JPH05310459A - Hydraulic composite material and production of high-strength concrete using the same - Google Patents

Hydraulic composite material and production of high-strength concrete using the same

Info

Publication number
JPH05310459A
JPH05310459A JP15843092A JP15843092A JPH05310459A JP H05310459 A JPH05310459 A JP H05310459A JP 15843092 A JP15843092 A JP 15843092A JP 15843092 A JP15843092 A JP 15843092A JP H05310459 A JPH05310459 A JP H05310459A
Authority
JP
Japan
Prior art keywords
particles
water
concrete
amount
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15843092A
Other languages
Japanese (ja)
Other versions
JP3200804B2 (en
Inventor
Hiroshi Inahara
博 稲原
Toshihisa Maruta
俊久 丸田
Shigeru Yokoyama
滋 横山
Izumi Fujimoto
泉 藤本
Eikichi Tanagi
英吉 棚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Cement Co Ltd
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP15843092A priority Critical patent/JP3200804B2/en
Publication of JPH05310459A publication Critical patent/JPH05310459A/en
Application granted granted Critical
Publication of JP3200804B2 publication Critical patent/JP3200804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To produce a hydraulic composite material for providing concrete or mortor having high strength and low heat generation and to obtain high- strength concrete. CONSTITUTION:40-65wt.% cement particles A having 0.5-100mum particle diameter is blended with 35-60wt.% reinforcing agent to be added consisting of particles B having 0.01-0.5mum particle diameter and particles C having 0.1-15mum particle diameters in the ratio of 20-50wt.% particles B and 50-80wt.% particles C to give a hydraulic composite material, which is kneaded with water at <=25% water/powder ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般に設計基準となる
材令28日の圧縮強度において超高強度を得ることがで
き、しかも通常生コンクリートの温度上昇が70℃程度
以下に抑制される水硬性複合材料と、それを用いた高層
RC造建築物、橋梁などに用いる高強度コンクリートの
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally provides a water having a compressive strength of 28 days, which is a design standard, and which has an extremely high strength, and in which the temperature rise of ready-mixed concrete is suppressed to about 70 ° C. or less. TECHNICAL FIELD The present invention relates to a hard composite material and a method for producing high-strength concrete used for a high-rise RC building or a bridge using the same.

【0002】[0002]

