JP2673337B2 - Air-metal hydride secondary battery - Google Patents

Air-metal hydride secondary battery

Info

Publication number
JP2673337B2
JP2673337B2 JP6073487A JP7348794A JP2673337B2 JP 2673337 B2 JP2673337 B2 JP 2673337B2 JP 6073487 A JP6073487 A JP 6073487A JP 7348794 A JP7348794 A JP 7348794A JP 2673337 B2 JP2673337 B2 JP 2673337B2
Authority
JP
Japan
Prior art keywords
electrode
air
hydrogen
gas
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6073487A
Other languages
Japanese (ja)
Other versions
JPH07282861A (en
Inventor
哲男 境
信宏 栗山
斎 上原
哲也 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP6073487A priority Critical patent/JP2673337B2/en
Publication of JPH07282861A publication Critical patent/JPH07282861A/en
Application granted granted Critical
Publication of JP2673337B2 publication Critical patent/JP2673337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、正極として空気極を、
負極として水素吸蔵合金極(以下、MH極とも称する)
を有し、さらに充電用の第三電極を有する空気−金属水
素化物二次電池(以下、空気−MH電池とも称する)に
関するものである。
The present invention relates to an air electrode as a positive electrode,
Hydrogen storage alloy electrode (hereinafter also referred to as MH electrode) as the negative electrode
And an air-metal hydride secondary battery (hereinafter, also referred to as an air-MH battery) having a third electrode for charging.

【0002】[0002]

【従来の技術】近年、高エネルギー密度なアルカリ二次
電池としてNi−MH電池が実用化されているが、この
電池の正極をガス拡散電極としての空気極と置き換えた
空気−MH電池も検討され(J.Sarradin,
G.Broneil,A.Percheron−Gue
gan and J.C.Achard,“Power
Sources”,7巻,p.345(197
9).)、また、アルカリ電解液の代わりにイオン交換
膜を用いて二酸化炭素の影響を除くアイディアも提案さ
れてきた(C.Folonari,G.Iemmi,
F.Manferdi and A.Rolle,“J
ournal of the Less−Common
Metals”,.74巻,p.371(198
0).)。
2. Description of the Related Art In recent years, Ni-MH batteries have been put into practical use as alkaline secondary batteries with high energy density. Air-MH batteries in which the positive electrode of this battery is replaced with an air electrode as a gas diffusion electrode have also been studied. (J. Sarradin,
G. FIG. Broneil, A .; Percheron-Gue
gan and J.K. C. Achard, “Power
Sources ”, Volume 7, p.345 (197)
9). ), And the idea of eliminating the effect of carbon dioxide by using an ion exchange membrane instead of the alkaline electrolyte has been proposed (C. Folonari, G. Iemmi,
F. Manferdi and A.M. Rolle, "J
individual of the Less-Common
Metals ", Vol. 74, p. 371 (198).
0). ).

【0003】また、正極に空気極、負極にMH極を配し
て、水素ガスで充電する新しいエネルギー変換システム
も提案されている(K.Videm,“Hydride
sfor Energy Storage”,p.46
3(1978),Pergamon Press,Ox
ford)。上記の空気−MH電池はMH極のみを充電
すれば良い。よって、充電時にはNiスクリーンなどの
第三電極を用いて充電することも出来るし、MH極に直
接水素ガスを吸収させて再生することも可能である。
Also, a new energy conversion system has been proposed in which an air electrode is arranged at the positive electrode and an MH electrode is arranged at the negative electrode, and the battery is charged with hydrogen gas (K. Video, "Hyride").
sfor Energy Storage ", p.46
3 (1978), Pergamon Press, Ox
ford). The above air-MH battery only needs to charge the MH electrode. Therefore, at the time of charging, it is possible to charge by using a third electrode such as a Ni screen, or it is possible to make the MH electrode directly absorb hydrogen gas for regeneration.

【0004】[0004]

【発明が解決しようとする課題】上記の空気−MH電池
では、MH極は電解液に濡れているために、水素ガスを
電極表面上にフローしても反応速度が遅くガス再生に時
間がかかるという問題点があった。また、空気極は充電
時の加圧水素やMH極の膨潤によって破損することがあ
った。
In the above air-MH battery, since the MH electrode is wet with the electrolytic solution, the reaction speed is slow even when hydrogen gas flows on the electrode surface, and it takes time to regenerate the gas. There was a problem. Further, the air electrode may be damaged by pressurized hydrogen during charging or swelling of the MH electrode.

