JP3198955B2 - Method of forming oxidation resistant coating on metal parts - Google Patents

Method of forming oxidation resistant coating on metal parts

Info

Publication number
JP3198955B2
JP3198955B2 JP32589796A JP32589796A JP3198955B2 JP 3198955 B2 JP3198955 B2 JP 3198955B2 JP 32589796 A JP32589796 A JP 32589796A JP 32589796 A JP32589796 A JP 32589796A JP 3198955 B2 JP3198955 B2 JP 3198955B2
Authority
JP
Japan
Prior art keywords
coating layer
powder
heating
coating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32589796A
Other languages
Japanese (ja)
Other versions
JPH10152781A (en
Inventor
昌照 中村
伸治 倉知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32589796A priority Critical patent/JP3198955B2/en
Publication of JPH10152781A publication Critical patent/JPH10152781A/en
Application granted granted Critical
Publication of JP3198955B2 publication Critical patent/JP3198955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属製部品の耐酸
化被膜の形成方法に関する。
The present invention relates to a method for forming an oxidation-resistant coating on a metal part.

【0002】[0002]

【従来の技術】ディーゼルエンジン、ガソリンエンジン
等の内燃機関のシリンダー、ピストン、シリンダーヘッ
ド等の排気系部材のような高温で使用される鉄系部品等
の金属性部品には、耐熱性や断熱性を向上させるために
部品表面に断熱被膜を形成することが行われている。こ
の断熱被膜としては、断熱性に優れたセラミックスを主
体としたものが種々提案されている。この場合、母材の
金属と被膜のセラミックスとの熱膨張係数の差によって
両者の接合界面に大きな熱応力が発生し、接合強度を低
下させる原因になる。
2. Description of the Related Art Metal parts such as iron-based parts used at high temperatures, such as cylinders, pistons, and cylinder heads of internal combustion engines such as diesel engines and gasoline engines, have heat resistance and heat insulating properties. In order to improve the performance, a heat insulating film is formed on the surface of a component. As the heat insulating film, various films mainly composed of ceramics having excellent heat insulating properties have been proposed. In this case, a large thermal stress is generated at a joint interface between the metal of the base material and the ceramic of the coating film due to a difference in thermal expansion coefficient, which causes a decrease in joint strength.

【0003】特開平7−150368号公報には、鉄系
母材とセラミックス被膜との接合強度を確保するため
に、被膜の原料粉末として、鉄の粉末を主体としクロム
等の金属粉末を添加した混合粉末を用い、これを母材表
面に塗布し焼結してセラミックス層を形成する方法が開
示されている。原料粉末としてこの混合粉末を用いる
と、(1) 形成されるセラミックス層の主構造が、母材と
共通の基本成分である鉄の酸化物で構成されるため、焼
結中に母材/セラミックス層相互の固相拡散が促進され
る結果、高い接合強度を持つ接合界面が得られると共
に、(2) 鉄酸化物から成るセラミックス層主構造の空孔
をクロム等の添加金属の酸化物が封孔することにより被
膜自体の強度も向上し被膜の破砕による脱落も防止で
き、広い意味での接合強度も向上する。
In Japanese Patent Application Laid-Open No. Hei 7-150368, in order to secure the bonding strength between an iron-based base material and a ceramic film, a metal powder such as chromium or the like is mainly added as a raw material powder for the film. A method of forming a ceramic layer by using a mixed powder, applying the mixed powder to a base material surface, and sintering the mixed powder is disclosed. When this mixed powder is used as a raw material powder, (1) the main structure of the formed ceramic layer is composed of an oxide of iron, which is a basic component common to the base material, so that the base material / ceramic As a result of promoting solid phase diffusion between layers, a bonding interface having high bonding strength is obtained, and (2) oxides of an additional metal such as chromium seal pores of the main structure of the ceramic layer composed of iron oxide. By forming the holes, the strength of the coating itself can be improved, the coating can be prevented from falling off by crushing, and the bonding strength in a broad sense can be improved.

【0004】上記公報の方法によれば、このセラミック
ス被膜を形成するには、原料粉末をスラリーにして母材
表面に塗布した後、不活性ガス雰囲気中または真空中に
おいて900〜1000℃で数時間焼成し、次に大気中
において800〜900℃で数時間焼成する必要があ
る。このように、上記従来の方法では被膜形成の処理に
長時間を要するため、生産性が低いという欠点があっ
た。その上、長時間の加熱により母材に歪みや組織変化
による機械強度の低下が発生し易いという問題もあっ
た。
According to the method disclosed in the above publication, to form this ceramic coating, the raw material powder is slurried and applied to the surface of the base material, and then is heated at 900 to 1000 ° C. in an inert gas atmosphere or vacuum for several hours. It is necessary to fire and then fire at 800-900 ° C. for several hours in air. As described above, the conventional method has a disadvantage that the productivity is low because a long time is required for the process of forming a film. In addition, there has been a problem that the mechanical strength tends to decrease due to distortion or structural change in the base material due to prolonged heating.

【0005】[0005]

【発明が解決しようとする課題】本発明は、母材強度を
低下させずに、金属製部品の表面に短時間の処理で高い
接合強度を有する耐酸化被膜を形成する方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming an oxidation-resistant film having a high bonding strength on a surface of a metal part in a short time without reducing the strength of the base material. Aim.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明による金属製部品への耐酸化被膜の形成方
法は、金属製部品の表面に、該部品と共通の基本成分を
有し被膜の主構造を形成するための主金属粉末と主構造
の空孔を封止するための封孔用金属粉末との混合粉末を
塗布して塗布層を形成し、該部品の該塗布層形成領域を
大気中で高周波加熱することを特徴とする。
In order to achieve the above object, a method for forming an oxidation-resistant coating on a metal part according to the present invention has a basic component common to the surface of the metal part. Forming a coating layer by applying a mixed powder of a main metal powder for forming a main structure of the coating film and a sealing metal powder for sealing pores of the main structure; It is characterized in that the formation region is heated in high frequency in the air.

【0007】本発明においては、大気中での高周波加熱
により焼成を行うので、従来数時間を要した焼成時間が
僅か数秒程度と、数千分の1に短縮されるため、生産性
が顕著に向上する。同時に、このような短時間の焼成に
もかかわらず、誘導電流により母材の表層部自体が発熱
して焼成が行われるので、母材/塗布層界面から焼成が
進行して被膜が形成されるため、接合界面にも被膜中に
も気泡が殆ど残留せず緻密な被膜が得られ、高い接合強
度が確保できる。逆に、加熱が極めて短時間であること
は、従来のような長時間の加熱による母材の歪みや組織
低下による機械強度の低下を非常に少なくすることがで
きるという大きな利点がある。
In the present invention, since the firing is performed by high-frequency heating in the atmosphere, the firing time, which conventionally required several hours, is reduced to only a few seconds, ie, several thousandths. improves. At the same time, despite the short-time sintering, the surface layer itself of the base material itself generates heat due to the induced current and the sintering is performed, so that the sintering proceeds from the interface between the base material and the coating layer to form a film. Therefore, a dense coating is obtained with almost no air bubbles remaining at the bonding interface and in the coating, and high bonding strength can be secured. Conversely, the extremely short heating time has a great advantage that the conventional method can greatly reduce the distortion of the base material due to the long-time heating and the decrease in mechanical strength due to the decrease in the structure.

