JP3192207B2 - Magnetic bearing - Google Patents

Magnetic bearing

Info

Publication number
JP3192207B2
JP3192207B2 JP09779392A JP9779392A JP3192207B2 JP 3192207 B2 JP3192207 B2 JP 3192207B2 JP 09779392 A JP09779392 A JP 09779392A JP 9779392 A JP9779392 A JP 9779392A JP 3192207 B2 JP3192207 B2 JP 3192207B2
Authority
JP
Japan
Prior art keywords
magnetic field
bearing
shaft
field applying
applying means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09779392A
Other languages
Japanese (ja)
Other versions
JPH05299706A (en
Inventor
雄一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP09779392A priority Critical patent/JP3192207B2/en
Publication of JPH05299706A publication Critical patent/JPH05299706A/en
Application granted granted Critical
Publication of JP3192207B2 publication Critical patent/JP3192207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、軸に固着された永久磁
石製の磁場印加手段から超電導体製の軸受体に磁場を印
加して、前記磁場印加手段と軸受体との間に働く斥力に
よって軸を支持する磁気軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a repulsive force acting between a magnetic field applying means and a bearing by applying a magnetic field to a superconductor bearing from a magnetic field applying means made of a permanent magnet fixed to a shaft. And a magnetic bearing for supporting the shaft.

【0002】[0002]

【従来の技術】軸受の技術は、接触式のものと非接触式
のものとに大別することができる。前者の接触式のもの
としては、例えば、ころを介して軸を支持するころ軸受
等が旧知であり、後者の非接触式のものとしては、空気
圧を利用するものや、磁力を利用するものが知られてい
る。
2. Description of the Related Art The technology of bearings can be broadly classified into contact type and non-contact type. As the former contact type, for example, a roller bearing that supports a shaft through a roller is an old knowledge, and as the latter non-contact type, a type using air pressure or a type using magnetic force are used. Are known.

【0003】磁力を利用する軸受としては、電磁石を使
用するものの他に、最近では、永久磁石と超電導体とを
組合わせて使用する磁気軸受も研究されている。非接触
式の軸受は、いずれも、機械的な接触による摩耗がない
という利点がある。しかし、電磁石を使用するものは、
コイルの発熱によってガスを発生するという難点があ
り、そのために、空気圧を利用するものと同様に、真空
環境で使用するには困難がある。
[0003] As bearings utilizing magnetic force, in addition to those using electromagnets, recently, magnetic bearings using a combination of a permanent magnet and a superconductor have been studied. Each of the non-contact type bearings has an advantage that there is no wear due to mechanical contact. However, those using electromagnets
There is a drawback in that gas is generated by the heat generated by the coil, and therefore, there is a difficulty in using it in a vacuum environment as in the case of using air pressure.

【0004】これに対して、永久磁石と超電導体とを組
合わせて使用する磁気軸受は、電磁石を使用するものと
は異なり、コイルの発熱によるガスの発生といった問題
がなく、真空環境での使用にも適するため、最近では、
実用化に向けて、盛んに研究がなされるようになってき
た。
[0004] On the other hand, a magnetic bearing using a combination of a permanent magnet and a superconductor is different from the one using an electromagnet in that there is no problem such as generation of gas due to heat generation of a coil, and use in a vacuum environment. In recent years,
Research has been actively pursued for practical use.

【0005】[0005]

【発明が解決しようとする課題】ところで、これまで、
永久磁石と超電導体とを組合わせて使用する磁気軸受と
しては、超電導体に磁場を印加するために支持対象の軸
上に固着された永久磁石製の磁場印加手段と、この磁場
印加手段に対峙するように前記軸が挿通する軸受箱内に
配備された超電導体製の軸受体と、この軸受体を冷却し
て超電導状態にする冷却手段とを備え、超電導状態にあ
る前記軸受体とこの軸受体に対峙する磁場印加手段との
間に働く斥力によって前記軸を支持する構成のものが研
究されてきた。
By the way, until now,
As a magnetic bearing using a combination of a permanent magnet and a superconductor, a magnetic field applying unit made of a permanent magnet fixed on a shaft to be supported to apply a magnetic field to the superconductor, and facing the magnetic field applying unit A bearing member made of a superconductor disposed in a bearing box through which the shaft is inserted, and cooling means for cooling the bearing member to a superconducting state, wherein the bearing member and the bearing in the superconducting state are provided. A structure in which the shaft is supported by a repulsive force acting between the magnetic field applying means facing the body has been studied.

【0006】ところが、超電導体は、常電導状態から超
電導状態に移行させるための冷却処理時に磁場が印加さ
れていると、その時に印加されている磁場と同方向に磁
化されるという性質がある。
However, when a magnetic field is applied during a cooling process for shifting from a normal conducting state to a superconducting state, the superconductor has a property of being magnetized in the same direction as the magnetic field applied at that time.

【0007】そのため、前述の構成の磁気軸受におい
て、軸受体に磁場印加手段が近接した状態で軸受体の冷
却処理を実行すると、冷却処理後の軸受体は、磁場印加
手段が作用させる磁場と同方向に磁化された状態になっ
て、結局、軸受体と磁場印加手段との間に所望の斥力が
得られなくなり、非接触の軸受としての機能が果たせな
くなるという問題が生じる。
Therefore, in the magnetic bearing having the above-described configuration, when the cooling process of the bearing body is executed in a state where the magnetic field applying means is close to the bearing body, the bearing body after the cooling process has the same magnetic field as the magnetic field applied by the magnetic field applying means. As a result, a desired repulsive force cannot be obtained between the bearing body and the magnetic field applying means, and the function as a non-contact bearing cannot be achieved.

【0008】従って、超電導体を利用した磁気軸受の実
用化には、軸受体が不利に磁化されないように、軸受体
を常電導状態から超電導状態に冷却する技術の開発が不
可欠となり、この点が今後の課題とされていた。
Therefore, in order to put a magnetic bearing using a superconductor into practical use, it is essential to develop a technology for cooling the bearing body from a normal conducting state to a superconducting state so that the bearing body is not disadvantageously magnetized. It was a future issue.