【従来の技術】近年、コンクリート構造物の多様化とと
もに、高層RC造建築物、橋梁などの大型の高強度コン
クリート部材が建設される傾向にあり、安定した高強度
コンクリートが期待されている。コンクリートの機械的
強度、化学抵抗性は、コンクリート及びモルタルを構成
する粒子の充填の緻密さ及び均一性の程度に依存するこ
とはよく知られているところであり、従来から成型時に
振動を与えたり、加圧することによってかなりの成果を
上げている。しかし、物理的な加工、例えば加圧では、
日常的には甚だ不便であり、またこれら構造物の現場打
設では実質的に不可能と言ってよい。そこで、現在、こ
れら物理的な加工を特に加えないでも緻密化を達成する
方法として、一般には単位量当たり、多量のポルトラン
ドセメントを使用し、これに高性能減水剤を多量添加し
て緻密化を図っており、また一部にはこれにシリカフュ
ームを更に添加し、一層の緻密化を図ったコンクリート
としている。特に、後者の場合の考え方は、特公昭63
−59182号公報で、粒径0.5〜100μmのセメ
ント粒子Aとそれより少なくとも1オーダ小さい無機固
体粒子B(例えばシリカフューム)と水及び表面活性分
散剤(例えば周知のマイティ(登録商標))を含み、セ
メント粒子Aの空隙に粒子Bの非常に水和活性の高いシ
リカフュームを均一に分布して緻密化を意図しており、
前者を一歩進めたものと言える。ところが、セメントと
高性能減水剤だけでは確かに緻密化において限度があ
り、またシリカフュームを用いる場合には周知のように
非常に高価であって、通常の用途にはなかなか使い切れ
る材料ではなく、しかも微粉であることから大量に使用
しようとするとハンドリングに問題がある。さらに大き
な問題は、両者ともに水和発熱量が大きく、一般にコン
クリートで高強度を発現しようとすると、単位量当たり
のセメントあるいはセメントシリカフュームの使用量も
多くする必要があり、コンクリートの部材が大きくなる
と水和発熱の為に部材の温度が急激に上昇し、熱応力に
よるひびわれが発生することであり、特にシリカフュー
ムを用いた場合には、非常に活性度が高く、またセメン
トの水和反応を促進する効果があり、発熱量はセメント
単独の場合と同等以上となる。
2. Description of the Related Art In recent years, with the diversification of concrete structures, large high-strength concrete members such as high-rise RC buildings and bridges have tended to be constructed, and stable high-strength concrete is expected. It is well known that the mechanical strength and chemical resistance of concrete depend on the degree of compactness and uniformity of the particles that make up concrete and mortar. Pressurization has achieved considerable results. However, with physical processing, such as pressurization,
It is extremely inconvenient on a daily basis, and it can be said that it is practically impossible to cast these structures on site. Therefore, at present, as a method for achieving densification without particularly adding these physical processes, generally, a large amount of Portland cement is used per unit amount, and a high-performance water-reducing agent is added in a large amount to densify it. In addition, silica fume is further added to a part of the concrete to make it more compact. In particular, the latter case is based on
No. 59182 discloses cement particles A having a particle size of 0.5 to 100 μm, inorganic solid particles B (for example, silica fume) smaller than that by at least one order, water and a surface active dispersant (for example, well-known Mighty (registered trademark)). It is intended to densify by uniformly distributing silica fume having a very high hydration activity of particles B in the voids of the cement particles A.
It can be said that it is a step ahead of the former. However, there is a limit in densification only with cement and a high-performance water reducing agent, and when silica fume is used, as is well known, it is very expensive, and it is not a material that can easily be used up for ordinary applications, and Since it is a fine powder, there is a problem in handling when trying to use it in a large amount. An even bigger problem is that both of them have a large amount of hydration heat generation, and in general, when trying to develop high strength in concrete, it is necessary to increase the amount of cement or cement silica fume used per unit amount, and when the member of concrete becomes large, water content increases. It is that the temperature of the member rises rapidly due to the sum heat generation and cracking due to thermal stress occurs. Especially when silica fume is used, the activity is very high and the hydration reaction of the cement is promoted. It is effective and the calorific value is equal to or higher than that of cement alone.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明者らは、
上記従来技術から発想を転換して種々の実験研究を重ね
た結果、高強度コンクリートにおいて、従来技術よりも
材令28日における高強度化を図り、高耐久性化及び高
密度化を維持し、かつ低発熱化を達成することができ、
しかも安価でハンドリングを向上できる方法を見いだし
たので、ここに提案しようとするものである。
Therefore, the present inventors have found that
As a result of repeating various experimental studies by changing the idea from the above-mentioned conventional technology, in the high-strength concrete, the strength is increased in 28 days compared with the conventional technology, the high durability and the high density are maintained, And it is possible to achieve low heat generation,
Moreover, I have found a way to improve handling at a low cost, so I will propose it here.

【0004】[0004]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、次の2つの原理に基づく
ものである。すなわち、従来法よりも物理的に更に高密
度化を図り強度発現性を確保することと、中間粒子Cの
選択とこれを多量に有効利用することで低発熱化を図る
ものである。まず、高密度化について、セメントにシリ
カフュームを混入する方法にしてもセメント粒子Aが造
る空隙に単一粒度に近い粒子B(シリカフューム)が充
填されるが、シリカフュームの充填状態になお多くの空
隙をもっている。本発明は特開平2−102152号公
報に示すように、この従来技術より更に緻密性を上げる
ため、セメント粒子Aが造る空隙に、粒子Bより大きな
中間粒子Cを用い、セメント粒子Aの造る空隙の減少を
図れば、粒子Bの分散性を助けるとともに、その緻密性
を向上させることができるという原理に基づくものであ
る。そして、その中間粒子Cは実験の結果、微粉部、つ
まり粒子Bの大きさまで実質的に連続的な粒度分布をも
つことにより、先行技術を上回る高密度化を図り、しか
も低発熱化に成功したものである。具体的粒径としては
セメント粒子Aは0.5〜100μm、粒子Bは0.0
1〜0.5μmのもの、また中間粒子Cは0.1〜15
μmであり、0.01μmから100μmまで粒子A,
B,Cを配することにより、連続粒度分布をもつ材料と
することで所期の高密度化を図ることができる。
The present invention has been made to solve the above problems, and is based on the following two principles. That is, it is intended to further reduce the heat generation by physically increasing the density and ensuring strength manifestation as compared with the conventional method, and by selecting the intermediate particles C and effectively using a large amount thereof. First, regarding the densification, even if the silica fume is mixed into the cement, the voids formed by the cement particles A are filled with the particles B (silica fume) having a particle size close to a single grain size. There is. As disclosed in Japanese Patent Application Laid-Open No. 2-102152, the present invention uses the intermediate particles C larger than the particles B in the voids formed by the cement particles A in order to further increase the density compared with the prior art. It is based on the principle that the dispersibility of the particles B can be improved and the denseness thereof can be improved by reducing As a result of experiments, the intermediate particles C have a substantially continuous particle size distribution up to the size of the fine powder portion, that is, the particle B, thereby achieving higher density than the prior art and succeeding in lowering heat generation. It is a thing. As a concrete particle size, the cement particle A is 0.5 to 100 μm, and the particle B is 0.0
1 to 0.5 μm, and the intermediate particles C are 0.1 to 15
μm, particles A from 0.01 μm to 100 μm,
By arranging B and C, a material having a continuous particle size distribution can be used to achieve the desired high density.

【0005】今一つの低発熱を確保する為に、粒子Bは
鉱物性微粉末、例えばシリカフューム、シリカフラリー
等が適するが、中間粒子Cは適切に選択し、多量に用い
る必要がある。そのため粒子Cは吸水性が大きくない粒
子であり、白土、フライアッシュ、石灰石、けい石など
の、セメントやシリカフュームより水和反応性が大きく
ない微粉末が適している。これは、非常に活性度の高い
粒子を用いると、セメントと積極的に反応し、水和組織
が緻密化して高強度を得ることはできるが、結果的に水
和発熱を抑えることができないことによるためであり、
本発明は水和反応性の比較的低い粒子を多量に混入し
て、物理的に充填性を確保し、セメントとシリカフュー
ムの水和組織と粒子Cが密着して緻密化すればよく、粒
子C自体が十分に水和反応する必要はない。なお、微粉
の凝集を防ぐため、この種の水硬性材料の配合の際に一
般に用いられている表面活性剤添加が有効であり、特に
この場合には高性能分散剤の使用が望ましく、混合剤に
対して2〜10wt%程度が望ましい。混合材中の粒子
Bと粒子Cの割合は、粒子Bが20〜50wt%、粒子
Cが50〜80wt%が好ましく、粒子Aに対する添加
強化材(B+C)の添加範囲は35〜60wt%(内
割)が好ましい。さらに、本発明による水硬性複合材料
はコンクリートに使用する際に、単位量当たりの水量が
少ない場合、すなわち水粉体比25%程度以下でその特
性を顕著に発揮する。しかし、単位量当たりの水量がこ
れより大きい場合には、水が組織中に水隙となり、粒子
の充填性は生かされなくなり、十分な緻密化がはかれ
ず、強度発現性の有利さは少なくなる。
In order to secure another low heat generation, the fine particles B are preferably fine mineral powders such as silica fume and silica flurry, but the intermediate particles C must be appropriately selected and used in a large amount. Therefore, the particles C are particles that do not have a high water absorption property, and fine powders such as clay, fly ash, limestone, and silica that have a greater hydration reactivity than cement and silica fume are suitable. This is because when particles with very high activity are used, they positively react with cement and the hydration structure becomes dense and high strength can be obtained, but as a result, the heat of hydration cannot be suppressed. Because of
In the present invention, a large amount of particles having a relatively low hydration reactivity are mixed to physically secure the filling property, and the hydrated structure of cement and silica fume and the particles C are brought into close contact with each other to densify them. It is not necessary for itself to undergo sufficient hydration. In order to prevent agglomeration of fine powder, it is effective to add a surface active agent which is generally used in the case of blending a hydraulic material of this kind. In this case, it is preferable to use a high performance dispersant, 2 to 10 wt% is desirable. The ratio of the particles B and the particles C in the mixed material is preferably 20 to 50 wt% for the particles B and 50 to 80 wt% for the particles C, and the addition range of the additive reinforcing material (B + C) to the particles A is 35 to 60 wt% (inclusive). %) Is preferred. Furthermore, when the hydraulic composite material according to the present invention is used for concrete, it exhibits its properties remarkably when the amount of water per unit amount is small, that is, when the water powder ratio is about 25% or less. However, when the amount of water per unit amount is larger than this, water becomes water voids in the tissue, the particle packing property is not utilized, sufficient densification is not achieved, and the advantage of strength development is small. Become.

【0006】本発明は以上の原理並びに知見に基づくも
ので、第1の発明は、粒径0.5〜100μmのセメン
ト粒子A40〜65wt%に粒径0.01〜0.5μm
の粒子Bと粒径0.1〜15μm粒子Cからなる添加強
化材を35〜60wt%添加し、前記粒子BとCの割合
は粒子Bが20〜50wt%、粒子Cが50〜75wt
%であることを特徴とする水硬性複合材料である。第2
の発明は前記セメント粒子Aと、粒子B及びCからなる
添加強化材からなる第1の発明の水硬性複合材料に更に
適量の粉体高性能減水剤を添加したことを特徴とする水
硬性複合材料である。また、第3の発明は、第1の発明
又は第2の発明の水硬性複合材料を用い水粉体比25%
以下で混練することを特徴とする高強度コンクリートの
製造法である。
The present invention is based on the above principle and knowledge. The first invention is that the cement particles A having a particle diameter of 0.5 to 100 μm are 40 to 65 wt% and the particle diameter is 0.01 to 0.5 μm.
35 to 60 wt% of the additive reinforcing material composed of the particles B and the particle C having a particle diameter of 0.1 to 15 μm is added, and the ratio of the particles B and C is 20 to 50 wt% for the particles B and 50 to 75 wt% for the particles C.
% Is a hydraulic composite material. Second
Of the invention, a hydraulic composite comprising the cement particles A and the hydraulic composite material of the first invention comprising an additive reinforcing material composed of particles B and C, and an appropriate amount of a powder high performance water reducing agent added thereto. It is a material. The third invention uses the hydraulic composite material of the first invention or the second invention, and the water powder ratio is 25%.
This is a method for producing high-strength concrete, which is characterized by the following kneading.

【0007】[0007]

【作用】第1の発明又は第2の発明の水硬性複合材料を
用いてコンクリートを製造すると高強度、低発熱のコン
クリートを製造することができ、また第2の発明による
と、充分なる強度発現性を期待することができ高強度コ
ンクリートが得られる。
When concrete is produced by using the hydraulic composite material of the first or second invention, concrete having high strength and low heat generation can be produced, and according to the second invention, sufficient strength is exhibited. And high strength concrete can be obtained.

【0008】[0008]

【実施例】【Example】

実施例1 (使用材料) 粒子A:普通ポルトランドセメント 粒子B:シリカフューム 平均粒径 0.
2μm 粒子C:寄居白土 平均粒径
2μm けい石 平均粒径 1.5μm 石灰石 平均粒径 2μm 骨材:粗骨材−両神山産硬質砂岩 Gmax20mm、
F.M=6.59 細骨材−皆野金沢産硬質砂岩 F.M=2.72 表面活性剤:花王マイティー150 (配合)B+C/A+B+C=50wt% 一定、単位
粉体量(A+B+C)550kg/m一定、スランプ
=25cm、スランプフロー630±20mm,細骨材
率43%とし、表面活性剤は粉体に対して6wt%一定
量となるように添加した。 (混練)20℃恒温室にて100リットル強制練りミキ
サーを用い、180秒練り混ぜを行った。 (成型、養成)20℃にて10φ×20cmに成型し、
20℃水中養成を行った。
Example 1 (Materials used) Particle A: ordinary Portland cement Particle B: silica fume average particle size
2 μm Particle C: Yorii clay average particle size
2μm silica average particle size 1.5μm limestone average particle size 2μm Aggregate: Coarse aggregate-Ryokamiyama hard sandstone Gmax20mm,
F. M = 6.59 Fine aggregate-hard sandstone from Minano Kanazawa F. M = 2.72 Surfactant: Kao mighty 150 (compound) B + C / A + B + C = 50 wt% constant, unit powder amount (A + B + C) 550 kg / m 3 constant, slump = 25 cm, slump flow 630 ± 20 mm, fine aggregate ratio The content was 43%, and the surfactant was added so as to be a constant amount of 6 wt% with respect to the powder. (Kneading) Kneading was performed for 180 seconds using a 100-liter forced kneading mixer in a thermostatic chamber at 20 ° C. (Molding, training) Molded into 10φ x 20 cm at 20 ° C,
20 degreeC water training was performed.

【0009】図1〜図3では単位粉体量、スランプフロ
ーを一定値内としたときの単位水量、コンクリート圧縮
強度および断熱温度上昇をそれぞれ表したものである。
コンクリート硬化体では、基本的にセメント粒子が造る
空隙には水が存在しているが、この水隙に微粒子を充填
することで水量を減ずることになる。したがって、微粒
子の充填性は水量によって評価することができ、水量が
少ないほど充填性は高く、緻密な組織となっていること
を示している。図1及び図2では粒子B又はCが単独で
混入された場合よりもB+Cの混合物(粒径の異なった
ものを混合したもの)を使用した方が水量を減じ、充填
性は高くなり、また強度発現性がよい緻密な組織が得ら
れることが分かる。しかし、図3に示すように粒子Bが
B+Cに対して50wt%以上となると、強度発現性は
良好なものの断熱温度上昇量は大きく、好ましくなく、
一方粒子Cが80wt%以上となると強度発現性が損な
われることになる。粒子Cの種類により強度発現特性な
どに若干の相違はあるが、概して同様の傾向を示し、い
ずれの粒子も有効である。なお、実際のコンクリート打
設では一般に強度に対する水粉体比を設定し、スランプ
に対して水量を設定することから、B+Cの混合物を使
用することにより単位水量、単位粉体量とも更に減ずる
ことができるため、実施例1における断熱温度上昇量よ
りなお低減することができる。
1 to 3 show the unit powder amount, the unit water amount when the slump flow is within a constant value, the concrete compressive strength, and the adiabatic temperature rise, respectively.
In hardened concrete, basically, water exists in the voids formed by cement particles, but the amount of water is reduced by filling the voids with fine particles. Therefore, the filling property of the fine particles can be evaluated by the amount of water, and the smaller the amount of water, the higher the filling property and the denser the structure. In FIGS. 1 and 2, the use of a mixture of B + C (mixing of particles having different particle diameters) reduces the amount of water and the filling property becomes higher than the case where the particles B or C are mixed alone. It can be seen that a dense structure with good strength development can be obtained. However, as shown in FIG. 3, when the content of particles B is 50 wt% or more with respect to B + C, the strength development is good but the adiabatic temperature rise is large, which is not preferable.
On the other hand, when the content of the particles C is 80 wt% or more, the strength developability is impaired. Although there are some differences in the strength development characteristics and the like depending on the type of the particles C, generally the same tendency is exhibited, and all particles are effective. In addition, in actual concrete pouring, the ratio of water powder to strength is generally set, and the amount of water is set to slump. Therefore, by using a mixture of B + C, the unit water amount and unit powder amount can be further reduced. Therefore, the amount of rise in the adiabatic temperature in the first embodiment can be further reduced.

【0010】実施例2 (使用材料) 粒子A:普通ポルトランドセメント 粒子B:シリカフューム 平均粒径 0.2
μm 粒子C:けい石 平均粒径 1.5
μm 骨剤:粗骨材−両神山産硬質砂岩 Gmax20mm、
F.M=6.59 細骨材−皆野金沢産硬質砂岩 F.M.=2.72 表面活性剤:花王マイティ150 (配合)B:C=1:2とし、単位粉体量(A+B+
C)550kg/m一定、スランプ=25cm,スラ
ンプフロー630±20mm、細骨材率43%とし、表
面活性剤は粉体に対して5wt%一定量となるように添
加した。 (混練)20℃恒温室にて100リットル強制練りミキ
サーを用い、120秒間練り混ぜを行った。 (成型、養成)20℃にて10φ×20cmに成型し、
20℃水中養成を行った。図4〜図6は単位粉体量、ス
ランプを一定としたときの単位水量、圧縮強度および断
熱温度上昇を表したものである。図4に示すように、コ
ンクリートの単位水量は粒子B+Cを添加すると減少
し、緻密化の硬化が大きいことが認められ、添加量30
%付近に極小値が見られる。図5に強度発現性を示す。
粒子B+Cの強度発現性は添加量30%程度のところに
極大が見られ、それ以上の添加量では徐々に強度発現性
は低下する傾向にあり、水硬性の早いポルトランドセメ
ントの割合が少なくなって行くため、緻密化、強度発現
の進行は遅れるものと考えられる。しかし、図6に示す
断熱温度上昇量は粒子B+Cの添加量が30%以下では
強度発現性は良好なものの、温度上昇の抑制効果は大き
くなく、また粒子の無混入の場合は、強度発現性の割り
に温度上昇は相当に高いことが認められる。したがっ
て、粒子B+Cの添加量が35〜60%とすることによ
り、圧縮強度900kg/cmを上回る高強度コンク
リートを得ることができ、しかも温度上昇を大幅に抑制
することができる。
Example 2 (Materials used) Particle A: Ordinary Portland cement Particle B: Silica fume Average particle size 0.2
μm Particle C: Silica stone average particle size 1.5
μm Aggregate: Coarse aggregate-Rigid sandstone from Ryokamiyama Gmax 20 mm,
F. M = 6.59 Fine aggregate-hard sandstone from Minano Kanazawa F. M. = 2.72 Surfactant: Kao Mighty 150 (compound) B: C = 1: 2, unit powder amount (A + B +
C) 550 kg / m 3 constant, slump = 25 cm, slump flow 630 ± 20 mm, fine aggregate ratio 43%, and the surfactant was added so as to be a constant amount of 5 wt% with respect to the powder. (Kneading) Kneading was performed for 120 seconds using a 100-liter forced kneading mixer in a thermostatic chamber at 20 ° C. (Molding, training) Molded into 10φ x 20 cm at 20 ° C,
20 degreeC water training was performed. 4 to 6 show the unit powder amount, the unit water amount when the slump is constant, the compression strength and the adiabatic temperature rise. As shown in FIG. 4, the unit water content of the concrete decreased when the particles B + C were added, and it was recognized that the hardening of the densification was large.
There is a local minimum around%. FIG. 5 shows strength development.
The strength development of particles B + C shows a maximum at the addition amount of about 30%, and the strength development tends to gradually decrease at the addition amount of more than 30%, and the proportion of Portland cement having fast hydraulic property decreases. Therefore, the progress of densification and strength development is considered to be delayed. However, the adiabatic temperature increase amount shown in FIG. 6 shows good strength development when the amount of particles B + C added is 30% or less, but the temperature rise suppression effect is not large, and when no particles are mixed, strength development is It is recognized that the temperature rise is considerably higher than the above. Therefore, by setting the addition amount of the particles B + C to 35 to 60%, it is possible to obtain high-strength concrete having a compressive strength of more than 900 kg / cm 2 , and it is possible to significantly suppress the temperature rise.

【0011】[0011]

【発明の効果】本発明にかゝる水硬性複合材料をコンク
リート又はモルタルの製造に用いた場合、セメント粒子
Aが密に充填されたときに形成される空隙を粒径0.0
1〜0.5μmの粒子Cと粒径が0.1〜15μmの粒
子Bとの実質的に連続粒度分布をもつ微粉末で充填され
るため、空隙の総体積が従来法より減少して高密度化す
る一方で、粒子Bは活性度の低いものを選択して多量に
用いることにより、粉体の水和発熱量を抑制し、コンク
リート又はモルタルの物理特性、化学抵抗性および硬度
を効果した高強度でしかも低発熱のコンクリート及びモ
ルタルを実現することができる。
When the hydraulic composite material according to the present invention is used for producing concrete or mortar, the voids formed when the cement particles A are densely packed have a particle size of 0.0
Since it is filled with a fine powder having a substantially continuous particle size distribution of particles C having a particle size of 1 to 0.5 μm and particles B having a particle size of 0.1 to 15 μm, the total volume of voids is reduced as compared with the conventional method and the volume is high. While densifying, particles B having low activity were selected and used in a large amount to suppress the heat of hydration of the powder, and to have an effect on physical properties, chemical resistance and hardness of concrete or mortar. It is possible to realize concrete and mortar having high strength and low heat generation.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における単位水量を示すグラフであ
る。
FIG. 1 is a graph showing a unit water amount in Example 1.

【図2】実施例1における断熱温度上昇を示すグラフで
ある。
FIG. 2 is a graph showing an increase in adiabatic temperature in Example 1.

【図3】実施例1における圧縮強度を示すグラフであ
る。
FIG. 3 is a graph showing the compressive strength in Example 1.

【図4】実施例2における単位水量を示すグラフであ
る。
FIG. 4 is a graph showing a unit water amount in Example 2.

【図5】実施例2における断熱温度上昇を示すグラフで
ある。
FIG. 5 is a graph showing an increase in adiabatic temperature in Example 2.

【図6】実施例2における圧縮強度を示すグラフであ
る。
FIG. 6 is a graph showing compression strength in Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 24:00) 2102−4G (C04B 28/04 18:14 Z 2102−4G 24:00 2102−4G 14:04) Z 2102−4G (72)発明者 横山 滋 埼玉県熊谷市月見町二丁目1番1号 秩父 セメント株式会社中央研究所内 (72)発明者 藤本 泉 埼玉県熊谷市月見町二丁目1番1号 秩父 セメント株式会社中央研究所内 (72)発明者 棚木 英吉 埼玉県熊谷市月見町二丁目1番1号 秩父 セメント株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C04B 24:00) 2102-4G (C04B 28/04 18:14 Z 2102-4G 24:00 2102- 4G 14:04) Z 2102-4G (72) Inventor Shigeru Yokoyama 2-1-1 Tsukimi-cho, Kumagaya-shi, Saitama Chichibu Cement Co., Ltd. Central Research Laboratory (72) Izumi Fujimoto Tsukimi-cho, Kumagaya-shi, Saitama Prefecture 2-1-1 1-1 Chichibu Cement Central Research Institute (72) Inventor Hideyoshi Tanaki 1-1-1 Tsukimi-cho, Kumagaya-shi, Saitama Chichibu Cement Central Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒径0.5〜100μmのセメント粒子
A40〜65wt%に粒径0.01〜0.5μmの粒子
Bと粒径0.1〜15μmの粒子Cからなる添加強化材
を35〜60wt%添加し、前記粒子BとCの割合は粒
子Bが20〜50wt%、粒子Cが50〜80wt%で
あることを特徴とする水硬性複合材料。
1. An additive reinforcing material comprising 40 to 65 wt% of cement particles A having a particle diameter of 0.5 to 100 μm, particles B having a particle diameter of 0.01 to 0.5 μm and particles C having a particle diameter of 0.1 to 15 μm. -60 wt% is added, and the ratio of the particles B and C is such that the particle B is 20 to 50 wt% and the particle C is 50 to 80 wt%.
【請求項2】 請求項1記載のものに更に適量の粉体高
性能減水剤を添加したことを特徴とする水硬性複合材
料。
2. A hydraulic composite material, which is obtained by adding an appropriate amount of a powdery high performance water reducing agent to the material according to claim 1.
【請求項3】 請求項1又は2記載のものを用い、水粉
体比25%以下で混練したことを特徴とする高強度コン
クリートの製造方法。
3. A method for producing high-strength concrete, which comprises kneading the powder according to claim 1 or 2 at a water powder ratio of 25% or less.
JP15843092A 1992-05-07 1992-05-07 Hydraulic composite material and method for producing high-strength concrete using the same Expired - Lifetime JP3200804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15843092A JP3200804B2 (en) 1992-05-07 1992-05-07 Hydraulic composite material and method for producing high-strength concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15843092A JP3200804B2 (en) 1992-05-07 1992-05-07 Hydraulic composite material and method for producing high-strength concrete using the same

Publications (2)

Publication Number Publication Date
JPH05310459A true JPH05310459A (en) 1993-11-22
JP3200804B2 JP3200804B2 (en) 2001-08-20

Family

ID=15671593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15843092A Expired - Lifetime JP3200804B2 (en) 1992-05-07 1992-05-07 Hydraulic composite material and method for producing high-strength concrete using the same

Country Status (1)

Country Link
JP (1) JP3200804B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024564A1 (en) * 1995-02-06 1996-08-15 Atomic Energy Of Canada Limited Low-heat high-performance concrete
WO2005076924A3 (en) * 2004-02-04 2006-05-26 Nu Skin International Inc Agents for sequestering serum aging factors and uses therefore
US7465350B2 (en) 2001-05-29 2008-12-16 Taiheiyo Cement Corporation Hydraulic composition
US8137453B2 (en) 2005-02-02 2012-03-20 Taisei Corporation Fiber reinforced concrete and method of manufacturing fiber reinforced concrete member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024564A1 (en) * 1995-02-06 1996-08-15 Atomic Energy Of Canada Limited Low-heat high-performance concrete
US7465350B2 (en) 2001-05-29 2008-12-16 Taiheiyo Cement Corporation Hydraulic composition
WO2005076924A3 (en) * 2004-02-04 2006-05-26 Nu Skin International Inc Agents for sequestering serum aging factors and uses therefore
US8137453B2 (en) 2005-02-02 2012-03-20 Taisei Corporation Fiber reinforced concrete and method of manufacturing fiber reinforced concrete member

Also Published As

Publication number Publication date
JP3200804B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
Rashid et al. Considerations in producing high strength concrete
KR20040007616A (en) Hydraulic Composition
JP3099166B2 (en) Hydraulic composition
JP3566385B2 (en) Method for producing hydraulic material and cured body
JPH0680456A (en) Fluid hydraulic composition
JPH05310459A (en) Hydraulic composite material and production of high-strength concrete using the same
JPH11157889A (en) Hydraulic composition for cement concrete product
JPH0780697B2 (en) Method for strengthening concrete or mortar, hydraulic composite material and reinforcing additive
JPH0224777B2 (en)
KR100510875B1 (en) Cement admixture composite for high flowability concrete fabrication
JPH07133170A (en) Production of super light-weight mortar concrete
JPH07291760A (en) Lightweight concrete for filling and lightweight hardened material thereof
JPH02102162A (en) Grouting material
JPH06219809A (en) Production of self-packing concrete
JP3201458B2 (en) Flow control type concrete
JPH03193649A (en) High-fluidity and high-durability fiber-reinforced filling mortar
JP2004043234A (en) Ultrahigh strength mortar
JPH08277157A (en) Concrete composition
JP3662049B2 (en) Concrete composition
JPS62207751A (en) Cement composition
JPS62207754A (en) Low shrinkage high strength hydraulic composition
JP2001213661A (en) Composite material
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JPS60221355A (en) High strength non-shrink grout material
JP2004224639A (en) Slab member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

EXPY Cancellation because of completion of term