【0005】[0005]

【課題を解決するための手段】本発明は、上記のような
課題を解決するものであり、水素ガスを透過するMH極
を用い、MH極に接した水素ガスを導入する部屋(電解
液室を兼ねた水素室)を備え、ガス再生時に該電解液室
を兼ねた水素室に水素ガスを加圧導入し、電解液室を兼
ねた水素室から電解液を排出し、MH極中に水素ガスを
透過させることにより、電気化学的充電と同等な再生速
度でガス再生できるとの新規な知見に基づくものであ
る。
Means for Solving the Problems The present invention is intended to solve the above problems and uses a MH electrode that transmits hydrogen gas, and a room for introducing hydrogen gas in contact with the MH electrode ( electrolysis
Comprising a hydrogen chamber) which also serves as a liquid chamber, the electrolyte chamber at gas regeneration
Hydrogen gas is introduced under pressure into the hydrogen chamber that also functions as an electrolyte chamber.
This is based on the novel finding that gas can be regenerated at a regeneration rate equivalent to that of electrochemical charging by discharging the electrolytic solution from the entrained hydrogen chamber and permeating hydrogen gas into the MH electrode.

【0006】すなわち、本発明の空気−MH電池は、正
極として空気極を用い且つ負極としてMH極を用いる空
気−MH電池において、MH極が水素ガスを透過できる
多孔度を有し、MH極と接した電解液室を兼ねた水素室
を有し且つガス再生時にMH極中を透過した水素ガスを
排出するための水素ガス排出口を備えたことを特徴とす
る空気−MH電池であって、該電解液室を兼ねた水素室
に、放電時又は電気化学的充電時には電解液を存在さ
せ、また、ガス再生時には外部から水素ガスを加圧導入
し、電解液室を兼ねた水素室から電解液を排出し、MH
極中に水素ガスを透過させて充電することができること
を特徴とする。
Namely, the air -MH battery of the present invention is the air -MH battery using MH pole as and negative electrode using an air electrode as a positive electrode, MH poles can penetrate the hydrogen gas
Has a porosity, the hydrogen gas has passed through the MH Kyokuchu hydrogen chamber which also serves as a electrolyte chamber in contact with the MH electrode when an organic and and gas regeneration
An air -MH cell characterized by having a hydrogen gas discharge port for discharging, to the hydrogen chamber which also serves as the electrolyte chamber, the discharge time or the electrochemical charging the presence of electrolyte, also During gas regeneration, hydrogen gas is introduced under pressure from the outside, and the electrolyte is discharged from the hydrogen chamber that also serves as the electrolyte chamber.
It is characterized in that hydrogen gas can be passed through the electrode for charging.

【0007】本発明の空気−MH電池は、また、ガス再
生時に、MH極を透過した水素ガスがMH極表面上に留
まること無く、外部へ排出される様に、MH極の水素透
過側に接した多孔性のシートを有することを特徴とす
る。
The air-MH battery of the present invention also has a hydrogen permeation side of the MH electrode so that the hydrogen gas permeated through the MH electrode does not remain on the surface of the MH electrode but is discharged outside during gas regeneration. It is characterized by having a porous sheet in contact therewith.

【0008】本発明の空気−MH電池は、さらに、ガス
再生時に、MH極を透過した水素ガスが空気極を破損し
ない様に、水素ガスの透過しにくいセパレーターをMH
極と空気極の間に有することを特徴とする。また、この
セパレーターが水素ガスの圧力で破損しないように多孔
体上にて支持する。
[0008] The air-MH battery of the present invention further comprises a separator which is hard to permeate hydrogen gas so that hydrogen gas permeating the MH electrode does not damage the air electrode during gas regeneration.
It is characterized by having between the pole and the air pole. Further, the separator is supported on the porous body so as not to be damaged by the pressure of hydrogen gas.

【0009】本発明の空気−MH電池は、さらにまた、
ガス再生時にMH極を透過した水素ガスや、MH極の膨
潤によって空気極が破損しない様に、空気極の空気側に
多孔質な支持体(多孔性支持体)を有することを特徴と
する。
The air-MH battery of the present invention further comprises:
It is characterized by having a porous support (a porous support) on the air side of the air electrode so that the hydrogen gas that has permeated the MH electrode during gas regeneration and the air electrode due to swelling of the MH electrode will not be damaged.

【0010】空気−MH電池の構成 図1に準じて、本発明の空気−MH電池の構成を詳細に
説明する。図1は、本発明の空気−MH電池の実施例の
断面図である。
Structure of Air-MH Battery The structure of the air-MH battery of the present invention will be described in detail with reference to FIG. FIG. 1 is a cross-sectional view of an embodiment of the air-MH battery of the present invention.

【0011】〔空気極〕1は空気極であり、正極として
作用する。空気極1としては、ガス拡散電極として作用
するものであれば特に限定はなく、公知の空気極を使用
できる。具体的には、Ni焼結体に所望の触媒を担持し
たものをPTFE(ポリテトラフルオロエチレン)等の
高分子により撥水化処理したもの、カーボン粉末に所望
の触媒を担持したものをテフロン系の樹脂で結着したも
の、その他のガス拡散電極を空気極として用いることが
できる。触媒としては、Ni焼結体、カーボン粉末等の
電極基体を、空気極として作用させるものであり、具体
的には、銀、白金などの貴金属を用いることが可能であ
る。
[Air electrode] 1 is an air electrode and functions as a positive electrode. The air electrode 1 is not particularly limited as long as it functions as a gas diffusion electrode, and a known air electrode can be used. Specifically, a Ni sintered material carrying a desired catalyst is treated to be water repellent with a polymer such as PTFE (polytetrafluoroethylene), or a carbon powder carrying a desired catalyst is Teflon-based. Any of the gas diffusion electrodes bonded with the resin described in 1. above can be used as the air electrode. As the catalyst, an electrode substrate such as a Ni sintered body or carbon powder is made to act as an air electrode, and specifically, a noble metal such as silver or platinum can be used.

【0012】〔多孔性支持体〕15は空気極(多孔性)
支持体である。空気極支持体15は、空気極1の空気側
に備えられ、ガス再生時にMH極を透過した水素ガスや
MH極の膨潤によって空気極が破損しない様に作用す
る。空気極支持体15は特に限られたものではなく、樹
脂、金属の多孔質体や棒状、板状の硬質体を用いること
が出来る。具体的には、テフロン樹脂製の薄板を格子上
に張り付けたものを空気極支持体15として使用でき
る。空気極支持体の空気極上に占める面積は空気極面積
の5〜30%であり、特に10〜15%であることが望
ましい。これは、5%より低いと機械的強度が低く支持
体として機能せず、30%を超えると酸素の拡散を疎外
して空気極としての性能が低下するからである。
[Porous support] 15 is an air electrode (porous)
It is a support. The air electrode support 15 is provided on the air side of the air electrode 1 and acts so that the hydrogen electrode that has passed through the MH electrode during gas regeneration or the swelling of the MH electrode does not damage the air electrode. The air electrode support 15 is not particularly limited, and a resin or metal porous body or a rod-shaped or plate-shaped hard body can be used. Specifically, a thin plate made of Teflon resin attached to a lattice can be used as the air electrode support 15. The area occupied by the air electrode support on the air electrode is 5 to 30% of the air electrode area, and particularly preferably 10 to 15%. This is because if it is less than 5%, the mechanical strength is low and does not function as a support, and if it exceeds 30%, the diffusion of oxygen is alienated and the performance as an air electrode deteriorates.

【0013】〔MH極〕2はMH極であり、負極として
作用する。MH極2としては、水素吸蔵合金として作用
するものであれば特に限定はなく、公知の水素吸蔵合金
の成形体を使用できる。MH極の作製方法は特に限られ
たものではなく、ガス再生のための撥水性と多孔性を備
える様にすれば良い。具体的には、粉末状の水素吸蔵合
金を結着剤で結着してシート状にしたものを集電体上に
ホットプレスしたものをMH極2として使用できる。
[MH electrode] 2 is an MH electrode and functions as a negative electrode. The MH electrode 2 is not particularly limited as long as it acts as a hydrogen storage alloy, and a known molded body of hydrogen storage alloy can be used. The method for producing the MH electrode is not particularly limited, and it may be provided with water repellency and porosity for gas regeneration. Specifically, the MH electrode 2 can be obtained by hot pressing a sheet-shaped product obtained by binding a powdery hydrogen storage alloy with a binding agent onto a current collector.

【0014】用いる水素吸蔵合金としては、LaNi5
又はMmMi5 をベースとした水素吸蔵合金、例えば、
MmNi3.5 Co0.7 Al0.8 (但し、Mmはミッシュ
メタルを示す)等、TiNi系又はTi(Zr)Ni2
ラーベス系の水素吸蔵合金を用いることが出来る。その
粒径は150μm以下であり、望ましくは75μm以下
である。水素吸蔵合金粉末の粒径が150μmを超える
と表面積が小さくなり再生速度が遅くなり、また、初期
活性化が遅くなる。いずれにしても、水素吸蔵合金は吸
放出サイクルを繰り返すことによって微粉化する。
The hydrogen storage alloy used is LaNi 5
Or a hydrogen storage alloy based on MmMi 5 , for example,
MmNi 3.5 Co 0.7 Al 0.8 (where Mm represents misch metal), TiNi-based or Ti (Zr) Ni 2
A Laves-based hydrogen storage alloy can be used. The particle size is 150 μm or less, preferably 75 μm or less. If the particle size of the hydrogen storage alloy powder exceeds 150 μm, the surface area becomes small, the regeneration speed becomes slow, and the initial activation becomes slow. In any case, the hydrogen storage alloy is pulverized by repeating the absorption / desorption cycle.

【0015】結着剤としては、例えば、PTFE、FE
P(テトラフルオロエチレン−ヘキサフルオロプロピレ
ン共重合体)、シリコーンゴム等を用いることができ
る。集電体としては、エキスパンドNi、発泡Ni、N
iメッシュ等を使用できる。結着剤の混合量は水素吸蔵
合金粉末に対して0.1〜10重量%であり、好ましく
は1〜5重量%である。これは、0.1%より少ないと
結着性が不十分で放電中に合金が脱落するようになり、
10%を超えると電気抵抗が大きくなるために放電電圧
が低下するためである。また、集電体の種類によって電
極の機械的強度が変化するので、集電体として発泡Ni
を使用するならば1%以下で十分であるが、その他のも
の、例えばNiメッシュを用いた場合には2〜5%は必
要である。
Examples of the binder include PTFE and FE
P (tetrafluoroethylene-hexafluoropropylene copolymer), silicone rubber or the like can be used. As the current collector, expanded Ni, foamed Ni, N
An i-mesh or the like can be used. The amount of the binder mixed is 0.1 to 10% by weight, preferably 1 to 5% by weight, based on the hydrogen storage alloy powder. This is because if it is less than 0.1%, the binding property is insufficient and the alloy comes off during discharge,
This is because if it exceeds 10%, the electric resistance increases and the discharge voltage decreases. In addition, since the mechanical strength of the electrode changes depending on the type of the current collector, foamed Ni is used as the current collector.
If 1% or less is used, 1% or less is sufficient, but if other materials such as Ni mesh are used, 2 to 5% is necessary.

【0016】MH電極2は水素ガスを透過できるもので
あり、具体的には、例えば、水素ガスを透過できる多孔
度を有する。MH電極2の多孔度は10〜40%であ
り、好ましくは20〜30%である。これは、10%よ
り低いとガスが透過しにくくなるため再生速度が遅くな
り、40%を超えると電極のエネルギー密度が低下する
ためである。
The MH electrode 2 is permeable to hydrogen gas, and specifically has, for example, a porosity capable of permeable to hydrogen gas. The porosity of the MH electrode 2 is 10 to 40%, preferably 20 to 30%. This is because if it is lower than 10%, it becomes difficult for gas to permeate and the regeneration speed becomes slow, and if it exceeds 40%, the energy density of the electrode is lowered.

【0017】〔電解液〕6は電解液であり、例えば、6
N−水酸化カリウム水溶液からなる。
[Electrolytic solution] 6 is an electrolytic solution, for example, 6
It consists of an aqueous solution of N-potassium hydroxide.

【0018】〔電解液室を兼ねた水素室〕 7は電解液室を兼ねた水素室(以下、水素室と略称す
る)であり、MH極2に接するように備えられている。
水素室7は、ガス再生時に水素ガスを導入するためのガ
ス導入口3を有する。水素室7は、放電時又は電気化学
充電時には電解液6で満たされている。ガス再生時には
水素室7に水素ガスを加圧導入し、水素室7から電解液
を排出し、MH極2中に水素ガスを透過させることによ
り電気化学的充電と同等な再生速度で充電することがで
きる。水素室7の形成方法については、MH極2に接す
る他は、特に限定はなく、MH極2と、必要に応じて、
任意の絶縁体とで形成することができ、その形状、大き
さについても適宜選定することができる。
[Hydrogen chamber also serving as electrolyte chamber] 7 is a hydrogen chamber also serving as an electrolyte chamber (hereinafter abbreviated as hydrogen chamber), and is provided so as to be in contact with the MH electrode 2.
The hydrogen chamber 7 has a gas inlet 3 for introducing hydrogen gas during gas regeneration. The hydrogen chamber 7 is filled with the electrolytic solution 6 during discharging or during electrochemical charging. At the time of gas regeneration, hydrogen gas is introduced under pressure into the hydrogen chamber 7, the electrolytic solution is discharged from the hydrogen chamber 7, and the hydrogen gas permeates into the MH electrode 2 to charge at a regeneration rate equivalent to electrochemical charging. You can The method for forming the hydrogen chamber 7 is not particularly limited except that it is in contact with the MH electrode 2, and the MH electrode 2 and, if necessary,
It can be formed of any insulator, and its shape and size can be appropriately selected.

【0019】〔第三電極を兼ねた金属多孔質体〕5は金
属多孔体であり、ガス再生時にガス導入口3から流入す
る水素ガスが、金属多孔体5を透過して水素室7に導入
されるように備えられている。金属多孔体5は、電気化
学充電の際に第三電極として利用される。第三電極兼金
属多孔体5は特に限られたものではなく、Ni製多孔体
を用いることが出来る。Ni製多孔体としては、発泡N
i、Niメッシュ、Ni繊維等を用いることが出来る。
[Metallic porous body also serving as the third electrode] 5 is a metallic porous body, and hydrogen gas flowing from the gas inlet 3 at the time of gas regeneration is introduced into the hydrogen chamber 7 through the metallic porous body 5. Be prepared to be done. The metallic porous body 5 is used as a third electrode during electrochemical charging. The third electrode / metal porous body 5 is not particularly limited, and a Ni porous body can be used. As the Ni porous body, foamed N
i, Ni mesh, Ni fiber, etc. can be used.

【0020】〔多孔性シート〕MH極の空気極側には、
MH極に接した多孔性シート14が配置されており、ガ
ス再生時に水素室7に導入された水素ガスは、MH電極
2を透過し、更に多孔性シート14を透過する。該多孔
体シートは、MH極を透過した水素ガスをMH極表面上
に留まること無く、外部へ排出させる様に作用する。図
2に、本発明の空気MH電池のガス再生時に水素がMH
極2及び多孔性シート14を透過する様子を模式的に示
す。多孔性シート14は特に限られたものではなく、多
孔質なものであれば材質は金属でも樹脂でも構わない
が、その孔径は50μm以上であり、特に200μm以
上であることが望ましい。これは、50μmより小さい
と水素の気泡が拡散しにくくなりMH極に応力が加わり
破損の可能性が高まるからである。
[Porous Sheet] On the air electrode side of the MH electrode,
The porous sheet 14 in contact with the MH electrode is arranged, and the hydrogen gas introduced into the hydrogen chamber 7 during gas regeneration passes through the MH electrode 2 and further through the porous sheet 14. The porous sheet acts so as to discharge the hydrogen gas that has permeated the MH electrode to the outside without staying on the surface of the MH electrode. FIG. 2 shows that when the gas of the air MH battery of the present invention is regenerated, hydrogen is MH.
A state of permeation through the electrode 2 and the porous sheet 14 is schematically shown. The porous sheet 14 is not particularly limited, and the material may be metal or resin as long as it is porous, but the pore diameter is preferably 50 μm or more, and particularly preferably 200 μm or more. This is because if it is less than 50 μm, hydrogen bubbles are less likely to diffuse, stress is applied to the MH pole, and the possibility of breakage increases.

【0021】〔ガス排出口〕4はガス排出口であり、ガ
ス再生時に、多孔体シート14を透過した水素ガスを外
部に排出するように備えられている。
The [gas discharge port] 4 is a gas discharge port, and is provided so as to discharge the hydrogen gas that has permeated the porous sheet 14 to the outside when the gas is regenerated.

【0022】〔セパレーター〕12は空気極1とMH極
2との間に備えられた空気極側セパレーターである。空
気極側セパレーター12は親水性セパレーターであり、
特に限られたものではなく親水性で水素ガスを透過させ
なければ良い。空気極側セパレーター12は、MH極2
を透過した水素ガスが空気極1側に透過することを防止
することにより、水素ガスにより空気極1が破損するこ
とを防止する。親水性セパレーターとしては、セルロー
ス膜、微細孔ポリマーフィルム、非多孔性ポリマーフィ
ルム、イオン交換膜等を用いることが出来る(特願平6
−62362号の明細書参照)。また、空気極側セパレ
ーター12として、水素ガスが透過しにくい親水性セパ
レーターと絶縁シートを一体化した複合膜を用いること
が出来る。
[Separator] 12 is an air electrode side separator provided between the air electrode 1 and the MH electrode 2. The air electrode side separator 12 is a hydrophilic separator,
The material is not particularly limited, and may be hydrophilic and may not permeate hydrogen gas. The air electrode side separator 12 is the MH electrode 2
By preventing the hydrogen gas that has permeated the hydrogen gas from permeating to the side of the air electrode 1, the hydrogen electrode is prevented from being damaged by the hydrogen gas. As the hydrophilic separator, it is possible to use a cellulose membrane, a microporous polymer film, a non-porous polymer film, an ion exchange membrane, etc.
-62362). Further, as the air electrode side separator 12, a composite film in which a hydrophilic separator, which is hard to permeate hydrogen gas, and an insulating sheet are integrated can be used.

【0023】13はMH極2と第三電極兼金属多孔体5
との間に備えられた第三電極側セパレーターである。第
三電極側セパレーター13としては、例えば、親水化処
理したポリプロピレン製のものを使用できる。なお、第
三電極側セパレーター13は、ガス再生時に水素ガスを
透過する。
Reference numeral 13 denotes the MH electrode 2 and the third electrode / metal porous body 5
And a third electrode side separator provided between and. As the third electrode side separator 13, for example, a hydrophilized polypropylene product can be used. The third electrode side separator 13 allows hydrogen gas to permeate during gas regeneration.

【0024】〔その他〕8はガス再生時に水素室7に水
素ガスを供給する水素ボンベであり、9は水素室7内の
圧力ゲージである。10は、排出口4から排出された水
素を回収して再び水素室7へ送り込むコンプレッサーで
ある。11は電極フレームである。
[Others] 8 is a hydrogen cylinder for supplying hydrogen gas to the hydrogen chamber 7 during gas regeneration, and 9 is a pressure gauge in the hydrogen chamber 7. Reference numeral 10 denotes a compressor that collects the hydrogen discharged from the discharge port 4 and sends it to the hydrogen chamber 7 again. Reference numeral 11 is an electrode frame.

【0025】ガス再生方法 本発明の空気−MH電池は、MH極のみを充電すれば良
い。その充電方法としては、空気極又は第三電極を用い
て充電する電気化学充電方法を採用することも、また、
水素ガスで充電するガス再生方法を採用することもでき
る。
Gas Regeneration Method In the air-MH battery of the present invention, only the MH electrode needs to be charged. As the charging method, it is also possible to adopt an electrochemical charging method of charging using an air electrode or a third electrode,
A gas regeneration method of charging with hydrogen gas can also be adopted.

【0026】ガス再生方法においては、水素室7に外部
から水素ガスを加圧導入し、水素室7から電解液を排出
し、更に水素室7に導入した水素ガスをMH極2に透過
させてMH極2と反応させることによって充電する。水
素室7に水素ガスを加圧導入する際のガス圧(P)は特
に規定しないが、水素室7から電解液6を排出できる最
低圧力(P0 )であればよく、P0 +Pが5kgf/c
2 以下であることが望ましい。この値が、5kgf/
cm2 より高いとMH極、セパレーター、空気極が破損
する可能性があるためである。
In the gas regenerating method, hydrogen gas is introduced from the outside into the hydrogen chamber 7 under pressure, the electrolytic solution is discharged from the hydrogen chamber 7, and the hydrogen gas introduced into the hydrogen chamber 7 is permeated to the MH electrode 2. It is charged by reacting with the MH pole 2. The gas pressure (P) at the time of introducing the hydrogen gas under pressure into the hydrogen chamber 7 is not particularly specified, but may be the lowest pressure (P 0 ) at which the electrolytic solution 6 can be discharged from the hydrogen chamber 7, and P 0 + P is 5 kgf. / C
m 2 or less. This value is 5 kgf /
This is because if it is higher than cm 2 , the MH electrode, the separator and the air electrode may be damaged.

【0027】[0027]

【発明の効果】本発明の空気−MH電極はガス再生時に
MH極中を水素ガスが透過することによって、MH極と
水素の反応が円滑に進行し電気化学的充電と同等な再生
が可能であり、セパレーターや支持体を配することによ
って空気極が破損しない。
EFFECTS OF THE INVENTION In the air-MH electrode of the present invention, hydrogen gas permeates the MH electrode during gas regeneration, whereby the reaction between the MH electrode and hydrogen proceeds smoothly, and regeneration similar to electrochemical charging is possible. Yes, by arranging the separator and support, the air electrode is not damaged.

【0028】[0028]

【実施例】図1に示した本発明の空気−MH電池を用い
ての充放電試験を行ったので、その結果を表1に示す。
本実施例において、空気極1はNi焼結体に銀触媒を担
持したもので、PTFEにより撥水化処理されたいる。
MH極2はMmNi3.5 Co0.7 Al0.8 粉末をPTF
E(ダイキン工業(株)製、PTFEディスパージョン
D−2)で結着してシート状にしたものをエキスパンド
Ni上にポットプレスしたものである。第三電極兼金属
多孔体5は発泡Ni製である。電解液は6N−水酸化カ
リウム水溶液からなる。空気極側(親水性)セパレータ
ー12はセルロース膜からなる。第三電極側セパレータ
ー13は親水化処理したポリプロピレン製である。空気
極(多孔性)支持体15はテフロン樹脂製の薄板を格子
上に張り付けたものである。
EXAMPLE A charge / discharge test was conducted using the air-MH battery of the present invention shown in FIG. 1, and the results are shown in Table 1.
In this embodiment, the air electrode 1 is a Ni sintered body carrying a silver catalyst, and is made water repellent by PTFE.
MH pole 2 PTF the MmNi 3.5 Co 0.7 Al 0.8 powder
The sheet was formed by binding with E (PTFE Dispersion D-2, manufactured by Daikin Industries, Ltd.) to form a sheet, which was pot-pressed on Expanded Ni. The third electrode / metal porous body 5 is made of foamed Ni. The electrolytic solution is a 6N-potassium hydroxide aqueous solution. The air electrode side (hydrophilic) separator 12 is made of a cellulose film. The third electrode side separator 13 is made of hydrophilized polypropylene. The air electrode (porous) support 15 is a thin plate made of Teflon resin attached on a grid.

【0029】MH極1は容量既知の焼結式Ni極との組
み合わせで容量960mAhであったため、ガス再生の
場合には1.2kgf/cm2 の水素ガスを規定時間流
して行い、電気化学充電は192mA(0.2C)で6
時間行い、30分の休止後、放電は192mAでMH極
の電位が−0.6V(酸化水銀電極基準)になるまで行
った。
Since the MH electrode 1 had a capacity of 960 mAh in combination with a sintered Ni electrode of known capacity, 1.2 kgf / cm 2 of hydrogen gas was flowed for a specified time in the case of gas regeneration, and electrochemical charging was performed. Is 6 at 192 mA (0.2 C)
After the rest for 30 minutes, the discharge was performed at 192 mA until the potential of the MH electrode became −0.6 V (based on the mercury oxide electrode).

【0030】[0030]

【表1】ガス再生速度 ガス再生時間(h) 放電容量(mAh) 再生割合(%) 0.5 384 40 1 672 70 6 960 100 電気化学充電 960 100 ガス再生時において空気極、MH極共に破損は見られ
ず、電気化学的充電とガス再生の両方が同等に行える電
池が得られた。
[Table 1] Gas regeneration rate Gas regeneration time (h) Discharge capacity (mAh) Regeneration rate (%) 0.5 384 40 1 672 706 6 960 100 Electrochemical charging 960 100 Both air electrode and MH electrode were damaged during gas regeneration It was not found, and a battery was obtained that could perform both electrochemical charging and gas regeneration equally.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の空気−MH電池の実施例の断面図で
ある。
FIG. 1 is a cross-sectional view of an example of an air-MH battery of the present invention.

【図2】 本発明の空気−MH電池のガス再生時にMH
極を水素が透過する様子を模式的に示した断面図であ
る。
[Fig. 2] MH during gas regeneration of the air-MH battery of the present invention
FIG. 6 is a cross-sectional view schematically showing how hydrogen permeates through the electrodes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上原 斎 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 (72)発明者 川瀬 哲也 愛知県刈谷市豊田町2丁目1番地 株式 会社豊田自動織機製作所内 審査官 酒井 美知子 (56)参考文献 特開 平5−290873(JP,A) 特開 昭51−62339(JP,A) 特開 昭47−19333(JP,A) 実公 昭51−52030(JP,Y2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sai Uehara 8-31 Midorigaoka, Ikeda-shi, Osaka Inside Institute of Industrial Science and Technology, Industrial Technology Institute (72) Tetsuya Kawase 2-chome, Toyota-cho, Kariya city, Aichi prefecture Michiko Sakai, Examiner, Toyota Industries Corporation (56) References JP-A-5-290873 (JP, A) JP-A-51-62339 (JP, A) JP-A-47-19333 (JP, A) Actual Public Sho 51-52030 (JP, Y2)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極として空気極を用い且つ負極として
水素吸蔵合金極を用いる空気−金属水素化物二次電池に
おいて、水素吸蔵合金極が水素ガスを透過できる多孔度
を有し、水素吸蔵合金極と接した電解液室を兼ねた水素
室を有し且つガス再生時に水素吸蔵合金極中を透過した
水素ガスを排出するための水素ガス排出口を備えたこと
を特徴とする空気−金属水素化物二次電池。
1. An air-metal hydride secondary battery in which an air electrode is used as a positive electrode and a hydrogen storage alloy electrode is used as a negative electrode, and the hydrogen storage alloy electrode has a porosity capable of transmitting hydrogen gas.
The a, transmitted through the hydrogen-absorbing alloy electrode when an organic and and gas regeneration hydrogen chamber which also serves as a electrolyte chamber in contact with the hydrogen storage alloy electrode
Air characterized by comprising a hydrogen gas outlet for discharging hydrogen gas - metal hydride rechargeable batteries.
【請求項2】 水素室の水素ガス導入部に充電用第三電
極を兼ねた金属多孔質体を有する請求項1に記載の空気
−金属水素化物二次電池。
2. The air-metal hydride secondary battery according to claim 1, wherein the hydrogen gas introducing portion of the hydrogen chamber has a metal porous body that also serves as a third electrode for charging.
【請求項3】 ガス再生時に、水素吸蔵合金極中を透過
した過剰な水素ガスを回収し再度水素室に導入するため
の装置を備えた請求項1に記載の空気−金属水素化物二
次電池。
3. The air-metal hydride secondary battery according to claim 1, further comprising a device for recovering excess hydrogen gas that has permeated the hydrogen storage alloy electrode and reintroducing it into the hydrogen chamber during gas regeneration. .
【請求項4】 水素室と空気極との間に水素吸蔵合金極
を備えた請求項1に記載の空気−金属水素化物二次電池
において、水素吸蔵合金極と空気極との間に水素ガス
透過させない親水性セパレーターを有する空気−金属水
素化物二次電池。
4. The air-metal hydride secondary battery according to claim 1, further comprising a hydrogen storage alloy electrode provided between the hydrogen chamber and the air electrode, wherein hydrogen gas is provided between the hydrogen storage alloy electrode and the air electrode. air having a <br/> transmitted so that not hydrophilic separator - metal hydride rechargeable batteries.
【請求項5】 水素室と空気極との間に水素吸蔵合金極
を備えた請求項1に記載の空気−金属水素化物二次電池
において、水素吸蔵合金極の空気極側に多孔性シートを
配した空気−金属水素化物二次電池。
5. The air-metal hydride secondary battery according to claim 1, further comprising a hydrogen storage alloy electrode between the hydrogen chamber and the air electrode, wherein a porous sheet is provided on the air electrode side of the hydrogen storage alloy electrode. Arranged air-metal hydride secondary battery.
【請求項6】 水素室と空気極との間に水素吸蔵合金極
を備えた請求項1に記載の空気−金属水素化物二次電池
において、水素吸蔵合金極と空気極との間に、水素ガス
透過させない親水性セパレーターの空気極側を多孔体
で支持して水素ガス圧による破損を防ぐ構造を有する空
気−金属水素化物二次電池。
6. The air-metal hydride secondary battery according to claim 1, further comprising a hydrogen storage alloy electrode between the hydrogen chamber and the air electrode, wherein hydrogen is provided between the hydrogen storage alloy electrode and the air electrode. gas
The air electrode side of the have a not transmit hydrophilic separator is supported by a porous body of air having a structure to prevent damage caused by the hydrogen gas pressure - metal hydride rechargeable batteries.
【請求項7】 空気極の空気側に多孔性支持体を配し、
水素ガス圧による破損を防ぐ構造を有した請求項1に記
載の空気−金属水素化物二次電池。
7. A porous support is arranged on the air side of the air electrode,
The air-metal hydride secondary battery according to claim 1, having a structure that prevents damage due to hydrogen gas pressure.
JP6073487A 1994-04-12 1994-04-12 Air-metal hydride secondary battery Expired - Lifetime JP2673337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6073487A JP2673337B2 (en) 1994-04-12 1994-04-12 Air-metal hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6073487A JP2673337B2 (en) 1994-04-12 1994-04-12 Air-metal hydride secondary battery

Publications (2)

Publication Number Publication Date
JPH07282861A JPH07282861A (en) 1995-10-27
JP2673337B2 true JP2673337B2 (en) 1997-11-05

Family

ID=13519693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6073487A Expired - Lifetime JP2673337B2 (en) 1994-04-12 1994-04-12 Air-metal hydride secondary battery

Country Status (1)

Country Link
JP (1) JP2673337B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470471B1 (en) 2000-08-22 2005-02-05 히다치 막셀 가부시키가이샤 Air - Hydrogen cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152030U (en) * 1974-10-16 1976-04-20
JPS5629337B2 (en) * 1974-11-28 1981-07-08
JPH05290873A (en) * 1992-04-14 1993-11-05 Yuasa Corp Air-hydrogen battery
JP3272075B2 (en) * 1993-01-25 2002-04-08 三洋電機株式会社 Air-hydride batteries

Also Published As

Publication number Publication date
JPH07282861A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
TW503598B (en) Catalytic air cathode for air-metal batteries
JP2007509480A (en) Electrode, its manufacturing method, metal / air fuel cell and metal hydride cell
WO2005094410A2 (en) Integrated hybrid electrochemical device
JP2003346862A (en) Fuel cell
JPS636745A (en) Electrochemical battery
JP2005502158A (en) Battery vent
US3733221A (en) Gas diffusion electrode
JP2653415B2 (en) Battery provided with gas diffusion electrode and method for charging and discharging the same
US3409474A (en) Hydrogen storing electrode and process for its manufacture
JPS58163157A (en) Metal oxide-hydrogen cell
US3759748A (en) Electrically recharged metal air cell
JP2003178816A (en) Air secondary battery
JPH07282860A (en) Manufacture of alkaline secondary battery and catalytic electrode body
JP2002373693A (en) Fuel cell
JP2673336B2 (en) Air-metal hydride secondary battery
US20040248005A1 (en) Negative electrodes including highly active, high surface area hydrogen storage material for use in electrochemical cells
JP2673337B2 (en) Air-metal hydride secondary battery
US3672998A (en) Extended area zinc anode having low density for use in a high rate alkaline galvanic cell
JP3846727B2 (en) Liquid fuel cell and power generator using the same
JPH05275108A (en) Battery
JPH0447676A (en) Manufacture of sealed storage battery
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
JP7297383B2 (en) electrochemical capacitor
JPS6051505A (en) Gas selective composite membrane
JP2867571B2 (en) Sealed metal oxide / hydrogen storage battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term