【0009】本発明は、前記事情に鑑みてなされたもの
で、超電導体製の軸受体を常電導状態から超電導状態に
冷却処理する期間に該軸受体が磁場印加手段の影響で不
利に磁化されてしまうことがなく、したがって、超電導
状態にある軸受体と該軸受体に対峙する磁場印加手段と
の間には所望の斥力を得ることができて、非接触の軸受
としての実用化値の高い磁気軸受を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and during the period in which a superconductor bearing body is cooled from a normal conducting state to a superconducting state, the bearing body is disadvantageously magnetized by the influence of the magnetic field applying means. Therefore, a desired repulsive force can be obtained between the superconducting bearing body and the magnetic field applying means facing the bearing body, and the value of practical use as a non-contact bearing is high. It is an object to provide a magnetic bearing.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の磁気軸
受は、超電導体に磁場を印加するために支持対象の軸上
に固着された永久磁石製の磁場印加手段と、この磁場印
加手段に対峙するように前記軸が挿通する軸受箱内に配
備された超電導体製の軸受体と、この軸受体を冷却して
超電導状態にする冷却手段とを備えて、超電導状態にあ
る前記軸受体とこの軸受体に対峙する磁場印加手段との
間に働く斥力によって前記軸を支持するものである。
According to a first aspect of the present invention, there is provided a magnetic bearing, comprising: a magnetic field applying means made of a permanent magnet fixed on a shaft to be supported to apply a magnetic field to a superconductor; A bearing member made of a superconductor disposed in a bearing box through which the shaft is inserted so as to face the bearing, and cooling means for cooling the bearing member to a superconducting state, wherein the bearing member in a superconducting state is provided. The shaft is supported by a repulsive force acting between the magnetic field applying means facing the bearing body.

【0011】具体的には、前記軸受体を常電導状態から
超電導状態に移行させるための前記冷却手段による冷却
処理期間には前記軸を軸線方向に移動操作して、超電導
状態の時に磁場印加手段との間に所定の斥力を生ぜしめ
るために印加する磁場が前記軸受体に作用することを防
止する軸移動手段を装備したことを特徴とする。
More specifically, during the cooling process by the cooling means for shifting the bearing body from the normal conducting state to the superconducting state, the shaft is moved in the axial direction during the cooling process, and the magnetic field applying means is operated in the superconducting state. And a shaft moving means for preventing a magnetic field applied to generate a predetermined repulsive force between the bearing member and the bearing member from acting on the bearing body.

【0012】請求項2に記載の磁気軸受は、請求項1に
記載の磁気軸受を改善したもので、支持対象の軸には、
前記磁場印加手段が軸の軸線方向に沿って複数箇所に装
備される。
A magnetic bearing according to a second aspect is an improvement of the magnetic bearing according to the first aspect.
The magnetic field applying means is provided at a plurality of locations along the axial direction of the shaft.

【0013】そして、前記軸移動手段は、前記軸受体を
常電導状態から超電導状態に移行させるための前記冷却
手段による冷却処理期間に、超電導状態のときに印加す
べき磁場と逆向きの磁場が作用するように、軸受体に近
接する磁場印加手段を軸の移動によって切り換える。
[0013] The shaft moving means may include a magnetic field in a direction opposite to a magnetic field to be applied in the superconducting state during a cooling process by the cooling means for shifting the bearing body from the normal conducting state to the superconducting state. In order to operate, the magnetic field applying means close to the bearing body is switched by moving the shaft.

【0014】[0014]

【作用】請求項1に記載の磁気軸受では、常電導状態か
ら超電導状態に移行させるための冷却処理期間には、磁
場印加手段が対応する軸受体から離間された状態に保持
されて、超電導状態の時に磁場印加手段との間に所定の
斥力を生ぜしめるために印加する磁場が冷却処理時に作
用することが防止される。
In the magnetic bearing according to the first aspect, during the cooling processing period for shifting from the normal conducting state to the superconducting state, the magnetic field applying means is maintained in a state separated from the corresponding bearing body, and the superconducting state is maintained. In this case, the magnetic field applied to generate a predetermined repulsion between the magnetic field applying means and the magnetic field applying means is prevented from acting during the cooling process.

【0015】従って、互いに対峙する軸受体と磁場印加
手段との間に得るべき磁気反力が、軸受体を常電導状態
から超電導状態に移行させるための冷却処理によって弱
められてしまうことがなく、軸受体とこれに対峙した磁
場印加手段との間に働く斥力によって軸を非接触状態で
支持することが可能になり、真空環境での使用に適した
磁気軸受の実用化が可能になる。
Accordingly, the magnetic reaction force to be obtained between the bearing body and the magnetic field applying means facing each other is not weakened by the cooling process for shifting the bearing body from the normal conducting state to the superconducting state. The shaft can be supported in a non-contact state by a repulsive force acting between the bearing body and the magnetic field applying means facing the bearing body, so that a magnetic bearing suitable for use in a vacuum environment can be put to practical use.

【0016】請求項2に記載の磁気軸受では、常電導状
態から超電導状態に移行させるための冷却処理期間に
は、磁場印加手段が対応する軸受体の基準の位置からず
れることによって、超電導状態の時に磁場印加手段との
間に所定の斥力を生ぜしめるために印加される磁場とは
逆向きの磁場が冷却処理時に作用し、冷却処理時の印加
磁場による磁化作用によって、冷却処理後の軸受体と磁
場印加手段とは、互いに同じ極性の磁極同士が対峙する
結果となり、これによって、互いに対峙する軸受体と磁
場印加手段との間に得るべき磁気反力が、強められる。
In the magnetic bearing according to the second aspect, during the cooling process period for shifting from the normal conducting state to the superconducting state, the magnetic field applying means is shifted from the reference position of the corresponding bearing body, so that the superconducting state is changed. At the time, a magnetic field opposite to the magnetic field applied to generate a predetermined repulsive force between the magnetic field applying means and the magnetic field applying means acts at the time of cooling processing, and the magnetizing action by the applied magnetic field at the time of cooling processing causes the bearing body after the cooling processing As a result, the magnetic poles having the same polarity face each other, and the magnetic reaction force to be obtained between the bearing body and the magnetic field applying means facing each other is strengthened.

【0017】従って、軸受体とこれに対峙した磁場印加
手段との間に働く斥力によって軸を非接触状態で支持す
ることが可能になり、真空環境での使用に適した磁気軸
受の実用化が可能になる。
Therefore, the shaft can be supported in a non-contact state by the repulsive force acting between the bearing body and the magnetic field applying means facing the bearing body, so that a magnetic bearing suitable for use in a vacuum environment can be practically used. Will be possible.

