JP3200804B2 - Hydraulic composite material and method for producing high-strength concrete using the same - Google Patents

Hydraulic composite material and method for producing high-strength concrete using the same

Info

Publication number
JP3200804B2
JP3200804B2 JP15843092A JP15843092A JP3200804B2 JP 3200804 B2 JP3200804 B2 JP 3200804B2 JP 15843092 A JP15843092 A JP 15843092A JP 15843092 A JP15843092 A JP 15843092A JP 3200804 B2 JP3200804 B2 JP 3200804B2
Authority
JP
Japan
Prior art keywords
particles
amount
particle
concrete
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15843092A
Other languages
Japanese (ja)
Other versions
JPH05310459A (en
Inventor
博 稲原
俊久 丸田
滋 横山
泉 藤本
英吉 棚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP15843092A priority Critical patent/JP3200804B2/en
Publication of JPH05310459A publication Critical patent/JPH05310459A/en
Application granted granted Critical
Publication of JP3200804B2 publication Critical patent/JP3200804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、一般に設計基準となる
材令28日の圧縮強度において超高強度を得ることがで
き、しかも通常生コンクリ−トの温度上昇が70℃程度
以下に抑制される水硬性複合材料と、それを用いた高層
RC造建築物、橋梁などに用いる高強度コンクリ−トの
製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention can provide an ultra-high strength at a compressive strength of 28 days, which is a design standard, and suppresses the temperature rise of the raw concrete to about 70.degree. C. or less. The present invention relates to a hydraulic composite material and a method for producing a high-strength concrete for use in high-rise RC buildings, bridges and the like using the same.

【0002】[0002]

【従来の技術】近年、コンクリ−ト構造物の多様化とと
もに、高層RC造建築物、橋梁などの大型の高強度コン
クリ−ト部材が建設される傾向にあり、安定した高強度
コンクリ−トが期待されている。
2. Description of the Related Art In recent years, with the diversification of concrete structures, large-sized high-strength concrete members such as high-rise RC buildings and bridges have been tending to be constructed, and stable high-strength concrete has been developed. Expected.

【0003】コンクリ−トの機械的強度、化学抵抗性
は、コンクリ−ト及びモルタルを構成する粒子の充填の
緻密さ及び均一性の程度に依存することはよく知られて
いるところであり、従来から成型時に振動を与えたり、
加圧することによってかなりの成果を上げている。
It is well known that the mechanical strength and chemical resistance of concrete depend on the degree of compactness and uniformity of the particles constituting the concrete and mortar. Giving vibration during molding,
Pressing has achieved considerable results.

【0004】しかし、物理的な加工、例えば加圧では、
日常的には甚だ不便であり、またこれら構造物の現場打
設では実質的に不可能と言ってよい。そこで、現在、こ
れら物理的な加工を特に加えないでも緻密化を達成する
方法として、一般には単位量当たり、多量のポルトラン
ドセメントを使用し、これに高性能減水剤を多量添加し
て緻密化を図っており、また一部にはこれにシリカフュ
−ムを更に添加し、一層の緻密化を図ったコンクリ−ト
としている。特に、後者の場合の考え方は、特公昭63
−59182号公報で、粒径0.5〜100μmのセメ
ント粒子Aとそれより少なくとも1オ−ダ小さい無機固
体粒子B(例えばシリカフュ−ム)と水及び表面活性分
散剤(例えば周知のマイティ(登録商標))を含み、セ
メント粒子Aの空隙に粒子Bの非常に水和活性の高いシ
リカフュ−ムを均一に分布して緻密化を意図しており、
前者を一歩進めたものと言える。
However, in physical processing such as pressurization,
It is extremely inconvenient on a daily basis, and it can be said that it is practically impossible to cast these structures in place. Therefore, at present, as a method of achieving densification without particularly adding physical processing, generally, a large amount of Portland cement is used per unit amount, and a large amount of a high-performance water reducing agent is added thereto to densify. In addition, silica fume is further added to a part of this to make a more densified concrete. Especially in the latter case,
No. 5,591,182, a cement particle A having a particle size of 0.5 to 100 μm, an inorganic solid particle B (for example, silica fume) at least one order smaller than the cement particle A, water and a surface active dispersant (for example, a well-known Mighty (registered) (Trademark)), and intended to densify by uniformly distributing silica fume having a very high hydration activity of particles B in voids of cement particles A,
It can be said that the former has been advanced one step.

