JP2864862B2 - Cement compositions and cement extruded products - Google Patents

Cement compositions and cement extruded products

Info

Publication number
JP2864862B2
JP2864862B2 JP10313692A JP10313692A JP2864862B2 JP 2864862 B2 JP2864862 B2 JP 2864862B2 JP 10313692 A JP10313692 A JP 10313692A JP 10313692 A JP10313692 A JP 10313692A JP 2864862 B2 JP2864862 B2 JP 2864862B2
Authority
JP
Japan
Prior art keywords
cement
weight
parts
vermiculite
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10313692A
Other languages
Japanese (ja)
Other versions
JPH05294702A (en
Inventor
冨二夫 片平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Nippon Steel Corp
Original Assignee
Nichiha Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp, Sumitomo Metal Industries Ltd filed Critical Nichiha Corp
Priority to JP10313692A priority Critical patent/JP2864862B2/en
Publication of JPH05294702A publication Critical patent/JPH05294702A/en
Application granted granted Critical
Publication of JP2864862B2 publication Critical patent/JP2864862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はビル用の外壁材や間仕切
壁材などの用途に有用なセメント押出製品、特に防火・
耐火性能に優れた軽量セメント押出製品と、その原料と
なるセメント組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cement extruded product useful for applications such as exterior wall materials and partition wall materials for buildings, particularly fire prevention and
The present invention relates to a lightweight cement extruded product excellent in fire resistance performance and a cement composition as a raw material thereof.

【0002】[0002]

【従来の技術】セメントの押出製品は、セメントに骨材
や補強繊維などを配合し、水を加えて均一に混練して得
た材料を、押出成形機に通して成形し、成形体を養生さ
せて硬化させることにより製造される。こうして製造さ
れたセメント押出製品は、主に耐火建材として住宅用あ
るいはビル用の外壁材等に適用されるため、この製品に
は、耐火・防火性の観点より、熱に対する抵抗力が要求
される。
2. Description of the Related Art Cement extruded products are obtained by mixing aggregates and reinforcing fibers with cement, adding water, and uniformly kneading the resulting material. It is manufactured by letting it cure. The cement extruded product thus manufactured is mainly used as a fire-resistant building material for exterior wall materials for houses or buildings, and therefore, this product is required to have heat resistance from the viewpoint of fire resistance and fire resistance. .

【0003】セメント押出製品の熱抵抗力を高めるた
め、骨材の一部としてマイカを混入することが知られて
いる(特開平2−141184号)。マイカの混入は、セメン
トの熱抵抗力、従って、耐火・防火性能を著しく高める
ことが確認された。しかし、マイカはへき開性の薄層体
であるため、表面積が大きく、同一水量ではマイカを混
入しない場合に比較して材料がぱさつき、材料の流動性
が低下して、押出成形が困難となる。
It is known that mica is mixed as a part of aggregate in order to increase the heat resistance of a cement extruded product (Japanese Patent Application Laid-Open No. 2-141184). It has been confirmed that the mixing of mica significantly enhances the heat resistance of the cement, and thus the fire and fire resistance. However, since mica is a cleaving thin layered material, the surface area is large, the material becomes thicker than when mica is not mixed with the same amount of water, the fluidity of the material is reduced, and extrusion molding becomes difficult.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明者は、
セメント押出製品の熱抵抗力を高める効果を有し、かつ
押出成形性も良好な骨材について種々検討を重ねた結
果、バーミキュライトを用いれば、押出製品の熱抵抗力
を十分に高めることができ、マイカと異なり、押出成形
性も良好であることを見出した。ところが、軽量なバー
ミキュライトを混入したセメント押出製品は、その比重
が低下するため、強度が低下するという別の問題点があ
った。
Therefore, the present inventor has proposed:
As a result of repeatedly examining aggregates having an effect of increasing the heat resistance of cement extruded products and also having good extrusion moldability, it is possible to sufficiently increase the heat resistance of extruded products by using vermiculite, It was found that, unlike mica, the extrudability was good. However, a cement extruded product mixed with light vermiculite has another problem that the specific gravity is reduced and the strength is reduced.

【0005】本発明は、防火・耐火性能に優れた効果を
発揮するバーミキュライトを混入したセメント押出製品
における問題点、即ち、硬化物の強度低下を解決するこ
とを課題とする。従って、本発明の目的は、耐火性と防
火性に優れ、かつ強度特性、押出成形性にも優れたセメ
ント押出製品ならびにその製造用に用いる押出用セメン
ト組成物を提供することである。
[0005] It is an object of the present invention to solve a problem in a cement extruded product mixed with vermiculite which exhibits an excellent effect of fire prevention and fire resistance, that is, a reduction in strength of a cured product. Accordingly, an object of the present invention is to provide a cement extruded product excellent in fire resistance and fire resistance, and also excellent in strength properties and extrudability, and a cement composition for extrusion used for the production thereof.

【0006】[0006]

【課題を解決するための手段】本発明者は、かかる目的
を達成すべく、バーミキュライトを混入したセメント押
出材に関し、種々の検討を重ねた結果、フュームドシリ
カを適量さらに配合することにより、バーミキュライト
を混入しても、建材の防火性、耐火性を維持したまま、
その問題点である硬化後の強度低下を解決できることを
見出し、本発明をなすに至った。
The present inventor has conducted various studies on a cement extruded material mixed with vermiculite in order to achieve the above object. As a result, the present inventors have found that by adding an appropriate amount of fumed silica, vermiculite can be obtained. Even if mixed, while maintaining the fire resistance and fire resistance of building materials,
The present inventors have found that the problem of decrease in strength after curing can be solved, and have accomplished the present invention.

【0007】ここに、本発明は、バーミキュライトを5
〜20重量部およびフュームドシリカをバーミキュライト
混入量の1/4以上、10重量部以下の量で含有し、残部
がセメントおよび骨材よりなる無機窯業系粉体100 重量
部に対して、補強繊維を3〜20重量部、成形助剤を0.5
〜5重量部、水を30〜50重量部加えた均一混合物からな
る、押出成形用セメント組成物、および上記組成物の押
出成形体をオートクレーブ養生してなるセメント押出製
品、を要旨とする。
Here, the present invention relates to vermiculite
2020 parts by weight and fumed silica in an amount of not less than 1/4 and not more than 10 parts by weight of the mixed amount of vermiculite, the balance being 100 parts by weight of inorganic ceramics powder composed of cement and aggregate, and reinforcing fiber. 3 to 20 parts by weight, molding aid 0.5
The present invention provides a cement composition for extrusion molding comprising a homogeneous mixture obtained by adding up to 5 parts by weight of water and 30 to 50 parts by weight of water, and a cement extruded product obtained by subjecting an extruded product of the composition to autoclave curing.

【0008】[0008]

【作用】以下、本発明の構成をその作用と共に詳述す
る。本発明のセメント押出製品は、骨材の一部としてバ
ーミキュライトとフュームドシリカとを配合した窯業系
粉体に、補強繊維、成形助剤および水を配合し、均一に
混練した組成物から形成される。
The construction of the present invention will be described in detail below together with its operation. The cement extruded product of the present invention is formed from a composition obtained by blending a reinforcing fiber, a molding aid and water into a ceramic powder blended with vermiculite and fumed silica as a part of the aggregate, and uniformly kneading the mixture. You.

【0009】窯業系粉体はセメントと骨材からなるが、
本発明で用いるものは、骨材の一部として、バーミキュ
ライトとフュームドシリカを上記範囲内の量で配合した
点を除いて、従来のものと同様でよい。
The ceramic powder is composed of cement and aggregate,
The material used in the present invention may be the same as the conventional material except that vermiculite and fumed silica are blended in an amount within the above range as a part of the aggregate.

【0010】セメントとしては、従来品と同様に、普通
ポルトランドセメント、早強ポルトランドセメント、高
炉セメント等の各種のものが使用可能である。骨材のう
ち、バーミキュライト、フュームドシリカを除く他の骨
材は、珪砂、フライアッシュ、水滓などの通常の各種骨
材でよい。これらは粉体として配合されるが、その粒度
は特に制限されない。
As the cement, various kinds of cement such as ordinary Portland cement, early-strength Portland cement, blast furnace cement and the like can be used as in the case of conventional products. Among the aggregates, the other aggregates other than vermiculite and fumed silica may be ordinary aggregates such as silica sand, fly ash, and scum. These are blended as a powder, but the particle size is not particularly limited.

【0011】骨材の一部として本発明で用いるバーミキ
ュライトは、原鉱を 600〜1000℃で加熱し、膨張させた
ものを粉砕した材料であり、一般に軽量骨材として使用
される。バーミキュライトは融点が1400〜1500℃と高い
ため、上述したようにセメント押出製品の熱抵抗力を高
める目的で配合する。バーミキュライトの粒度等につい
ては特に制限されないが、押出成形性および成形体の表
面性状を良好にするためには、50μm以下のものを20重
量%以上、300 μm以上のものを10重量%以下の割合で
含むことが好ましい。50μm以下のものが20重量%未満
であると、他の粉体との分散が不十分となり、300 μm
以上のものを10重量%より多く含有すると、成形体の表
面平滑性を損なうことになるので、好ましくない。
The vermiculite used in the present invention as a part of the aggregate is a material obtained by heating and expanding the raw ore at 600 to 1000 ° C. and pulverizing it, and is generally used as a lightweight aggregate. Since vermiculite has a high melting point of 1400 to 1500 ° C, it is blended for the purpose of increasing the heat resistance of a cement extruded product as described above. The particle size of vermiculite is not particularly limited, but in order to improve the extrudability and the surface properties of the molded product, a ratio of 50 μm or less should be 20% by weight or more, and 300 μm or more should be 10% by weight or less. It is preferable to include If the content is less than 20% by weight, the dispersion with other powders becomes insufficient and the
If the content of the above is more than 10% by weight, the surface smoothness of the molded article is impaired, which is not preferable.

【0012】押出成形時に、セメント組成物は1〜50 k
g/cm2 程度の圧力を受けるため、水分が粉体や繊維から
分離し、流動性の不均一や表面の平滑性を損なうことが
考えられるが、本発明で骨材の一部として配合するバー
ミキュライトは、気孔率が大きく、水分の吸収性・保持
性に富む材料であるため、上記の熱抵抗力を高める効果
に加えて、水分の分離を防いで押出成形性を大きく向上
させる効果もある。
At the time of extrusion molding, the cement composition is 1 to 50 k
for receiving a g / cm 2 about the pressure of the water is separated from the powder or fiber, it is conceivable to impair the smoothness of the flow properties of heterogeneous or surface, formulated as part of the aggregate in the present invention Vermiculite is a material having a high porosity and a high water absorption / retention property.In addition to the above-described effect of increasing the heat resistance, there is also an effect of preventing separation of water and greatly improving extrudability. .

【0013】フュームドシリカは、平均粒径が1μm以
下 (例、0.1 μm) と非常に微細な、SiO2を主成分とす
る乾式コロイドのことである。フュームドシリカは、四
塩化珪素などの珪素化合物の熱分解により製造され、ま
たシリコンやフェロシリコンなどのケイ素合金を電気炉
で製造する際に排ガスに浮遊する副産物としても得られ
る。
The fumed silica is a very fine dry colloid mainly composed of SiO 2, having an average particle size of 1 μm or less (eg, 0.1 μm). Fumed silica is produced by thermal decomposition of a silicon compound such as silicon tetrachloride, and is also obtained as a by-product floating in exhaust gas when producing a silicon alloy such as silicon or ferrosilicon in an electric furnace.

【0014】フュームドシリカは活性度が高いことか
ら、セメントへの混入が強度発現に有効なことは従来か
ら知られているが、本発明にあっては、バーミキュライ
トとの併用添加により、セメント組成物の押出成形性が
顕著に向上する。バーミキュライトが上述のように成形
時の水分分離を防止する一方、フュームドシリカは粘性
を付与する。この粘性は、微粉であるフュームドシリカ
が他の粒子間に入り込み、ベアリング効果によって粒子
が動き易くなるために生ずると考えられる。この二つの
作用は、押出成形によるセメント製品の製造において成
形助剤として不可欠の添加剤であるメチルセルロース等
の役割と同じであるため、このような高価な添加剤の使
用量を低減することができるという経済効果も達成され
る。
Since fumed silica has a high activity, it has been known that its incorporation into cement is effective for developing strength. However, in the present invention, the addition of fumed silica to vermiculite in combination with cement The extrudability of the product is significantly improved. While vermiculite prevents moisture separation during molding as described above, fumed silica imparts viscosity. It is considered that this viscosity occurs because fumed silica, which is a fine powder, enters between other particles, and the particles easily move due to a bearing effect. Since these two actions are the same as the role of methylcellulose or the like which is an indispensable additive as a molding aid in the production of a cement product by extrusion molding, the amount of such an expensive additive can be reduced. The economic effect is also achieved.

【0015】補強繊維は、セメント押出製品の強度改善
と、成形直後の材料の保型性確保のために配合される。
補強繊維としては、炭素繊維、スチール繊維、鉱物繊維
であるセピオライト等の無機質繊維の他に、セルロース
繊維、ポリプロピレン繊維等、オートクレーブ養生に耐
えられるものであれば有機質繊維も使用できる。補強繊
維は1種類を単独で使用しても良いし、複数種を混用し
ても良い。
The reinforcing fiber is blended to improve the strength of the extruded cement product and to ensure the shape retention of the material immediately after molding.
As the reinforcing fiber, in addition to inorganic fibers such as carbon fiber, steel fiber and mineral fiber such as sepiolite, organic fibers such as cellulose fiber and polypropylene fiber can be used as long as they can withstand autoclave curing. One type of reinforcing fiber may be used alone, or a plurality of types may be mixed.

【0016】成形助剤は、水を加えた後の材料に適度の
粘性を付与すると共に、水の分離を防ぐ保水作用を発揮
させるために添加する。増粘剤として知られているもの
が使用でき、具体例としてはメチルセルロース、エチル
セルロース、カルボキシメチルセルロース等が挙げられ
る。
The molding aid is added to impart a proper viscosity to the material after the addition of water, and to exert a water retention function for preventing separation of water. What is known as a thickener can be used, and specific examples include methylcellulose, ethylcellulose, carboxymethylcellulose and the like.

【0017】次に、本発明の押出成形用セメント組成物
の組成を上記のように限定した理由を説明する。
Next, the reason why the composition of the cement composition for extrusion molding of the present invention is limited as described above will be described.

【0018】バーミキュライトは、セメントと、バーミ
キュライトおよびフュームドシリカを含む骨材とを合わ
せた無機窯業系粉体の全重量を100 重量部とした場合
(以下同じ)、5〜20重量部の量で配合する。バーミキ
ュライトの混入量が5重量部未満では、建材の耐火試験
あるいは防火試験などで 800〜1000℃の高温にさらされ
た場合に、セメント製品の変形量が大きく、建材として
の耐火性が不十分となる。一方、バーミキュライトの配
合量が20重量部を越えると、バーミキュライトが軽量骨
材であることから、比重低下が大きく、フュームドシリ
カを添加しても強度低下を補うことができなくなり、建
材に要求される強度が得られない。
Vermiculite is used in an amount of 5 to 20 parts by weight when the total weight of the inorganic ceramics-based powder including the cement and the aggregate containing vermiculite and fumed silica is 100 parts by weight (the same applies hereinafter). Mix. If the amount of vermiculite is less than 5 parts by weight, the amount of deformation of the cement product will be large when exposed to high temperatures of 800 to 1000 ° C in the fire resistance test or fire prevention test of the building material, and the fire resistance of the building material will be insufficient. Become. On the other hand, if the amount of vermiculite exceeds 20 parts by weight, the specific gravity is significantly reduced because vermiculite is a lightweight aggregate, and the addition of fumed silica cannot compensate for the decrease in strength. Strength cannot be obtained.

【0019】図1に、従来の押出成形用セメント組成物
に、追加の骨材としてバーミキュライトのみを混入した
場合の、バーミキュライト混入量と、耐火性の指標とな
る硬化後の材料の熱膨張係数の変化を調べた実験結果を
示す。使用したセメント組成物は、普通ポルトランドセ
メント40重量部、骨材としてバーミキュライトと珪砂を
合わせて60重量部からなる、合計100 重量部の無機窯業
系粉体に対して、補強繊維としてセルロース繊維5重量
部と成形助剤(メチルセルロース)1.5 重量部とを加
え、押出成形に適した粘性が得られる量の水を加えて、
ミキサーにより均一に混練したものである。具体的に
は、水の添加量は35〜50重量部の範囲であった。この混
練物を、後述する実施例と同様に押出成形および養生さ
せることにより得た硬化セメントの押出成形体の試験片
について、熱膨張係数を測定した。
FIG. 1 shows the amount of mixed vermiculite and the coefficient of thermal expansion of the hardened material, which is an index of fire resistance, when only vermiculite is added as an additional aggregate to the conventional cement composition for extrusion molding. The experimental results of examining the change are shown. The cement composition used was 40 parts by weight of ordinary Portland cement and 60 parts by weight of vermiculite and silica sand as aggregate. A total of 100 parts by weight of inorganic ceramics-based powder and 5 parts by weight of cellulose fibers as reinforcing fibers were used. Parts and 1.5 parts by weight of a molding aid (methylcellulose), and an amount of water to obtain a viscosity suitable for extrusion molding.
It is kneaded uniformly by a mixer. Specifically, the amount of water added was in the range of 35 to 50 parts by weight. The thermal expansion coefficient of a test piece of an extruded product of the hardened cement obtained by extruding and curing this kneaded material in the same manner as in Examples described later was measured.

【0020】なお、図2に例示するように、一般にセメ
ント硬化物の熱膨張係数は温度により変化する。低温で
は膨張するが、温度の上昇とともにセメント硬化物に含
まれる自由水あるいは結晶水が蒸発するため乾燥収縮す
るようになり、 800〜900 ℃で最も大きな収縮率とな
る。この 800〜900 ℃で観測された最大収縮率の値を熱
膨張係数を代表値とした。バーミキュライトを混入した
材料について、こうして求めた熱膨張係数を、建材の2
時間耐火試験における最高温度である840 ℃まで加熱し
たときの材料の状況を対応させると、上記の熱膨張係数
が−7×10-5-1より小さい、即ち、収縮率が7×10-5
-1より大きくなると、加熱により、材料には有害な変
形を生じた。この加熱時の有害な変形を避けるために、
熱膨張係数を−7×10-5-1より大きく、即ち、収縮率
を7×10-5-1より小さくするためには、図1より、バ
ーミキュライトを5重量部以上の量で混入する必要があ
ることがわかった。
As shown in FIG. 2, the thermal expansion coefficient of a hardened cement material generally changes with temperature. It expands at low temperatures, but as the temperature rises, free water or crystal water contained in the hardened cement material evaporates, causing it to dry and shrink, with the largest shrinkage at 800-900 ° C. The value of the maximum shrinkage observed at 800 to 900 ° C. was defined as a coefficient of thermal expansion. The coefficient of thermal expansion determined for the material mixed with vermiculite was calculated as 2
According to the situation of the material when heated to 840 ° C. which is the maximum temperature in the time refractory test, the above-mentioned coefficient of thermal expansion is smaller than −7 × 10 −5 ° C.- 1 , that is, the shrinkage ratio is 7 × 10 − Five
Above ° C -1 the heating caused harmful deformation of the material. To avoid harmful deformation during this heating,
In order to make the coefficient of thermal expansion larger than -7 × 10 -5 ° C.- 1 , that is, to make the shrinkage ratio smaller than 7 × 10 -5 ° C.- 1 , as shown in FIG. 1, vermiculite is mixed in an amount of 5 parts by weight or more. I knew I needed to.

【0021】図3は、図1と同じ組成物の硬化後の材料
の曲げ強度を示した結果である。追加骨材としてバーミ
キュライトのみを添加した場合、バーミキュライト混入
量が増えるほど直線的に曲げ強度が低下した。これは、
バーミキュライトが気孔の多い骨材であること、バーミ
キュライトの混入により、押出成形に必要な水分が増加
したことの2点により、成形体の比重が低くなったこと
に起因する。
FIG. 3 is a graph showing the bending strength of the cured material of the same composition as in FIG. When only vermiculite was added as an additional aggregate, the bending strength decreased linearly as the amount of vermiculite mixed increased. this is,
Vermiculite is an aggregate having many pores, and the mixing of vermiculite has increased the water required for extrusion molding, and this is because the specific gravity of the molded body was reduced.

【0022】本発明では、耐火性確保のために必要な5
重量部以上、20重量部以下のバーミキュライトの混入に
よる強度低下を、フュームドシリカの配合により防止す
るのである。フュームドシリカは、バーミキュライト混
入量の1/4以上、10重量部以下の量で配合する。
In the present invention, the necessary 5 for securing fire resistance is used.
The mixing of fumed silica prevents the strength from being reduced due to mixing of not less than 20 parts by weight of vermiculite. The fumed silica is blended in an amount of 1/4 or more and 10 parts by weight or less of the mixed amount of vermiculite.

【0023】図4および図5に、図1に関して説明した
セメント組成物において、骨材の珪砂の一部をフューム
ドシリカで置換した場合の、フュームドシリカ配合量に
よる硬化後の材料の曲げ強度および熱膨張係数の変化を
それぞれ示す。なお、試験した組成物の骨材60重量部の
うち、バーミキュライトは5重量部または20重量部と
し、残りを珪砂およびフュームドシリカとした。
FIGS. 4 and 5 show the flexural strength of the hardened material according to the amount of fumed silica when a part of the silica sand of the aggregate is replaced with fumed silica in the cement composition described with reference to FIG. And changes in the coefficient of thermal expansion. Note that, out of 60 parts by weight of the tested composition, vermiculite was 5 parts by weight or 20 parts by weight, and the remainder was silica sand and fumed silica.

【0024】図4から分かるように、フュームドシリカ
を配合すると、添加量が10重量部までは曲げ強度がほぼ
直線的に増大し、フュームドシリカの配合がバーミキュ
ライト配合による強度低下の防止に効果的であることが
分かる。しかし、この効果は、フュームドシリカの量が
10重量部で飽和点に達し、それを超えると強度がゆるや
かに低下し始めた。
As can be seen from FIG. 4, when fumed silica is blended, the flexural strength increases almost linearly up to the addition amount of 10 parts by weight, and the blending of fumed silica is effective in preventing the strength reduction due to the vermiculite blending. It turns out that it is a target. However, the effect is that the amount of fumed silica
The saturation point was reached at 10 parts by weight, after which the strength began to decrease slowly.

【0025】また、図5から、フュームドシリカの混入
量が10重量部を越えると、熱膨張係数が変化 (熱膨張係
数が減少=収縮率が増大) しはじめ、耐火性の観点から
は不利となることがわかる。
FIG. 5 shows that when the amount of fumed silica exceeds 10 parts by weight, the coefficient of thermal expansion changes (the coefficient of thermal expansion decreases = the rate of shrinkage increases), which is disadvantageous from the viewpoint of fire resistance. It turns out that it becomes.

【0026】以上より、フュームドシリカの混入量の上
限を10重量部とした。一方、フュームドシリカの混入量
の下限値は曲げ強度により決定されるが、図4におい
て、例えば、バーミキュライト混入量が5重量部の時は
フュームドシリカはその1/4の1.25重量部またはそれ
以上、バーミキュライト混入量が20重量部の時はフュー
ムドシリカはその1/4の5重量部またはそれ以上を配
合すると、曲げ強度がビル用建材等で要求される180 kg
/cm2の値を超えることが判明した。従って、フュームド
シリカ混入量の下限値を、バーミキュライト混入量の1
/4倍とした。
From the above, the upper limit of the amount of fumed silica mixed was set to 10 parts by weight. On the other hand, the lower limit of the amount of the fumed silica mixed is determined by the bending strength. In FIG. 4, for example, when the amount of the vermiculite mixed is 5 parts by weight, the fumed silica is 1 / of 1.25 parts by weight or 1/4 thereof. As mentioned above, when the amount of vermiculite is 20 parts by weight, if fumed silica is mixed with 1/4 of 5 parts by weight or more, the bending strength is required for building materials for building, etc., 180 kg
It was found to exceed the value of / cm 2 . Therefore, the lower limit of the amount of fumed silica mixed is set to 1 of the amount of vermiculite mixed.
/ 4 times.

【0027】本発明の組成物の無機窯業系粉体は、上記
範囲内の量のバーミキュライトおよびフュームドシリカ
以外に、他の骨材およびセメントを含有し、合計で100
重量部とする。セメントの量は特に制限されないが、得
られた組成物を硬化させるだけの量を配合する必要があ
る。この意味で、一般にセメントは、窯業系粉体100重
量部のうち、約20〜50重量部を占める量で配合すること
が好ましい。
The inorganic ceramic powder of the composition of the present invention contains other aggregates and cements in addition to the above amounts of vermiculite and fumed silica.
Parts by weight. Although the amount of the cement is not particularly limited, it is necessary to mix an amount sufficient to cure the obtained composition. In this sense, it is generally preferable to mix the cement in an amount occupying about 20 to 50 parts by weight of 100 parts by weight of the ceramic powder.

【0028】上記のセメントと骨材を合わせた無機窯業
系粉体100 重量部に対して、補強繊維3〜20重量部、成
形助剤 0.2〜5重量部、および水30〜50重量部を加えて
均一に混練すると、本発明の押出成形用セメント組成物
が得られる。
To 100 parts by weight of the inorganic ceramics powder obtained by combining the cement and the aggregate, 3 to 20 parts by weight of a reinforcing fiber, 0.2 to 5 parts by weight of a forming aid, and 30 to 50 parts by weight of water are added. And uniformly kneading, the cement composition for extrusion molding of the present invention is obtained.

【0029】補強繊維の混入量は、繊維の種類により適
正範囲が異なるが、いずれの種類でも3重量部未満では
強度改善が不十分であり、20重量部を越えると、均一混
練が困難となり効率的に補強できないばかりか、不経済
である。
The appropriate range of the mixing amount of the reinforcing fiber varies depending on the type of the fiber. However, if the amount is less than 3 parts by weight, the improvement of the strength is insufficient. It is not only economically reinforced, but uneconomical.

【0030】成形助剤が0.2 重量部未満では、押出成形
に必要な粘性が不十分となり、材料の保水性も不十分と
なる。一方、5重量部を越えると、有機物であるため、
不燃性低下を招くと同時に不経済である。成形助剤は可
及的少量配合することが有利である。成形助剤は好まし
くは 0.5〜2重量部の量で配合する。
When the amount of the molding aid is less than 0.2 parts by weight, the viscosity required for extrusion molding becomes insufficient, and the water retention of the material becomes insufficient. On the other hand, if it exceeds 5 parts by weight, it is an organic substance,
This leads to a decrease in nonflammability and is uneconomical. It is advantageous to incorporate the molding aid in the smallest possible amount. The molding aid is preferably incorporated in an amount of 0.5 to 2 parts by weight.

【0031】特に、本発明にあっては、バーミキュライ
トとフュームドシリカが成形助剤に要求される保水性と
増粘性をそれぞれ付与するため、成形助剤の配合量を少
量に抑えることができる。従って、本発明では一般に成
形助剤の配合量は1重量部以下で十分である。
In particular, in the present invention, since vermiculite and fumed silica impart the water retention and viscosity required for the molding aid, respectively, the amount of the molding aid can be suppressed to a small amount. Therefore, in the present invention, it is generally sufficient that the compounding amount of the molding aid is 1 part by weight or less.

【0032】上記配合物に最後に水30〜50重量部を加
え、ミキサーなどの手段で均一に混練すると、本発明の
組成物が得られる。水の量が30重量部より少ないと押出
成形が困難となり、一方、50重量部を超えると強度低下
を引き起こす。
Finally, 30 to 50 parts by weight of water is added to the above-mentioned composition, and the mixture is uniformly kneaded by a means such as a mixer to obtain the composition of the present invention. If the amount of water is less than 30 parts by weight, extrusion becomes difficult, while if it exceeds 50 parts by weight, strength is reduced.

【0033】均一混練した本発明の組成物を、公知の適
当な押出成形機を使って成形し、得られた押出成形体を
オートクレーブ養生して硬化させると、建材として有用
なセメント押出製品が得られる。
The uniformly kneaded composition of the present invention is molded using a known suitable extruder, and the obtained extruded product is cured by autoclaving to obtain a cement extruded product useful as a building material. Can be

【0034】押出成形体をオートクレーブ養生するの
は、早期に強度発現させることと、寸法安定性を高める
ことが主目的である。オートクレーブ養生前に、気中養
生や蒸気養生等の前養生を実施してもよい。オートクレ
ーブ養生条件は特に制限されないが、一般には 160〜18
0 ℃×5〜12時間である。
The main purpose of autoclaving the extruded product is to develop strength at an early stage and to enhance dimensional stability. Prior to autoclave curing, pre-curing such as aerial curing or steam curing may be performed. Autoclave curing conditions are not particularly limited, but are generally 160 to 18
0 ° C. × 5 to 12 hours.

【0035】このようにして得られる本発明にかかるセ
メント押出製品は、以下の実施例からもわかるように、
耐火性、防火性に優れるばかりか、強度特性と成形性に
も優れるものである。
The cement extruded product according to the present invention thus obtained is, as can be seen from the following examples,
It not only has excellent fire resistance and fire resistance, but also has excellent strength properties and moldability.

【0036】[0036]

【実施例】市販の普通ポルトランドセメント、骨材の珪
砂、バーミキュライトおよびフュームドシリカ、補強繊
維のセルロース繊維、成形助剤のメチルセルロースを、
表1に示した割合で配合し、水35〜45重量部を加えてミ
キサーで混練して均一混合物とすることにより、押出成
形用のセメント組成物を得た。この混合物から、押出成
形機により幅200 mm、厚さ12 mm の平板を成形した。こ
の成形体を24時間気中養生した後、180 ℃×5時間のオ
ートクレーブ養生を実施して成形体を硬化させ、セメン
ト押出製品を得た。
EXAMPLE A commercially available ordinary Portland cement, silica sand as an aggregate, vermiculite and fumed silica, cellulose fiber as a reinforcing fiber, and methylcellulose as a molding aid were mixed with:
A cement composition for extrusion molding was obtained by mixing at a ratio shown in Table 1, adding 35 to 45 parts by weight of water, and kneading with a mixer to form a uniform mixture. From this mixture, a flat plate having a width of 200 mm and a thickness of 12 mm was formed by an extruder. After the molded body was cured in the air for 24 hours, the molded body was cured by performing autoclave curing at 180 ° C. for 5 hours to obtain a cement extruded product.

【0037】セメント組成物の押出成形性は、押出成形
時の材料の押出速度により評価した。得られた未硬化の
押出成形体の表面状況を、平滑性が良好なものを○と評
価した。曲げ強度は、硬化した成形体から、押出方向を
長辺方向にして、長さ200 mm×幅50 mm ×厚さ12 mm の
寸法の供試体を切り出し、この供試体を用いて曲げスパ
ン160 mmの中央集中曲げ試験により測定した。
The extrudability of the cement composition was evaluated based on the extrusion rate of the material during extrusion. The surface condition of the obtained uncured extruded product was evaluated as “Good” when the surface condition was good. The flexural strength was determined by cutting out a specimen having a length of 200 mm × width of 50 mm × thickness of 12 mm from the cured molded body, with the extrusion direction being the long side direction, and using this specimen, the bending span was 160 mm. Was measured by the center concentrated bending test.

【0038】耐衝撃性は、長さ500 mm×幅200 mm×厚さ
12 mm の寸法の硬化供試体を用い、この供試体の長辺方
向の両端をそれぞれ50 mm 角の角材に釘打ち留めし、中
央に1kgのなす型おもりを高さ1mから落下させること
により評価した。破壊しなかったものを○で示し、破壊
したものを×で示した。
The impact resistance is 500 mm long × 200 mm wide × thickness
Using a hardened specimen with a size of 12 mm, each end of the specimen in the longitudinal direction was nailed to a 50 mm square bar, and a 1 kg weight was dropped from the height of 1 m at the center. did. Those that were not destroyed were indicated by o, and those that were destroyed were indicated by x.

【0039】熱膨張係数の測定では、最高1000℃までの
温度で熱膨張係数を測定した。その結果、 800〜900 ℃
で熱膨張係数が最小 (収縮率が最大) となるので、その
最小値(絶対値では最大値)を代表値として示した。こ
れまでの実験で、バーミキュライトを混入した材料で
は、熱膨張係数が−7×10-5-1より小さい場合に、加
熱時損傷が大となることが分かった。
In the measurement of the coefficient of thermal expansion, the coefficient of thermal expansion was measured at a temperature up to 1000 ° C. As a result, 800 ~ 900 ℃
Since the thermal expansion coefficient becomes minimum (shrinkage rate is maximum) at, the minimum value (maximum value in absolute value) is shown as a representative value. In the experiments so far, it has been found that, when the thermal expansion coefficient of the material mixed with vermiculite is smaller than −7 × 10 −5 ° C. −1 , the damage during heating is large.

【0040】加熱時損傷は、硬化した成形体の長さ500
mmの平板(厚さ12 mm)を50 mm 角の角材に釘打ち留め
し、長さ500 mm×幅500 mmの供試体とし、この片面を、
JIS A1304の「建築構造部分の耐火試験方法」に示され
るヒートパターンで、30分間、最高840 ℃まで加熱し、
その時の損傷状況を観察することにより評価した。かけ
落ち等がなかったものを○で示し、それ以外を×で示し
た。
Damage during heating was caused by the length of the cured molded body of 500
mm plate (thickness: 12 mm) is nailed to a 50 mm square bar to make a 500 mm long x 500 mm wide specimen.
Heat to a maximum of 840 ° C for 30 minutes using the heat pattern shown in JIS A1304, “Fire Resistance Test Method for Building Structures.”
Evaluation was made by observing the damage status at that time. Those that did not fall off were indicated by o, and others were indicated by x.

【0041】結果を表1にまとめて示すが、実施例1、
2、3は押出成形性、強度特性、熱的特性とも良好なこ
とがわかる。比較例1はバーミキュライト混入量が少な
いため、熱的特性が悪いと同時に、本実施例のようにメ
チルセルロースの配合量が少量では押出成形性も悪かっ
た。比較例2はバーミキュライト混入量が多いため、比
重が軽くなり、強度特性が大幅に低下した。比較例3は
フュームドシリカ混入量が少ないため、強度特性が低い
と同時に、押出成形性も悪かった。比較例4はフューム
ドシリカ混入量が多いため、熱的特性が低下した。比較
例5はセルロース繊維の配合量が少ないため、強度特
性、特に耐衝撃性が悪くなった。比較例6はセルロース
繊維配合量が多いため、大幅に押出成形性が悪化し、強
度特性および熱的特性も著しく低下した。
The results are shown in Table 1.
2 and 3 indicate that the extrudability, strength properties, and thermal properties are all good. In Comparative Example 1, the thermal characteristics were poor because the amount of vermiculite mixed was small, and at the same time, the extrudability was poor when the amount of methylcellulose was small as in this example. In Comparative Example 2, since the amount of vermiculite mixed was large, the specific gravity was reduced, and the strength characteristics were significantly reduced. In Comparative Example 3, the amount of fumed silica mixed was small, so that the strength characteristics were low and the extrusion moldability was poor. In Comparative Example 4, since the amount of fumed silica was large, the thermal characteristics were reduced. In Comparative Example 5, since the amount of the cellulose fiber was small, the strength characteristics, particularly the impact resistance, were poor. In Comparative Example 6, since the content of the cellulose fiber was large, the extrusion moldability was significantly deteriorated, and the strength characteristics and the thermal characteristics were also significantly reduced.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】以上に詳述したように、本発明により、
骨材の一部としてバーミキュライトとフュームドシリカ
を適量配合した押出成形用セメント組成物は、この2種
類の材料の相乗作用により、メチルセルロースなどの成
形助剤の配合量を少量に抑えても、流動性が良く、良好
に押出成形することができる。また、この組成物から押
出成形とオートクレーブ養生により得られた本発明のセ
メント押出製品は、バーミキュライト配合による優れた
熱抵抗性 (防火、耐火性能) に加えて、強度特性にも優
れている。従って、このセメント押出製品は、従来の同
種製品に比べて耐火性に一層優れた建材用として特に有
用である。
As described in detail above, according to the present invention,
Extrusion molding cement compositions in which appropriate amounts of vermiculite and fumed silica are blended as part of the aggregate can be used even if the amount of molding aids such as methylcellulose is reduced to a small amount due to the synergistic action of these two materials. Good extrudability can be obtained. Further, the cement extruded product of the present invention obtained by extrusion molding and autoclave curing from this composition has excellent strength characteristics in addition to excellent heat resistance (fire protection and fire resistance performance) due to the addition of vermiculite. Therefore, this cement extruded product is particularly useful as a building material having more excellent fire resistance than conventional similar products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】セメント組成物中のバーミキュライト混入量と
セメント硬化物の熱膨張係数との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the amount of vermiculite mixed in a cement composition and the coefficient of thermal expansion of a cured cement product.

【図2】バーミキュライト含有セメント硬化物の熱膨張
係数の材料温度による変化状況を示すグラフである。
FIG. 2 is a graph showing how the thermal expansion coefficient of a cured vermiculite-containing cement varies depending on the material temperature.

【図3】セメント組成物中のバーミキュライト混入量と
セメント硬化物の曲げ強度との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the amount of vermiculite mixed in a cement composition and the flexural strength of a hardened cement.

【図4】バーミキュライトを5または20重量部配合した
セメント硬化物中におけるフュームドシリカ混入量と曲
げ強度との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the amount of fumed silica and the flexural strength in a cured cement containing 5 or 20 parts by weight of vermiculite.

【図5】図4と同じセメント硬化物中のフュームドシリ
カ混入量と熱膨張係数との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the amount of fumed silica mixed in the hardened cement and the coefficient of thermal expansion in the same cured product as in FIG.

フロントページの続き (51)Int.Cl.6 識別記号 FI C04B 16:06 14:20 22:06) (58)調査した分野(Int.Cl.6,DB名) C04B 28/18 C04B 14/38 C04B 22/06Continuation of the front page (51) Int.Cl. 6 identification code FI C04B 16:06 14:20 22:06) (58) Field surveyed (Int.Cl. 6 , DB name) C04B 28/18 C04B 14/38 C04B 22/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バーミキュライトを5〜20重量部および
フュームドシリカをバーミキュライト混入量の1/4以
上、10重量部以下の量で含有し、残部がセメントおよび
骨材よりなる無機窯業系粉体100 重量部に対して、補強
繊維を3〜20重量部、成形助剤を 0.2〜5重量部、水を
30〜50重量部加えた均一混合物からなる、押出成形用セ
メント組成物。
1. An inorganic ceramic powder 100 containing 5-20 parts by weight of vermiculite and fumed silica in an amount of not less than 1/4 and not more than 10 parts by weight of the mixed amount of vermiculite, with the balance being cement and aggregate. 3-20 parts by weight of reinforcing fiber, 0.2-5 parts by weight of molding aid, and water
A cement composition for extrusion molding comprising a homogeneous mixture added in an amount of 30 to 50 parts by weight.
【請求項2】 請求項1記載の組成物の押出成形体をオ
ートクレーブ養生してなるセメント押出製品。
2. A cement extruded product obtained by autoclaving an extruded product of the composition according to claim 1.
JP10313692A 1992-04-22 1992-04-22 Cement compositions and cement extruded products Expired - Lifetime JP2864862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10313692A JP2864862B2 (en) 1992-04-22 1992-04-22 Cement compositions and cement extruded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10313692A JP2864862B2 (en) 1992-04-22 1992-04-22 Cement compositions and cement extruded products

Publications (2)

Publication Number Publication Date
JPH05294702A JPH05294702A (en) 1993-11-09
JP2864862B2 true JP2864862B2 (en) 1999-03-08

Family

ID=14346119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10313692A Expired - Lifetime JP2864862B2 (en) 1992-04-22 1992-04-22 Cement compositions and cement extruded products

Country Status (1)

Country Link
JP (1) JP2864862B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178597B2 (en) * 2004-07-02 2007-02-20 Halliburton Energy Services, Inc. Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations

Also Published As

Publication number Publication date
JPH05294702A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
KR101948627B1 (en) High strength lightweight concrete composition including artificial lightweight aggregates
EP3385242B1 (en) Use of calcium oxide as expanding agent in hydraulic binder composition with very low shrinkage
RU2378218C2 (en) Raw composition for manufacturing of construction materials and products
JP2888629B2 (en) Fiber reinforced cement composition
KR101390132B1 (en) high strength concrete composition using rapid hardening type portland cement
KR101612113B1 (en) Binder compositions for concrete and concrete compositions using the same
JPH08268736A (en) Hydraulic material and production of hardened body
JP2864862B2 (en) Cement compositions and cement extruded products
JP2001261414A (en) Concrete having self-wetting/aging function and its executing method
US4687517A (en) Concrete composition having heat resisting property and dimensional stability
JP2837263B2 (en) Cement compositions and cement extruded products
JPH05238787A (en) High-strength cement composition
KR100857510B1 (en) Artificial aggregate composition for enhancing fire-resistance of high-strength concretes, method for producing the same and concrete compositions using the same
JPS61174159A (en) Cementitious forming material
GB2162165A (en) Cementitious compositions
JP3090085B2 (en) Manufacturing method of cement ceramic products
JPH10167792A (en) Fiber-reinforced cement composition and production of cement cured product
JP2002012465A (en) Extrusion compact and its manufacturing method
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP2859536B2 (en) Precast concrete formwork and method of manufacturing the same
JP2749257B2 (en) Highly functional mortar / concrete and method for producing the same
JP2874232B2 (en) Lightweight cement molding
JPS61205654A (en) Superhigh strength cement concrete composition
JPH0345545A (en) Cement composition free from asbestos for extrusion molding
JP6535180B2 (en) Highly durable cement board and its cement composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981117