【0018】[0018]

【実施例】図1は、本発明に係る磁気軸受の一実施例の
構成を示したものである。この一実施例の磁気軸受は、
超電導体に磁場を印加するために支持対象の軸1上に固
着された2つの永久磁石製の磁場印加手段2,3と、こ
の磁場印加手段2,3に対峙するように前記軸1が挿通
する軸受箱4内に配備された超電導体製の軸受体5,6
と、これらの軸受体5,6を冷却して超電導状態にする
冷却手段(図示略)と、この冷却手段によって前記軸受
体5,6を常電導状態から超電導状態に移行させる冷却
処理期間に前記軸1を軸線方向に移動操作する軸移動手
段8とを具備した構成で、超電導状態にある前記軸受体
5,6とこれらの軸受体に対峙する磁場印加手段2,3
との間に働く斥力によって前記軸1を支持する。
FIG. 1 shows the configuration of an embodiment of a magnetic bearing according to the present invention. The magnetic bearing of this embodiment is
Two permanent magnet-made magnetic field applying means 2 and 3 fixed on a shaft 1 to be supported to apply a magnetic field to the superconductor, and the shaft 1 is inserted so as to face the magnetic field applying means 2 and 3. Bearing bodies 5 and 6 disposed in bearing housing 4
A cooling means (not shown) for cooling these bearing bodies 5 and 6 to a superconducting state, and the cooling means for cooling the bearing bodies 5 and 6 from a normal conducting state to a superconducting state by the cooling means. A shaft moving means 8 for moving the shaft 1 in the axial direction, the bearings 5 and 6 being in a superconducting state, and magnetic field applying means 2 and 3 facing these bearings.
The shaft 1 is supported by a repulsive force acting between the shaft 1 and the shaft 1.

【0019】前記軸1は非磁性体で形成された中実の丸
軸で、一実施例の磁気軸受は前記軸1に対するスラスト
軸受として機能するものである。以下、一実施例の各構
成要素について詳述する。
The shaft 1 is a solid round shaft formed of a non-magnetic material, and the magnetic bearing of one embodiment functions as a thrust bearing for the shaft 1. Hereinafter, each component of the embodiment will be described in detail.

【0020】前記磁場印加手段2,3は、それぞれ軸1
の軸線方向に離間して装備されている。磁場印加手段2
は、2つのリング状の永久磁石21,22を組合わせた
構成である。そして、内側の磁石21では、図1で上側
がN極,下側がS極に設定されている。また、外側の磁
石22では、図1で上側がS極,下側がN極に設定され
ている。
The magnetic field applying means 2 and 3 each have a shaft 1
Are spaced apart in the axial direction. Magnetic field applying means 2
Is a configuration in which two ring-shaped permanent magnets 21 and 22 are combined. In the inner magnet 21, the upper side is set to the N pole and the lower side is set to the S pole in FIG. In the outer magnet 22, the upper side is set to the S pole and the lower side is set to the N pole in FIG.

【0021】磁場印加手段3は、3つのリング状の永久
磁石31,32,33を組合わせた構成である。そし
て、一番内側の磁石31の外径は磁場印加手段2におけ
る磁石21と等しくされ、中間の磁石32の外径は磁場
印加手段2における磁石22と等しくされている。しか
し、磁石31の極性は、磁石21とは逆で、図1で上側
がS極,下側がN極に設定されている。また、磁石32
の極性は、磁石22とは逆で、図1で上側がN極,下側
がS極に設定されている。また、磁石33の極性は、図
1で上側がS極,下側がN極に設定されている。
The magnetic field applying means 3 has a configuration in which three ring-shaped permanent magnets 31, 32, and 33 are combined. The outer diameter of the innermost magnet 31 is made equal to the magnet 21 in the magnetic field applying means 2, and the outer diameter of the middle magnet 32 is made equal to the magnet 22 in the magnetic field applying means 2. However, the polarity of the magnet 31 is opposite to that of the magnet 21, and the upper side in FIG. 1 is set to the S pole and the lower side to the N pole. Also, the magnet 32
Is opposite to that of the magnet 22, and the upper side is set to the N pole and the lower side is set to the S pole in FIG. In addition, the polarity of the magnet 33 is set to the S pole on the upper side and the N pole on the lower side in FIG.

【0022】これらの磁場印加手段2,3に使用する永
久磁石は、Nd−Fe−B系のもので、これらの磁場印
加手段2,3によって印加する磁場は、各磁場印加手段
2,3の表面部で3.7kG(ガウス)である。
The permanent magnets used for these magnetic field applying means 2 and 3 are of the Nd--Fe--B type, and the magnetic field applied by these magnetic field applying means 2 and 3 is It is 3.7 kG (Gauss) at the surface.

【0023】前記軸受箱4は、前記軸受体5,6を固定
支持する支持枠であり、内径D0 =100mm,軸線方
向の長さL0 =150mmの非磁性体製の円筒体であ
る。
The bearing box 4 is a support frame for fixing and supporting the bearing bodies 5 and 6, and is a cylindrical body made of a non-magnetic material having an inner diameter D 0 = 100 mm and a length L 0 = 150 mm in the axial direction.

【0024】前記軸受体5,6は、Y1.8 Ba2.4 Cu
3.4 x 組成の粉を、まず、5inchの金型を使って
面圧100トンで成型して直径が5インチで厚さが20
mmの円盤状の素材に形成し、この素材を所定の熱処理
後に、所定の切削加工を行うことによって、所望の寸法
形状にした。
The bearing members 5 and 6 are made of Y 1.8 Ba 2.4 Cu
3.4 flour O x composition, first, the diameter and molded at a surface pressure of 100 tons with a mold 5inch is thick at 5 inches 20
mm was formed into a disk-shaped material, and the material was subjected to a predetermined heat treatment after a predetermined heat treatment to obtain a desired size and shape.

【0025】前記素材に行った熱処理は、まず、110
0℃で30分保持した後、1000℃から930℃まで
1℃/hourの温度勾配で冷却し、さらに、700℃から
300℃までは200時間かけて徐冷するものである。
The heat treatment performed on the material was first performed at 110
After holding at 0 ° C. for 30 minutes, the temperature is cooled from 1000 ° C. to 930 ° C. at a temperature gradient of 1 ° C./hour, and then gradually cooled from 700 ° C. to 300 ° C. over 200 hours.