【0005】ところが、セメントと高性能減水剤だけで
は確かに緻密化において限度があり、またシリカフュ−
ムを用いる場合には周知のように非常に高価であって、
通常の用途にはなかなか使い切れる材料ではなく、しか
も微粉であることから大量に使用しようとするとハンド
リングに問題がある。さらに大きな問題は、両者ともに
水和発熱量が大きく、一般にコンクリ−トで高強度を発
現しようとすると、単位量当たりのセメントあるいはセ
メントとシリカフュ−ムの使用量も多くする必要があ
り、コンクリ−トの部材が大きくなると水和発熱の為に
部材の温度が急激に上昇し、熱応力によるひびわれが発
生することであり、特にシリカフュ−ムを用いた場合に
は、非常に活性度が高く、またセメントの水和反応を促
進する効果があり、発熱量はセメント単独の場合と同等
以上となる。
[0005] However, cement and high performance water reducing agents alone have a limit in densification.
When using a system is very expensive as is well known,
The material is not easily used up for normal use, and it is a fine powder, so there is a problem in handling when trying to use it in large quantities. An even more serious problem is that both of them have a large calorific value of hydration, and generally, in order to achieve high strength in concrete, it is necessary to use a large amount of cement or cement and silica fume per unit amount, and concrete is required. When the size of the member increases, the temperature of the member rapidly rises due to hydration heat, and cracks due to thermal stress occur.In particular, when silica fume is used, the activity is extremely high, It also has the effect of promoting the hydration reaction of cement, and the calorific value is equal to or higher than that of the case of cement alone.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明者らは、
上記従来技術から発想を転換して種々の実験研究を重ね
た結果、高強度コンクリ−トにおいて、従来技術よりも
材令28日における高強度化を図り、高耐久性化及び高
密度化を維持し、かつ低発熱化を達成することができ、
しかも安価でハンドリングを向上できる方法を見いだし
たので、ここに提案しようとするものである。
SUMMARY OF THE INVENTION Accordingly, the present inventors
As a result of changing the idea from the above-mentioned conventional technology and repeating various experimental studies, in the high-strength concrete, the strength was increased 28 days after the conventional technology to maintain the high durability and high density. And can achieve low heat generation,
In addition, we have found a method that can improve handling at low cost, and we propose here.

【0007】[0007]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、次の2つの原理に基づく
ものである。すなわち、従来法よりも物理的に更に高密
度化を図り強度発現性を確保することと、中間粒子Cの
選択とこれを多量に有効利用することで低発熱化を図る
ものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is based on the following two principles. That is, the heat generation is reduced by physically increasing the density and securing the strength development property as compared with the conventional method, and by selecting the intermediate particles C and effectively using a large amount thereof.

【0008】まず、高密度化について、セメントにシリ
カフュームを混入する方法にしてもセメント粒子Aが造
る空隙に単一粒度に近い粒子B(シリカフューム)が充
填されるが、シリカフュ−ムの充填状態になお多くの空
隙をもっている。本発明は特開平2−102152号公
報に示すように、この従来技術より更に緻密性を上げる
ため、セメント粒子Aが造る空隙に、粒子Bより大きな
中間粒子Cを用い、セメント粒子Aの造る空隙の減少を
図れば、粒子Bの分散性を助けるとともに、その緻密性
を向上させることができるという原理に基づくものであ
る。そして、その中間粒子Cは実験の結果、微粉部、つ
まり粒子Bの大きさまで実質的に連続的な粒度分布をも
つことにより、先行技術を上回る高密度化を図り、しか
も低発熱化に成功したものである。
First, regarding the method for mixing silica fume into the cement, the voids formed by the cement particles A are filled with particles B (silica fume) of almost a single particle size. It has many voids. As described in Japanese Patent Application Laid-Open No. 2-102152, the present invention uses an intermediate particle C larger than the particle B in the void formed by the cement particles A in order to further increase the compactness of the prior art. Is based on the principle that the dispersibility of the particles B can be enhanced and the density of the particles B can be improved. As a result of the experiment, the intermediate particles C have a substantially fine particle portion, that is, have a substantially continuous particle size distribution up to the size of the particles B, thereby achieving a higher density than the prior art, and succeeded in reducing heat generation. Things.

【0009】具体的粒径としてはセメント粒子Aは0.
5〜100μm、粒子Bは0.01〜0.5μmのも
の、また中間粒子Cは0.1〜15μmであり、0.0
1μmから100μmまで粒子A,B,Cを配すること
により、連続粒度分布をもつ材料とすることで所期の高
密度化を図ることができる。
The concrete particle size of cement particles A is 0.1.
5 to 100 μm, particles B are 0.01 to 0.5 μm, and intermediate particles C are 0.1 to 15 μm;
By arranging the particles A, B, and C from 1 μm to 100 μm, a material having a continuous particle size distribution can achieve a desired high density.

【0010】今一つの低発熱を確保する為に、粒子Bは
鉱物性微粉末、例えばシリカフューム、シリカフラワー
等が適するが、中間粒子Cは適切に選択し、多量に用い
る必要がある。そのため粒子Cは吸水性が大きくない粒
子であり、白土、フライアッシュ、石灰石、けい石など
の、セメントやシリカフュ−ムより水和反応性が大きく
ない、すなわち活性度が低い微粉末が適している。
In order to secure another low heat generation, mineral B powder such as silica fume or silica flour is suitable for the particle B, but the intermediate particle C needs to be appropriately selected and used in a large amount. Therefore, the particles C are particles having low water absorption, and fine powders such as clay, fly ash, limestone, silica stone and the like having less hydration reactivity than cement or silica fume, that is, low activity, are suitable. .

【0011】これは、非常に活性度の高い粒子を用いる
と、セメントと積極的に反応し、水和組織が緻密化して
高強度を得ることはできるが、結果的に水和発熱を抑え
ることができないことによるためであり、本発明は水和
反応性の比較的低い粒子を多量に混入して、物理的に充
填性を確保し、セメントとシリカフュ−ムの水和組織と
粒子Cが密着して緻密化すればよく、粒子C自体が十分
に水和反応する必要はない。なお、微粉の凝集を防ぐた
め、この種の水硬性材料の配合の際に一般に用いられて
いる表面活性剤添加が有効であり、特にこの場合には高
性能分散剤の使用が望ましく、混合剤に対して2〜10
wt%程度が望ましい。
[0011] This is because, when particles having extremely high activity are used, they react positively with the cement and the hydrated structure can be densified and high strength can be obtained. In the present invention, particles having relatively low hydration reactivity are mixed in a large amount to physically secure the filling property, and the hydrated structure of cement and silica fume adheres to the particles C. The particles C themselves do not need to undergo a sufficient hydration reaction. In order to prevent agglomeration of the fine powder, it is effective to add a surfactant which is generally used when compounding this type of hydraulic material. In this case, it is desirable to use a high-performance dispersant, 2 to 10
It is desirable to be about wt%.

【0012】混合材中の粒子Bと粒子Cの割合は、粒子
Bが20〜50wt%、粒子Cが50〜80wt%が好
ましく、粒子Aに対する添加強化材(B+C)の添加範
囲は35wt%を越え60wt%以下が好ましい。
The ratio of the particles B to the particles C in the mixture is preferably 20 to 50 wt% for the particles B and 50 to 80 wt% for the particles C, and the addition range of the additive reinforcing material (B + C) to the particles A is 35 wt%. Exceeding 60 wt% or less is preferable.