【0008】[0008]

【発明の実施の形態】本発明の方法を行う際に、耐酸化
被膜の原料となる混合粉末を母材に塗布する方法は特に
限定する必要がなく、粉末状態のままで母材表面に付着
させることにより塗布してもよいし、適当な溶媒を用い
てスラリーの状態にして塗布してもよい。粉末(材質、
粒度、粒子形状等)と母材(材質、表面粗度等)の組み
合わせによって、粉末状態のままで母材によく付着して
安定した塗布層が形成できる場合には、粉末状態のまま
で塗布する方が、スラリー形成も塗布後の乾燥も不要な
点で有利である。スラリーにして塗布する方法は、粉末
/母材間の付着性の良否にかかわらず常に安定した塗布
層が得られる点で汎用性が高く、塗布後の取扱いも比較
的容易である点で有利である。これらを考慮して塗布方
法は適宜選択すればよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In carrying out the method of the present invention, there is no particular limitation on the method of applying a mixed powder as a raw material of an oxidation-resistant film to a base material. The coating may be carried out by coating, or the slurry may be applied by using an appropriate solvent. Powder (material,
If a stable coating layer can be formed by adhering well to the base material in a powder state due to the combination of the base material (material, surface roughness, etc.) and the base material (material quality, surface roughness, etc.), apply in the powder state This is advantageous because neither slurry formation nor drying after coating is required. The method of applying in the form of slurry is advantageous in that versatility is high in that a stable coating layer is always obtained irrespective of whether the adhesion between the powder and the base material is good, and handling after application is relatively easy. is there. The application method may be appropriately selected in consideration of these.

【0009】本発明の望ましい態様においては、高周波
加熱を、塗布層形成領域に不活性ガスを吹き付けながら
行う第1段階と、不活性ガスの吹き付けを停止して行う
第2段階とにより行う。この態様によれば、第2段階に
おいて大気による酸化雰囲気中での酸化物セラミックス
の生成に先立って、第1段階において不活性ガスで大気
との接触を遮断した非酸化性雰囲気中での焼成により塗
布層内での原料粒子間界面および母材/塗布層界面での
固相拡散が行われ、未酸化状態の粒子間の接合および母
材・塗布層間の接合が優先的に行われ、被膜自体の強度
および母材/被膜間の接合強度を更に高めることができ
るという利点がある。
In a preferred embodiment of the present invention, the high-frequency heating is performed in a first step in which the inert gas is blown onto the coating layer forming region and a second step in which the blowing of the inert gas is stopped. According to this aspect, prior to the formation of the oxide ceramics in the oxidizing atmosphere by the air in the second stage, the firing in the non-oxidizing atmosphere in which the contact with the atmosphere is interrupted by the inert gas in the first stage. Solid phase diffusion is performed at the interface between the raw material particles in the coating layer and at the interface between the base material and the coating layer. And the joining strength between the base material and the coating can be further increased.

【0010】本発明の別の望ましい態様においては、主
金属粉末として粒子形状が非球状のものを用いる。非球
状とは、真球ではない不定形状であることを意味する。
これにより、粒子同士の接触箇所数および接触面積が増
大し、被膜の構造を形成する粒子同士の接合強度が向上
して被膜自体の破砕による脱落が抑制されると共に、粒
子/母材間の接触箇所数および接触面積も増大し、被膜
/母材間の接合も強化するので、被膜全体としての接合
強度が向上する。
In another preferred embodiment of the present invention, the main metal powder having a non-spherical particle shape is used. The non-spherical shape means an irregular shape that is not a true sphere.
As a result, the number of contact points and the contact area between the particles are increased, the bonding strength between the particles forming the structure of the coating is improved, the falling of the coating itself due to crushing is suppressed, and the contact between the particles and the base material is suppressed. Since the number of locations and the contact area are also increased, and the bonding between the coating and the base material is strengthened, the bonding strength of the entire coating is improved.

【0011】本発明の別の実施態様においては、主金属
粉末の粒径が数μmから高周波加熱の誘導電流浸透深さ
までの範囲にわたって広く分布し、かつ平均粒径が誘導
電流浸透深さの約1/3である。このように広い粒度分
布を持つ原料粉末を用いると、大小の粒子の混在により
塗布層における充填密度が高まること、平均粒径よりも
大きい粒子の割合が多く、高周波加熱時に大粒子自体の
発熱による焼成促進効果が大きいこと、等の理由によっ
て被膜が緻密化し、接合強度が顕著に向上する。理由は
明らかでないが、平均粒径が誘導電流浸透深さの1/3
程度であると、上記の効果が特に顕著になる。
In another embodiment of the present invention, the particle size of the main metal powder is widely distributed over a range from several μm to the induction current penetration depth of high-frequency heating, and the average particle size is about the induction current penetration depth. 1/3. When the raw material powder having such a wide particle size distribution is used, the packing density in the coating layer is increased due to the mixture of large and small particles, and the ratio of the particles larger than the average particle size is large. Due to the large effect of accelerating the firing, the coating becomes dense, and the joining strength is remarkably improved. Although the reason is not clear, the average particle size is 1/3 of the induced current penetration depth.
When the degree is about the above, the above effect becomes particularly remarkable.

【0012】本発明の別の望ましい態様においては、高
周波加熱コイルと金属製部品とを、塗布層形成領域に沿
って相対的に移動させながら高周波加熱を行うことによ
り、該塗布層形成領域を逐次加熱する。これは、例えば
高周波コイルを塗布層形成領域に沿って走査することに
より行うことができる。このようにすると、塗布層形成
領域全体が同時に焼成されず、例えば一端から他端へ徐
々に焼成が進行し、焼成反応箇所が徐々に移動してゆく
ので、焼成箇所で発生する熱応力および焼成反応に起因
する応力が、隣接する未焼成部への解放により緩和され
るため、被膜の割れ発生や特に薄肉母材の反り発生を防
止できる。
In another desirable mode of the present invention, the high-frequency heating coil and the metal component are relatively high-frequency heated while being relatively moved along the coating layer forming region, thereby sequentially forming the coating layer forming region. Heat. This can be performed, for example, by scanning the high-frequency coil along the coating layer forming region. In this case, the entire coating layer formation region is not simultaneously fired, but, for example, the firing gradually proceeds from one end to the other end, and the firing reaction location gradually moves. Since the stress resulting from the reaction is alleviated by release to the adjacent unsintered portion, it is possible to prevent the occurrence of cracks in the coating and the occurrence of warpage particularly in the thin base material.

【0013】本発明の別の望ましい態様においては、高
周波加熱を、塗布層形成領域に窒素ガスを吹き付けなが
ら行う。これにより、被膜表面に硬い窒化物層を生成さ
せ、耐酸化被膜に高い耐摩耗性を付与することができ
る。塗布層は微細な粉末粒子同士が単に付着し合って形
成されているので、大きな粒子表面積がそのまま大きな
反応面積を提供するため、非常に活性が高い状態にあ
り、短時間の加熱であっても塗布層の表面が窒化されて
表面硬化作用が得られる。
In another preferred embodiment of the present invention, the high-frequency heating is performed while blowing nitrogen gas onto the coating layer forming region. As a result, a hard nitride layer can be formed on the surface of the coating, and high oxidation resistance can be imparted to the oxidation resistant coating. Since the coating layer is formed by simply adhering fine powder particles to each other, the large particle surface area provides a large reaction area as it is, so it is in a very high activity state, and even when heated for a short time. The surface of the coating layer is nitrided to obtain a surface hardening action.

【0014】本発明の別の望ましい実施態様において
は、金属製部品の表面に混合粉末の第7群を塗布して第
1塗布層を形成し、第1塗布層上に第1群よりも平均粒
径の大きい混合粉末第2群を塗布して第2塗布層を形成
し、得られた2層構造塗布層形成領域に高周波加熱を行
う。高周波加熱により焼成を行う本発明の方法において
は、入熱時間が短く、入熱部位も局部的であり、また母
材との界面から被膜が形成されていくため、膜厚を大き
くしようとして厚い塗布層を形成しても、塗布層の自由
表面側が焼成不足になって脱落し、結局大きい膜厚が得
られず、また接合強度も低下する。
In another preferred embodiment of the present invention, a seventh group of the mixed powder is applied to the surface of the metal part to form a first coating layer, and the first coating layer is formed on the first coating layer at a lower average than the first group. A second group of mixed powders having a large particle diameter is applied to form a second coating layer, and high-frequency heating is performed on the obtained two-layer coating layer forming region. In the method of the present invention in which baking is performed by high-frequency heating, the heat input time is short, the heat input site is local, and a film is formed from the interface with the base material, so that the thickness is increased in order to increase the film thickness. Even when the coating layer is formed, the free surface side of the coating layer is insufficiently fired and falls off due to insufficient baking, and eventually a large film thickness cannot be obtained, and the bonding strength also decreases.

【0015】単層の塗布層に用いる粒径の粉末で第1の
塗布層を形成し、その上に粒径の大きい粉末で第2の塗
布層を形成して、高周波加熱すると、粒径の大きい第2
塗布層で粉末粒子自体が発熱するため、被膜形成が母材
との界面からに加えて塗布層内部からも進行していく
上、入熱量も増加するので、膜厚全体にわたって焼成が
促進され、膜厚および接合強度ともに増大させることが
できる。
A first coating layer is formed from a powder having a particle diameter used for a single coating layer, and a second coating layer is formed thereon from a powder having a large particle diameter. Big second
Since the powder particles themselves generate heat in the coating layer, the film formation proceeds from the inside of the coating layer in addition to the interface with the base material, and the amount of heat input also increases, so that firing over the entire film thickness is promoted, Both the film thickness and the bonding strength can be increased.

【0016】高周波加熱による発熱量は粉末粒径の3乗
に比例するので、大きい粒径の粉末で形成した第2塗布
層は、有効な発熱源として作用する。大粒子による発熱
作用の利用は、前述の広い粒径分布を用いる態様の場合
にも共通している。発熱量が粒径の3乗に比例する理由
は下記のとおりである。
Since the amount of heat generated by high-frequency heating is proportional to the cube of the powder particle size, the second coating layer formed of a powder having a large particle size acts as an effective heat source. The use of the heat generation effect by the large particles is common to the above-described embodiment using the wide particle size distribution. The reason that the calorific value is proportional to the cube of the particle size is as follows.

【0017】まず、粉末粒子に生ずる誘導起電力Eは、
粉末粒子表面を通る磁束φの時間tに対する変化とし
て、 E=−dφ/dt・・・ で表され、磁束φは磁束密度Bと粒子の表面積Sとの積
として、 φ=B・S・・・・・・ で求まり、表面積Sは粒径rの2乗に比例するから、 S∝r2 ・・・・・・・ の関係がある。
First, the induced electromotive force E generated in the powder particles is
The change of the magnetic flux φ passing through the powder particle surface with respect to time t is expressed by E = −dφ / dt... The magnetic flux φ is a product of the magnetic flux density B and the surface area S of the particle, and φ = B · S ·· Since the surface area S is proportional to the square of the particle size r, there is a relationship of S∝r 2 .

【0018】よって、式,,から、 φ∝r2 式,,から、 E∝r2 ・・・・・・・ の関係がある。Thus, from the formulas, 、, the φ∝r 2 formulas, from the relationship, E∝r 2 ...

【0019】また、発熱量Pは、粉末粒子の抵抗をRと
すると、 P=I/V=V2 /R, (I:電流,V:電圧) R∝r の関係があるから、式のEは即ち上式のVであるか
ら、結局発熱量Pは、 P∝(r2)2 /r=r3 =(d/2)3 となり、すなわち粉末粒子の発熱量Pはその半径dの3
乗に比例する。
When the resistance of the powder particles is R, the calorific value P has a relationship of P = I / V = V 2 / R, (I: current, V: voltage) R∝r. Since E is V in the above equation, the calorific value P eventually becomes P∝ (r 2 ) 2 / r = r 3 = (d / 2) 3 , that is, the calorific value P of the powder particle is 3
It is proportional to the power.

【0020】本発明の別の実施態様においては、高周波
加熱による加熱部を直ちに水冷することにより、鉄系部
材のように焼入れ可能な金属製部品について、被膜形成
と同じ工程で焼入れもできるという利点がある。特に、
表面硬化のための部分焼入れについては、従来は表面酸
化が起きて適用できなかった部材についても、耐酸化被
膜で保護しつつ焼入れできるという利点がある。すなわ
ち、塗布層が高周波加熱により焼成され耐酸化被膜を形
成した直後に同部位を水冷することにより、母材を酸化
から保護しつつ表面焼入れが行われる。
In another embodiment of the present invention, by immediately cooling the heating part by high-frequency heating with water, it is possible to harden a hardenable metal part such as an iron-based member in the same step as the film formation. There is. In particular,
Partial quenching for surface hardening is advantageous in that even members that could not be applied because of surface oxidation conventionally can be hardened while being protected by an oxidation-resistant coating. That is, immediately after forming the oxidation-resistant coating by firing the coating layer by high-frequency heating, the same portion is water-cooled, so that surface quenching is performed while protecting the base material from oxidation.

【0021】以下に、添付図面を参照して、実施例によ
り本発明を更に詳細に説明する。
Hereinafter, the present invention will be described in more detail by way of examples with reference to the accompanying drawings.

【0022】[0022]

【実施例】〔実施例1〕 表1に示す成分および配合比で原料粉末をナイロンボー
ルミルにて混合・調整し、混合粉末とした。表1中、F
e−50wt%Ni粉末が本発明の耐酸化被膜の主構造を
形成するための主金属粉末であり、Cr粉末が上記主構
造の空孔を封止する他の金属酸化物を形成するための金
属粉末である。上記の混合粉末を母材鋼板(JIS S
APH440 熱間圧延鋼板)の表面に厚さ約300μ
mに均一に散布した。塗布層形成領域を高周波加熱して
耐酸化被膜を形成した。高周波加熱は、周波数f=41
4kHzの高周波電源を用い、加熱部最高到達温度が1
200〜1300℃になるように出力を調整し、100
℃以上の加熱時間が約2秒となるように行った。
EXAMPLES Example 1 Raw material powders were mixed and adjusted in a nylon ball mill with the components and compounding ratios shown in Table 1 to obtain mixed powders. In Table 1, F
e-50 wt% Ni powder forms the main structure of the oxidation resistant coating of the present invention.
The main metal powder to be formed, and the Cr powder is
Gold to form other metal oxides that seal the voids in the structure
Genus powder. The above mixed powder is used as a base steel plate (JIS S
APH440 hot rolled steel plate)
m. The coating layer forming region was heated by high frequency to form an oxidation resistant film. The high frequency heating is performed at a frequency f = 41.
Using a 4kHz high frequency power supply, the maximum temperature of the heating section is 1
Adjust the output to 200 to 1300 ° C,
The heating was performed at a temperature of not less than 2 ° C. for about 2 seconds.

【0023】比較のために、同一原料粉末および同一母
材を用いて、従来のようにAr雰囲気中で950℃×5
時間の炉内焼成により被膜形成を行った。本発明の高周
波加熱により被膜形成したサンプルおよび従来の炉内加
熱により被膜形成した比較サンプルについて、被膜と母
材との界面付近の断面の光学顕微鏡写真をそれぞれ図1
および図2に示す。本発明のサンプル(図1)は、従来
の比較サンプル(図2)のように長時間加熱による組織
の粗大化が起きていないことが分かる。
For comparison, the same raw material powder and the same base material were used in a conventional manner at 950 ° C. × 5 in an Ar atmosphere.
A film was formed by firing in a furnace for a long time. Optical micrographs of the cross-section near the interface between the coating and the base material of the sample formed by the high-frequency heating according to the present invention and the comparative sample formed by the conventional furnace heating are shown in FIG.
And FIG. It can be seen that the sample of the present invention (FIG. 1) does not have a coarse structure due to heating for a long time unlike the conventional comparative sample (FIG. 2).

【0024】図3に、本発明のサンプルと従来の比較サ
ンプルの引張試験結果を示す。同図中には対比のために
焼成前の母材(生材)についての結果も併せて示した。
生材の引張強さ約460MPaに比べて、従来の炉内加
熱後(B)は約230MPa(生材の50%)にまで引
張強さが低下しているのに対して、本発明の高周波加熱
後(A)は約380MPa(生材の80%)の引張強さ
が確保されており、本発明の短時間加熱により組織粗大
化が防止され、母材強度の低下が抑制されたことが分か
る。
FIG. 3 shows the results of the tensile tests of the sample of the present invention and the conventional comparative sample. In the same figure, the results for the base material (raw material) before firing are also shown for comparison.
Compared to the tensile strength of the raw material of about 460 MPa, after the conventional furnace heating (B), the tensile strength is reduced to about 230 MPa (50% of the raw material). After the heating (A), a tensile strength of about 380 MPa (80% of the raw material) was secured, and the short-time heating of the present invention prevented the coarsening of the structure and suppressed the decrease in the strength of the base material. I understand.

【0025】次に、本発明のサンプルと従来の比較サン
プルについて、形成された耐酸化被膜の接合強度を測定
した。測定方法を図4に示す。φ5×20(mm)のアル
ミナ丸棒の一端面を、被膜表面に接着剤で貼り付けて固
定し、この固定端から距離hの点で荷重Pを負荷して被
膜の剥離荷重Pcを求め、下式で算出される被膜/母材
界面の最大法線応力として評価した。以下の実施例にお
いても、接合強度はこれと同じ方法で評価したものであ
る。
Next, with respect to the sample of the present invention and the conventional comparative sample, the bonding strength of the formed oxidation-resistant film was measured. FIG. 4 shows the measuring method. One end surface of a φ5 × 20 (mm) alumina round bar is adhered to the surface of the coating with an adhesive and fixed, and a load P is applied at a distance h from the fixed end to obtain a peeling load Pc of the coating. It was evaluated as the maximum normal stress at the coating / base metal interface calculated by the following equation. In the following examples, the bonding strength was evaluated by the same method.

【0026】F=4・Pc・g・h/πr3 ここで、F=界面最大法線応力 Pc=被膜剥離時の荷重 g=重力加速度 h=支点からの距離 r=アルミナ丸棒半径 図5に、上記測定結果を示す。本発明の高周波短時間焼
成により、従来の炉内長時間焼成による場合とほぼ同等
の接合強度が得られていることが分かる。 〔実施例2〕 表2に示す成分および配合比で原料粉末、溶媒、バイン
ダーをナイロンボールミルにて混合・調製し、スラリー
とした。表2中、Fe−50wt%Ni粉末が本発明の耐
酸化被膜の主構造を形成するための主金属粉末であり、
Cr粉末が上記主構造の空孔を封止する他の金属酸化物
を形成するための金属粉末である。上記のスラリーを母
材軟鋼板の表面に厚さ約100μmにディッピングによ
り塗布・乾燥した。塗布層形成領域を高周波加熱して耐
酸化被膜を形成した。高周波加熱は実施例1と同じ条件
で行った。ただし、処理パターンは下記の3通りに変え
た。
F = 4 · Pc · g · h / πr 3 where F = maximum normal stress at the interface Pc = load at the time of film peeling g = gravitational acceleration h = distance from fulcrum r = radius of alumina round bar Shows the above measurement results. It can be seen that the high-frequency short-time sintering of the present invention has almost the same bonding strength as that obtained by conventional long-time sintering in a furnace. Example 2 A raw material powder, a solvent, and a binder were mixed and prepared in a nylon ball mill with the components and compounding ratios shown in Table 2 to obtain a slurry. In Table 2, the Fe-50 wt% Ni powder was found to be resistant to the present invention.
The main metal powder for forming the main structure of the oxide film,
Other metal oxides whose Cr powder seals the pores of the main structure
Is a metal powder for forming. The slurry was applied to the surface of the base mild steel sheet by dipping to a thickness of about 100 μm and dried. The coating layer forming region was heated by high frequency to form an oxidation resistant film. High-frequency heating was performed under the same conditions as in Example 1. However, the processing patterns were changed in the following three ways.

【0027】(A)大気中で1回加熱。 (B)大気中で1回加熱後、一旦室温まで冷却してか
ら、再度同じ条件で大気中で1回加熱。 (C)先ず一回目の加熱はコイル後端部からArガス
(純度99.9%以上)を流量1L/分で加熱部に吹き
付け、加熱部周辺に不活性雰囲気を形成して行った後、
一旦室温まで冷却してから、Ar吹き付けを停止した以
外は同じ条件で大気中で1回加熱。
(A) Heat once in the atmosphere. (B) After heating once in the air, once cooling to room temperature, heating once again in the air under the same conditions. (C) First heating is performed by blowing Ar gas (purity of 99.9% or more) onto the heating section at a flow rate of 1 L / min from the rear end of the coil to form an inert atmosphere around the heating section.
Once cooled to room temperature, heated once in air under the same conditions except that Ar blowing was stopped.

【0028】図6に、上記3通りの処理パターンによる
耐酸化被膜の接合強度を示す。同図から、大気中1回加
熱(A)に比べて大気中2回加熱(B)により接合強度
が増加しているが、同じ2回加熱でも1回目不活性雰囲
気(Ar)中加熱+2回目大気中加熱(C)により更に
顕著に接合強度が向上していることが分かる。このよう
に、不活性雰囲気での第1段階と大気中での第2段階に
よる2段階焼成を行った(C)において接合強度が顕著
に向上するのは、不活性雰囲気での加熱中に未酸化のま
まの原料粒子間および塗布層・母材間で固相拡散により
粒子同士および塗布層・母材間の接合が優先的に進行し
た結果である。
FIG. 6 shows the bonding strength of the oxidation resistant film by the above three treatment patterns. From the figure, the bonding strength is increased by heating twice in the air (B) compared to heating once in the air (A). However, even in the same heating twice, the first heating in the inert atmosphere (Ar) + the second heating It can be seen that the bonding strength is more remarkably improved by heating in the air (C). As described above, the two-stage firing in the first stage in the inert atmosphere and the second stage in the air (C) resulted in a remarkable improvement in the bonding strength because the heating in the inert atmosphere did not improve the bonding strength. This is the result of the fact that the bonding between the particles and between the coating layer and the base material proceeded preferentially by solid phase diffusion between the raw material particles as oxidized and between the coating layer and the base material.

【0029】大気中で2回焼成した(B)は第1段階の
雰囲気以外は(C)と同じ処理履歴であるが、(C)の
ように未酸化状態での固相間接合が行われないため、1
回加熱の(A)に比べて単に入熱量が増加して焼成が進
行した分だけ接合強度が若干増加したに留まっている。 〔実施例3〕実施例2と同じく、表2に示す成分および
配合比で原料粉末、溶媒およびバインダーをナイロンボ
ールミルにて混合・調製し、スラリーとした。ただし、
主金属粉末のFe−50wt%Ni粉末として、粉末粒子
の形状が(A)球状のものと(B)非球状(塊状)のも
のをそれぞれ用いて2種類のスラリーを調製した。どち
らも粒度は表2に示したものと同じく−20μmであ
る。図7(A)および(B)に粉末粒子(A)および
(B)の走査電子顕微鏡写真を示す。
(B) fired twice in the atmosphere has the same processing history as (C) except for the atmosphere in the first stage, but the solid-phase bonding in an unoxidized state is performed as shown in (C). Because there is no
Compared with (A) of the multiple heating, the amount of heat input simply increased, and the bonding strength was slightly increased only by the progress of firing. Example 3 In the same manner as in Example 2, the raw material powder, the solvent and the binder were mixed and prepared in a nylon ball mill with the components and compounding ratios shown in Table 2 to obtain a slurry. However,
Two types of slurries were prepared using Fe-50 wt% Ni powder as the main metal powder, each having (A) spherical powder particles and (B) non-spherical (lumpy) powder particles. In both cases, the particle size is -20 μm as shown in Table 2. FIGS. 7A and 7B show scanning electron micrographs of the powder particles (A) and (B).

【0030】各スラリーを実施例2と同じ母材に塗布・
乾燥し、実施例1と同じ加熱条件で高周波加熱により焼
成して耐酸化被膜を形成した。図8に、各スラリーから
形成した被膜の接合強度を示す。同図から、球状粒子を
用いた(A)に比べて、非球状(塊状)粒子を用いた
(B)の方が接合強度が顕著に向上していることが分か
る。これは、非球状の粉末粒子を用いると、粉末粒子同
士の接触箇所数および接触面積が増大して膜自体の強度
が増加し膜破砕による脱落が防止されると共に、粉末粒
子と母材との接触箇所数および接触面積も増大して母材
/被膜間の接合も強化されるため、結局、被膜全体とし
ての接合強度が向上するためであると考えられる。 〔実施例4〕実施例2と同じく、表2に示す成分および
配合比で原料粉末、溶媒およびバインダーをナイロンボ
ールにて混合・調製し、スラリーとした。ただし、主金
属粉末であるFe−50wt%Ni粉末は、図9に分布曲
線Aで示すように狭い粒度分布を持つ粉末と、分布曲線
Bで示すように広い粒度分布を持つ粉末の2種類を用い
てそれぞれスラリーを調製した。粉末Aは粒度分布が粒
径3μm〜21μmの範囲であるのに対して、粉末Bは
粒度分布が粒径3μm〜44μmの広い範囲である。各
スラリーを実施例2と同じ母材に塗布・乾燥し、実施例
1と同じ加熱条件で高周波加熱により焼成して耐酸化被
膜を形成した。
Each slurry was applied to the same base material as in Example 2.
It was dried and fired by high-frequency heating under the same heating conditions as in Example 1 to form an oxidation-resistant film. FIG. 8 shows the bonding strength of a film formed from each slurry. From the figure, it can be seen that the bonding strength is significantly improved in (B) using non-spherical (lumpy) particles as compared with (A) using spherical particles. This is because, when non-spherical powder particles are used, the number of contact points and contact area between the powder particles increases, the strength of the film itself increases, falling off due to film crushing is prevented, and the powder particles and the base material are mixed. It is considered that this is because the number of contact points and the contact area are also increased, and the bonding between the base material and the coating is strengthened. As a result, the bonding strength of the entire coating is improved. Example 4 In the same manner as in Example 2, the raw material powder, the solvent and the binder were mixed and prepared with a nylon ball at the components and compounding ratios shown in Table 2 to obtain a slurry. However, there are two types of Fe-50 wt% Ni powder, which are the main metal powder, a powder having a narrow particle size distribution as shown by a distribution curve A in FIG. 9 and a powder having a wide particle size distribution as shown by a distribution curve B in FIG. Each was used to prepare a slurry. Powder A has a particle size distribution ranging from 3 μm to 21 μm, whereas powder B has a particle size distribution ranging from 3 μm to 44 μm. Each slurry was applied to the same base material as in Example 2, dried, and fired by high-frequency heating under the same heating conditions as in Example 1 to form an oxidation resistant film.

【0031】図10に、各スラリーから形成した被膜の
接合強度を示す。同図から、広い粒度分布の粉末Bから
形成した被膜は、狭い粒度分布の粉末Aから形成した被
膜にくらべて、接合強度が2倍近くに大幅に向上してい
る。このように広い粒度分布を持つ原料粉末を用いる
と、大小の粒子の混在により塗布層における充填密度が
高まること、平均粒径よりも大きい粒子の割合が多く、
高周波加熱時に大粒子自体の発熱による焼成促進効果が
大きいこと、等の理由によって被膜が緻密化し、接合強
度が顕著に向上するものと考えられる。 〔実施例5〕実施例2と同じく、表2に示す成分および
配合比で原料粉末、溶媒、バインダーをナイロンボール
ミルにて混合・調製し、スラリーとした。これを巾20
mm×長さ150mm×厚さ1mmの母材軟鋼板の長手方向中
心から両端方向へ向けて長さ20mmに渡って厚さ約10
0μmにディッピングにより塗布・乾燥した。塗布層形
成領域を高周波加熱して耐酸化被膜を形成した。高周波
加熱は実施例1と同じ条件で行った。ただし、加熱方法
は、巾20mm×長さ40mmの高周波コイルで塗布層形成
領域全体を一度に加熱する方法(図11(A))と、巾
20mm×長さ5mmの高周波コイルで塗布層形成領域を長
さ20mmの一端から他端まで走査して逐次加熱する方法
(図11(B))の2種類とした。
FIG. 10 shows the bonding strength of the film formed from each slurry. From the figure, it can be seen that the coating formed from the powder B having a wide particle size distribution has significantly improved the bonding strength nearly twice as compared with the coating formed from the powder A having a narrow particle size distribution. When the raw material powder having such a wide particle size distribution is used, the packing density in the coating layer increases due to the mixture of large and small particles, and the ratio of particles larger than the average particle size is large,
It is considered that the coating is densified and the bonding strength is remarkably improved due to a large effect of accelerating sintering due to heat generation of the large particles themselves during high frequency heating. Example 5 In the same manner as in Example 2, the raw material powder, the solvent and the binder were mixed and prepared in a nylon ball mill with the components and compounding ratios shown in Table 2 to obtain a slurry. This is width 20
mm × 150 mm × 1 mm thick Base steel mild steel sheet has a thickness of about 10 over a length of 20 mm from the center in the longitudinal direction to both ends.
It was applied and dried by dipping to 0 μm. The coating layer forming region was heated by high frequency to form an oxidation resistant film. High-frequency heating was performed under the same conditions as in Example 1. However, the heating method is a method of heating the entire coating layer forming area at a time with a high-frequency coil having a width of 20 mm and a length of 40 mm (FIG. 11A), and a method of heating the coating layer forming area with a high-frequency coil having a width of 20 mm and a length of 5 mm. Was scanned from one end to the other end with a length of 20 mm to sequentially heat (FIG. 11B).

【0032】被膜形成後に、母材軟鋼板の厚さ方向への
変位(反り)を測定した結果を図12に示す。同図か
ら、コイルを走査して逐次加熱することにより、熱変形
による母材の反りが大幅に軽減することが分かる。 〔実施例6〕実施例2と同じく、表2の成分および配合
組成で混合・調製したスラリーを母材軟鋼板の表面に塗
布・乾燥し、実施例1と同じ加熱条件で焼成して耐酸化
被膜を形成した。ただし、加熱雰囲気は、(A)単に大
気中で加熱および(B)加熱部にN2 ガス(純度99.
9%以上)を流量1L/分で吹き付け、加熱部周辺に窒
化性雰囲気を形成して加熱、の2種類を用いた。
FIG. 12 shows the results of measuring the displacement (warpage) in the thickness direction of the base mild steel sheet after the coating was formed. From the figure, it can be seen that by sequentially heating the coil by scanning the coil, the warpage of the base material due to thermal deformation is greatly reduced. [Example 6] As in Example 2, the slurry mixed and prepared with the components and composition shown in Table 2 was applied to the surface of the base mild steel sheet, dried, fired under the same heating conditions as in Example 1, and oxidized. A coating was formed. However, the heating atmosphere is (A) simply heating in air and (B) N 2 gas (purity 99.
(9% or more) is sprayed at a flow rate of 1 L / min, and a nitriding atmosphere is formed around the heating portion to heat.

【0033】得られた耐酸化被膜の硬さを測定した結果
を表3に示す。同表から、単に大気中で焼成した場合は
被膜硬さがHV320であったのに対し、N2 ガス吹き
付け下で焼成した場合は被膜硬さがHV770に大幅に
向上していることが分かる。このように高周波による短
時間の加熱にもかかわらず、窒化による顕著な表面硬化
作用が得られた。 〔実施例7〕実施例2と同じく、表2に示す成分および
配合比で原料粉末、溶媒およびバインダーをナイロンボ
ールミルにて混合・調製し、スラリーとした。ただし、
主金属粉末であるFe−50wt%Ni粉末の粒度につい
ては、表2に示した−20μmの粉末(小粒子)を用い
たスラリーと、これよりも大きい平均粒径80μmの粉
末(大粒子)を用いたスラリーの2種類を調製した。こ
れらスラリーを実施例2と同じ母材軟鋼板に下記のよう
に塗布した。
Table 3 shows the results of measuring the hardness of the obtained oxidation resistant coating. From the table, it can be seen that the hardness of the coating was HV320 when fired simply in the air, whereas the hardness of the coating was significantly improved to HV770 when fired under N 2 gas blowing. As described above, despite the short-time heating by high frequency, a remarkable surface hardening effect by nitriding was obtained. Example 7 In the same manner as in Example 2, the raw material powder, the solvent and the binder were mixed and prepared in a nylon ball mill with the components and compounding ratios shown in Table 2 to obtain a slurry. However,
Regarding the particle size of the Fe-50 wt% Ni powder as the main metal powder, the slurry using the -20 μm powder (small particles) shown in Table 2 and the powder having a larger average particle size of 80 μm (large particles) shown in Table 2 were used. Two types of slurries were prepared. These slurries were applied to the same base mild steel sheet as in Example 2 as follows.

【0034】試料Aとして、粒径−20μmの粉末(小
粒子)によるスラリーのみを、厚さ約400μmに塗布
して単層構造の塗布層を形成した。試料Bとして、粒径
−20μmの粉末(小粒子)によるスラリーを厚さ約1
50μmに塗布し、更にその上に平均粒径80μmの粉
末(大粒子)によるスラリーを厚さ約250μmに塗布
して、合計厚さ約400μmの2層構造の塗布層を形成
した(試料B)。
As sample A, only a slurry of powder (small particles) having a particle size of −20 μm was applied to a thickness of about 400 μm to form a coating layer having a single-layer structure. As a sample B, a slurry of powder (small particles) having a particle size of −20 μm was formed to a thickness of about 1 μm.
A slurry of powder (large particles) having an average particle diameter of 80 μm (large particles) was applied thereon to a thickness of about 250 μm to form a two-layer coating layer having a total thickness of about 400 μm (Sample B). .

【0035】これらの試料を実施例1と同じ加熱条件に
て高周波により焼成して耐酸化被膜を形成した。図13
に、これら耐酸化被膜の厚さと接合強度を示す。小粒子
の粉末によるスラリーのみの単層塗布層を焼成して耐酸
化層を形成した試料Aでは、焼成したままの状態では一
応330μm程度の膜厚があったが、厚さ測定時に被膜
の外側の部分が剥離・脱落してしまい、結局実質的な膜
厚は200μm弱であった。接合強度も10MPa弱と
小さかった。したがって、この場合は単層の塗布層によ
り形成できる被膜厚さは200μm程度が限度である。
これは、小粒子のみを被膜原料とした場合、焼成に有効
な発熱は塗布層においては実質的に生ぜず、母材からの
発熱のみにより焼成が進行するため、母材/塗布層界面
から遠い部分では入熱が不足して焼成が十分に進行しな
いためである。
These samples were fired at a high frequency under the same heating conditions as in Example 1 to form an oxidation resistant film. FIG.
The thickness and bonding strength of these oxidation resistant coatings are shown in FIG. In the sample A in which the single-layer coating layer of only the slurry of the small particle powder was fired to form the oxidation-resistant layer, the thickness of the film was about 330 μm in the as-fired state. Part was peeled off and dropped off, and eventually the substantial film thickness was less than 200 μm. The bonding strength was as low as less than 10 MPa. Therefore, in this case, the film thickness that can be formed by a single coating layer is limited to about 200 μm.
This is because, when only the small particles are used as the coating material, heat generation effective for baking does not substantially occur in the coating layer, and baking proceeds only by heat generation from the base material, so that it is far from the base material / coating layer interface. This is because the heat input is insufficient in some portions and the firing does not proceed sufficiently.

【0036】これに対して、下層小粒子+上層大粒子の
2層構造の塗布層を焼成して耐酸化被膜を形成した試料
Bでは、厚さ約350μmの強固な被膜が形成されてお
り、接合強度も約30MPaに向上している。これは、
塗布層上層を構成する大粒子が有効な発熱源として機能
し、焼成が母材側からと塗布層側からの両側から進行す
ることによって、被膜全厚に渡って十分に焼成が行われ
るためである。このように、塗布層上層を有効な発熱源
となり得る大粒子で形成した2層構造の塗布層とするこ
とにより、単層構造の塗布層による限界を超えた厚い被
膜を高い接合強度を確保しつつ形成できる。 〔実施例8〕実施例2と同じく表2の成分および配合比
でスラリーを調製した。これを、母材である板厚1mmの
溶融亜鉛めっき鋼板に塗布・乾燥した後、実施例1と同
じ加熱条件で高周波加熱により焼成して耐酸化被膜を形
成した。その際、単に加熱のみを行ったものを試料Aと
し、コイル後端部からコイル移動方向に対して60度の
入射角度で試料表面に水を散布しつつ加熱を行ったもの
を試料Bとした。また、比較のためにスラリーを塗布せ
ずに母材のまま加熱したものを試料Cとした。
On the other hand, in the sample B in which the coating layer having the two-layer structure of the small particles of the lower layer and the large particles of the upper layer was baked to form an oxidation-resistant film, a strong film having a thickness of about 350 μm was formed. The bonding strength has also been improved to about 30 MPa. this is,
The large particles constituting the upper layer of the coating layer function as an effective heat source, and the firing proceeds from both sides from the base material side and from the coating layer side, thereby sufficiently firing over the entire film thickness. is there. In this way, by forming the upper layer of the coating layer as a two-layer coating layer formed of large particles that can be an effective heat source, a thick coating exceeding the limit of the single-layer coating layer is secured with high bonding strength. It can be formed while forming. Example 8 A slurry was prepared in the same manner as in Example 2 with the components and mixing ratios shown in Table 2. This was applied and dried on a hot-dip galvanized steel sheet having a thickness of 1 mm as a base material, and then fired by high-frequency heating under the same heating conditions as in Example 1 to form an oxidation-resistant coating. At this time, the sample which was simply heated was designated as sample A, and the sample which was heated while spraying water on the sample surface from the rear end of the coil at an incident angle of 60 degrees with respect to the coil moving direction was designated as sample B. . For comparison, a sample C was heated without coating the slurry and the base material was heated.

【0037】加熱後の試料A,Bおよび生材について引
張試験を、試料B,Cについて腐食試験を行った。腐食
試験は、飽和塩水を含浸した綿布を試料上に載せ、90
℃で5分間保持した後に室温まで冷却する過程を1サイ
クルとし、このサイクル数に対して、腐食スケールの堆
積および浸食による板厚の変化を測定することにより行
った。
A tensile test was performed on the heated samples A and B and the raw material, and a corrosion test was performed on the samples B and C. In the corrosion test, a cotton cloth impregnated with saturated saline was placed on the sample, and 90
The process of holding at 5 ° C. for 5 minutes and then cooling to room temperature was defined as one cycle, and the number of cycles was measured by measuring the change in sheet thickness due to the deposition and erosion of corrosion scale.

【0038】図14に示した試料A,Bおよび生材の引
張試験結果から、単に加熱のみを行い加熱後の水冷をし
なかった試料Aは引張強度がむしろ生材よりも低下して
いるのに対して、高周波加熱直後に加熱部を水冷した試
料Bは、有効な焼入れ硬化により著しく高い引張強度が
得られていることが分かる。図15に示した試料B,C
の腐食試験結果から、塗布層を形成せずに母材のまま加
熱した試料Cは腐食試験サイクルの進行に伴い腐食スケ
ールの堆積および浸食により板厚変化Δtが観察された
のに対して、塗布層を形成して加熱した試料Bは板厚変
化が無いことが分かる。これは、試料Cでは亜鉛めっき
膜が大気中で高温に曝されて酸化あるいは蒸発して消失
したこと、これに対して試料Bでは塗布層の焼成により
形成された耐酸化被膜により亜鉛めっき膜の酸化・蒸発
が防止されたことを示している。
From the results of the tensile tests of Samples A and B and the raw material shown in FIG. 14, it is clear that Sample A, which was heated only and was not water-cooled after heating, had a lower tensile strength than the raw material. On the other hand, it can be seen that Sample B, in which the heating part was water-cooled immediately after the high-frequency heating, exhibited extremely high tensile strength due to effective quench hardening. Samples B and C shown in FIG.
According to the results of the corrosion test, the sample C, which was heated as a base material without forming a coating layer, showed a change in thickness Δt due to the accumulation and erosion of corrosion scale with the progress of the corrosion test cycle. It can be seen that the thickness of the sample B formed and heated does not change. This is because, in Sample C, the galvanized film was exposed to a high temperature in the air and was oxidized or evaporated and disappeared, whereas in Sample B, the galvanized film was formed by the oxidation-resistant film formed by firing the coating layer. This indicates that oxidation and evaporation were prevented.

【0039】すなわち、本実施例の結果は、耐酸化被膜
の存在により母材表層の酸化等を防止することができ、
有効な焼入れを行うことを示すものである。本実施例に
おいて母材として亜鉛めっき鋼板を用いたのは、母材表
層における酸化反応等の有無を示すマーカーとして亜鉛
めっき層を利用するためである。このように、塗布層を
形成して高周波加熱することにより、望みの母材部位を
酸化させることなく部分焼入れすることができる。
That is, the result of the present embodiment is that the oxidation of the surface layer of the base material can be prevented by the presence of the oxidation resistant film.
This indicates that effective quenching is performed. The reason why the galvanized steel sheet is used as the base material in the present embodiment is to use the galvanized layer as a marker indicating the presence or absence of an oxidation reaction or the like on the surface of the base material. In this way, by forming the coating layer and performing high-frequency heating, it is possible to partially quench the desired base material portion without oxidizing it.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
金属製部品の表面に短時間の処理で高い接合強度を有す
る耐酸化被膜を形成することができる。
As described above, according to the present invention,
An oxidation-resistant film having high bonding strength can be formed on the surface of a metal component in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の高周波加熱により形成した耐
酸化被膜と母材との界面付近の金属組織を示す光学顕微
鏡写真である。
FIG. 1 is an optical micrograph showing a metal structure near an interface between an oxidation resistant film formed by high-frequency heating and a base material according to the present invention.

【図2】図2は、従来の炉内加熱により形成した耐酸化
被膜と母材との界面付近の金属組織を示す光学顕微鏡写
真である。
FIG. 2 is an optical micrograph showing a metal structure near an interface between a base material and an oxidation-resistant film formed by heating in a conventional furnace.

【図3】図3は、本発明の高周波加熱により耐酸化被膜
を形成した後の母材強度を、加熱前の生材および従来の
炉内加熱により耐酸化被膜を形成した後の母材強度とを
比較して示すグラフである。
FIG. 3 shows the strength of a base material after forming an oxidation-resistant film by high-frequency heating according to the present invention, and the strength of a base material before heating and the strength of a base material after forming an oxidation-resistant film by conventional furnace heating. FIG.

【図4】図4は、耐酸化被膜の接合強度の測定方法を示
す断面図である。
FIG. 4 is a cross-sectional view showing a method for measuring the bonding strength of an oxidation-resistant film.

【図5】図5は、本発明の高周波加熱により形成した耐
酸化被膜と従来の炉内加熱により形成した耐酸化被膜に
ついて接合強度を比較して示すグラフである。
FIG. 5 is a graph showing a comparison of bonding strength between an oxidation resistant film formed by high-frequency heating according to the present invention and a conventional oxidation resistant film formed by heating in a furnace.

【図6】図6は、本発明による高周波加熱を、(A)大
気中で1回行った場合、(B)大気中で2回行った場
合、および(B)Arガス中で1回行った後に大気中で
1回行った場合について、耐酸化被膜の接合強度を比較
して示すグラフである。
FIGS. 6A and 6B show the case where the high-frequency heating according to the present invention is performed once in the air (A), twice in the air (B), and once in the Ar gas (B). 7 is a graph showing a comparison of the bonding strength of the oxidation-resistant film when the test is performed once in the air after the test.

【図7】図7は、本発明の耐酸化被膜を形成する主金属
粉末として、粒子形状が(A)球状のものと(B)非球
状(塊状)のものを示す粒子構造の走査電子顕微鏡写真
である。
FIG. 7 is a scanning electron microscope having a particle structure in which the main metal powder for forming the oxidation resistant film of the present invention has a particle shape of (A) a spherical particle and (B) a non-spherical (lump) particle. It is a photograph.

【図8】図8は、図7に示した(A)球状粒子と(B)
非球状粒子の原料粉末により形成した耐酸化被膜の接合
強度を比較して示すグラフである。
FIG. 8 shows (A) spherical particles and (B) shown in FIG.
4 is a graph showing a comparison of the bonding strength of an oxidation-resistant coating formed from raw material powder of non-spherical particles.

【図9】図9は、本発明の耐酸化被膜を形成する主金属
粉末として、(A)狭い粒度分布と(B)広い粒度分布
を示すグラフである。
FIG. 9 is a graph showing (A) a narrow particle size distribution and (B) a wide particle size distribution as a main metal powder for forming an oxidation resistant film of the present invention.

【図10】図10は、図9の2種類の粒度分布の粉末を
用いて形成した耐酸化被膜の接合強度を比較して示すグ
ラフである。
FIG. 10 is a graph showing a comparison of bonding strength between oxidation-resistant films formed using the powders having two types of particle size distributions shown in FIG.

【図11】図11は、(A)大きい高周波加熱コイルで
塗布層形成領域全体を一度に加熱する場合と、(B)小
さい高周波加熱コイルで塗布層形成領域を一端から他端
へ走査して逐次加熱する場合を示す断面図である。
FIG. 11 shows (A) a case where the entire coating layer formation region is heated at once by a large high-frequency heating coil, and (B) a case where the coating layer formation region is scanned from one end to the other end by a small high-frequency heating coil. It is sectional drawing which shows the case of heating sequentially.

【図12】図12は、図11に示した2つの加熱方法に
より耐酸化被膜を形成した後の母材の変位を比較して示
すグラフである。
FIG. 12 is a graph showing a comparison of displacement of a base material after forming an oxidation-resistant film by the two heating methods shown in FIG. 11;

【図13】図13は、本発明により、小粒子の単層塗布
層により形成した耐酸化被膜と、小粒子の下層と大粒子
の上層からなる2層構造の塗布層により形成した耐酸化
被膜とについて、形成された被膜の厚さおよび接合強度
を比較して示すグラフである。
FIG. 13 is an oxidation-resistant coating formed by a single-layer coating layer of small particles, and an oxidation-resistant coating formed by a coating layer having a two-layer structure including a lower layer of small particles and an upper layer of large particles according to the present invention. 4 is a graph showing a comparison between the thickness of the formed coating film and the bonding strength of the films.

【図14】図14は、本発明により加熱部を水冷しつつ
耐酸化被膜を形成した場合の母材強度を、被膜形成せず
に加熱した場合の母材強度および加熱前の生材強度と比
較して示すグラフである。
FIG. 14 shows the base metal strength when an oxidation-resistant coating is formed while water-cooling a heating unit according to the present invention, the base metal strength when heated without forming a coating, and the raw material strength before heating. It is a graph shown in comparison.

【図15】図15は、本発明により加熱部を水冷しつつ
耐酸化被膜を形成した場合と、被膜形成せずに加熱した
場合について、母材の腐食試験結果を示すグラフであ
る。
FIG. 15 is a graph showing the results of a corrosion test of a base material in a case where an oxidation-resistant film is formed while cooling a heating portion with water according to the present invention and in a case where heating is performed without forming a film.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属製部品の表面に、該金属製部品の基
本成分と同種の金属の酸化物を主成分とする酸化物から
成る主構造と、該主構造の空孔を封止している他の金属
酸化物とから成る耐酸化被膜を形成する方法において、 上記金属製品の表面に、上記主構造を形成するための主
金属粉末と上記空孔を封止する上記他の金属酸化物を形
成するための金属の 粉末との混合粉末を塗布して塗布層
を形成し、該部品の該塗布層形成領域を大気中で高周波
加熱することを特徴とする金属製部品の耐酸化被膜の形
成方法。
A metal component is provided on a surface of the metal component.
From oxides mainly composed of the same type of metal oxide as this component
Main structure and other metal sealing the pores of the main structure
In the method for forming an oxidation-resistant film made of an oxide , a main part for forming the main structure on a surface of the metal product is provided.
Form the metal powder and the other metal oxide that seals the pores
Forming an application layer by applying a mixed powder with a metal powder to be formed to form an application layer, and high-frequency heating the application layer forming region of the component in the atmosphere in the air; Method.
【請求項2】 該混合粉末をスラリーにして塗布するこ
とを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the mixed powder is applied as a slurry.
【請求項3】 該高周波加熱を、該塗布層形成領域に不
活性ガスを吹き付けながら行う第1段階と、該不活性ガ
スの吹き付けを停止して行う第2段階とにより行うこと
を特徴とする請求項1または2に記載の方法。
3. The high-frequency heating is performed in a first step in which the inert gas is blown onto the coating layer forming region and a second step in which the blowing of the inert gas is stopped. The method according to claim 1.
【請求項4】 該主金属粉末の粒子が非球状であること
を特徴とする請求項1から3までのいずれか1項に記載
の方法。
4. The method according to claim 1, wherein the particles of the main metal powder are non-spherical.
【請求項5】 該主金属粉末の粒径が数μmから該高周
波加熱の誘導電流浸透深さまでの範囲にわたって広く分
布し、かつ平均粒径が該誘導電流浸透深さの約1/3で
あることを特徴とする請求項1から5までのいずれか1
項に記載の方法。
5. The main metal powder has a particle size widely distributed over a range from several μm to the induction current penetration depth of the high-frequency heating, and the average particle size is about の of the induction current penetration depth. 6. One of claims 1 to 5, characterized in that:
The method described in the section.
【請求項6】 高周波加熱コイルと該部品とを、該塗布
層形成領域に沿って相対的に移動させながら該高周波加
熱を行うことにより、該塗布層形成領域を逐次加熱する
ことを特徴とする請求項1から5までのいずれか1項に
記載の方法。
6. A high-frequency heating is performed while relatively moving the high-frequency heating coil and the component along the coating layer forming region, thereby sequentially heating the coating layer forming region. The method according to any one of claims 1 to 5.
【請求項7】 該高周波加熱を、該塗布層形成領域に窒
素ガスを吹き付けながら行うことを特徴とする請求項1
から6までのいずれか1項に記載の方法。
7. The method according to claim 1, wherein the high-frequency heating is performed while blowing nitrogen gas onto the coating layer forming region.
The method according to any one of claims 1 to 6.
【請求項8】 該金属製部品の表面に該混合粉末の第1
群を塗布して第1塗布層を形成し、該第1塗布層上に該
第1群よりも平均粒径の大きい第2群の該混合粉末を塗
布して第2塗布層を形成し、得られた2層構造塗布層形
成領域に該高周波加熱を行うことを特徴とする請求項1
から7までのいずれか1項に記載の方法。
8. The first part of the mixed powder on the surface of the metal part
Forming a first coating layer by applying a group, forming a second coating layer by coating a second group of the mixed powder having a larger average particle diameter than the first group on the first coating layer, 2. The high-frequency heating is performed on the obtained two-layer structure coating layer forming region.
The method according to any one of claims 1 to 7.
【請求項9】 該高周波加熱による加熱部を直ちに水冷
することを特徴とする請求項1から8までのいずれか1
項に記載の方法。
9. The method according to claim 1, wherein the heating section by the high-frequency heating is immediately cooled with water.
The method described in the section.
JP32589796A 1996-11-22 1996-11-22 Method of forming oxidation resistant coating on metal parts Expired - Fee Related JP3198955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32589796A JP3198955B2 (en) 1996-11-22 1996-11-22 Method of forming oxidation resistant coating on metal parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32589796A JP3198955B2 (en) 1996-11-22 1996-11-22 Method of forming oxidation resistant coating on metal parts

Publications (2)

Publication Number Publication Date
JPH10152781A JPH10152781A (en) 1998-06-09
JP3198955B2 true JP3198955B2 (en) 2001-08-13

Family

ID=18181825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32589796A Expired - Fee Related JP3198955B2 (en) 1996-11-22 1996-11-22 Method of forming oxidation resistant coating on metal parts

Country Status (1)

Country Link
JP (1) JP3198955B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485780B1 (en) * 1999-08-23 2002-11-26 General Electric Company Method for applying coatings on substrates

Also Published As

Publication number Publication date
JPH10152781A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP4772860B2 (en) Abrasion resistant metal matrix composite coating layer forming method and coating layer manufactured using the same
JP2008538385A (en) Method for forming metal matrix composite and coating layer and bulk produced using the same
KR100794294B1 (en) Method for forming wear-resistant coating comprising metal-ceramic composite
US20070099015A1 (en) Composite sliding surfaces for sliding members
EP0211579A1 (en) Method of making a silicon nitride sintered member
JP3198955B2 (en) Method of forming oxidation resistant coating on metal parts
KR101908332B1 (en) Thermal spraying powder, method of forming a thermal sprayed coating layer using the same and Grate bar with thermally sprayed coating layer
JPS63274751A (en) Ceramic thermally sprayed member
JPH0645862B2 (en) Method for forming ceramic sprayed layer
JPH07116583B2 (en) Thermal cycle thermal spray coating
JPS63290254A (en) Thermally sprayed film combining heat resistance with wear resistance
JPS59126772A (en) Melt spraying material having build-up resistance
JP3403459B2 (en) Carbon member with ceramic spray coating
JP2004002067A (en) Wear-resistant member and its production process
JP3069462B2 (en) Ceramic coating member and method of manufacturing the same
JPH04147957A (en) Heat insulating aluminum-based member
JP3002844B2 (en) Surface hardening method for aluminum material or aluminum alloy material
Xue et al. Bonding characteristics of the Al 2 O 3-metal composite coating fabricated onto carbon steel by combustion synthesis
JPS61243164A (en) Formation of heat resistant coating
JPH07830B2 (en) Surface coating method for metallic materials
JP3715184B2 (en) Stave cooler and manufacturing method of double pipe used therefor
JPS6358886B2 (en)
Senderowski et al. Influence of gas detonation spraying conditions on the quality of Fe-Al inter-metallic protective coatings
JP2971288B2 (en) Heat resistant steel members
Kishitake et al. Ceramic coating on ceramic with metallic bond coating

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees