JP3002844B2 - Surface hardening method for aluminum material or aluminum alloy material - Google Patents

Surface hardening method for aluminum material or aluminum alloy material

Info

Publication number
JP3002844B2
JP3002844B2 JP3256984A JP25698491A JP3002844B2 JP 3002844 B2 JP3002844 B2 JP 3002844B2 JP 3256984 A JP3256984 A JP 3256984A JP 25698491 A JP25698491 A JP 25698491A JP 3002844 B2 JP3002844 B2 JP 3002844B2
Authority
JP
Japan
Prior art keywords
aluminum
alloy
layer
hardness
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3256984A
Other languages
Japanese (ja)
Other versions
JPH0681113A (en
Inventor
英之亮 山中
茂樹 清水
博次 竹内
浩之 須摩
Original Assignee
日本電子工業株式会社
エヌ・デイ・ケー加工センター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電子工業株式会社, エヌ・デイ・ケー加工センター株式会社 filed Critical 日本電子工業株式会社
Priority to JP3256984A priority Critical patent/JP3002844B2/en
Publication of JPH0681113A publication Critical patent/JPH0681113A/en
Application granted granted Critical
Publication of JP3002844B2 publication Critical patent/JP3002844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、優れた耐摩耗性と耐塑
性変形性を有したアルミニウム材またはアルミニウム合
金材を製作することができるアルミニウム材またはアル
ミニウム合金材の表面硬化方法に関する。 【0002】 【従来の技術】アルミニウム材またはアルミニウム合金
材は、軽量であるという優れた特性を有しており、各種
機器、構造物などに広く使用されているが、他の金属や
合金に比較して硬さが低く、耐摩耗性が劣っている。そ
のため、従来からイオン注入,表面焼入れ,硬質メッ
キ,イオン窒化,拡散浸透熱処理,溶射などの手法や、
更には、アーク,電子ビーム,レーザービームを利用し
た溶接による肉盛りなどの手法によりアルミニウム材ま
たはアルミニウム合金材の表面の硬化を行い、それら材
料の硬さや耐磨耗性の欠点を補うようにしている。 【0003】 【発明が解決しようとする課題】上記したイオン注入,
表面焼入れ,硬質メッキ,イオン窒化,拡散浸透熱処
理,溶射などによるアルミニウム材またはアルミニウム
合金材の表面硬化においては、ビッカース硬さ800H
V以上の硬化層が得られるが、その厚さは数μm〜20
0μm程度にすぎない。ところで、アルミニウム材また
はアルミニウム合金材の表面硬化層に荷重が負加された
場合、例えば、表面硬化された軸と軸受けが接触面圧を
受けながら摺動しているような場合、最大応力は材料表
面の直下に発生する。硬化層の厚さが薄い場合は、最大
応力はアルミニウム材またはアルミニウム合金材母材に
生じ、硬化層は塑性変形しないものの、母材は硬さが低
いために塑性変形を起こしてしまう。もちろん、硬化層
の厚さを厚くすれば最大応力は硬化層中に発生するた
め、母材には塑性変形は発生しない。 【0004】このようにアルミニウム材またはアルミニ
ウム合金材の母材およびその硬化層の塑性変形を防止す
るには、硬化層の硬さと厚さをそれぞれ下限値以上に保
持しなければならない。厚さの下限値は負荷荷重が増大
する程、母材の硬さが低下する程増大するが、一般に数
mm程度を必要とする。しかし上記した硬化法により得
られる厚さは数μm〜200μm程度であり、母材の塑
性変形を防止することはできない。 【0005】一方、アーク,電子ビーム,レーザービー
ムなどを利用した溶接法により、アルミニウム材または
アルミニウム合金材を溶融して合金層を形成する硬化法
は、数mm程度の厚さの合金層を容易に得ることができ
るが、合金層の硬さはビッカース硬さ300〜400H
V程度であり、400HV以上になると割れが発生す
る。しかし現状ではアルミニウム材またはアルミニウム
合金材の耐摩耗性を向上するためにはビッカース硬さ4
00HV以上の硬さが要求されている。このように、上
記した現状の硬化法では、アルミニウム材またはアルミ
ニウム合金材に対し、耐摩耗性と耐塑性変形性をもつ硬
化層を得ることは困難である。 【0006】本発明は、上述した点に鑑みて成されたも
ので、優れた耐摩耗性と耐塑性変形性を有した硬化層を
形成することができるアルミニウム材またはアルミニウ
ム合金材の表面硬化方法を提供することを目的としてい
る。 【0007】 【課題を解決するための手段】本発明に基づくアルミニ
ウム材またはアルミニウム合金材の表面硬化方法は、ア
ルミニウム材またはアルミニウム合金材の表面に、溶融
によって鉄またはクロムを含有する合金層を形成し、そ
の後、該合金層の表面に対し、イオン窒化処理を施すよ
うにしたことを特徴としている。 【0008】 【作用】本発明に基づくアルミニウム材またはアルミニ
ウム合金材の表面硬化方法は、アルミニウム材またはア
ルミニウム合金材の表面に、溶融によって鉄またはクロ
ムを含有する合金層を形成し、その後、該合金層の表面
に対し、イオン窒化処理を施す。一般に、アルミニウム
材またはアルミニウム合金材は、イオン窒化のために入
れられた密閉容器中に存在する酸素と容易に結合して、
極めて安定でかつ緻密な薄いアルミナ層を形成するため
に、イオン窒化法による硬化は極めて困難である。しか
し合金層中に約20〜80%の鉄またはクロムが含有さ
れているために、この鉄またはクロムが窒化物を形成
し、表面硬さを著しく増大させることができる。この合
金層には耐塑性変形性を負担させ、イオン窒化法により
形成された硬化層には耐磨耗性を負担させる。 【0009】 【実施例】以下本発明の一実施例を詳述する。アルミニ
ウム材表面に鉄をプラズマ溶射し、電子ビーム溶接によ
り溶融した。その結果、厚さ約4mmのアルミニウム−
鉄の合金層が得られた。合金層断面の深さ方向の硬さ分
布を図1に示すが、表面からの距離が0〜4mmの範囲
で、硬さはビッカース硬さ300〜350HVを示し
た。また、溶射する鉄の量と溶接条件により、合金層の
鉄の含有量を変化させることができた。合金層の硬さは
鉄の含有量により変化した。図2は、合金層のアルミニ
ウムおよび鉄含有量と硬さの関係の測定結果を示してい
る。鉄含有量が約30〜65%の範囲ではFeAl2
Fe2 Al5 ,FeAl3 などの金属間化合物が晶出し
て脆化し割れが発生した。 【0010】さて、上述した電子ビーム溶接により形成
された合金層を有するアルミニウム材料を密閉容器に入
れ、真空にしたのち、この容器中に水素と窒素の混合ガ
スを導入し、減圧条件下で合金層と炉壁の間に直流電圧
を印加して、グロー放電を発生させ、530度、10時
間、真空度6Torrにて合金層の表面をイオン窒化し
た。第3図は、イオン窒化処理後の合金層の表面の硬さ
と窒化層の厚さの測定結果を示しており、実線が硬さの
測定結果、点線が厚さの測定結果を示している。なお、
横軸は合金層のアルミニウムおよび鉄の含有量である。
この測定結果から明らかなように、窒化層の厚さは薄い
ものの、硬さは、鉄の含有量によってはビッカース硬さ
900以上となっている。 【0011】以上、アルミニウムと鉄との合金層を形成
した実施例を詳述したが、鉄との合金以外に、クロムと
の合金層を形成した場合にも同様な効果が得られた。ま
た、アルミニウム材料以外にアルミニウム合金材料にも
本発明を適用することができる。なお、アルミニウム材
またはアルミニウム合金材表面に溶融により形成した合
金層、および、合金層表面にイオン窒化法により形成し
た窒化層は、いずれもすぐれた密着性を示した。 【0012】 【発明の効果】以上詳述した如く、本発明では、アルミ
ニウム材またはアルミニウム合金材の表面に、溶融によ
って鉄またはクロムを含有する合金層を形成し、その
後、該合金層の表面に対し、イオン窒化処理を施こすよ
うにしたので、優れた耐摩耗性と耐塑性変形性を有した
アルミニウム材またはアルミニウム合金材を提供するこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum material or an aluminum material capable of producing an aluminum material or an aluminum alloy material having excellent wear resistance and plastic deformation resistance. The present invention relates to a method for hardening a surface of an alloy material. 2. Description of the Related Art Aluminum materials or aluminum alloy materials have excellent characteristics of being lightweight, and are widely used in various devices and structures, but compared with other metals and alloys. Low hardness and poor wear resistance. Therefore, conventional techniques such as ion implantation, surface quenching, hard plating, ion nitriding, diffusion and penetration heat treatment, and thermal spraying,
Further, the surface of the aluminum material or the aluminum alloy material is hardened by a method such as overlaying by welding using an arc, an electron beam, or a laser beam so as to compensate for the defects of the hardness and abrasion resistance of those materials. I have. [0003] The above-described ion implantation,
Vickers hardness 800H for hardening the surface of aluminum or aluminum alloy material by surface quenching, hard plating, ion nitriding, diffusion penetration heat treatment, thermal spraying, etc.
Although a cured layer of V or more is obtained, its thickness is several μm to 20 μm.
It is only about 0 μm. By the way, when a load is applied to the surface hardened layer of the aluminum material or the aluminum alloy material, for example, when the shaft and the bearing whose surface is hardened are sliding while receiving the contact surface pressure, the maximum stress is the material. Occurs just below the surface. When the thickness of the hardened layer is small, the maximum stress occurs in the aluminum or aluminum alloy base material, and the hardened layer does not undergo plastic deformation, but causes plastic deformation due to the low hardness of the base material. Of course, if the thickness of the hardened layer is increased, the maximum stress is generated in the hardened layer, so that no plastic deformation occurs in the base material. [0004] In order to prevent the plastic deformation of the base material of the aluminum material or the aluminum alloy material and the hardened layer of the aluminum material or the aluminum alloy material, the hardness and the thickness of the hardened layer must be maintained at respective lower limits or more. The lower limit of the thickness increases as the applied load increases and as the hardness of the base material decreases, but generally requires about several mm. However, the thickness obtained by the above-described curing method is about several μm to 200 μm, and plastic deformation of the base material cannot be prevented. On the other hand, a hardening method of melting an aluminum material or an aluminum alloy material to form an alloy layer by a welding method using an arc, an electron beam, a laser beam, or the like, easily forms an alloy layer having a thickness of about several mm. The hardness of the alloy layer is Vickers hardness 300-400H
V, and cracks occur at 400 HV or more. However, at present, in order to improve the wear resistance of aluminum or aluminum alloy, Vickers hardness of 4 is required.
Hardness of 00 HV or more is required. As described above, it is difficult to obtain a hardened layer having wear resistance and plastic deformation resistance with respect to an aluminum material or an aluminum alloy material by the above-described current hardening method. SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and a method of hardening a surface of an aluminum material or an aluminum alloy material capable of forming a hardened layer having excellent wear resistance and plastic deformation resistance. It is intended to provide. According to the present invention, there is provided a method for hardening a surface of an aluminum material or an aluminum alloy material, comprising forming an alloy layer containing iron or chromium on the surface of the aluminum material or the aluminum alloy material by melting. Thereafter, ion nitriding is performed on the surface of the alloy layer. According to the method for hardening the surface of an aluminum material or an aluminum alloy material according to the present invention, an alloy layer containing iron or chromium is formed on the surface of the aluminum material or the aluminum alloy material by melting, and then the alloy is formed. An ion nitriding treatment is performed on the surface of the layer. Generally, the aluminum or aluminum alloy material readily bonds with oxygen present in a closed container placed for ion nitriding,
Since an extremely stable and dense thin alumina layer is formed, it is extremely difficult to harden by an ion nitriding method. However, since about 20 to 80% of iron or chromium is contained in the alloy layer, the iron or chromium forms a nitride and can significantly increase the surface hardness. This alloy layer bears plastic deformation resistance, and the hardened layer formed by the ion nitriding method bears wear resistance. An embodiment of the present invention will be described below in detail. Iron was plasma-sprayed on the aluminum material surface and melted by electron beam welding. As a result, aluminum with a thickness of about 4 mm
An iron alloy layer was obtained. FIG. 1 shows the hardness distribution in the depth direction of the cross section of the alloy layer. The hardness showed a Vickers hardness of 300 to 350 HV when the distance from the surface was 0 to 4 mm. Further, the iron content of the alloy layer could be changed depending on the amount of iron to be sprayed and welding conditions. The hardness of the alloy layer varied with the iron content. FIG. 2 shows the measurement results of the relationship between the aluminum and iron contents of the alloy layer and the hardness. When the iron content is in the range of about 30 to 65%, FeAl 2 ,
Intermetallic compounds such as Fe 2 Al 5 and FeAl 3 crystallized and became brittle and cracked. An aluminum material having an alloy layer formed by the above-described electron beam welding is placed in a closed container, and after evacuating, a mixed gas of hydrogen and nitrogen is introduced into the container, and the alloy is placed under reduced pressure. A DC voltage was applied between the layer and the furnace wall to generate glow discharge, and the surface of the alloy layer was ion-nitrided at 530 ° C. for 10 hours at a vacuum degree of 6 Torr. FIG. 3 shows the measurement results of the hardness of the surface of the alloy layer and the thickness of the nitrided layer after the ion nitriding treatment. The solid line shows the measurement results of the hardness, and the dotted line shows the measurement results of the thickness. In addition,
The horizontal axis is the content of aluminum and iron in the alloy layer.
As is clear from the measurement results, although the thickness of the nitrided layer is small, the hardness is 900 or more Vickers hardness depending on the iron content. Although the embodiment in which the alloy layer of aluminum and iron is formed has been described in detail, similar effects can be obtained when an alloy layer of chromium is formed in addition to the alloy of iron. Further, the present invention can be applied to an aluminum alloy material other than the aluminum material. The alloy layer formed on the surface of the aluminum material or the aluminum alloy material by melting and the nitride layer formed on the surface of the alloy layer by the ion nitriding method showed excellent adhesion. As described in detail above, according to the present invention, an alloy layer containing iron or chromium is formed on the surface of an aluminum material or an aluminum alloy material by melting, and thereafter, the surface of the alloy layer is formed on the surface of the alloy layer. On the other hand, since the ion nitriding treatment is performed, an aluminum material or an aluminum alloy material having excellent wear resistance and plastic deformation resistance can be provided.

【図面の簡単な説明】 【図1】合金層断面の深さ方向の硬さ分布を示す。 【図2】合金層のアルミニウムおよび鉄含有量と硬さの
関係を示す線図である。 【図3】合金層のアルミニウムおよび鉄含有量とイオン
窒化法による窒化層の表面硬さおよび厚さの関係を示す
図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a hardness distribution in a depth direction of a cross section of an alloy layer. FIG. 2 is a diagram showing the relationship between the aluminum and iron contents of an alloy layer and hardness. FIG. 3 is a diagram showing the relationship between the aluminum and iron contents of an alloy layer and the surface hardness and thickness of a nitrided layer formed by an ion nitriding method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須摩 浩之 東京都相模原市宮下3−10−14 日本電 子工業株式会社相模原工場内 審査官 川端 修 (56)参考文献 特開 平1−48650(JP,A) 特開 昭58−213868(JP,A) 特開 昭53−23839(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 4/08 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Hiroyuki Suma 3-10-14 Miyashita, Sagamihara-shi, Tokyo Nippon Electronic Industries Co., Ltd. Sagamihara Factory Examiner Osamu Kawabata (56) References JP-A-1-48650 (JP) JP-A-58-213868 (JP, A) JP-A-53-23839 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 4/08

Claims (1)

(57)【特許請求の範囲】 アルミニウム材またはアルミニウム合金材の表面に、溶
融によって鉄またはクロムを含有する合金層を形成し、
その後、該合金層の表面に対し、イオン窒化処理を施す
ようにしたことを特徴とするアルミニウム材またはアル
ミニウム合金材の表面硬化方法。
(57) [Claims] An alloy layer containing iron or chromium is formed on the surface of an aluminum material or an aluminum alloy material by melting,
Thereafter, a surface hardening method for an aluminum material or an aluminum alloy material, wherein an ion nitriding treatment is performed on the surface of the alloy layer.
JP3256984A 1991-09-09 1991-09-09 Surface hardening method for aluminum material or aluminum alloy material Expired - Lifetime JP3002844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3256984A JP3002844B2 (en) 1991-09-09 1991-09-09 Surface hardening method for aluminum material or aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3256984A JP3002844B2 (en) 1991-09-09 1991-09-09 Surface hardening method for aluminum material or aluminum alloy material

Publications (2)

Publication Number Publication Date
JPH0681113A JPH0681113A (en) 1994-03-22
JP3002844B2 true JP3002844B2 (en) 2000-01-24

Family

ID=17300114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3256984A Expired - Lifetime JP3002844B2 (en) 1991-09-09 1991-09-09 Surface hardening method for aluminum material or aluminum alloy material

Country Status (1)

Country Link
JP (1) JP3002844B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815019B4 (en) * 1998-04-03 2007-08-16 HQM Härterei und Qualitätsmanagement GmbH Process for producing aluminum nitride layers on aluminum-based components based on plasma nitriding
JP2011225959A (en) * 2010-04-23 2011-11-10 Tocalo Co Ltd Method for strengthening surface layer of light metal or alloy thereof
JP2011225960A (en) * 2010-04-23 2011-11-10 Tocalo Co Ltd Method for strengthening surface layer of light metal or alloy thereof
CN109183020A (en) * 2018-08-27 2019-01-11 合肥工业大学 A kind of preparation method of aluminum alloy surface complex gradient modified layer
CN111690893A (en) * 2020-06-16 2020-09-22 大连理工大学 Machining method for improving structural integrity of idling flywheel of nuclear main pump

Also Published As

Publication number Publication date
JPH0681113A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
US6410125B1 (en) Wear-resistant, mechanically highly stressed and low-friction boundary coating construction for titanium or the alloys thereof and a method for producing the same
JP3039381B2 (en) Method of forming composite hard coating with excellent high temperature oxidation resistance
US6231956B1 (en) Wear-resistance edge layer structure for titanium or its alloys which can be subjected to a high mechanical load and has a low coefficient of friction, and method of producing the same
US4873150A (en) High water-resistant member, and valve gear using the same for use in internal combustion engine
JPH0578821A (en) Piston ring and its manufacture
KR101519709B1 (en) A method and system for die compensation and restoration using high velocity oxy-fuel spray coaitng and plasma ion nitriding
US4542048A (en) Powder metal and/or refractory coated ferrous metals
GB2092621A (en) Forming oxide layer on alloy steels
JPS62120471A (en) Piston ring
JP3980053B2 (en) Manufacturing method of hard material layer
JP3002844B2 (en) Surface hardening method for aluminum material or aluminum alloy material
JP5074836B2 (en) Composite hard carbon film, method for producing the same, and sliding member
US4678717A (en) Powder metal and/or refractory coated ferrous metals
JP2614732B2 (en) Low friction structure and manufacturing method thereof
WO1990004044A1 (en) Surface treatment of metals and alloys
EP0043742B1 (en) Method of gas-chromizing steels
JP2773092B2 (en) Surface coated steel products
JPH07126827A (en) Composite film of metallic surface and its formation
JP3009503B2 (en) Surface treatment member and method of manufacturing the same
JPS59219468A (en) Aluminum sliding member and its manufacture
JP2005061389A (en) Piston ring for internal combustion engine
JP4783928B2 (en) Nitrogen-containing vanadium coating, method for producing the same, and mechanical member
JPH06122957A (en) Surface treatment ferritic stainless steel
JP3198955B2 (en) Method of forming oxidation resistant coating on metal parts
WO1996005332A2 (en) Coated material and method of its production

Legal Events

Date Code Title Description
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

EXPY Cancellation because of completion of term