【0013】さらに、本発明による水硬性複合材料はコ
ンクリ−トに使用する際に、単位量当たりの水量が少な
い場合、すなわち水粉体比25%程度以下でその特性を
顕著に発揮する。しかし、単位量当たりの水量がこれよ
り大きい場合には、水が組織中に水隙となり、粒子の充
填性は生かされなくなり、十分な緻密化がはかれず、強
度発現性の有利さは少なくなる。
Furthermore, the hydraulic composite material according to the present invention, when used in concrete, exhibits remarkable properties when the amount of water per unit amount is small, that is, when the water powder ratio is about 25% or less. However, when the amount of water per unit amount is larger than this, water becomes a water gap in the tissue, the packing property of the particles is not utilized, sufficient densification is not performed, and the advantage of strength development is less. Become.

【0014】本発明は以上の原理並びに知見に基づくも
ので、第1の発明は、粒径0.5〜100μmのセメン
ト粒子A40〜65wt%未満に、シリカフューム等の
活性度の高い粒径0.01〜0.5μmの粒子Bと、フ
ライアッシュ等の活性度の低い粒径0.1〜15μm粒
子Cからなる添加強化材を35wt%を越え60wt%
添加し、前記粒子BとCの割合は粒子Bが20〜50w
t%、粒子Cが50〜75wt%であることを特徴とす
る水硬性複合材料である。
The present invention is based on the above-mentioned principle and knowledge. The first invention is to provide a cement particle A having a particle size of 0.5 to 100 μm and less than 40 to 65 wt% of a particle having a high activity such as silica fume. More than 35% by weight and more than 60% by weight of an additive reinforcing material consisting of particles B having a particle size of 01 to 0.5 μm and particles C having a small particle size of 0.1 to 15 μm having low activity such as fly ash
The ratio of the particles B and C is 20 to 50 w
It is a hydraulic composite material characterized in that t% and particles C are 50 to 75 wt%.

【0015】第2の発明は前記セメント粒子Aと、粒子
B及びCからなる添加強化材からなる第1の発明の水硬
性複合材料に更に適量の粉体高性能減水剤を添加したこ
とを特徴とする水硬性複合材料である。
The second invention is characterized in that a proper amount of a powdery high-performance water reducing agent is further added to the hydraulic composite material of the first invention comprising the cement particles A and the added reinforcing material composed of the particles B and C. Is a hydraulic composite material.

【0016】また、第3の発明は、第1の発明又は第2
の発明の水硬性複合材料を用い水粉体比25%以下で混
練することを特徴とする高強度コンクリ−トの製造法で
ある。
The third invention is the first invention or the second invention.
A method for producing a high-strength concrete, comprising kneading the hydraulic composite material of the invention of the invention at a water powder ratio of 25% or less.

【0017】[0017]

【作用】第1の発明又は第2の発明の水硬性複合材料を
用いてコンクリ−トを製造すると高強度、低発熱のコン
クリ−トを製造することができ、また第2の発明による
と、充分なる強度発現性を期待することができ高強度コ
ンクリ−トが得られる。
When a concrete is produced by using the hydraulic composite material of the first invention or the second invention, a concrete having high strength and low heat generation can be produced. Sufficient strength development can be expected, and high strength concrete can be obtained.

【0018】[0018]

【実施例】実施例1 (使用材料) 粒子A:普通ポルトランドセメント 粒子B:シリカフュ−ム 平均粒径 0.2μm 粒子C: 1寄居白土 平均粒径 2μm 2けい石 平均粒径 1.5μm 3石灰石 平均粒径 2μm 骨材:粗骨材−両神山産硬質砂岩 Gmax20mm、F.M=6.59 細骨材−皆野金沢産硬質砂岩 F.M=2.72 表面活性剤:花王マイティ−150 (配合) B+C/A+B+C=50wt% 一定、単位粉体量
(A+B+C)550kg/m3 一定、スランプ=25
cm、スランプフロ−630±20mm,細骨材率43
%とし、表面活性剤は粉体に対して6wt%一定量とな
るように添加した。 (混練) 20℃恒温室にて100リットル強制練りミキサ−を用
い、180秒練り混ぜを行った。 (成型、養成) 20℃にて10φ×20cmに成型し、20℃水中養成
を行った。
Example 1 (Materials used) Particle A: Ordinary Portland cement Particle B: Silica fume Average particle size 0.2 μm Particle C: 1 Yorii clay Average particle size 2 μm 2 Silica Average particle size 1.5 μm 3 Limestone Average particle size 2 μm Aggregate: coarse aggregate-hard sandstone from Ryogamiyama Gmax 20 mm, F.S. M = 6.59 Fine aggregate-Hard sandstone from Minano Kanazawa M = 2.72 Surfactant: Kao Mighty-150 (Blend) B + C / A + B + C = 50 wt% constant, unit powder amount (A + B + C) 550 kg / m 3 constant, slump = 25
cm, slump flow 630 ± 20 mm, fine aggregate ratio 43
%, And the surfactant was added so as to be a constant amount of 6 wt% with respect to the powder. (Kneading) Using a 100-liter forced kneading mixer in a constant temperature room at 20 ° C., kneading was performed for 180 seconds. (Molding and training) Molding was performed at 20 ° C to a size of 10φ × 20 cm, and training was performed at 20 ° C in water.

【0019】図1〜図3では単位粉体量、スランプフロ
−を一定値内としたときの単位水量、コンクリ−ト圧縮
強度および断熱温度上昇をそれぞれ表したものである。
コンクリ−ト硬化体では、基本的にセメント粒子が造る
空隙には水が存在しているが、この水隙に微粒子を充填
することで水量を減ずることになる。したがって、微粒
子の充填性は水量によって評価することができ、水量が
少ないほど充填性は高く、緻密な組織となっていること
を示している。
FIGS. 1 to 3 show the unit powder amount, the unit water amount when the slump flow is within a certain value, the concrete compressive strength and the adiabatic temperature rise, respectively.
In the hardened concrete, water is basically present in the voids formed by the cement particles, but the amount of water is reduced by filling the voids with fine particles. Therefore, the filling property of the fine particles can be evaluated based on the amount of water, and the smaller the amount of water, the higher the filling property, indicating that a dense structure is obtained.

【0020】図1及び図2では粒子B又はCが単独で混
入された場合よりもB+Cの混合物(粒径の異なったも
のを混合したもの)を使用した方が水量を減じ、充填性
は高くなり、また強度発現性がよい緻密な組織が得られ
ることが分かる。しかし、図3に示すように粒子BがB
+Cに対して50wt%以上となると、強度発現性は良
好なものの断熱温度上昇量は大きく、好ましくなく、一
方粒子Cが80wt%以上となると強度発現性が損なわ
れることになる。粒子Cの種類により強度発現特性など
に若干の相違はあるが、概して同様の傾向を示し、いず
れの粒子も有効である。
In FIG. 1 and FIG. 2, the use of a mixture of B + C (a mixture of particles having different particle diameters) reduces the amount of water and improves the packing property as compared with the case where the particles B or C are mixed alone. It can be seen that a dense tissue having good strength development can be obtained. However, as shown in FIG.
When the content is +50 wt% or more with respect to + C, the strength development is good, but the adiabatic temperature rise is large, which is not preferable. On the other hand, when the particle C is more than 80 wt%, the strength development is impaired. Although there is a slight difference in the strength development characteristics and the like depending on the type of the particles C, generally the same tendency is exhibited, and all the particles are effective.

【0021】なお、実際のコンクリ−ト打設では一般に
強度に対する水粉体比を設定し、スランプに対して水量
を設定することから、B+Cの混合物を使用することに
より単位水量、単位粉体量とも更に減ずることができる
ため、実施例1における断熱温度上昇量よりなお低減す
ることができる。
In actual concrete casting, the ratio of water powder to strength is generally set, and the amount of water is set for slumps. Therefore, it is possible to further reduce the adiabatic temperature rise amount in the first embodiment.

【0022】実施例2 (使用材料) 粒子A:普通ポルトランドセメント 粒子B:シリカフュ−ム 平均粒径 0.2μm 粒子C:けい石 平均粒径 1.5μm 骨剤:粗骨材−両神山産硬質砂岩 Gmax20mm、F.M=6.59 細骨材−皆野金沢産硬質砂岩 F.M.=2.72 表面活性剤:花王マイティ150 (配合) B:C=1:2とし、単位粉体量(A+B+C)550
kg/m3 一定、スランプ=25cm,スランプフロ−
630±20mm、細骨材率43%とし、表面活性剤は
粉体に対して5wt%一定量となるように添加した。 (混練) 20℃恒温室にて100リットル強制練りミキサ−を用
い、120秒間練り混ぜを行った。 (成型、養成) 20℃にて10φ×20cmに成型し、20℃水中養成
を行った。
Example 2 (Materials used) Particle A: ordinary Portland cement Particle B: silica fume Average particle size 0.2 μm Particle C: silica average particle size 1.5 μm Aggregate: coarse aggregate—hard from Ryogamiyama Sandstone Gmax 20mm, F.S. M = 6.59 Fine aggregate-Hard sandstone from Minano Kanazawa M. = 2.72 Surfactant: Kao Mighty 150 (mixed) B: C = 1: 2, unit powder amount (A + B + C) 550
kg / m3 constant, slump = 25cm, slump flow
630 ± 20 mm, the fine aggregate ratio was 43%, and the surfactant was added in a constant amount of 5 wt% with respect to the powder. (Kneading) The mixture was kneaded for 120 seconds using a 100-liter forced kneading mixer in a constant temperature room at 20 ° C. (Molding and training) Molding was performed at 20 ° C to a size of 10φ × 20 cm, and training was performed at 20 ° C in water.

【0023】図4〜図6は単位粉体量、スランプを一定
としたときの単位水量、圧縮強度および断熱温度上昇を
表したものである。
FIGS. 4 to 6 show the unit powder amount, the unit water amount when the slump is fixed, the compressive strength and the adiabatic temperature rise.

【0024】図4に示すように、コンクリ−トの単位水
量は粒子B+Cを添加すると減少し、緻密化の硬化が大
きいことが認められ、添加量30%付近に極小値が見ら
れる。
As shown in FIG. 4, the unit water content of the concrete decreases when the particles B + C are added, and it is recognized that the hardening of densification is large, and a minimum value is observed around 30% of the added amount.

【0025】図5に強度発現性を示す。粒子B+Cの強
度発現性は添加量30%程度のところに極大が見られ、
それ以上の添加量では徐々に強度発現性は低下する傾向
にあり、水硬性の早いポルトランドセメントの割合が少
なくなって行くため、緻密化、強度発現の進行は遅れる
ものと考えられる。しかし、図6に示す断熱温度上昇量
は粒子B+Cの添加量が30%以下では強度発現性は良
好なものの、温度上昇の抑制効果は大きくなく、また粒
子の無混入の場合は、強度発現性の割りに温度上昇は相
当に高いことが認められる。
FIG. 5 shows the strength development. The strength development of particles B + C has a maximum at about 30% of the added amount,
If the amount is larger than that, the strength development tends to gradually decrease, and the proportion of Portland cement with high hydraulicity decreases, so that the progress of densification and strength development is considered to be delayed. However, although the adiabatic temperature increase shown in FIG. 6 is good when the addition amount of the particles B + C is 30% or less, the effect of suppressing the temperature rise is not great. However, it is recognized that the temperature rise is considerably high.

【0026】したがって、粒子B+Cの添加量が35〜
60%とすることにより、圧縮強度900kg/cm2
を上回る高強度コンクリ−トを得ることができ、しかも
温度上昇を大幅に抑制することができる。
Therefore, the addition amount of the particles B + C is 35 to
By setting it to 60%, the compressive strength is 900 kg / cm2.
High strength concrete can be obtained, and the temperature rise can be greatly suppressed.

【0027】[0027]

【発明の効果】本発明にかゝる水硬性複合材料をコンク
リ−ト又はモルタルの製造に用いた場合、セメント粒子
Aが密に充填されたときに形成される空隙を粒径0.0
1〜0.5μmの粒子Bと粒径が0.1〜15μmの粒
子Cとの実質的に連続粒度分布をもつ微粉末で充填され
るため、空隙の総体積が従来法より減少して高密度化す
る一方で、粒子Bは活性度の低いものを選択して多量に
用いることにより、粉体の水和発熱量を抑制し、コンク
リ−ト又はモルタルの物理特性、化学抵抗性および硬度
を効果した高強度でしかも低発熱のコンクリ−ト及びモ
ルタルを実現することができる。
When the hydraulic composite material according to the present invention is used for the production of concrete or mortar, the voids formed when the cement particles A are densely packed have a particle size of 0.0
Filled with fine powder having a substantially continuous particle size distribution of particles B having a particle size of 1 to 0.5 μm and particles C having a particle size of 0.1 to 15 μm. On the other hand, while increasing the density, particles B having a low activity are selected and used in a large amount, thereby suppressing the calorific value of the hydration of the powder and reducing the physical properties, chemical resistance and hardness of the concrete or mortar. An effective high strength concrete and mortar with low heat generation can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における単位水量を示すグラフであ
る。
FIG. 1 is a graph showing a unit water amount in Example 1.

【図2】実施例1における断熱温度上昇を示すグラフで
ある。
FIG. 2 is a graph showing an increase in adiabatic temperature in Example 1.

【図3】実施例1における圧縮強度を示すグラフであ
る。
FIG. 3 is a graph showing compressive strength in Example 1.

【図4】実施例2における単位水量を示すグラフであ
る。
FIG. 4 is a graph showing a unit water amount in Example 2.

【図5】実施例2における断熱温度上昇を示すグラフで
ある。
FIG. 5 is a graph showing an increase in adiabatic temperature in Example 2.

【図6】実施例2における圧縮強度を示すグラフであ
る。
FIG. 6 is a graph showing compressive strength in Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C04B 14:06 24:22) (72)発明者 藤本 泉 埼玉県熊谷市月見町二丁目1番1号 秩 父セメント株式会社 中央研究所内 (72)発明者 棚木 英吉 埼玉県熊谷市月見町二丁目1番1号 秩 父セメント株式会社 中央研究所内 (56)参考文献 特開 平2−102152(JP,A) 特開 昭60−239351(JP,A) 特開 昭60−255657(JP,A)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C04B 14:06 24:22) (72) Inventor Izumi Fujimoto 2-1-1 Tsukimicho, Kumagaya-shi, Saitama Chichibu Cement Stock (72) Inventor Eikichi Tanaki 2-1-1, Tsukimi-cho, Kumagaya-shi, Saitama Chichibu-Cement Co., Ltd. Central Research Institute (56) References JP-A-2-102152 (JP, A) JP JP-A-60-239351 (JP, A) JP-A-60-255657 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒径0.5〜100μmのセメント粒子
A40〜65wt%未満に、シリカフューム等の活性度
の高い粒径0.01〜0.5μmの粒子Bと、フライア
ッシュ等の活性度の低い粒径0.1〜15μmの粒子C
からなる添加強化材を35wt%を越え60wt%以下
添加し、前記粒子BとCの割合は粒子Bが20〜50w
t%、粒子Cが50〜80wt%であることを特徴とす
る水硬性複合材料。
1. A cement particle A having a particle size of 0.5 to 100 μm, less than 40 to 65 wt%, a particle B having a high activity of 0.01 to 0.5 μm such as silica fume, and an activity of a fly ash or the like. Particle C having a low particle size of 0.1 to 15 μm
Is added in an amount of more than 35 wt% and not more than 60 wt%, and the ratio of the particles B and C is such that the particles B are 20 to 50 watts.
A hydraulic composite material characterized in that t% and particles C are 50 to 80 wt%.
【請求項2】 請求項1記載のものに更に適量の粉体高
性能減水剤を添加したことを特徴とする水硬性複合材
料。
2. A hydraulic composite material according to claim 1, further comprising an appropriate amount of a powdery high-performance water reducing agent.
【請求項3】 請求項1又は2記載のものを用い、水粉
体比25%以下で混練したことを特徴とする高強度コン
クリ−トの製造方法。
3. A method for producing a high-strength concrete, comprising kneading the composition according to claim 1 or 2 at a water powder ratio of 25% or less.
JP15843092A 1992-05-07 1992-05-07 Hydraulic composite material and method for producing high-strength concrete using the same Expired - Lifetime JP3200804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15843092A JP3200804B2 (en) 1992-05-07 1992-05-07 Hydraulic composite material and method for producing high-strength concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15843092A JP3200804B2 (en) 1992-05-07 1992-05-07 Hydraulic composite material and method for producing high-strength concrete using the same

Publications (2)

Publication Number Publication Date
JPH05310459A JPH05310459A (en) 1993-11-22
JP3200804B2 true JP3200804B2 (en) 2001-08-20

Family

ID=15671593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15843092A Expired - Lifetime JP3200804B2 (en) 1992-05-07 1992-05-07 Hydraulic composite material and method for producing high-strength concrete using the same

Country Status (1)

Country Link
JP (1) JP3200804B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531823A (en) * 1995-02-06 1996-07-02 Atomic Energy Of Canada Limited Low-heat high-performance concrete
KR100877026B1 (en) 2001-05-29 2009-01-07 다이헤이요 세멘토 가부시키가이샤 Hydraulic Composition
US20050226947A1 (en) * 2004-02-04 2005-10-13 Dale Kern Agents for sequestering serum aging factors and uses therefore
JP3762780B1 (en) 2005-02-02 2006-04-05 大成建設株式会社 Fiber reinforced concrete and method for manufacturing fiber reinforced concrete member

Also Published As

Publication number Publication date
JPH05310459A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
JP3099166B2 (en) Hydraulic composition
JP3200804B2 (en) Hydraulic composite material and method for producing high-strength concrete using the same
JP2002348167A (en) Hydraulic composition
JP5041656B2 (en) High specific gravity concrete, manufacturing method thereof, high specific gravity concrete molded body for wave countermeasures and high specific gravity concrete molded body for radiation shielding
KR101338502B1 (en) Shrinkage-reducing and Ultra High Early Strength Cement Binder Composition and Method for producing Secondary Goods of Precast Concrete using the same
JP2001261414A (en) Concrete having self-wetting/aging function and its executing method
JPH0753595B2 (en) Manufacturing method of concrete etc.
JPH0780697B2 (en) Method for strengthening concrete or mortar, hydraulic composite material and reinforcing additive
JPH07133170A (en) Production of super light-weight mortar concrete
KR100510875B1 (en) Cement admixture composite for high flowability concrete fabrication
JP3628064B2 (en) Concrete composition
JP4864866B2 (en) Porous concrete and its aggregate
JP3072423B2 (en) Manufacturing method of high-strength artificial aggregate
JPS62207744A (en) High strength mortar concrete
JP3662049B2 (en) Concrete composition
JP4045169B2 (en) Explosion-resistant high-strength cementitious cured body and method for producing the same
JPH05238787A (en) High-strength cement composition
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JPS62207754A (en) Low shrinkage high strength hydraulic composition
JPH0569783B2 (en)
JP2003146723A (en) Concrete composition and mortal composition
JP2003146732A (en) Method of producing slag hardened body
JP2004224639A (en) Slab member
JP2864862B2 (en) Cement compositions and cement extruded products
JP4630448B2 (en) Composition for wood cement board and method for producing wood cement board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

EXPY Cancellation because of completion of term