【0026】以上の熱処理後の素材に対して、切削加工
を行い、軸受体5は、外径が100mm、板厚T1 =2
0mmの円盤状で、中央部には、軸1を挿通するための
孔51と、磁場印加手段2を近接させるための座ぐり部
52とを備えた構造とした。孔51は直径D1 =20m
mで、座ぐり部52は、直径D2 =50mm、深さL1
=10mmである。
The material after the above heat treatment is subjected to cutting, and the bearing 5 has an outer diameter of 100 mm and a thickness T 1 = 2.
It has a disk shape of 0 mm, and has a structure provided with a hole 51 for inserting the shaft 1 and a counterbore 52 for bringing the magnetic field applying means 2 close to each other in the center. The hole 51 has a diameter D 1 = 20 m
m, the counterbore 52 has a diameter D 2 = 50 mm and a depth L 1
= 10 mm.

【0027】軸受体6は、外径が100mm、板厚T2
=20mmの円盤状で、中央部には、磁場印加手段3を
近接させるための座ぐり部61を備えた構造とした。座
ぐり部61は、直径D3 =70mmで、深さL2 =10
mmである。
The bearing 6 has an outer diameter of 100 mm and a thickness T 2.
= 20 mm disk-shaped and provided with a counterbore 61 in the center for bringing the magnetic field applying means 3 close to it. The spot facing portion 61 has a diameter D 3 = 70 mm and a depth L 2 = 10.
mm.

【0028】これらの軸受体5,6の材料特性は、2m
m角の試料として切り出して評価した結果、最大磁化が
1500G(ガウス)であった。
The material properties of these bearing bodies 5 and 6 are 2 m
As a result of cutting out and evaluating a sample of m-square, the maximum magnetization was 1500 G (Gauss).

【0029】前記冷却手段は、図示はしていないが、液
体窒素を使ったガス冷却によって、前記軸受体5,6を
超電導状態まで冷却するものである。
Although not shown, the cooling means cools the bearing members 5 and 6 to a superconductive state by gas cooling using liquid nitrogen.

【0030】前記軸移動手段8は、詳細な構造は示して
いないが、前記軸1を把持する軸把持部81と、該軸把
持部81を軸1の軸線方向に進退操作する直線移動制御
装置82とから構成されている。これらの軸把持部81
および直線移動制御装置82は、いずれも、公知の機構
を流用したものでよい。
Although the detailed structure of the shaft moving means 8 is not shown, a shaft holding portion 81 for holding the shaft 1 and a linear movement control device for operating the shaft holding portion 81 in the axial direction of the shaft 1. 82. These shaft grips 81
The linear movement control device 82 may use a known mechanism.

【0031】一実施例の軸移動手段8は、前記軸受体
5,6を常電導状態から超電導状態に移行させるための
冷却手段による冷却処理期間には、図2に示すように、
軸1を図1上で上方側に引き上げて、それぞれの磁場印
加手段2,3を対応する軸受体5,6から離間させる。
また、この一実施例の場合には、軸受体6に対する磁場
印加手段3を軸受体5に近接させた状態にする。
As shown in FIG. 2, the shaft moving means 8 according to one embodiment, during the cooling process by the cooling means for shifting the bearing bodies 5 and 6 from the normal conducting state to the superconducting state,
The shaft 1 is pulled upward in FIG. 1 to separate the respective magnetic field applying means 2 and 3 from the corresponding bearing bodies 5 and 6.
Further, in the case of this embodiment, the magnetic field applying means 3 for the bearing body 6 is brought into a state close to the bearing body 5.

【0032】そして、軸受体5,6を常電導状態から超
電導状態に移行させるための冷却手段による冷却処理期
間が終了したら、軸移動手段8は、再び、軸1を引き下
げて、軸受体5には磁場印加手段2が接近して対峙し、
軸受体6には磁場印加手段3が接近して対峙する、通常
の使用時の状態に戻す。
When the cooling period for cooling the bearing members 5 and 6 from the normal conducting state to the superconducting state by the cooling means is completed, the shaft moving means 8 lowers the shaft 1 again, and Means that the magnetic field applying means 2 approaches and confronts,
The magnetic field applying means 3 approaches the bearing body 6 and returns to a state of normal use in which the magnetic field applying means 3 faces the bearing body 6.

【0033】ところで、前述したように、超電導体は、
常電導状態から超電導状態に移行させるための冷却処理
時に磁場が印加されていると、その時に印加されている
磁場と同方向に磁化されるという性質があるが、一実施
例の磁気軸受では、常電導状態から超電導状態に移行さ
せるための冷却処理期間は、前記軸移動手段8による移
動操作によって、各磁場印加手段2,3をそれぞれの対
応する軸受体5,6から離間させた状態にする。そし
て、軸受体5においては、超電導状態のときに対峙する
磁場印加手段とは極性が逆向きの磁場印加手段3が近接
した状態で冷却が遂行され、また、軸受体6において
は、いずれの磁場印加手段も近接しない状態で冷却が遂
行される。
Incidentally, as described above, the superconductor is:
When a magnetic field is applied during the cooling process for shifting from the normal conducting state to the superconducting state, there is a property of being magnetized in the same direction as the magnetic field applied at that time, but in the magnetic bearing of one embodiment, During the cooling process period for shifting from the normal conducting state to the superconducting state, the magnetic field applying means 2 and 3 are separated from the corresponding bearing bodies 5 and 6 by the moving operation by the shaft moving means 8. . In the bearing 5, cooling is performed in a state in which the magnetic field applying means 3 having a polarity opposite to that of the magnetic field applying means facing in the superconducting state is close to the magnetic field applying means. Cooling is performed in a state where the application means is not in close proximity.

【0034】即ち、何れの軸受体5,6においても、超
電導状態の時に磁場印加手段2,3との間に所定の斥力
を生ぜしめるために印加する磁場が冷却処理時に作用す
ることが防止され、前記軸受体5は、磁場印加手段3に
よる磁場が印加された状態で冷却されることによって、
超電導状態では図2に示したように、磁場印加手段3に
よる磁場と同方向に磁化された状態になる。また、軸受
体6は、磁場が印加されていない状態で冷却されること
によって、磁化されずに超電導状態になる。
That is, in any of the bearing bodies 5 and 6, the magnetic field applied to generate a predetermined repulsive force between the bearing bodies 5 and 6 in the superconducting state is prevented from acting during the cooling process. The bearing body 5 is cooled in a state where a magnetic field is applied by the magnetic field applying means 3,
In the superconducting state, as shown in FIG. 2, it is magnetized in the same direction as the magnetic field by the magnetic field applying means 3. In addition, the bearing body 6 is cooled in a state where no magnetic field is applied, so that the bearing body 6 is not magnetized and enters a superconducting state.

【0035】そして、軸受体5,6を常電導状態から超
電導状態に移行させる冷却処理が終了して、軸移動手段
8によって軸1を元の状態に戻すと、前記軸受体5と磁
場印加手段2とは、冷却処理時における軸受体5の磁化
によって、同じ極性の磁極同士が接近することになり、
軸受体5と磁場印加手段2と間には、大きな斥力が発生
することになる。また、軸受体6は、磁場印加手段3に
よって印加される磁場によって新たに印加磁場と逆方向
に磁化され、その結果、軸受体6と磁場印加手段3との
間に所定の斥力が生じることになる。
After the cooling process for shifting the bearing members 5 and 6 from the normal conducting state to the superconducting state is completed and the shaft 1 is returned to the original state by the shaft moving means 8, the bearing body 5 and the magnetic field applying means are returned. 2 means that the magnetic poles of the same polarity approach each other due to the magnetization of the bearing body 5 during the cooling process,
A large repulsive force is generated between the bearing body 5 and the magnetic field applying means 2. Further, the bearing body 6 is newly magnetized in the opposite direction to the applied magnetic field by the magnetic field applied by the magnetic field applying means 3, and as a result, a predetermined repulsive force is generated between the bearing body 6 and the magnetic field applying means 3. Become.

【0036】以上の結果、一実施例の磁気軸受では、互
いに対峙する軸受体と磁場印加手段との間に得るべき磁
気反力が、各軸受体を常電導状態から超電導状態に移行
させるための冷却処理によって弱められてしまうことが
なく、各軸受体5,6とこれらの軸受体に対峙した磁場
印加手段2,3との間に働く斥力によって軸1を非接触
状態で支持することが可能になる。
As a result, in the magnetic bearing of one embodiment, the magnetic reaction force to be obtained between the bearing body and the magnetic field applying means facing each other causes the bearing body to shift from the normal conducting state to the superconducting state. The shaft 1 can be supported in a non-contact state by a repulsive force acting between the bearings 5 and 6 and the magnetic field applying means 2 and 3 facing these bearings without being weakened by the cooling process. become.

【0037】実際の測定結果では、冷却処理時に軸移動
手段8によって各磁場印加手段2,3を対応する軸受体
5,6から離間させた一実施例では、軸受体5,6から
得られる反発力として25kgが測定されたのに対し
て、磁場印加手段2,3をそれぞれの軸受体5,6に接
近させたままで冷却処理した場合には、軸受体5,6か
ら得られる反発力の最大値は12kg程度で、一実施例
の効果が絶大であることが確認された。
According to the actual measurement results, in the embodiment in which the magnetic field applying means 2 and 3 are separated from the corresponding bearing bodies 5 and 6 by the shaft moving means 8 during the cooling process, the repulsion obtained from the bearing bodies 5 and 6 is provided. Although 25 kg was measured as the force, when cooling treatment was performed with the magnetic field applying means 2 and 3 approaching the bearings 5 and 6, the maximum repulsive force obtained from the bearings 5 and 6 was obtained. The value was about 12 kg, and it was confirmed that the effect of one example was enormous.

【0038】図3は、本発明に係る磁気軸受の他の実施
例の構成を示したものである。この他の実施例の磁気軸
受は、超電導体に磁場を印加するために支持対象の軸1
00上に固着された6つの永久磁石製の磁場印加手段1
01〜106と、これらの磁場印加手段101〜106
に対峙するように前記軸100が挿通する軸受箱(図示
略)内に配備された超電導体製の軸受体110と、この
軸受体100を冷却して超電導状態にする冷却手段(図
示略)と、この冷却手段によって前記軸受体110を常
電導状態から超電導状態に移行させる冷却処理期間に前
記軸100を軸線方向に移動操作する軸移動手段8とを
具備した構成で、超電導状態にある前記軸受体110と
この軸受体110に対峙する各磁場印加手段101〜1
06との間に働く斥力によって前記軸100を支持す
る。
FIG. 3 shows the configuration of another embodiment of the magnetic bearing according to the present invention. The magnetic bearing according to the other embodiment has a shaft 1 to be supported for applying a magnetic field to the superconductor.
Magnetic field applying means 1 made of six permanent magnets fixed on 00
01 to 106 and these magnetic field applying means 101 to 106
A bearing body 110 made of a superconductor provided in a bearing box (not shown) through which the shaft 100 is inserted so as to face the shaft 100, and a cooling means (not shown) for cooling the bearing body 100 to a superconductive state. A shaft moving means 8 for moving the shaft 100 in the axial direction during a cooling process in which the bearing body 110 is shifted from a normal conducting state to a superconducting state by the cooling means. Body 110 and each magnetic field applying means 101 to 1 facing this bearing body 110
The shaft 100 is supported by a repulsive force acting between the shaft 100.

【0039】前記軸100は非磁性体で形成された直径
10mmの中実の丸軸で、この他の実施例の磁気軸受は
前記軸100に対するラジアル軸受として機能するもの
である。以下、一実施例の各構成要素について詳述す
る。
The shaft 100 is a solid round shaft formed of a non-magnetic material and having a diameter of 10 mm, and the magnetic bearing of the other embodiment functions as a radial bearing for the shaft 100. Hereinafter, each component of the embodiment will be described in detail.

【0040】前記磁場印加手段101〜106は、Nd
−Fe−B系の永久磁石で、何れも同じ寸法のリング状
を呈しており、それぞれ軸100の軸線方向に隣接して
装備されている。なお、各磁場印加手段の寸法は、内径
5 =10mm、外径D6 =20mm、厚さT3 =8m
mである。また、それぞれの磁場印加手段相互間では、
同じ磁極が隣接するように、各磁場印加手段毎に磁極方
向を設定している。例えば、一番上の磁場印加手段10
1では、上側の磁極がSで下側の磁極がNであるのに対
し、二番目の磁場印加手段102では、上側の磁極がN
で下側の磁極がSである。
The magnetic field applying means 101 to 106 are composed of Nd
-Fe-B-based permanent magnets, each having a ring shape having the same dimensions, and each being provided adjacent to the shaft 100 in the axial direction. The dimensions of each magnetic field applying means are as follows: inner diameter D 5 = 10 mm, outer diameter D 6 = 20 mm, and thickness T 3 = 8 m.
m. In addition, between the respective magnetic field applying means,
The magnetic pole direction is set for each magnetic field applying means so that the same magnetic pole is adjacent. For example, the top magnetic field applying means 10
1, the upper magnetic pole is S and the lower magnetic pole is N, whereas in the second magnetic field applying means 102, the upper magnetic pole is N
And the lower magnetic pole is S.

【0041】前記軸受体110は、外径D7 =50m
m、内径D8 =25mm、長さL3 =50mmの円筒体
で、Y1.8 Ba2.4 Cu3.4 x 組成の粉を金型を使っ
て所定寸法の円筒体に成型して、その後、一実施例と同
じ手順の熱処理を施したものである。この軸受体110
の材料特性は、2mm角の試料として切り出して評価し
た結果、最大磁化が1500G(ガウス)で、一実施例
と同様であった。
The bearing body 110 has an outer diameter D 7 = 50 m.
m, an inner diameter D 8 = 25 mm, a length L 3 = 50 mm, and a powder having a composition of Y 1.8 Ba 2.4 Cu 3.4 O x is molded into a cylinder having a predetermined size by using a mold. The heat treatment was performed in the same procedure as in the example. This bearing body 110
As a result of cutting out a 2 mm square sample and evaluating the material characteristics, the maximum magnetization was 1500 G (Gauss), which was the same as that of the example.

【0042】なお、軸受体110と各磁場印加手段10
1〜106との軸線方向の相対位置関係は、図3に示す
ように、軸受体110の端面から寸法L4 =1mmだけ
中に入った位置に一番目の磁場印加手段101の端面が
くる状態を基準の位置関係としている。
The bearing body 110 and each magnetic field applying means 10
As shown in FIG. 3, the relative positional relationship between the first magnetic field applying means 101 and the first magnetic field applying means 101 is located at a position within the dimension L 4 = 1 mm from the end face of the bearing body 110 as shown in FIG. Is the reference positional relationship.

【0043】前記冷却手段は、一実施例の場合と同様
で、液体窒素を使ったガス冷却によって、前記軸受体1
10を超電導状態まで冷却する。
The cooling means is the same as in the case of the first embodiment.
10 is cooled to a superconducting state.

【0044】前記軸移動手段8は、一実施例と同じ構成
のものである。ただし、この他の実施例では、軸移動手
段8は、前記軸受体110を常電導状態から超電導状態
に移行させるための冷却手段による冷却処理期間には、
図4に示すように、軸100を図3上で磁場印加手段の
1個分(即ち、寸法T3 の分)だけ上方側に引き上げ
て、軸受体110の内周面に対峙している各磁場印加手
段を基準の位置関係の時よりも1個分ずらした状態にす
る。
The shaft moving means 8 has the same structure as in the embodiment. However, in this other embodiment, during the cooling process by the cooling means for shifting the bearing body 110 from the normal conducting state to the superconducting state,
As shown in FIG. 4, the shaft 100 is lifted up by one magnetic field applying means (that is, the dimension T3) in FIG. 3 and each magnetic field facing the inner peripheral surface of the bearing body 110 is raised. The application means is shifted by one from the reference positional relationship.

【0045】そして、軸受体110を常電導状態から超
電導状態に移行させるための冷却手段による冷却処理期
間が終了したら、軸移動手段8は、再び、軸100を引
き下げて、元の基準の位置関係に戻す。
When the cooling process by the cooling means for shifting the bearing body 110 from the normal conduction state to the superconducting state is completed, the shaft moving means 8 lowers the shaft 100 again to return to the original reference positional relationship. Return to

【0046】このようにすると、軸受体110は、基準
の位置関係の時(即ち、超電導状態で使用するとき)に
対峙する磁場印加手段とは極性が逆向きの磁場印加手段
が近接した状態で冷却が遂行されることになり、冷却処
理時における磁化作用によって、前記軸受体110は、
冷却処理が終了して超電導状態になった時には、図4に
示したように、基準の位置関係の時に対峙する各磁場印
加手段に対して同じ極性の磁極同士が接近することにな
り、軸受体110と各磁場印加手段101〜105と間
には、冷却処理時の磁化によってより大きな斥力が発生
することになる。なお、基準の位置関係において6番目
の磁場印加手段106が対峙する軸受体110の位置
は、冷却処理時に磁化されていないため、磁場印加手段
106によって印加される磁場によって新たに印加磁場
と逆方向に磁化され、その結果、所定の斥力を生じさせ
ることになる。
In this manner, the bearing body 110 is placed in a state in which the magnetic field applying means whose polarity is opposite to that of the magnetic field applying means facing the reference positional relationship (ie, when used in a superconducting state) is close to the bearing body 110. Cooling will be performed, and the bearing body 110 will be
When the cooling process is completed and the superconducting state is established, as shown in FIG. 4, the magnetic poles of the same polarity approach each other to the magnetic field applying means facing each other at the time of the reference positional relationship. A larger repulsive force is generated between 110 and each of the magnetic field applying units 101 to 105 due to the magnetization during the cooling process. Note that the position of the bearing body 110 facing the sixth magnetic field applying means 106 in the reference positional relationship is not magnetized during the cooling process, and thus the magnetic field applied by the magnetic field applying means 106 causes a new direction opposite to the applied magnetic field. As a result, a predetermined repulsive force is generated.

【0047】以上の結果、図3に示した他の実施例の磁
気軸受でも、互いに対峙する軸受体と磁場印加手段との
間に得るべき磁気反力が、軸受体110を常電導状態か
ら超電導状態に移行させるための冷却処理によって弱め
られてしまうことがなく、軸受体110とこれに対峙し
た磁場印加手段101〜106との間に働く斥力によっ
て軸100を非接触状態で支持することが可能になる。
As a result, even in the magnetic bearing of the other embodiment shown in FIG. 3, the magnetic reaction force to be obtained between the bearing body and the magnetic field applying means facing each other changes the bearing body 110 from the normal conducting state to the superconducting state. The shaft 100 can be supported in a non-contact state by a repulsive force acting between the bearing body 110 and the magnetic field applying means 101 to 106 facing the bearing body 110 without being weakened by the cooling process for shifting to the state. become.

【0048】なお、本発明に係る磁気軸受において、軸
受体に使用する超電導体は、磁場印加手段との間により
大きな斥力を発生することが求められるため、磁場の印
加によって磁化されやすく、またピンニングポテンシャ
ル(磁束線のピン止め効果)の高いものが好ましく、適
正な材料としては、Y系酸化物超電導体やTl 系酸化物
超電導体などを挙げることができ、また、本願発明者の
研究によれば、Y系およびTl 系のいずれの酸化物超電
導体においても、結晶粒が大きいほうが特性が良く、部
分溶融法や溶融法を利用して結晶成長を行うことが好ま
しいという結果が判明している。このような研究成果か
ら、前述の実施例では、軸受体に使用する超電導体とし
て、Y1.8 Ba2.4 Cu3.4 x 組成の材料を選定した
が、本発明で軸受体に使用する超電導体は、実施例で使
用した酸化物超電導体、あるいは前述のY系およびTl
系の酸化物超電導体に限定するものではない。
In the magnetic bearing according to the present invention, the superconductor used for the bearing body is required to generate a larger repulsive force between the superconductor and the magnetic field applying means. A material having a high potential (pinning effect of magnetic flux lines) is preferable, and suitable materials include Y-based oxide superconductors and Tl-based oxide superconductors. For example, it has been found that the larger the crystal grain, the better the characteristics of the oxide superconductors of both Y-based and Tl-based oxides, and that the crystal growth is preferably performed by using a partial melting method or a melting method. . From such findings, in the illustrated embodiment, as a superconductor for use in the bearing body, has been selected Y 1.8 Ba 2.4 Cu 3.4 O x composition of the material, the superconductor used for the bearing member in the present invention, The oxide superconductor used in the examples, or the aforementioned Y-based and Tl
The invention is not limited to the oxide superconductor of the system.

【0049】また、以上に説明した実施例では、いずれ
も磁場印加手段を複数段に装備した構成としたが、磁場
印加手段を1段だけにすることも考えられる。
In each of the embodiments described above, the magnetic field applying means is provided in a plurality of stages. However, it is also conceivable to provide only one magnetic field applying means.

【0050】[0050]

【発明の効果】請求項1に記載の磁気軸受では、常電導
状態から超電導状態に移行させるための冷却処理期間に
は、磁場印加手段が対応する軸受体から離間された状態
に保持されて、超電導状態の時に磁場印加手段との間に
所定の斥力を生ぜしめるために印加する磁場が冷却処理
時に作用することが防止される。
In the magnetic bearing according to the first aspect, during the cooling process period for shifting from the normal conducting state to the superconducting state, the magnetic field applying means is maintained in a state separated from the corresponding bearing body, In the superconducting state, a magnetic field applied to generate a predetermined repulsion between the magnetic field applying means and the magnetic field applying means is prevented from acting during the cooling process.

【0051】従って、互いに対峙する軸受体と磁場印加
手段との間に得るべき磁気反力が、軸受体を常電導状態
から超電導状態に移行させるための冷却処理によって弱
められてしまうことがなく、軸受体とこれに対峙した磁
場印加手段との間に働く斥力によって軸を非接触状態で
支持することが可能になり、真空環境での使用に適した
磁気軸受の実用化が可能になる。
Accordingly, the magnetic reaction force to be obtained between the bearing body and the magnetic field applying means facing each other is not weakened by the cooling process for shifting the bearing body from the normal conducting state to the superconducting state. The shaft can be supported in a non-contact state by a repulsive force acting between the bearing body and the magnetic field applying means facing the bearing body, so that a magnetic bearing suitable for use in a vacuum environment can be put to practical use.

【0052】請求項2に記載の磁気軸受では、常電導状
態から超電導状態に移行させるための冷却処理期間に
は、磁場印加手段が対応する軸受体の基準の位置からず
れることによって、超電導状態の時に磁場印加手段との
間に所定の斥力を生ぜしめるために印加される磁場とは
逆向きの磁場が冷却処理時に作用し、冷却処理時の印加
磁場による磁化作用によって、冷却処理後の軸受体と磁
場印加手段とは、互いに同じ極性の磁極同士が対峙する
結果となり、これによって、互いに対峙する軸受体と磁
場印加手段との間に得るべき磁気反力が、強められる。
In the magnetic bearing according to the second aspect, during the cooling processing period for shifting from the normal conducting state to the superconducting state, the magnetic field applying means deviates from the corresponding reference position of the corresponding bearing body, so that the superconducting state is changed. At the time, a magnetic field opposite to the magnetic field applied to generate a predetermined repulsive force between the magnetic field applying means and the magnetic field applying means acts at the time of cooling processing, and the magnetizing action by the applied magnetic field at the time of cooling processing causes the bearing body after the cooling processing As a result, the magnetic poles having the same polarity face each other, and the magnetic reaction force to be obtained between the bearing body and the magnetic field applying means facing each other is strengthened.

【0053】従って、軸受体とこれに対峙した磁場印加
手段との間に働く斥力によって軸を非接触状態で支持す
ることが可能になり、真空環境での使用に適した磁気軸
受の実用化が可能になる。
Therefore, the shaft can be supported in a non-contact state by the repulsive force acting between the bearing body and the magnetic field applying means facing the bearing body, and a magnetic bearing suitable for use in a vacuum environment can be put to practical use. Will be possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成説明図である。FIG. 1 is an explanatory diagram of a configuration of an embodiment of the present invention.

【図2】本発明の一実施例の作用説明図である。FIG. 2 is an operation explanatory view of one embodiment of the present invention.

【図3】本発明の他の実施例の構成説明図である。FIG. 3 is a configuration explanatory view of another embodiment of the present invention.

【図4】本発明の他の実施例の作用説明図である。FIG. 4 is an operation explanatory view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,100 軸 2,3,101〜106 磁場印加手段 4 軸受箱 5,6 軸受体 8 軸移動手段 1,100 shafts 2,3,101 to 106 Magnetic field applying means 4 Bearing box 5,6 Bearing body 8 Axis moving means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 39/00 F16C 32/04 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H01L 39/00 F16C 32/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超電導体に磁場を印加するために支持対
象の軸上に固着されたリング永久磁石製の磁場印加手段
と、この磁場印加手段に対峙するように前記軸が挿通す
る軸受箱内に配備された超電導体製の軸受体と、この軸
受体を冷却して超電導状態にする冷却手段と、前記軸を
上下に移動させる移動手段と、を備えて、超電導状態に
ある前記軸受体とこの軸受体に対峙する磁場印加手段と
の間に働く斥力によって前記軸を支持する磁気軸受であ
って、前記磁場印加手段である永久磁石は、径の異なる複数の
リング状磁石を同心円状に填め込んで、隣接するリング
状磁石の極性が互いに逆極性となるように配置したもの
であり、 前記軸受体を常電導状態から超電導状態に移行させるた
めの前記冷却手段による冷却処理期間には前記軸を軸線
方向に移動操作できる、ことを特徴とする磁気軸受。
1. A magnetic field applying means made of a ring permanent magnet fixed on a shaft to be supported for applying a magnetic field to a superconductor, and a bearing box into which said shaft is inserted so as to face said magnetic field applying means. A bearing member made of a superconductor disposed in a cooling means for cooling the bearing body to a superconducting state ; and
Includes moving means for moving up and down, and a magnetic bearing for supporting the shaft by repulsion acting between the bearing body which is in the superconducting state and the magnetic field applying means which faces the bearing member, the magnetic field applied The permanent magnet, which is a means, has multiple
The ring-shaped magnet is inserted concentrically and the adjacent ring
Magnets arranged so that the polarities of the magnets are opposite to each other
In it, the cooling process period by said cooling means for shifting said bearing body from the normal conducting state to the superconducting state can be moved manipulating the shaft in the axial direction, the magnetic bearing, characterized in that.
【請求項2】 超電導体に磁場を印加するために支持対
象の軸上に固着されたリング状永久磁石製の磁場印加手
段と、この磁場印加手段に対峙するように前記軸が挿通
する軸受箱内に配備された超電導体製の軸受体と、この
軸受体を冷却して超電導状態にする冷却手段と、前記軸
を上下に移動させる移動手段と、を備えて、超電導状態
にある前記軸受体とこの軸受体に対峙する磁場印加手段
との間に働く斥力によって前記軸を支持する磁気軸受で
あって、支持対象の軸に、複数のリング状永久磁石が前記軸を中
心としての軸線方向に沿って隣接して装備され、隣接す
るリング磁石の相対する極性が互いに逆極性となるよう
に配置したものであり、 前記軸受体を常電導状態から超電導状態に移行させるた
めの前記冷却手段による冷却処理期間には、前記軸の移
動手段により軸を引き上げ、冷却終了後は引き下げる、
ことを特徴とする磁気軸受。
2. A magnetic field applying means made of a ring-shaped permanent magnet fixed on a shaft to be supported to apply a magnetic field to a superconductor, and a bearing box through which the shaft is inserted so as to face the magnetic field applying means. A bearing member made of a superconductor disposed therein, cooling means for cooling the bearing member to a superconducting state, and the shaft
The provided with a moving means for moving up and down, a magnetic bearing for supporting the shaft by repulsion acting between the bearing body which is in the superconducting state and the magnetic field applying means which faces the bearing member, the support subject A plurality of ring-shaped permanent magnets
Equipped adjacently along the axial direction as the
So that the opposite polarities of the ring magnets are opposite to each other.
The bearing body is shifted from a normal conducting state to a superconducting state.
During the cooling process by the cooling means, the shaft is moved.
The shaft is pulled up by the moving means and lowered after cooling is completed.
A magnetic bearing characterized by the above.
JP09779392A 1992-04-17 1992-04-17 Magnetic bearing Expired - Fee Related JP3192207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09779392A JP3192207B2 (en) 1992-04-17 1992-04-17 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09779392A JP3192207B2 (en) 1992-04-17 1992-04-17 Magnetic bearing

Publications (2)

Publication Number Publication Date
JPH05299706A JPH05299706A (en) 1993-11-12
JP3192207B2 true JP3192207B2 (en) 2001-07-23

Family

ID=14201692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09779392A Expired - Fee Related JP3192207B2 (en) 1992-04-17 1992-04-17 Magnetic bearing

Country Status (1)

Country Link
JP (1) JP3192207B2 (en)

Also Published As

Publication number Publication date
JPH05299706A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
US5126317A (en) Bearing system employing a superconductor element
US5330967A (en) Superconducting bearing device stabilized by trapped flux
US5256638A (en) Magnetically leviated superconducting bearing
US5457086A (en) Superconducting composite for magnetic bearings
Müller et al. New permanent magnets
JP3554070B2 (en) Superconducting magnetic bearing device
JP3192207B2 (en) Magnetic bearing
JPH09501761A (en) Thin film superconductor magnetic bearing
US5633548A (en) Method for setting up a superconducting bearing device
JPH08288124A (en) Superconducting magnetic levitation apparatus and magnetizing method of its superconductor
JP3271330B2 (en) Magnet magnetizing device
JP2646510B2 (en) Oxide superconducting magnet
JPH0745429A (en) Magnetic levitating device
DE10006228A1 (en) Magnetic bearing for rotor shaft e.g. in semiconductor processing apparatus has rotor bearing part which partially surrounds stator bearing part to allow exchange of rotor
JP3188977B2 (en) Drive
JPH1174114A (en) Superconducting magnet device
JPH08250323A (en) Method of magnetizing superconductor in superconducting magnetic levitation device
JP4283406B2 (en) Method and apparatus for magnetizing oxide superconducting material
JP2764546B2 (en) Superconducting bearing device
Fukuyama et al. Static and dynamic characteristics of superconducting magnetic bearings using MPMG Y-Ba-Cu-O
JPH08203727A (en) Magnetizing method of superconductor in superconducting magnetic levitation device
JPH04281377A (en) Slide device
JP3332148B2 (en) Superconducting bulk material and superconducting bulk magnet
JPH048913A (en) Non-contact bearing using superconductor
Leupold et al. Imposition of periodic magnetization patterns on high‐energy‐product magnetic plates

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees