when the battery was charged by changing the charging current. The result is shown in FIG.

【0031】図3に示すように、実施例1の電池は比較
例1の電池に比べて内圧が低かった。これは、実施例1
の電池ではニッケルメッキ中のポリテトラフルオロエチ
レンによる撥水作用によって負極の水素吸蔵合金電極で
の酸素ガスの消費能力が向上したためであると考えられ
る。
As shown in FIG. 3, the battery of Example 1 had a lower internal pressure than the battery of Comparative Example 1. This is Example 1
This is considered to be because the water repellency of polytetrafluoroethylene during nickel plating improved the oxygen gas consumption capacity of the hydrogen storage alloy electrode of the negative electrode.

【0032】実施例2 水素吸蔵合金としてV33Ti17Zr17Ni33を用い、こ
れに水素の吸脱蔵を1回行って微粉化させ、100μm
以下の微粉末にした。
Example 2 V 33 Ti 17 Zr 17 Ni 33 was used as a hydrogen storage alloy, and hydrogen was absorbed and desorbed once to obtain a fine powder.
The following fine powder was used.

【0033】メッキ液としては、塩化ニッケル10g/
l、硫酸コバルト34g/l、次亜リン酸ナトリウム2
4g/l、酢酸ナトリウム16g/lおよびポリテトラ
フルオロエチレン5g/lを含むコバルト−ニッケル合
金メッキ液を用意した。
As the plating liquid, nickel chloride 10 g /
l, cobalt sulfate 34g / l, sodium hypophosphite 2
A cobalt-nickel alloy plating solution containing 4 g / l, 16 g / l of sodium acetate and 5 g / l of polytetrafluoroethylene was prepared.

【0034】このメッキ液を90℃に加温し、その中に
前記水素吸蔵合金を投入し、35分間攪拌を続けて、水
素吸蔵合金の粒子表面にポリテトラフルオロエチレンを
分散させたコバルト−ニッケル合金を施した。
This plating solution was heated to 90 ° C., the hydrogen storage alloy was charged therein, and stirring was continued for 35 minutes to obtain cobalt-nickel in which polytetrafluoroethylene was dispersed on the particle surface of the hydrogen storage alloy. Alloyed.

【0035】上記メッキ後の水素吸蔵合金を用い、それ
以外は実施例1と同様に水素吸蔵合金電極を作製し、単
3形のニッケル−水素電池を製造した。
A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that the above-mentioned plated hydrogen storage alloy was used to produce an AA nickel-hydrogen battery.

【0036】比較例2 実施例2と同様にV33Ti17Zr17Ni33の組成の水素
吸蔵合金を用い、この水素吸蔵合金と、該水素吸蔵合金
に対して2重量%のポリテトラフルオロエチレンとの混
合物をシート状にし、このシートを集電体であるニッケ
ル網と共にプレスし、以後、実施例2と同様に水素吸蔵
合金電極を作製し、単3形のニッケル−水素電池を製造
した。
Comparative Example 2 A hydrogen storage alloy having a composition of V 33 Ti 17 Zr 17 Ni 33 was used in the same manner as in Example 2, and this hydrogen storage alloy and 2 wt% of polytetrafluoroethylene based on the hydrogen storage alloy were used. A mixture of and was formed into a sheet, and this sheet was pressed together with a nickel net serving as a current collector. Thereafter, a hydrogen storage alloy electrode was produced in the same manner as in Example 2 to produce an AA-type nickel-hydrogen battery.

【0037】上記実施例2の電池および比較例2の電池
を放電電流3Aで放電した時の放電容量を測定した。そ
の結果を図4に示す。
The discharge capacity when the battery of Example 2 and the battery of Comparative Example 2 were discharged at a discharge current of 3 A was measured. The result is shown in FIG.

【0038】図4に示すように、実施例2の電池は比較
例2の電池に比べて放電容量が大きかった。これは実施
例2の電池の方が比較例2の電池より水素吸蔵合金粒子
間の導電性が高かったことによるものと考えられる。
As shown in FIG. 4, the battery of Example 2 had a larger discharge capacity than the battery of Comparative Example 2. It is considered that this is because the battery of Example 2 had higher conductivity between the hydrogen storage alloy particles than the battery of Comparative Example 2.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
水素吸蔵合金電極の導電性および機械的強度を向上させ
ることができる。
As described above, according to the present invention,
The electrical conductivity and mechanical strength of the hydrogen storage alloy electrode can be improved.

【0040】その結果、ニッケル−水素電池などのアル
カリ二次電池における放電特性やサイクル特性を向上さ
せることができ、かつ電池の内圧上昇を抑制することが
できた。
As a result, the discharge characteristics and cycle characteristics of the alkaline secondary battery such as the nickel-hydrogen battery can be improved, and the increase in the internal pressure of the battery can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において、撥水性を有する樹脂を分散さ
せた金属メッキを粒子表面に施した水素吸蔵合金を模式
的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a hydrogen storage alloy in which metal particles in which a resin having water repellency is dispersed are plated on the surface of particles in the present invention.

【図2】実施例1の電池および比較例1の電池のサイク
ル特性を示す図である。
FIG. 2 is a diagram showing cycle characteristics of a battery of Example 1 and a battery of Comparative Example 1.

【図3】実施例1の電池および比較例1の電池の充電電
流と電池内圧との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a charging current and a battery internal pressure of a battery of Example 1 and a battery of Comparative Example 1.

【図4】実施例2の電池および比較例2の電池の放電特
性を示す図である。
FIG. 4 is a diagram showing discharge characteristics of a battery of Example 2 and a battery of Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 水素吸蔵合金 2 金属メッキ 3 撥水性を有する樹脂 1 Hydrogen storage alloy 2 Metal plating 3 Resin with water repellency

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を活物質とする水素吸蔵合
金電極であって、上記水素吸蔵合金電極が、その表面ま
たは水素吸蔵合金の粒子表面に、撥水性を有する樹脂を
分散させた金属メッキを施したものであることを特徴と
する水素吸蔵合金電極。
1. A hydrogen storage alloy electrode using a hydrogen storage alloy as an active material, wherein the hydrogen storage alloy electrode is a metal plating in which a resin having water repellency is dispersed on the surface of the hydrogen storage alloy electrode or the particle surface of the hydrogen storage alloy. A hydrogen storage alloy electrode, characterized in that
【請求項2】 撥水性を有する樹脂が、ポリテトラフル
オロエチレンである請求項1記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein the water-repellent resin is polytetrafluoroethylene.
【請求項3】 金属メッキの金属が、銅、ニッケル、コ
バルト、マンガン、鉄およびモリブデンよりなる群から
選ばれた少なくとも1種であることを特徴とする請求項
1記載の水素吸蔵合金電極。
3. The hydrogen storage alloy electrode according to claim 1, wherein the metal of the metal plating is at least one selected from the group consisting of copper, nickel, cobalt, manganese, iron and molybdenum.
【請求項4】 請求項1記載の水素吸蔵合金電極を負極
に用いたことを特徴とするアルカリ二次電池。
4. An alkaline secondary battery using the hydrogen storage alloy electrode according to claim 1 as a negative electrode.
【請求項5】 アルカリ二次電池が、ニッケル−水素電
池である請求項4記載のアルカリ二次電池。
5. The alkaline secondary battery according to claim 4, wherein the alkaline secondary battery is a nickel-hydrogen battery.
JP34824391A 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary battery using the same Expired - Fee Related JP3183414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34824391A JP3183414B2 (en) 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34824391A JP3183414B2 (en) 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH05159798A true JPH05159798A (en) 1993-06-25
JP3183414B2 JP3183414B2 (en) 2001-07-09

Family

ID=18395713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34824391A Expired - Fee Related JP3183414B2 (en) 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3183414B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579645B2 (en) 2000-03-28 2003-06-17 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for electrode, hydrogen absorbing alloy electrode and alkaline storage battery
EP2038947A1 (en) * 2006-06-23 2009-03-25 Angstrom Power Inc. Fluid enclosure and methods related thereto
JP2011049077A (en) * 2009-08-28 2011-03-10 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
US8372561B2 (en) 2007-03-21 2013-02-12 Societe Bic Composite fluid storage unit with internal fluid distribution feature
US8734576B2 (en) 2005-04-22 2014-05-27 Societe Bic Composite hydrogen storage material and methods related thereto
CN112002906A (en) * 2020-07-16 2020-11-27 瑞海泊有限公司 Hydrophobic electrode, preparation method thereof and battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579645B2 (en) 2000-03-28 2003-06-17 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for electrode, hydrogen absorbing alloy electrode and alkaline storage battery
US8734576B2 (en) 2005-04-22 2014-05-27 Societe Bic Composite hydrogen storage material and methods related thereto
EP2038947A1 (en) * 2006-06-23 2009-03-25 Angstrom Power Inc. Fluid enclosure and methods related thereto
EP2038947A4 (en) * 2006-06-23 2011-01-05 Angstrom Power Inc Fluid enclosure and methods related thereto
US8132667B2 (en) 2006-06-23 2012-03-13 SOCIéTé BIC Fluid enclosure and methods related thereto
US8651269B2 (en) 2006-06-23 2014-02-18 Societe Bic Fluid enclosure and methods related thereto
US8372561B2 (en) 2007-03-21 2013-02-12 Societe Bic Composite fluid storage unit with internal fluid distribution feature
JP2011049077A (en) * 2009-08-28 2011-03-10 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
CN112002906A (en) * 2020-07-16 2020-11-27 瑞海泊有限公司 Hydrophobic electrode, preparation method thereof and battery
CN112002906B (en) * 2020-07-16 2023-07-25 瑞海泊有限公司 Hydrophobic electrode, preparation method thereof and battery

Also Published As

Publication number Publication date
JP3183414B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
JPH1064537A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery using this electrode
US20090047576A1 (en) Nickel Metal-Hydride Battery and Method of Manufacturing the Same
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JP2007066697A (en) Manufacturing method of alkaline storage battery
JP3573925B2 (en) Metal-hydride alkaline storage battery and method of manufacturing the same
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH09115543A (en) Alkaline storage battery
JP3429684B2 (en) Hydrogen storage electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3490825B2 (en) Nickel electrode for alkaline storage battery
JP2001313069A (en) Nickel hydrogen storage battery
JPH05159800A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2010010097A (en) Method of manufacturing nickel metal hydride storage battery
JPH01107465A (en) Manufacture of sealed alkaline secondary battery
JP3342716B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPH0837022A (en) Alkaline storage battery
JP2000106184A (en) Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH05159799A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2680628B2 (en) Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees