JP2655810B2 - Manufacturing method of alkaline secondary battery and catalytic electrode body - Google Patents

Manufacturing method of alkaline secondary battery and catalytic electrode body

Info

Publication number
JP2655810B2
JP2655810B2 JP6095762A JP9576294A JP2655810B2 JP 2655810 B2 JP2655810 B2 JP 2655810B2 JP 6095762 A JP6095762 A JP 6095762A JP 9576294 A JP9576294 A JP 9576294A JP 2655810 B2 JP2655810 B2 JP 2655810B2
Authority
JP
Japan
Prior art keywords
alloy
electrode
nickel
secondary battery
alkaline secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6095762A
Other languages
Japanese (ja)
Other versions
JPH07282860A (en
Inventor
哲男 境
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6095762A priority Critical patent/JP2655810B2/en
Publication of JPH07282860A publication Critical patent/JPH07282860A/en
Application granted granted Critical
Publication of JP2655810B2 publication Critical patent/JP2655810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ二次電池に係
り、詳しくは正極としてガス拡散電極を備え且つ負極と
して水素吸蔵合金を備え、更に負極充電用補助極を備え
たアルカリ二次電池に関する。本発明は、また、触媒性
電極体の製造法に係り、詳しくはアルカリ二次電池の負
極充電用補助極として好適な触媒性電極体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline secondary battery, and more particularly to an alkaline secondary battery having a gas diffusion electrode as a positive electrode, a hydrogen storage alloy as a negative electrode, and an auxiliary electrode for charging a negative electrode. . The present invention also relates to a method for producing a catalytic electrode body, and more particularly to a catalytic electrode body suitable as an auxiliary electrode for charging a negative electrode of an alkaline secondary battery.

【0002】[0002]

【従来の技術】各種機器の電源として、特に移動用の電
源として、各種の再充電可能な電池(二次電池)が広く
使われている。代表的な二次電池として、鉛蓄電池に代
表される酸電池に対して、アルカリ電解液を用いるアル
カリ蓄電池(アルカリ二次電池)がある。この二次電池
には、高いエネルギー密度、長寿命、急速充電が可能で
あることなどが求められている。
2. Description of the Related Art Various types of rechargeable batteries (secondary batteries) are widely used as power supplies for various devices, especially as power supplies for transportation. As a typical secondary battery, there is an alkaline storage battery (alkaline secondary battery) using an alkaline electrolyte in contrast to an acid battery typified by a lead storage battery. The secondary battery is required to have a high energy density, a long service life, a quick charge, and the like.

【0003】アルカリ二次電池において、負極として
は、カドミウムの他に亜鉛、鉄、水素などが活物質の対
象となり得るが、現在のところカドミウム極が主体であ
る。ところが、代表的な負極である亜鉛には寿命が短い
という問題がある。また、鉄は長寿命であるが、充電効
率が低いという問題がある。さらに、カドミウムは公害
上の問題のほかに負極律則にすると充放電で容量低下す
るという問題がある。これに対して水素吸蔵合金極は低
公害で長寿命で負極として有望である。そこで、一層の
高エネルギー密度を達成するために水素吸蔵合金極を使
ったニッケル−水素蓄電池が実用化されている。
In an alkaline secondary battery, as a negative electrode, zinc, iron, hydrogen and the like can be used as an active material in addition to cadmium. At present, however, a cadmium electrode is mainly used. However, zinc, which is a typical negative electrode, has a problem that its life is short. Iron has a long life but has a problem of low charging efficiency. In addition, cadmium has a problem that the capacity is reduced by charge and discharge when the negative electrode rule is applied, in addition to the problem of pollution. On the other hand, a hydrogen storage alloy electrode is promising as a negative electrode with low pollution and long life. Therefore, nickel-hydrogen storage batteries using a hydrogen storage alloy electrode have been put to practical use in order to achieve a higher energy density.

【0004】一方、正極としては、ほとんどの場合ニッ
ケル極が使用されているが一部空気極や酸化銀極なども
取り上げられている。そして、高エネルギー密度を得る
ために、正極にガス拡散電極を備えたアルカリ二次電池
について研究されており、このようなアルカリ二次電池
として亜鉛−空気二次電池や、鉄−空気二次電池が知ら
れている。これらの電池では、正極の活物質が酸素や空
気であり、電池内には負極活物質が主になるので、高い
エネルギー密度が得られる。
On the other hand, as the positive electrode, a nickel electrode is used in most cases, but an air electrode, a silver oxide electrode and the like are also partially used. In order to obtain a high energy density, an alkaline secondary battery having a gas diffusion electrode in a positive electrode has been studied. As such an alkaline secondary battery, a zinc-air secondary battery or an iron-air secondary battery has been studied. It has been known. In these batteries, the active material of the positive electrode is oxygen or air, and the negative electrode active material is mainly contained in the battery, so that a high energy density can be obtained.

【0005】この形式の二次電池では負極を充電するた
めにはガス拡散電極の充電時でのとくに撥水剤の酸化に
よる劣化を防ぐために充電用の補助極を設けるのが一般
的である。すなわち、負極の充電に正極のガス拡散電極
を用いると電極基体や撥水剤が酸化されて防水性が低下
するため、別に充電用の補助極を配する。従来、充電用
補助極としては耐電解性、耐アルカリ性を考慮してニッ
ケル性のスクリーンやエキスパンドメタルなどが使われ
ていた。しかし、充電用の極には活物質を持っていない
ため充電の初期から酸素を発生することとなり、特に急
速充電の場合に電極の電流密度が大きく、充電電圧が高
くなり、充放電効率が低下する問題がある。
[0005] In this type of secondary battery, an auxiliary charging electrode is generally provided to charge the negative electrode during charging of the gas diffusion electrode, particularly to prevent deterioration due to oxidation of the water repellent. That is, if the positive electrode gas diffusion electrode is used for charging the negative electrode, the electrode substrate and the water repellent are oxidized and the waterproof property is reduced. Therefore, a separate auxiliary electrode for charging is provided. Conventionally, a nickel screen or expanded metal has been used as an auxiliary electrode for charging in consideration of electrolytic resistance and alkali resistance. However, since the charging electrode has no active material, oxygen is generated from the beginning of charging, and especially in the case of rapid charging, the current density of the electrode is large, the charging voltage is high, and the charging and discharging efficiency is reduced. There is a problem to do.

【0006】[0006]

【発明が解決しようとする課題】本発明は、高いエネル
ギー密度、長寿命、急速充電が可能であることなどの条
件を満たしたアルカリ二次電池を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide an alkaline secondary battery which satisfies conditions such as a high energy density, a long life, and a rapid charging capability.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題に
鑑み検討を重ねた結果、正極としてガス拡散電極を備え
且つ負極として水素吸蔵合金を備え、更に負極充電用補
助極を備えたアルカリ二次電池に関し、以下のような知
見を見出し本発明を完成した。
As a result of repeated studies in view of the above problems, the present inventor has found that an alkali having a gas diffusion electrode as a positive electrode, a hydrogen storage alloy as a negative electrode, and an auxiliary electrode for charging a negative electrode is provided. The present inventors have found the following findings regarding the secondary battery and completed the present invention.

【0008】正極にガス拡散電極を備えたアルカリ二次
電池は、正極の活物質が酸素や空気であり、電池内には
負極活物質が主になるので、高いエネルギー密度が得ら
れる。しかし、正極のガス拡散電極を電池の外側に配
し、水素吸蔵合金極と充電用補助極とを電池内部に配し
た構造になる。従って、電池内の正極は最大で二枚であ
り、負極は二枚以上にしてもあまり意味はない。すなわ
ち、一般の電池のようにセル内に多くの正極、負極を重
ねた構成とすることにより充放電効率の改善を図ること
ができない。
In an alkaline secondary battery having a gas diffusion electrode in the positive electrode, a high energy density can be obtained because the active material of the positive electrode is oxygen or air and the negative electrode active material is mainly contained in the battery. However, the gas diffusion electrode of the positive electrode is arranged outside the battery, and the hydrogen storage alloy electrode and the auxiliary charging electrode are arranged inside the battery. Therefore, the maximum number of positive electrodes in the battery is two, and the use of two or more negative electrodes does not make much sense. That is, the charge and discharge efficiency cannot be improved by using a configuration in which many positive electrodes and negative electrodes are stacked in a cell as in a general battery.

【0009】一方、負極充電用の極には活物質を持って
いないことから充電初期から酸素が発生するため、特に
急速充電の場合には電極の電流密度が大きくなり、電圧
が高くなり、充放電効率が低下する。これに対し、負極
充電用の極として触媒機能を有する補助極を用いると、
充放電効率を上げることができる。
On the other hand, since the negative electrode for charging the negative electrode has no active material, oxygen is generated from the initial stage of charging, and particularly in the case of rapid charging, the current density of the electrode increases, the voltage increases, and the charge increases. Discharge efficiency decreases. In contrast, when an auxiliary electrode having a catalytic function is used as a negative electrode charging electrode,
Charge and discharge efficiency can be increased.

【0010】すなわち、本発明は、正極としてガス拡散
電極を、負極として水素吸蔵合金を、負極充電用補助極
として触媒性電極体を備えてなるアルカリ二次電池を提
供するものである。
That is, the present invention provides an alkaline secondary battery comprising a gas diffusion electrode as a positive electrode, a hydrogen storage alloy as a negative electrode, and a catalytic electrode as an auxiliary electrode for charging the negative electrode.

【0011】また、本発明はアルカリ二次電池の負極充
電用補助極用の触媒性電極体の製造法を提供するもので
ある。
The present invention also provides a method for producing a catalytic electrode for an auxiliary electrode for charging a negative electrode of an alkaline secondary battery.

【0012】本発明は、カルボニルニッケル、金属ニッ
ケル(Ni)、Ni−Co合金、Ni−Co−Fe合金
(好ましくはCo含有量10〜20重量%)、Ni−M
o合金(好ましくはMo含有量13〜17重量%)、N
i−Mo−V合金(好ましくはMo含有量5〜15重量
%、V含有量0.1〜1重量%)、Ni−Ti合金(好
ましくはNi/Ti比=1〜4)、Ni−V合金(好ま
しくはNi/V比=1〜4)、Ni−B合金(好ましく
はB含有量5〜10重量%)、Ni−P合金(好ましく
はP含有量5〜10重量%)、Ni−S合金、Ni−A
l−Ti合金、Ni−Al−Mo合金、Ni−Al−T
i−Mo合金、Ni−Zn−Ti合金、Ni−Zn−T
i−Mo合金、ラネーニッケル及び酸化ニッケル(Ni
)からなる群から選ばれる少なくとも1種または少な
くとも1種を含む合金又は混合体の少なくとも1種の微
粉末を水溶性ポリマーとともにペースト化して電極基体
に塗布し、水素気流中で焼結することを特徴とするアル
カリ二次電池の負極充電用補助極用の触媒性電極体の製
造法を提供するものである。
[0012] The present invention relates to carbonyl nickel, metallic nickel (Ni), a Ni-Co alloy, a Ni-Co-Fe alloy (preferably a Co content of 10 to 20% by weight), Ni-M
o alloy (preferably Mo content 13-17% by weight), N
i-Mo-V alloy (preferably Mo content 5 to 15% by weight, V content 0.1 to 1% by weight), Ni-Ti alloy (preferably Ni / Ti ratio = 1 to 4), Ni-V Alloy (preferably, Ni / V ratio = 1 to 4), Ni-B alloy (preferably, B content 5 to 10% by weight), Ni-P alloy (preferably P content 5 to 10% by weight), Ni- S alloy, Ni-A
l-Ti alloy, Ni-Al-Mo alloy, Ni-Al-T
i-Mo alloy, Ni-Zn-Ti alloy, Ni-Zn-T
i-Mo alloy, Raney nickel and nickel oxide (Ni
At least one selected from O) or Ranaru group or at least one fine powder of an alloy or a mixture containing at least one and a paste with a water-soluble polymer is applied to the electrode substrate and sintered in a hydrogen stream Another object of the present invention is to provide a method for producing a catalytic electrode body for an auxiliary electrode for charging a negative electrode of an alkaline secondary battery.

【0013】さらにまた、本発明は、電極基体上にニッ
ケル−アルミニウム合金、ニッケル−アルミニウム−モ
リブデン合金、ニッケル−アルミニウム−チタン合金ま
たはニッケル−アルミニウム−モリブデン−チタン合金
を溶着し、アルカリ溶液でアルミニウムを溶出させるこ
とを特徴とするアルカリ二次電池の負極充電用補助極用
の触媒性電極体の製造法を提供するものである。
Still further, the present invention provides a method of welding a nickel-aluminum alloy, a nickel-aluminum-molybdenum alloy, a nickel-aluminum-titanium alloy or a nickel-aluminum-molybdenum-titanium alloy on an electrode substrate, and removing aluminum with an alkaline solution. It is intended to provide a method for producing a catalytic electrode body for an auxiliary electrode for charging a negative electrode of an alkaline secondary battery, which is characterized by being eluted.

【0014】加えて、本発明は、電極基体上にニッケル
−亜鉛合金、ニッケル−亜鉛−モリブデン合金、ニッケ
ル−亜鉛−チタン合金またはニッケル−亜鉛−モリブデ
ン−チタン合金を溶着し、アルカリ溶液で亜鉛を溶出さ
せることを特徴とするアルカリ二次電池の負極充電用補
助極用の触媒性電極体の製造法を提供するものである。
In addition, the present invention provides a method of welding a nickel-zinc alloy, a nickel-zinc-molybdenum alloy, a nickel-zinc-titanium alloy or a nickel-zinc-molybdenum-titanium alloy on an electrode substrate, and adding zinc with an alkaline solution. It is intended to provide a method for producing a catalytic electrode body for an auxiliary electrode for charging a negative electrode of an alkaline secondary battery, which is characterized by being eluted.

【0015】本発明のアルカリ二次電池の電解液は、特
に限定されるものではなく、従来公知のアルカリ二次電
池において用いられるアルカリ電解液を用いることがで
き、例えば、苛性カリ水溶液、苛性カリとその他のアル
カリ金属水酸化物またはアルカリ土類金属水酸化物との
混合水溶液等が用いられる。
The electrolytic solution of the alkaline secondary battery of the present invention is not particularly limited, and any alkaline electrolytic solution used in a conventionally known alkaline secondary battery can be used. And a mixed aqueous solution thereof with an alkali metal hydroxide or an alkaline earth metal hydroxide.

【0016】本発明のアルカリ二次電池の正極として用
いられるガス拡散電極としては、従来公知の空気電極を
用いることができ、特に限定されるものではないが、例
えば、白金担持カーボンを撥水性のPTFE(ポリテト
ラフルオロエチレン)で結着した電極や、焼結ニッケル
多孔体に銀を担持しPTFEで撥水性にした電極等が用
いられる。
As a gas diffusion electrode used as a positive electrode of the alkaline secondary battery of the present invention, a conventionally known air electrode can be used, and it is not particularly limited. An electrode bound with PTFE (polytetrafluoroethylene), an electrode carrying silver on a sintered nickel porous body and made water-repellent with PTFE, or the like is used.

【0017】本発明のアルカリ二次電池の負極として用
いられる水素吸蔵合金極としては、従来公知の水素吸蔵
合金のすべてを用いることができ、特に限定されるもの
ではないが、例えば、LaNi5系、TiNi系、Zr
Ni2系、Zr1-XTiXNi2系、V−Ni系等の合金が
用いられる。
[0017] As the hydrogen absorbing alloy electrode used as a negative electrode of an alkaline secondary battery of the present invention, conventionally known can be used all of the hydrogen absorbing alloy is not particularly limited, for example, LaNi 5 type , TiNi, Zr
Ni 2 type, Zr 1-X Ti X Ni 2 type alloy of V-Ni system, etc. are used.

【0018】正極としてガス拡散電極を備えた構造のア
ルカリ二次電池では、負極の充電に正極のガス拡散電極
を用いると、電極中の撥水剤が酸化して防水性が低下す
るため、別に充電用の補助極が必要となる。本発明のア
ルカリ二次電池では、このような負極充電用補助極とし
て「触媒性電極体」を用いる。本発明でいう触媒性電極
体とは、通常の電極体に対し、負極充電用補助極として
用いる際に、該補助極表面における酸素発生電圧を低下
させる作用(触媒機能)を発現する処理を施した電極体
を意味し、具体的には、電極基体上に触媒を添加ないし
形成してなる電極体、多孔体とした電極体、拡大表面と
した電極体等を意味する。
In an alkaline secondary battery having a gas diffusion electrode as the positive electrode, if the positive gas diffusion electrode is used to charge the negative electrode, the water repellent in the electrode is oxidized and the waterproof property is reduced. An auxiliary pole for charging is required. In the alkaline secondary battery of the present invention, a “catalytic electrode body” is used as such a negative electrode charging auxiliary electrode. The term "catalytic electrode body" as used in the present invention means that a normal electrode body is subjected to a treatment for exhibiting a function (catalytic function) of lowering the oxygen generation voltage on the surface of the auxiliary electrode when used as a negative electrode auxiliary electrode. Specifically, it means an electrode body obtained by adding or forming a catalyst on an electrode substrate, an electrode body made into a porous body, an electrode body made into an enlarged surface, and the like.

【0019】ここで、電極基体としては、従来公知のア
ルカリ二次電池の負極充電用補助極に用いられている電
極体を用いることができ、具体的には、ニッケル電極、
鋼板にニッケルメッキをしたもの等が用いられ、好まし
い電極基体としては、ニッケル電極が挙げられる。な
お、電極基体として炭素電極を用いることも考えられる
が、炭素電極は酸化されやすいのであまり好ましいとは
言えない。
Here, as the electrode substrate, an electrode body used for an auxiliary electrode for charging a negative electrode of a conventionally known alkaline secondary battery can be used, and specifically, a nickel electrode,
A nickel-plated steel plate or the like is used, and a preferable electrode substrate is a nickel electrode. Although a carbon electrode may be used as the electrode substrate, the carbon electrode is not preferable because it is easily oxidized.

【0020】また、触媒としては、金属ニッケル(N
i)、Ni−Co合金、Ni−Co−Fe合金、Ni−
Mo合金(好ましくはMo含有量13〜17%)、Ni
−Mo−V合金、Ni−Ti合金、Ni−V合金、Ni
−B合金、Ni−P合金、Ni−S合金、Ni−Al−
Ti合金、Ni−Al−Mo合金、Ni−Al−Ti−
Mo合金、Ni−Zn−Ti合金、Ni−Zn−Ti−
Mo合金、ラネーニッケル及び酸化ニッケル(NiO
が例示され、これらの触媒を単独で又は2種以上を合
金化または混合して用いることができる。これら金属や
合金は酸素発生時に酸化されることになるが、その酸化
物が優れた触媒性能を有している。
As the catalyst, metallic nickel (N
i), Ni-Co alloy, Ni-Co-Fe alloy, Ni-
Mo alloy (preferably 13-17% Mo content), Ni
-Mo-V alloy, Ni-Ti alloy, Ni-V alloy, Ni
-B alloy, Ni-P alloy, Ni-S alloy, Ni-Al-
Ti alloy, Ni-Al-Mo alloy, Ni-Al-Ti-
Mo alloy, Ni-Zn-Ti alloy, Ni-Zn-Ti-
Mo alloy, Raney nickel and nickel oxide (NiO 2 )
Etc. are exemplified, alone, or two or more of these catalysts can be used in alloying or mixing. These metals and alloys are oxidized when oxygen is generated, and the oxides have excellent catalytic performance.

【0021】上記のような表面に触媒を有する電極体
は、Niイオンを含む溶液を、表面酸化処理によって表
面に親水性を付与したニッケル基体に塗布し、200〜
500℃で熱分解しても得られるまた、上記のNi
オンを含む水溶液を用い、電気メッキや化学メッキをし
ても得られる。さらに、上記触媒は、ニッケルと、希土
類元素、Fe、Co、Ti、W、Mo、Zn、Si、A
l、MnおよびCrからなる群から選ばれる少なくとも
1種とを合金化したものをニッケル基体上に溶射によっ
て溶着したり、また水溶性ポリマーとともに塗布した
後、600〜1000℃で焼結しても得られる。
The electrode having a catalyst on the surface as described above, a solution containing N i i on, the hydrophilic coating to impart nickel substrate on the surface by surface oxidation treatment, 200
Also obtained by thermal decomposition at 500 ° C.. Further, it can also be obtained by electroplating or chemical plating using the above-mentioned aqueous solution containing Ni ions. Further, the catalyst comprises nickel, a rare earth element, Fe, Co, Ti, W, Mo, Zn, Si, A
1, alloyed with at least one selected from the group consisting of Mn and Cr, is deposited on a nickel substrate by thermal spraying, or applied with a water-soluble polymer, and then sintered at 600 to 1000 ° C. can get.

【0022】本発明の触媒性電極体の他の好ましい実施
態様である多孔体とした電極体としては、多孔体ニッケ
ル電極を使用することができる。この多孔体ニッケル電
極は、気体の透過率が高いもので、該多孔体の平均孔径
は、50〜500μm、好ましくは100〜300μm
とするのがよい。
As a porous electrode body which is another preferred embodiment of the catalytic electrode body of the present invention, a porous nickel electrode can be used. This porous nickel electrode has a high gas permeability, and has an average pore diameter of 50 to 500 μm, preferably 100 to 300 μm.
It is good to do.

【0023】さらに、本発明の触媒性電極体としては、
多孔体とした電極体を基体とし、該基体上に上記のよう
な触媒を添加ないし形成してなる触媒性多孔体を用いる
のが好ましい。
Further, as the catalytic electrode of the present invention,
It is preferable to use a catalytic porous body in which a porous electrode body is used as a base and the above-mentioned catalyst is added or formed on the base.

【0024】さらに他の好ましい実施態様として、本発
明の触媒性電極体としては、多孔体ニッケルの表面積を
拡大したものを用いることもできる。多孔体ニッケルの
表面を拡大することで、アルカリ二次電池の充電電圧を
さらに低下させることができる。
As still another preferred embodiment, the catalytic electrode body of the present invention may use a porous nickel having an increased surface area. The charging voltage of the alkaline secondary battery can be further reduced by enlarging the surface of the porous nickel.

【0025】この多孔体ニッケルの表面の拡大は、多孔
体ニッケル電極を基体とし、これを酸化−還元処理する
ことで行うことができる。具体的には、例えば、多孔体
ニッケルを酸素雰囲気下に900〜1100℃で加熱し
て、表面をNiOに酸化させた後、水素雰囲気下に30
0〜600℃で還元処理して、反応表面積が拡大した電
極体を得ることができる。特に限定するものではない
が、この場合、得られる電極体の表面積は、基体として
用いる多孔体ニッケルの2〜3倍程度となる。
The enlargement of the surface of the porous nickel can be performed by using a porous nickel electrode as a substrate and subjecting it to an oxidation-reduction treatment. Specifically, for example, after heating the porous nickel at 900 to 1100 ° C. in an oxygen atmosphere to oxidize the surface to NiO, the porous nickel is heated to 30 ° C. in a hydrogen atmosphere.
An electrode body having an increased reaction surface area can be obtained by reduction treatment at 0 to 600 ° C. Although not particularly limited, in this case, the surface area of the obtained electrode body is about two to three times the porous nickel used as the base.

【0026】多孔体ニッケルの表面積を拡大する他の方
法としては、多孔体ニッケルにカルボニルニッケルの微
粉末を塗布し、焼結してもよい。具体的には、粒径約
0.1〜5μmのカルボニルニッケル(ニッケルのカル
ボニル分解物)をカルボキシメチルセルロース(CM
C)、ポリビニルアルコール(PVA)などの水溶性高
分子とともにペースト化して基体上に塗布し、これを水
素気流下に400〜600℃で焼結して得られる。カル
ボニルニッケルは乾燥焼結後、基体1g当たり0.02
〜0.2g程度になるように塗布する。
As another method for increasing the surface area of the porous nickel, a fine powder of carbonyl nickel may be applied to the porous nickel and sintered. Specifically, carbonyl nickel (a carbonyl decomposition product of nickel) having a particle size of about 0.1 to 5 μm is converted into carboxymethyl cellulose (CM).
C), a paste is formed together with a water-soluble polymer such as polyvinyl alcohol (PVA), applied on a substrate, and sintered at 400 to 600 ° C. under a hydrogen stream. Carbonyl nickel is dried and sintered at 0.02 g / g substrate.
It is applied to be about 0.2 g.

【0027】本発明の負極充電用補助極は、ニッケル多
孔体に、ニッケル−アルミニウム(Ni/Al=1〜
4)系合金やニッケル−亜鉛系合金を溶着させた後、ア
ルカリ溶液でアルミニウムや亜鉛を溶出させ、ラネーニ
ッケルを電極基体表面に担持した触媒性電極体としたも
のを用いることもできる。
The auxiliary electrode for charging a negative electrode according to the present invention comprises a nickel-aluminum (Ni / Al = 1 to 1)
4) After welding a system alloy or a nickel-zinc system alloy, aluminum or zinc is eluted with an alkaline solution to form a catalytic electrode body in which Raney nickel is supported on the surface of the electrode substrate.

【0028】なお、充電時の温度は、温度が上昇するほ
ど酸素発生電位は下がるので充放電効率も上昇するが、
あまり温度が高すぎると電池を損傷するおそれがあるた
め、50〜80℃程度に保持して行うのがよい。
In addition, the charging temperature is such that the higher the temperature, the lower the oxygen generation potential and the higher the charging / discharging efficiency.
If the temperature is too high, the battery may be damaged. Therefore, the temperature is preferably maintained at about 50 to 80 ° C.

【0029】[0029]

【作用】正極にガス拡散電極を備えたアルカリ電池は、
正極のガス拡散電極を電池の外側に配し、水素吸蔵合金
極と充電用補助極とを電池内部に配した構造になるた
め、一般の電池のようにセル内に多くの正極、負極を重
ねた構成とすることができない。また、上述のように、
負極の充電に正極のガス拡散電極を用いると電極基体や
撥水剤が酸化されて防水性が低下するため、別に充電用
の補助極を配する。充電用の極には活物質を持っていな
いから充電初期から酸素が発生するため、特に急速充電
の場合には電極の電流密度が大きくなり、電圧が高くな
り、充放電効率が低下する。これに対し、負極充電用補
助極として触媒性電極体を用いると、酸素発生電圧を低
下させることができ充電電圧を下げることによって充放
電効率を上げることができる。すなわち、充放電効率
(=エネルギー効率)=(放電電圧×放電電気量)/
(充電電圧×充電電気量)であるので、充電電圧を下げ
ることによって上記充放電効率を上げることができる。
[Action] An alkaline battery provided with a gas diffusion electrode on the positive electrode,
Since the gas diffusion electrode of the positive electrode is arranged outside the battery, and the hydrogen storage alloy electrode and the auxiliary charging electrode are arranged inside the battery, many positive and negative electrodes are stacked in the cell like a general battery. Cannot be used. Also, as mentioned above,
If a positive electrode gas diffusion electrode is used for charging the negative electrode, the electrode substrate and the water repellent are oxidized and the waterproof property is reduced. Therefore, a separate auxiliary electrode for charging is provided. Since the charging electrode does not have an active material, oxygen is generated from the initial stage of charging. Therefore, particularly in the case of rapid charging, the current density of the electrode increases, the voltage increases, and the charging / discharging efficiency decreases. On the other hand, when a catalytic electrode body is used as the auxiliary electrode for charging the negative electrode, the oxygen generation voltage can be reduced, and the charge / discharge efficiency can be increased by lowering the charging voltage. That is, charge / discharge efficiency (= energy efficiency) = (discharge voltage × discharge electricity amount) /
Since (charge voltage × charge amount), the charge / discharge efficiency can be increased by lowering the charge voltage.

【0030】[0030]

【実施例】以下本発明を、実施例を用いてより詳しく説
明するが、本発明はこれら実施例に限定されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0031】[アルカリ二次電池の構造]本発明のアル
カリ二次電池の好ましい一実施態様を図1に示す。図1
に示されるように、正極であるガス拡散電極としての2
枚の空気極(1)、負極である2枚の水素吸蔵合金極
(4)、充電用補助極(2)、セパレータ(3)、アル
カリ電解液(5)及び電槽(6)からアルカリ蓄電池を
構成する。本実施例においては、空気極(1)、水素吸
蔵合金極(4)及び充電用補助極(2)のそれぞれにリ
ード板をスポット溶接により取り付けた。
[Structure of Alkaline Secondary Battery] FIG. 1 shows a preferred embodiment of the alkaline secondary battery of the present invention. FIG.
As shown in the figure, the positive electrode gas diffusion electrode 2
Alkaline storage batteries from one air electrode (1), two negative electrode hydrogen storage alloy electrodes (4), auxiliary charging electrode (2), separator (3), alkaline electrolyte (5) and battery case (6) Is configured. In this embodiment, a lead plate was attached to each of the air electrode (1), the hydrogen storage alloy electrode (4), and the charging auxiliary electrode (2) by spot welding.

【0032】空気極(1)としては、公知の活性炭に触
媒として白金とパラジウム(Pt:Pd=1:1)を1
mg/cm2添加し、フッ素樹脂を撥水剤とした反応層
と、炭素繊維にフッ素樹脂を撥水剤として添加した漏液
防止層とからなる大きさ100×150mmで、厚さが
0.6mmの電極を用いた。
As the air electrode (1), platinum and palladium (Pt: Pd = 1: 1) are used as catalysts on a known activated carbon.
mg / cm 2 , a liquid-repellent layer made of a fluororesin as a water-repellent agent, and a liquid-leakage prevention layer formed by adding a fluororesin to a carbon fiber as a water-repellent agent. A 6 mm electrode was used.

【0033】一方、水素吸蔵合金としては、LaNi5
系の合金の1種であるMmNi3.7Mn0.4Al0.3Co
0.6(但し、Mmはミッシュメタルを表わす)を用い、
これを粉砕して、200メッシュのふるいを通過させた
後、1.5重量%のCMC水溶液を加えてペーストを作
成した。次いで、このペーストを多孔度95%、厚さ
2.8mmの発泡状ニッケル板に充填し、加圧して電極
を得た。該電極を減圧乾燥後、5%のフッ素樹脂ディス
パージョンを添加して水素吸蔵合金極(4)とした。こ
の発泡状ペースト式水素吸蔵合金極の大きさは、空気極
(1)と同じ大きさで、厚さは1.8mmである。一般
にアルカリ二次電池の放電可能容量は、負極である水素
吸蔵合金極の特性で決まり、本実施例では76Ahであ
った。
On the other hand, as a hydrogen storage alloy, LaNi 5
MnNi 3.7 Mn 0.4 Al 0.3 Co, which is one of the series alloys
0.6 (where Mm represents misch metal)
This was pulverized and passed through a 200-mesh sieve, and a 1.5% by weight CMC aqueous solution was added to prepare a paste. Next, this paste was filled into a foamed nickel plate having a porosity of 95% and a thickness of 2.8 mm, and pressed to obtain an electrode. After drying the electrode under reduced pressure, 5% fluororesin dispersion was added to obtain a hydrogen storage alloy electrode (4). The size of the foamed paste-type hydrogen storage alloy electrode is the same as the size of the air electrode (1), and the thickness is 1.8 mm. Generally, the dischargeable capacity of the alkaline secondary battery is determined by the characteristics of the hydrogen storage alloy electrode serving as the negative electrode, and was 76 Ah in this example.

【0034】セパレータ(3)としては、厚さ0.18
mmの親水処理ポリプロピレン不織布を用い、電槽
(6)としては、ガラス繊維補強エポキシ樹脂製のもの
を用いた。空気極(1)は、エポキシ樹脂で周辺を電槽
(6)と接着固定している。電解液(5)としては、比
重1.25の苛性カリ水溶液に25g/リットルの水酸
化リチウムを注入した。
The separator (3) has a thickness of 0.18
mm non-woven polypropylene treated nonwoven fabric, and a battery case (6) made of glass fiber reinforced epoxy resin was used. The periphery of the air electrode (1) is adhesively fixed to the battery case (6) with epoxy resin. As the electrolytic solution (5), 25 g / liter of lithium hydroxide was injected into an aqueous caustic potassium solution having a specific gravity of 1.25.

【0035】[充電用補助極の製造]実施例1 電極基体として、厚さ1.0mm、孔径100〜200
μm、大きさ100×150mmの発泡ニッケル板(商
品名「セルメット」住友電工(株)製)を用い、これ
に、ニッケルとアルミニウムの粉末(Ni:Al=3:
1)をプラズマ溶射法で平均70μmの厚さに被覆し、
次いで30%苛性カリ水溶液中でアルミニウムを溶出す
ることでラネーニッケル極とした。
[Manufacture of an auxiliary electrode for charging] Example 1 As an electrode substrate, a thickness of 1.0 mm and a hole diameter of 100 to 200 were used.
A foamed nickel plate having a size of 100 μm and a size of 100 × 150 mm (trade name “Celmet” manufactured by Sumitomo Electric Industries, Ltd.) was used, and nickel and aluminum powder (Ni: Al = 3:
1) is coated to an average thickness of 70 μm by plasma spraying,
Next, aluminum was eluted in a 30% aqueous solution of potassium hydroxide to obtain a Raney nickel electrode.

【0036】実施例2 電極基体として市販の多孔体ニッケル(商品名「セルメ
ット」住友電工(株)製)(平均孔径:150μm)を
用い、これにカルボニルニッケル微粉末(インコ社製T
ype210)をCMCとともにペースト状にして、基
体1g当り0.1gを塗布して、水素気流中で600℃
で焼結させて触媒性発泡ニッケル電極体を得た。
Example 2 A commercially available porous nickel (trade name “Celmet” manufactured by Sumitomo Electric Industries, Ltd.) (average pore size: 150 μm) was used as an electrode substrate, and carbonyl nickel fine powder (TCO manufactured by Inco Corporation) was used.
ype210) in the form of a paste together with CMC, 0.1 g per 1 g of the substrate was applied, and 600 ° C. in a hydrogen stream.
To obtain a catalytic nickel foamed electrode body.

【0037】実施例3 実施例2で得た触媒性発泡ニッケル電極体を酸素雰囲気
下に900℃で2時間加熱し、一旦冷却後、水素雰囲気
下に500℃で2時間還元処理して表面積が拡大した多
孔質ニッケル(表面積拡大多孔質ニッケル電極体)を得
た。
Example 3 The catalytic foamed nickel electrode obtained in Example 2 was heated at 900 ° C. for 2 hours in an oxygen atmosphere, cooled, and then reduced at 500 ° C. for 2 hours in a hydrogen atmosphere to reduce the surface area. Expanded porous nickel (porous nickel electrode body having an increased surface area) was obtained.

【0038】[アルカリ二次電池の充電電圧] [ Charging Voltage of Alkaline Secondary Battery]

【0039】施例1〜及び比較例1〜2で得た電池
を各々60℃で50A/dmの電流密度で充電した。
その結果、下記表1の充電電圧(充電用補助極と水素吸
蔵合金極間)となった。
The battery was charged at a current density of 50A / dm 2 at each 60 ° C. The cells obtained in real施例1-3 and Comparative Examples 1-2.
As a result, the charging voltage shown in Table 1 below (between the auxiliary electrode for charging and the electrode of the hydrogen storage alloy) was obtained.

【0040】なお、比較例1は、負極充電用補助極とし
て、通常のニッケル電極(ニッケル板)を用いた例であ
り、比較例2は、負極充電用補助極として、エクスパン
ドニッケルメッシュ(桂田グレイチング製0.2Ni
0.5−M50)を用いた例である。
In Comparative Example 1, an ordinary nickel electrode (nickel plate) was used as an auxiliary electrode for charging a negative electrode. In Comparative Example 2, an expanded nickel mesh (Katsuta Gray Ching 0.2Ni
0.5-M50).

【0041】[0041]

【表1】 化成終了後、実施例1〜及び比較例1及び2の電池に
ついて、雰囲気温度30℃で15Aで放電したところ、
これらの平均放電電圧はすべて0.8Vであった。充放
電効率は(平均放電電圧×放電電気量)/(平均充電電
圧×充電電気量)で示されるので、明らかに実施例1か
の電池は充放電効率が改善されていた。
[Table 1] After the formation was completed, the batteries of Examples 1 to 3 and Comparative Examples 1 and 2 were discharged at 15 A at an ambient temperature of 30 ° C.
All of these average discharge voltages were 0.8V. Since the charge / discharge efficiency is represented by (average discharge voltage × discharge amount) / (average charge voltage × charge amount), the batteries of Examples 1 to 3 have clearly improved charge / discharge efficiency. Was.

【0042】[0042]

【発明の効果】本発明のアルカリ二次電池によれば、負
極充電用補助極として触媒性電極体を備えることに起因
して、負極充電時の補助極における酸素発生電圧を低下
させることができるので、充放電効率を改善することが
できる。また、本発明の触媒性電極体の製造法によれ
ば、アルカリ二次電池の充放電効率を改善することがで
きる負極充電用補助極として有用な触媒性電極体を得る
ことができる。
According to the alkaline secondary battery of the present invention, the generation of oxygen at the auxiliary electrode during the charging of the negative electrode can be reduced due to the provision of the catalytic electrode as the auxiliary electrode for charging the negative electrode. Therefore, the charge / discharge efficiency can be improved. Further, according to the method for producing a catalytic electrode of the present invention, it is possible to obtain a catalytic electrode useful as an auxiliary electrode for charging a negative electrode, which can improve the charging and discharging efficiency of an alkaline secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルカリ二次電池の構成の一例を示す
断面図である。
FIG. 1 is a cross-sectional view illustrating an example of a configuration of an alkaline secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 空気極(正極) 2 充電用補助極 3 セパレーター 4 水素吸蔵合金極(負極) 5 アルカリ電解液 6 電槽 DESCRIPTION OF SYMBOLS 1 Air electrode (positive electrode) 2 Auxiliary electrode for charging 3 Separator 4 Hydrogen storage alloy electrode (negative electrode) 5 Alkaline electrolyte 6 Battery case

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極としてガス拡散電極を、負極として
水素吸蔵合金を、負極充電用補助極として触媒性電極体
を備えてなるアルカリ二次電池において、触媒性電極体
が、電極基体上に触媒を形成してなる電極体であり、電
極体上の触媒が、金属ニッケル(Ni)、Ni−Co合
金、Ni−Co−Fe合金、Ni−Mo合金、Ni−M
o−V合金、Ni−Ti−合金、Ni−V合金、Ni−
B合金、Ni−P合金、Ni−S合金、Ni−Al−T
i合金、Ni−Al−Mo合金、Ni−Al−Ti−M
o合金、Ni−Zn−Ti合金、Ni−Zn−Mo合
金、Ni−Zn−Ti−Mo合金、ラネーニッケル及び
酸化ニッケル(NiO)からなる群から選ばれる少なく
とも1種または少なくとも1種を含む合金又は混合体で
あるアルカリ二次電池
1. An alkaline secondary battery comprising a gas diffusion electrode as a positive electrode, a hydrogen storage alloy as a negative electrode, and a catalytic electrode as an auxiliary electrode for charging a negative electrode.
Is an electrode body formed by forming a catalyst on an electrode substrate,
The catalyst on the polar body is made of metallic nickel (Ni), Ni-Co
Gold, Ni-Co-Fe alloy, Ni-Mo alloy, Ni-M
o-V alloy, Ni-Ti-alloy, Ni-V alloy, Ni-
B alloy, Ni-P alloy, Ni-S alloy, Ni-Al-T
i alloy, Ni-Al-Mo alloy, Ni-Al-Ti-M
o alloy, Ni-Zn-Ti alloy, Ni-Zn-Mo alloy
Gold, Ni-Zn-Ti-Mo alloy, Raney nickel and
At least one selected from the group consisting of nickel oxide (NiO)
And alloys or mixtures containing one or at least one
Some alkaline secondary batteries .
【請求項2】 ガス拡散電極が空気極である請求項1に
記載のアルカリ二次電池。
2. The alkaline secondary battery according to claim 1, wherein the gas diffusion electrode is an air electrode.
【請求項3】 触媒性電極体が、電極基体となる多孔体
ニッケル電極の表面に触媒を有する電極体である請求項
1または2に記載のアルカリ二次電池。
3. The electrode body having a catalyst on the surface of a porous nickel electrode serving as an electrode substrate.
3. The alkaline secondary battery according to 1 or 2 .
【請求項4】 多孔体ニッケル電極の孔径が、50〜5
00μmである請求項に記載のアルカリ二次電池。
4. A porous nickel electrode having a pore size of 50 to 5
The alkaline secondary battery according to claim 3 , which has a thickness of 00 µm.
【請求項5】 多孔体ニッケル電極の孔径が、100〜
300μmである請求項に記載のアルカリ二次電池。
5. A porous nickel electrode having a pore diameter of 100 to 100.
The alkaline secondary battery according to claim 3 , which has a thickness of 300 µm.
【請求項6】 電極基体上の触媒が、ラネーニッケルで
ある請求項1に記載のアルカリ二次電池。
6. The alkaline secondary battery according to claim 1, wherein the catalyst on the electrode substrate is Raney nickel.
【請求項7】 カルボニルニッケル、金属ニッケル(N
i)、Ni−Co合金、Ni−Co−Fe合金、Ni−
Mo合金、Ni−Mo−V合金、Ni−Ti合金、Ni
−V合金、Ni−B合金、Ni−P合金、Ni−S合
金、Ni−Al−Ti合金、Ni−Al−Mo合金、N
i−Al−Ti−Mo合金、Ni−Zn−Ti合金、N
i−Zn−Mo合金、Ni−Zn−Ti−Mo合金、ラ
ネーニッケル及び酸化ニッケル(NiO)からなる群か
ら選ばれる少なくとも1種または少なくとも1種を含む
合金又は混合体の少なくとも1種の微粉末を水溶性ポリ
マーとともにペースト化して電極基体に塗布し、水素気
流中で焼結することを特徴とするアルカリ二次電池の負
極充電用補助極用の触媒性電極体の製造法。
7. Carbonyl nickel, metallic nickel (N
i), Ni-Co alloy, Ni-Co-Fe alloy, Ni-
Mo alloy, Ni-Mo-V alloy, Ni-Ti alloy, Ni
-V alloy, Ni-B alloy, Ni-P alloy, Ni-S alloy, Ni-Al-Ti alloy, Ni-Al-Mo alloy, N
i-Al-Ti-Mo alloy, Ni-Zn-Ti alloy, N
i-Zn-Mo alloy, Ni-Zn-Ti-Mo alloy, at least one fine powder of Raney nickel and an alloy containing at least one or at least one selected from nickel oxide (NiO) or Ranaru group or mixture A method for producing a catalytic electrode body for an auxiliary electrode for charging a negative electrode of an alkaline secondary battery, comprising: forming a paste together with a water-soluble polymer, applying the paste to an electrode substrate, and sintering in a hydrogen stream.
【請求項8】 電極基体上にニッケル−アルミニウム合
金、ニッケル−アルミニウム−モリブデン合金、ニッケ
ル−アルミニウム−チタン合金またはニッケル−アルミ
ニウム−モリブデン−チタン合金を溶着し、アルカリ溶
液でアルミニウムを溶出させることを特徴とするアルカ
リ二次電池の負極充電用補助極用の触媒性電極体の製造
法。
8. A method of welding a nickel-aluminum alloy, a nickel-aluminum-molybdenum alloy, a nickel-aluminum-titanium alloy or a nickel-aluminum-molybdenum-titanium alloy on an electrode substrate, and eluting aluminum with an alkaline solution. A method for producing a catalytic electrode for an auxiliary electrode for charging a negative electrode of an alkaline secondary battery.
【請求項9】 電極基体上にニッケル−亜鉛合金、ニッ
ケル−亜鉛−モリブデン合金、ニッケル−亜鉛−チタン
合金またはニッケル−亜鉛−モリブデン−チタン合金を
溶着し、アルカリ溶液で亜鉛を溶出させることを特徴と
するアルカリ二次電池の負極充電用補助極用の触媒性電
極体の製造法。
9. A method of welding a nickel-zinc alloy, a nickel-zinc-molybdenum alloy, a nickel-zinc-titanium alloy or a nickel-zinc-molybdenum-titanium alloy on an electrode substrate, and eluting zinc with an alkaline solution. A method for producing a catalytic electrode for an auxiliary electrode for charging a negative electrode of an alkaline secondary battery.
【請求項10】 電極基体が、多孔体ニッケルである請
求項のいずれかに記載の触媒性電極体の製造法。
10. The electrode substrate, the preparation of the catalyst electrode body according to any one of claims 7 to 9, which is a porous nickel.
JP6095762A 1994-04-08 1994-04-08 Manufacturing method of alkaline secondary battery and catalytic electrode body Expired - Lifetime JP2655810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6095762A JP2655810B2 (en) 1994-04-08 1994-04-08 Manufacturing method of alkaline secondary battery and catalytic electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6095762A JP2655810B2 (en) 1994-04-08 1994-04-08 Manufacturing method of alkaline secondary battery and catalytic electrode body

Publications (2)

Publication Number Publication Date
JPH07282860A JPH07282860A (en) 1995-10-27
JP2655810B2 true JP2655810B2 (en) 1997-09-24

Family

ID=14146507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6095762A Expired - Lifetime JP2655810B2 (en) 1994-04-08 1994-04-08 Manufacturing method of alkaline secondary battery and catalytic electrode body

Country Status (1)

Country Link
JP (1) JP2655810B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590533B2 (en) * 2000-11-17 2010-12-01 国立大学法人九州工業大学 Air electrode, manufacturing method thereof, and air secondary battery using the air electrode
CN100360225C (en) * 2005-11-11 2008-01-09 中山大学 Platinum carried foamed nickel catalytic material, its preparation method and application
US7638216B2 (en) 2005-12-21 2009-12-29 General Electric Company Fuel cell apparatus and associated method
US7887944B2 (en) 2005-12-21 2011-02-15 General Electric Company Integrated membrane electrode assembly and method related thereto
US9209445B2 (en) 2007-11-26 2015-12-08 Ceramatec, Inc. Nickel-metal hydride/hydrogen hybrid battery using alkali ion conducting separator
US10320033B2 (en) 2008-01-30 2019-06-11 Enlighten Innovations Inc. Alkali metal ion battery using alkali metal conductive ceramic separator
US8758948B2 (en) * 2010-07-22 2014-06-24 University Of Southern California Iron-air rechargeable battery
WO2012106468A2 (en) * 2011-02-01 2012-08-09 Ceramatec, Inc. Nickel-metal hydride/hydrogen hybrid battery using alkali ion conducting separator
ES2751166T3 (en) * 2011-02-04 2020-03-30 Nantenergy Inc Electrochemical cell system with shunt current interruption
FR2998718B1 (en) 2012-11-29 2015-12-18 Electricite De France METHOD FOR CHARGING A ZINC-AIR BATTERY WITH LIMITED POTENTIAL
EP3266061A4 (en) * 2015-03-04 2018-12-05 Zhongwei Chen Tri-electrode zinc-air battery with flowing electrolyte
CN105702986A (en) * 2016-04-12 2016-06-22 高龙云 Water battery capable of increasing electric quantity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4727860U (en) * 1971-04-14 1972-11-29
JPH05290873A (en) * 1992-04-14 1993-11-05 Yuasa Corp Air-hydrogen battery
JP3272075B2 (en) * 1993-01-25 2002-04-08 三洋電機株式会社 Air-hydride batteries

Also Published As

Publication number Publication date
JPH07282860A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
US5506070A (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
EP1708297A1 (en) Powdery material, electrode member, method for manufacturing same and secondary cell
JP2655810B2 (en) Manufacturing method of alkaline secondary battery and catalytic electrode body
US5480741A (en) Cell provided with gaseous diffusion electrode, and method of charging and discharging the same
Lee et al. Self-discharge behaviour of sealed Ni-MH batteries using MmNi3. 3+ xCo0. 7Al1. 0− x anodes
JP4590533B2 (en) Air electrode, manufacturing method thereof, and air secondary battery using the air electrode
US20040248005A1 (en) Negative electrodes including highly active, high surface area hydrogen storage material for use in electrochemical cells
JP3104230B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
Pratt et al. High performance metal hydride alloy for rechargeable battery technology
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPH11162459A (en) Nickel-hydrogen secondary battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH09312157A (en) Hydrogen storage alloy electrode and manufacture thereof
JP3429684B2 (en) Hydrogen storage electrode
JP2001313069A (en) Nickel hydrogen storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP4552238B2 (en) Method for producing hydrogen storage alloy electrode
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3118812B2 (en) Alkaline storage battery
KR100399339B1 (en) Process of Anode for Ni/MH Secondary Battery using Ni Powder with High Surface Area
KR100284901B1 (en) Method for manufacturing negative electrode for NI / MH secondary battery using CU
JP2975626B2 (en) Hydrogen storage electrode
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0785866A (en) Hydrogen storage alloy electrode and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term